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We revisit the photon polarization tensor in a homogeneous external magnetic or electric field. The

starting point of our considerations is the momentum space representation of the one-loop photon

polarization tensor in the presence of a homogeneous electromagnetic field, known in terms of a double

parameter integral. Our focus is on explicit analytical insights for both on- and off-the-light-cone

dynamics in a wide range of well-specified physical parameter regimes, ranging from the perturbative

to the manifestly nonperturbative strong field regime. The basic ideas underlying well-established

approximations to the photon polarization tensor are carefully examined and critically reviewed. In

particular, we systematically keep track of all contributions, both the ones to be neglected and those to be

taken into account explicitly, to all orders. This allows us to study their ranges of applicability in a much

more systematic and rigorous way. We point out the limitations of such approximations and manage to go

beyond at several instances.
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I. INTRODUCTION

The photon polarization tensor is a central object in
quantum electrodynamics (QED). It contains essential in-
formation about the renormalization properties of QED
and, accounting for the vacuum fluctuations of the under-
lying theory, it encodes quantum corrections to Coulomb’s
force law. In the presence of an external field, the photon
polarization tensor acquires a dependence on the external
field, which couples to the quantum fluctuations involving
charged particles. Correspondingly, it gives rise to a variety
of dispersive (associated with its real part) and absorptive
(associated with its imaginary part) effects affecting
photon propagation in electromagnetic fields. On a more
formal level, the finite external field results in a substan-
tially richer tensor structure as compared to the zero field
limit, where the Ward identity immediately constrains the
polarization tensor in momentum space to factorize into an
overall tensor structure and a single scalar function.

As long as the external field is homogeneous, transla-
tional invariance implies that the polarization tensor in
momentum space depends only on the transferred four-
momentum and the respective field vectors. In the case of a
pure magnetic or electric field, the photon polarization
tensor in momentum space can then be decomposed into
three independent tensor structures, that can be associated
with three distinct polarization modes, and the correspond-
ing scalar functions. Thus, the vacuum subject to an exter-
nal field exhibits mediumlike properties. The difference
in the momentum dependence of these modes gives rise
to striking observable consequences, such as vacuum
birefringence and dichroism [1–4].

Even for pure and homogeneous fields, the associated
scalar functions at one-loop accuracy are highly nontrivial.

They are most conveniently stated in terms of double
parameter integrals [5–8] that cannot be tackled analyti-
cally in any straightforward way. One of the integrals is
over propertime, and the other one over an additional
parameter governing the momentum dependence in the

loop. In case of a pure magnetic field ~B [9], the entire field
dependence of the scalar functions is via trigonometric
functions, whose arguments depend multiplicatively on

the field amplitude B ¼ j ~Bj. Analogously, for a pure elec-
tric field ~E, the dependence is via a factor E ¼ j ~Ej in the
arguments of the corresponding hyperbolic functions.
As already discussed on the level of the Heisenberg-

Euler Lagrangian [10] (cf., e.g., Ref. [11]), both situations
are related by an electric-magnetic duality. Whereas the
effective action in a pure homogeneous field depends only
on the electric charge, the electron mass and the external
field,1 the photon polarization tensor in addition features an
explicit dependence on the transferred four-momentum.
Thus, besides a mapping of the field, the corresponding
duality for the photon polarization tensor involves a trans-
formation of the components parallel and perpendicular to
the external field also [6].
While the generic analytic properties of the photon

polarization tensor in a magnetic field and its different
representations: propertime, dispersion-sum, and Landau
or spectral sum representation, respectively, have been
studied in great detail by [12–15], and very recently again
by [16,17], handy analytical expressions and controlled
approximations that hold within certain, well-constrained
parameter regimes are still very rare—even more so

1The effective action is a scalar quantity, and the external field
is the only vector in the problem. Hence, the dependence can be
via the field amplitude only.

PHYSICAL REVIEW D 88, 085033 (2013)

1550-7998=2013=88(8)=085033(38) 085033-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.085033


beyond on-the-light-cone dynamics. For a recent numeri-
cal study, cf. [18]. Results for the photon polarization
tensor in other external field configurations like constant
crossed fields and plane wave backgrounds are also avail-
able [19–23] (for the crossed field case, cf. also [24]). For
recent reviews about strong field QED in the context of
high intensity laser experiments, see [25–27].

Triggered by the seminal works of Tsai and Erber
[28,29] in the 1970s, ongoing efforts have sought to find
adequate approximations for the photon polarization tensor
in the presence of an external magnetic or electric field
(e.g., [30,31]) in various limits. However, their derivation
in general involves constraints to a certain momentum
regime and most of these approximations are tailored
to on-the-light-cone dynamics. While there are some
motivations and indications concerning their regimes of
applicability, so far more systematic studies of their re-
gimes of validity—particularly beyond on-the-light-cone
dynamics—have not been performed. In this paper we aim
at going beyond. Our focus is threefold: to thoroughly
investigate the regimes of validity of established approx-
imations, to generalize them beyond on-the-light-cone
dynamics, and to obtain new analytical results, particularly
into the nonperturbative regime. Correspondingly, our
paper can be considered as constituting a viable toolbox,
providing approximations to the photon polarization tensor
in various well-specified physical parameter regimes. For
clarity and easy reference we summarize the physical
parameter regimes studied in this work in Table I.

Our paper is organized as follows. In Sec. II we recall the
basic structure of the photon polarization tensor, subject to
a pure and homogeneous external field, in momentum
space. In this context, we discuss the corresponding
electric-magnetic duality, mapping the polarization tensor

in a purely magnetic field onto the corresponding expres-
sion in an electric field. Section III focuses on several
approximations, allowing for explicit analytical insights.
After a short discussion of the perturbative weak field
regime, we retrace the approximations of Tsai and Erber,
but without restricting ourselves to on-the-light-cone dy-
namics from the outset. Thereafter, we study in detail the
strong field limit. Again our focus is on handy analytical
expressions, applicable in well-specified physical parame-
ter regimes. The paper ends with conclusions in Sec. IV.
Extensive appendixes provide additional details that have
been omitted in the main text.

II. THE PHOTON POLARIZATION TENSOR
IN A PURE AND HOMOGENEOUS FIELD

We focus on the photon polarization tensor at one-loop
level, and stick to its representation in the propertime
formalism [32]. Whereas it is known exactly for arbitrary
homogeneous, externally set electromagnetic field configu-
rations in terms of a double parameter integral [5–8], we
here limit ourselves to the special case of a pure, i.e., either
magnetic or electric, and homogeneous field. By this choice
we explicitly restrict ourselves to a certain class of refer-

ence systems and break Lorentz covariance: as ~E and ~B are
of course not invariant under general Lorentz transforma-

tions, only then our notion of discerning ~E and ~B as pure
fields makes sense. A residual Lorentz covariance remains
for boosts along, and rotations around, the external field.
Correspondingly, the only two externally set vectors

in the problem are the external field and the vector formed
by the spatial components of the transferred momentum
four-vector. They govern the entire direction dependence
of the photon polarization tensor. Of course, in

TABLE I. In this table we list the physical parameter regimes studied in this work for on-the-
light-cone dynamics, k2 ¼ 0. All regimes are studied for both magnetic, f ¼ B, and electric,
f ¼ E, fields. We introduce a descriptive label for each regime (written in italics), and reference
the corresponding section in this work. Moreover, we indicate where this work adds major
contributions. Obviously, for k2 ¼ 0 each regime can be characterized by just two different
inequalities. This is no longer the case for k2 � 0, where additional constraints are needed. We
will nevertheless use the same labels for the analogous regimes generalized to k2 � 0 also. Let
us emphasize that the two inequalities chosen to characterize a particular regime are not unique.
Correspondingly, the cells left empty can partly overlap with other regimes, e.g., the strong field
limit overlaps with the regime characterizing the cell left empty in the right column.

ðef
m2Þ2 k2?

4m2 � 1 ðef
m2Þ2 k2?

4m2 � 1

ef
m2 � 1 Perturbative regime:

Sec. III A

Weak fields—large momentum:

Tsai and Erber [28,29]; Sec. III B 2
k2?
4m2 � 1 Very weak fields—large momentum:

this work; Sec. III B 1
ef
k2?

� 1 Momentum dominance:

this work; Sec. III B 2

fef
m2 ;

ef
k2?
g � 1 Strong field limit:

this work; Sec. III C
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inhomogeneous fields, the tensor structure can become
much more involved.

It is then convenient to decompose the four-vectors k�

into components parallel and perpendicular to the direction

of the external field ~f ¼ f ~B; ~Eg. Without loss of generality,
~f is assumed to point in ~e1 direction, and the following
decomposition is adopted:

k�¼k
�
k þk

�
?; k

�
k ¼ðk0;k1;0;0Þ; k

�
?¼ð0;0;k2;k3Þ: (1)

Our metric convention is g�� ¼ diagð�1;þ1;þ1;þ1Þ,
such that the four-vector squared reads k2 ¼ ~k2 � ðk0Þ2.
The metric tensor is decomposed as follows, g�� ¼ g��

k þ
g
��
? , with g

��
k ¼ diagð�1;þ1; 0; 0Þ and g

��
? ¼ diagð0; 0;

þ1;þ1Þ. In momentum space, the one-loop photon polar-
ization tensor in a pure and homogeneous field can then be
written as [5,6,9,12,13]

���ðkj ~fÞ ¼ �

2�

Z 1

�1

d�

2

Z 1�i�

0

ds

s

�
n
e�i�0s

h
N0ðg��k2 � k�k�Þ

þ ðN1 � N0Þ
�
g��
k k2k � k�k k

�
k
�

þ ðN2 � N0Þ
�
g��
? k2? � k�?k

�
?
�i

þ c:t:
o
; (2)

with contact term

c:t: ¼ �ð1� �2Þe�iðm2�i�Þsðg��k2 � k�k�Þ; (3)

where the parameter s denotes the propertime and � gov-
erns the momentum distribution within the loop, f�; �g !
0þ are infinitesimal parameters, m is the electron mass,
e > 0 the elementary charge, and � ¼ e2=4� is the fine
structure constant. We use units where c ¼ ℏ ¼ 1.
Whereas � can be traced back to the Feynman prescription
m2 ! m2 � i� in the propagator, the parameter � is nec-
essary to unambiguously define the propertime integral for
a purely magnetic field. It shifts the integration contour
slightly below the positive real s axis.2

The phase factor �0 is given by

�0 ¼ m2 � i�þ n1k
2
k þ n2k

2
?; (4)

and the dependence on the external field is entirely
encoded in the scalar functions N0, N1, N2, n1 and n2.
The nonvanishing elementary scalars which involve the

external field ~f and remain invariant under boosts along

and rotations around ~f, constituting the residual Lorentz
symmetry of the problem (see above), read

F��F�� ¼ 2B2; ðk�?F��Þðk�?F�
�Þ ¼ B2k2?;

� ðk�k F�
��Þðk�kF��

� Þ ¼ B2k2k;
(5)

for a purely magnetic field ( ~f ¼ ~B), and

F��F�� ¼ �2E2; ðk�k F��Þðk�kF�
�Þ ¼ �E2k2k;

� ðk�?F�
��Þðk�?F��

� Þ ¼ �E2k2?;
(6)

in case of an electric field ( ~f ¼ ~E). Here F�
�� ¼

1
2 �����F

�� denotes the dual field strength tensor, and

����� is the totally antisymmetric tensor. In result, the

above scalar functions depend on ~f only via its amplitude

f ¼ j ~fj. For general constant electromagnetic fields, the
independent Lorentz scalars in the problem are k2,
F��F��, F

��F�
��, and k�F��F

��k� [12].

Specializing to a magnetic field ~f ¼ ~B, the explicit
expressions for N0, N1, N2, n1 and n2 read

N0ðzÞ ¼ z

sin z
ðcos�z� � sin�z cot zÞ;

N1ðzÞ ¼ zð1� �2Þ cot z; N2ðzÞ¼ 2zðcos�z�cos zÞ
sin 3z

;

n1ðzÞ ¼ 1� �2

4
; n2ðzÞ ¼ cos�z� cos z

2z sin z
; (7)

with z ¼ eBs. They exclusively depend on z and �, and are
even in both variables. The entire s dependence of Eq. (4)
is via n2.
The corresponding expressions for an electric field

~f ¼ ~E can be obtained from those in Eq. (7), substituting
B ! �iE, and at the same time interchanging the labels
1 $ 2 [6]. As Eqs. (7) are even in z, both signs �iE are
possible and the mapping is not unique. Identifying the
scalar functions in Eq. (2) with the explicit expressions in
Eq. (7), on the level of Eq. (2) this formal correspondence
can be rephrased as

B ! �iE and k $? : (8)

Equation (8) is also compatible with Eqs. (5) and (6).
However, the correspondence (8) does not survive the
propertime integration, and thus is not true for the photon
polarization tensor on a general level: reverting to Eq. (2)
and taking into account the location of the poles in the
complex z plane (cf. footnote 2), an analytical continuation
in the field variable B ! Be�i	 is viable for 0 � 	 � �

2 but

not for 	 < 0. As a consequence, only the mapping B !
Be�i�=2¼̂ � iE survives the propertime integration and is
valid for the photon polarization tensor on a general level.
This results in the following electric-magnetic duality:

���ðkj ~BÞ ���ðkj ~EÞ
B $ �iE

k $ ?
: (9)

For completeness, we also give the reverse line of argu-
ment: demanding the electric-magnetic duality (9) to hold,
the integration contour of the propertime integral is fixed to

2For a pure magnetic field, poles are located on the real s axis
at z ¼ 2�n (n 2 N); cf. Eq. (7), below.

PHOTON POLARIZATION TENSOR IN A HOMOGENEOUS . . . PHYSICAL REVIEW D 88, 085033 (2013)

085033-3



lie slightly below the positive real s axis. The physical
reason for this is that the photon amplitude in an external
field can be depleted but not amplified. Moreover, note that
for f ¼ B and k2? ¼ 0 (f ¼ E and k2k ¼ 0) the phase factor

�0 becomes independent of s, and the propertime integral
simplifies significantly.

Employingprojectionoperators,wefinallywrite thephoton
polarization tensor, Eq. (2), in a slightly different way. The
projection operator onto transversal modes is given by

P
��
T ¼ g�� � k�k�

k2
: (10)

At zero field the transferred momentum k� is the only exter-
nally set four-vector. The Ward identity, k��

�� ¼ 0, then

implies that the photonpolarization tensor at zerofield is of the
form

���ðkÞ ¼ P
��
T ðkÞ�ð0ÞðkÞ; (11)

where �ð0ÞðkÞ is a scalar quantity. In the presence of an
external field it is helpful to introduce

P
��
k ¼ g

��
k � k�k k

�
k

k2k
and P

��
? ¼ g

��
? � k�?k

�
?

k2?
: (12)

Together with

P��
0 � P��

T �
�
P��
k þ P��

?
�
; (13)

P��
k and P��

? form a set of projection operators that span the

transversal subspace. For a given photon four-momentum k�,
the projectors P

��
p (p ¼ 0, k, ? ) project onto the three

independent photon polarization modes in the presence of
the external field. We denote the angle between the external

field and the propagation direction ~k by 
 ¼ \ð ~f; ~kÞ. As the
vacuum speed of light in external fields deviates from its value
at zero field, and the polarized vacuum exhibits mediumlike
properties, the occurrence of three (instead of two at zero field)
independent polarization modes is not surprising. As long as
~k∦ ~f, the projectors P

��
k and P

��
? have an intuitive interpreta-

tion. They project onto photonmodes with polarization vector

parallel and perpendicular to the ð ~k; ~fÞ plane, and can be
continuously related to polarization modes at zero field. For

the special alignment of ~kk ~f only one externally set direction
is left, and we encounter rotational invariance around the field
axis. Here the modes 0 and? can be continuously related to
polarization modes at zero field.

With the help of Eqs. (12) and (13), Eq. (2) can be
rewritten as

���ðkj ~fÞ ¼ P��
0 �0 þ P��

k �k þ P��
? �?; (14)

where the scalar functions �pðkÞ, p 2 fk;?; 0g, are

the components of the photon polarization tensor in the
respective subspaces, given by

8><
>:
�k
�?
�0

9>=
>;¼ �

2�

Z 1

�1

d�

2

�
Z 1�i�

0

ds

s

2
6664e�i�0s

8>>><
>>>:
k2kN1þk2?N0

k2kN0þk2?N2

k2N0

9>>>=
>>>;þk2c:t:

3
7775;

(15)

and the contact term now reads

c:t: ¼ �e�iðm2�i�Þsð1� �2Þ: (16)

Here we have pulled out an overall factor k2, such that the
contact term, as defined in Eq. (16), does not feature a
momentum dependence. Throughout the calculations per-
formed in this paper, the� integrationwill be reserved to the
very end. Thus it is useful to also introduce the abbreviation

�pðkÞ ¼
Z 1

�1

d�

2
�pðk; �Þ: (17)

However, the expressions �pðk; �Þ are not unambiguously

defined. They might differ by terms that vanish or can be
rearranged by integrations by parts under the � integral.
As discussed above, the identification of N0, N1, N2, n1

and n2 with the explicit functions in Eq. (7) results in the
mapping (9). For completeness, note that in the limit of
vanishing external field, z ! 0,

fN0; N1; N2g ! 1� �2 þOðz2Þ and

fn1; n2g ! 1� �2

4
þOðz2Þ:

(18)

In this particular limit all components �p in Eq. (15)

become equal, and as P��
T ¼ P

pP
��
p [cf. Eq. (13)], the

overall tensor structure of ���ðkÞ is 	P
��
T . Thus, at zero

field Eqs. (14) and (15) reproduce Eq. (11) with

�ð0ÞðkÞ ¼ k2
�

2�

Z 1

�1

d�

2
ð1� �2Þ

�
Z 1�i�

0

ds

s
e�iðm2�i�Þsðe�i1��2

4 k2s � 1Þ: (19)

Utilizing partial integration in � [Eq. (A1) with a ¼ 0], the
propertime integral can be performed straightforwardly, and
Eq. (19) can be cast into a convenient representation of the
one-loop photon polarization tensor at zero field [32,33],

�ð0ÞðkÞ ¼ ðk2Þ2 �

4�

Z 1

�1

d�

2
�2

�
�2

3
� 1

�
i
Z 1�i�

0
dse�i�0s

¼ ðk2Þ2 �

4�

Z 1

�1

d�

2
�2

�
�2

3
� 1

�
1

�0

; (20)

where we introduced the zero field analog of the phase factor
�0 [cf. Eq. (4)],
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�0 ¼ m2 � i�þ 1� �2

4
k2: (21)

This quantity plays an important role in the expansions to be
performed in Sec. III. Apart from the physical parametersm2

and k2, it depends on the integration parameter �.
Finally, as already noted below Eq. (9), for vanishing k2?

(k2k) the expression of the photon polarization tensor in a

magnetic (electric) field simplifies significantly: in this
limit the phase factor (4) loses any nontrivial propertime
dependence and becomes independent of the external field.
In turn, the propertime integration can be performed
explicitly. To keep notations simple, we define

�k
0 ¼ m2 � i�þ 1� �2

4
k2k and

�?
0 ¼ m2 � i�þ 1� �2

4
k2?:

(22)

These expressions resemble Eq. (21) with k2 ! k2k
and k2 ! k2?, respectively. While the first one is relevant

for magnetic fields, the latter one can be associated
with electric fields. Employing Eq. (29) below, it is
straightforward to derive the following identity:Z 1�i�

0

ds

s
fNie

�i�k
0
s þ c:t:g

¼ ð1� �2Þ ln
�
m2 � i�

�k
0

�

þ
Z 1�i�

0

ds

s
e�i�k

0
sfNi � ð1� �2Þg: (23)

With its help, we write

8><
>:

�k
�?
�0

9>=
>;
�������������

k2?¼0

¼ k2k
�

2�

Z 1

�1

d�

2

8>>><
>>>:
�k
1ðBÞ

�k
0ðBÞ

�k
0ðBÞ

9>>>=
>>>;; (24)

where we have introduced

�k
i ðBÞ ¼ ð1� �2Þ ln

�
m2 � i�

�k
0

�

þ
Z 1�i�

0

ds

s
e�i�k

0
s½NiðeBsÞ � ð1� �2Þ
; (25)

with i 2 f0; 1; 2g. The function �2 does not contribute at all
in the considered limit. As we will need it later, we never-
theless include it here for later reference. The results for an
electric field and k2k ¼ 0 follow from Eqs. (23)–(25) by the

replacement k!? and B ! �iE. Obviously, the polariza-

tion tensor becomes degenerate for two polarization modes

[cf. the discussion of the projection operators below Eq. (13)].
Employing integrations by parts, the propertime inte-

grals in Eq. (25) can be reduced to a few basic integrals
[cf. also the alternative representation of the scalar func-
tions NiðzÞ given in Appendix B, Eq. (B1)],

Z 1�i�

0

ds

s
e�i�k

0
sfN0ðzÞ � ð1� �2Þg ¼ ��2 þ eB

Z 1�i�

0
dse�i�k

0
s

�
ð1� �2Þ

�
cos ð�zÞ
sinh ðzÞ �

1

z

�
þ �

i�k
0

eB

sin ð�zÞ
sin ðzÞ

�
; (26)

Z 1�i�

0

ds

s
e�i�k

0
sfN1ðzÞ � ð1� �2Þg ¼ ð1� �2ÞeB

Z 1�i�

0
dse�i�k

0
s

�
cot ðzÞ � 1

z

�
; (27)

Z 1�i�

0

ds

s
e�i�k

0
sfN2ðzÞ � ð1� �2Þg

¼ � 1þ 3�2

2
þ eB

Z 1�i�

0
dse�i�k

0
s

�
ð1� �2Þ

�
cos ð�zÞ
sin ðzÞ � 1

z

�
þ
�
�k

0

eB

�
2
�
cot ðzÞ � cos ð�zÞ

sin ðzÞ
�
þ 2�

i�k
0

eB

sin ð�zÞ
sin ðzÞ

�
; (28)

with z ¼ eBs. Analogous expressions hold for the electric field case; they are obtained from Eqs. (26)–(28) by the
replacement ?! k, B ! �iE and z ! �iz0 ¼ �ieEs.

In order to perform the propertime integrations in Eqs. (26)–(28) we analytically continue the magnetic field to negative
imaginary values or—equivalently—employ the electric-magnetic duality (9). Correspondingly, they can be carried out
explicitly by resorting to the following identities, obtained from formulas 3.551.2, 3.551.3 and 3.552.1 of [34],

Z 1

0
dz0z0"e�i�z0 1

z0
¼ "�1 � ln ði�Þ � �þOð"Þ; (29)
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Z 1

0
dz0z0"e�i�z0 coth ðz0Þ ¼ "�1 � c

�
i�

2

�
� ði�Þ�1 � �� ln ð2Þ þOð"Þ; (30)

Z 1

0
dz0z0"e�i�z0 cosh ð�z0Þ

sinh ðz0Þ ¼ "�1 � 1

2

�
c

�
1þ i�þ �

2

�
þ c

�
1þ i�� �

2

��
� �� ln ð2Þ þOð"Þ; (31)

Z 1

0
dz0e�i�z0 sinh ð�z0Þ

sinh ðz0Þ ¼ 1

2

�
c

�
1þ i�þ �

2

�
� c

�
1þ i�� �

2

��
; (32)

all valid for Imð�Þ< 0 and " ! 0þ. Here �ðÞ ¼ d
d ln �ðÞ denotes the digamma function. The integrations over

propertime (26)–(28) yield finite results: divergent contributions are grouped such that the divergences encountered in
isolated terms [cf. Eqs. (29)–(31)] cancel. Performing the � integration, taking into account

Z 1

�1
d�e�i�?

0
sfð�Þ ¼

Z 1

�1
d�e�i�?

0
sfð��Þ; (33)

where fð�Þ denotes an arbitrary function of the parameter �, the photon polarization tensor for a magnetic field and
k2? ¼ 0, Eq. (24), can eventually be represented in the following concise form:

�kjk2?¼0 ¼ k2k
�

2�

Z 1

�1

d�

2
ð1� �2Þ

�
ln

�
m2 � i�

2eB

�
� c

�
�k

0

2eB

�
� eB

�k
0

�
;

�?jk2?¼0 ¼ �0jk2?¼0 ¼ k2k
�

2�

Z 1

�1

d�

2

�
ð1� �2Þ ln

�
m2 � i�

2eB

�
� �2 �

�
1� �2 � ��k

0

eB

�
c

�
�k

0

2eB
þ 1þ �

2

�	
;

(34)

where only the single parameter integration over � is
still to be performed; cf. also [35–38]. Apart from the
limitation to k2? ¼ 0, Eq. (34) is valid for arbitrary values
of the momenta and the magnetic field and thus in parti-
cular encodes the full field dependence in the nonperturba-
tive regime. Taking into account Eq. (9), the analogous
expression for an electric field and kk ¼ 0 follows straight-
forwardly from Eq. (34).

Resorting to these preparations, in Sec. III we study the
photon polarization tensor as provided in Eq. (2), (15), and
(16) in detail. In the explicit calculations, we mostly focus
on the case of a pure magnetic field. The corresponding
results for an electric field follow straightforwardly via the
electric-magnetic duality (9).

III. ANALYTICAL INSIGHTS INTO THE
PHOTON POLARIZATION TENSOR

The representation of the photon polarization tensor in
Eq. (15) is well suited for a perturbative small field expan-
sion. A series expansion in powers of the amplitude of the
external field is straightforward. It effectively amounts to
an expansion in powers of z ! 0 in the integrand of the
propertime integral.

A. Perturbative weak field expansion

Let us first note that in the perturbative regime it is
permissible to set � � 0 in Eqs. (2) and (15) from the

outset. This comes about as an expansion around ef ¼
0 $ z ¼ 0 does not retain any of the corresponding inte-
grands’ poles in the complex s plane, and the propertime
integration contour can be shifted onto the real positive s
axis. Hence, evenness in z then directly implies evenness
in ef, and, in full agreement with Furry’s theorem, the
perturbative expansion of the photon polarization tensor
is in even powers of ef. Consequently, the perturbative
expansion of Eq. (15) can be written as

�
pert
p ¼ X1

n¼0

�ð2nÞ
p ; (35)

where the upper index (2n) refers to the order in the
perturbative expansion in powers of ef, i.e., denotes con-
tributions of order ðefÞ2n. Formally, the terms in Eq. (35)
are determined as follows:

�ð2nÞ
p ¼ ðefÞ2n

n!

��
@

@ðefÞ2
�
n
�p

�
ef¼0

; (36)

where the components �p in Eq. (15) act as generators.

The zeroth order term �ð0Þ
p is the same for all polarization

modes p ¼ 0, k, ? . It corresponds to the photon polar-
ization tensor at zero-field, Eq. (19). In case of a magnetic
field, higher order terms with n 2 N straightforwardly
follow from
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Z 1

0
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2
6664
�
@

@z2

�
n

0
BBB@
8>>><
>>>:
k2kN1 þ k2?N0

k2kN0 þ k2?N2

k2N0

9>>>=
>>>;e

�isk2?~n2
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CCCA
3
7775

z¼0

; (37)

where

~n2 ¼ n2 � 1� �2

4
¼ Oðz2Þ: (38)

The nontrivial z dependence of the function n2, entering in
the exponential, obstructs simple closed form expressions
for �ð2nÞ

p for arbitrary field alignments, even though the
coefficients fNð2nÞ

i ; nð2nÞ2 g 2 R with i ¼ 0, 1, 2 in

NiðzÞ ¼
X1
n¼0

Nð2nÞ
i z2n and n2ðzÞ ¼

X1
n¼0

nð2nÞ2 z2n; (39)

are known explicitly in terms of sums over a finite number
of terms. Nevertheless, Eq. (37) can in principle be eval-
uated for any desired n. The series representations given in
Eq. (39) are valid for jzj<� (see Appendix B): The
original functions in Eq. (7) feature inverse powers of
sin ðzÞ, and correspondingly poles at the zeros of the sine
function, z ¼ n� (n 2 Z), with the first pole at z ¼ �
delimiting the range convergence of the expansion around
z ¼ 0.

All the propertime integrals in Eq. (37) can then be
performed explicitly, employingZ 1

0
dssle�i�0s¼

�
i
@

@�0

�
lZ 1

0
dse�i�0s¼ l!

��i

�0

�
lþ1

; (40)

for l 2 N0. On first sight Eq. (40) seems to be incompatible
with the radius of convergence of the small z expansion in
Eq. (39). It is nevertheless possible to reconcile the expan-
sion in z ! 0 and the propertime integration (40): first, we
substitute the dimensionful propertime parameter ‘‘s’’ for
the dimensionless one ‘‘z.’’ Correspondingly, the factor

�0s in the argument of the exponential reads �0

eB z (or
�0

eE z
0 for an electric field). Demanding j�0=ðefÞj � 1,

such that the integrands of the propertime integral receive
their main contribution from the regime jzj<�, we can
argue that it is permissible to adopt Eq. (40) after the
expansion around z ¼ 0.
Keeping track of the various physical parameters, the

expansion coefficients (37) of the photon polarization ten-
sor in a magnetic field are of the following structure:

�ð2nÞ
p ¼ �

2�

Z 1

�1

d�

2

Xn
l¼0

h
k2kc

kðn;lÞ
p ð�2Þ þ k2?c

?ðn;lÞ
p ð�2Þ

iZ 1�i�

0

ds

s
z2nð�isk2?Þle�i�0s

¼ �

2�

Z 1

�1

d�

2

Xn�1

l¼0

ð2nþ l� 1Þ!
ð�1Þnþl

h
k2kc

kðn;lÞ
p ð�2Þ þ k2?c

?ðn;lÞ
p ð�2Þ

i�eB
�0

�
2n
�
k2?
�0

�
l

þ 4ð3n� 1Þ!
n!3n

�
1� �2

4

�
2nþ1

k2
�
eB

�0

�
2n
�
k2?
�0

�
n
; (41)

with n 2 N, and coefficients ckðn;lÞp ð�2Þ and c?ðn;lÞ
p ð�2Þ,

which also depend on the polarization mode p. The corre-
sponding expression for an electric field follows by the
electric-magnetic duality (9). From Eq. (41) we can infer
that factors 	z scale as eB=�0, while those 	sk2? scale as
k2?=�0 after having carried out the integration over proper-
time. Thus, for the perturbative expansion to yield trustworthy
results, in the sense that higher order contributions become
less important with increasing order n, both conditions,�

eB

�0

�
2 � 1 and

�
eB

�0

�
2 k2?
�0

� 1; (42)

have to be fulfilled. We emphasize that any truncation of the
infinite sum in Eq. (35) is ultimately limited to this parameter
regime.

For illustration, we exemplarily provide the leading field
dependent (n ¼ 1) perturbative correction to the photon
polarization tensor in a pure magnetic field. It reads

8>>><
>>>:
�ð2Þ
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12�
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>:
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1
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B@
8><
>:

1
5��2

2ð1��2Þ
1

9>=
>;�

1��2

4 k2

�0

1
CAk2?

3
75: (43)

Specifying to on-the-light-cone dynamics, i.e., setting

k2 ¼ ~k2 �!2 ¼ 0, where ! denotes the photon energy,
the conditions in Eq. (42) simplify to

eB

m2
� 1 and

�
eB

m2

�
2 !2sin 2


m2
� 1: (44)

In this limit, the polarization tensor at zero field �ð0Þ
vanishes and the � integration in Eq. (43) can be easily
performed,
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4
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9>=
>;; (45)

and the index of refraction np for on-the-light-cone

photons, polarized in mode p ¼ fk;?g [28],
np ¼ 1� 1

2!2
<ð�pÞjk2¼0; (46)

can be read off straightforwardly. We obtain�
nk
n?

	
¼ 1þ �

4�

�
eB

m2

�
2
sin 2


2

45

�
7

4

	
þOððeBÞ4Þ: (47)

Equation (47) gives rise to the famous result for the veloc-
ity shift in weak magnetic fields [1]. Via the definition
vp ¼ c=np, we find�
vk
v?

	
¼ 1� �

4�

�
eB

m2

�
2
sin 2


2

45

�
7

4

	
þOððeBÞ4Þ: (48)

For completeness, note that in the special case of a
constant magnetic field and k2? ¼ 0 the structure of

Eq. (41) simplifies significantly: all the contributions in

Eq. (41) with l > 0 vanish and �0 becomes �k
0

[cf. Eq. (22)]. In turn, the expansion (41) is governed by

the single parameter ðeB=�k
0Þ2 � 1; also see Eq. (42).

The perturbative weak field expansion in this regime is
most conveniently obtained from Eq. (34) using the asymp-
totic series expansion of the digamma function for large
arguments [39],

�ðÞ ¼ ln ðÞ � 1

2
� 1

122
þO

�
B2l

2l

1

2l

�
; (49)

with l ¼ 2; 3; 4; . . . and Bernoulli numbers B2l. Obviously
the logarithmic contribution originating in the large-
argument expansion Eq. (49) cancels with the logarithm

in Eq. (34), such that the perturbative small field expansion
is entirely in even powers of eB. The asymptotic nature of a
perturbative expansion in eB	 1= is very generic in
QED [40–42].

B. Approximations à la Tsai and Erber

Subsequently our focus is on the photon polarization
tensor beyond the perturbative regime. We start by follow-
ing a strategy devised by Tsai and Erber for on-the-light-
cone dynamics [28,29]. The basic idea is to adopt a
particular type of expansion of the integrand of the proper-
time integral in Eq. (15), such that it can eventually be
written in terms of Airy functions.
In contrast to [28,29], we do not limit ourselves to

on-the-light-cone dynamics, and do not perform any sub-
stitution in the propertime integration parameter s. Rather,
we explicitly keep track of occurrences of the bare proper-
time parameter s and the combined parameter z. This
allows for a decisively more controlled expansion, and
even grants access to novel parameter regimes beyond
the scope of [28,29].
We again make use of an expansion in terms of the

parameter z under the propertime integral, but in contrast
to Sec. III A do not perform a strict series expansion in
powers of z2.
Whereas in a strict perturbative weak field expansion

only the first term of the phase factor,

�0 ¼ �0 þ k2?

�ð1� �2Þ2
48

z2 þOðz4Þ
�
; (50)

is kept in the exponential and all terms proportional to z2n

(n 2 N) are expanded to form polynomial contributions in
the integrand of the propertime integral, we now keep all
the terms written explicitly in Eq. (50) in the exponential.
To this end, we rewrite the exponential factor in Eq. (15) as
follows:

e�i�0s ¼ e�i�0s�ik2?
ð1��2Þ2

48 z2s

�
1þX1

j¼1

1

j!
ð�ik2?sÞjz4j

�X1
n¼2

nð2nÞ2 z2ðn�2Þ
�
j
�
: (51)

Equation (51) still accounts for the full momentum dependence of the factor e�i�0s to all orders. In particular, this remains
also true for truncations of Eq. (51) of the form

e�i�0s ¼ e�i�0s�ik2?
ð1��2Þ2

48 z2s

�
1þX1

j¼1

ðnð4Þ2 Þj
j!

ð�ik2?sÞjz4j½1þOðz2Þ

�
: (52)

An expansion as performed in Eq. (51) becomes

relevant if the contribution 	k2?z
2 in Eq. (50) can become

as big as, or even surpass, �0. At the same time, the

dominant contributions to the propertime integral should

stem from small z, such that terms 	k2?Oðz4Þ remain

‘‘small enough’’ to allow for their expansion. Resorting

to our findings in the perturbative weak field regime [cf.
below Eq. (41)], it is plausible that for jeB=�0j � 1 an
expansion of the above type should in particular grant

access to the regime jðeB�0
Þ2 k2?

�0
j � 1, not accessible within

an ordinary perturbative weak field expansion. In addition,
the approach should of course still grant access to the
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perturbative weak field regime (42). Moreover, we could
expect to obtain trustworthy results even for small �0

given that simultaneously k2?=ðeBÞ � 1, such that the

propertime integrations still receive their main contribution
from jzj<� [cf. below Eq. (40)].

Let us now adopt this type of expansion in Eq. (15) and
thoroughly study its range of applicability. Substituting the
functions Ni with i 2 f0; 1; 2g for their series representa-
tions in the limit z ! 0, Eq. (39), and employing Eq. (A1)
with a ¼ k2?ðeBÞ2s3=48, we arrive at [cf. Eq. (17)]
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9>>>=
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nð2lÞ2 z2ðl�2Þ
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þ k2ð1� �2Þ 1

s
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�
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36
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1
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ð�ik2?sÞjz4j

�X1
l¼2

nð2lÞ2 z2ðl�2Þ
�
j
�9>>>=
>>>;: (53)

In the next step we aim at carrying out the propertime integration. The integrand of the propertime integral in Eq. (53)
consists of an overall exponential factor that multiplies a polynomial in s. Polynomial contributions even in s come with
prefactors that are purely imaginary, whereas odd powers of s have real prefactors. The integrals to be performed are of the
following structure:

Z 1

0
dssle�i�0s�ik2?

ð1��2Þ2
48 ðeBÞ2s3 ¼

�
i

@

@�0

�
l Z 1

0
dse�i�0s�ik2?

ð1��2Þ2
48 ðeBÞ2s3 ; (54)

with l 2 N0. Given that 0 � � < 1 and jB2k2?j � 0, we can writeZ 1

0
dse�i�0s�ik2?

ð1��2Þ2
48 ðeBÞ2s3 ¼ 1

�0
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2
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d�e�ið32 ~�Þ2=3��i13 signðB2k2?Þ�3
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� i signðB2k2?ÞGi
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�
3

2
~�

�
2=3
��

; (55)

where we substituted s for �,

� ¼
�
1� �2

4

�
2=3jðeBÞ2k2?j1=3s; (56)

and introduced the dimensionless parameter

~�2=3 �
�
2

3

4

1� �2

�
2=3 �0

jðeBÞ2k2?j1=3
; (57)

which is real valued apart from the infinitesimal quantity
�i�, with � ! 0þ, encoded in �0. In the last line of
Eq. (55) we used the definitions 10.4.32 and 10.4.42 of
[43]. AiðÞ denotes the Airy function and GiðÞ is defined
via both AiðÞ and the Airy function of the second kind
BiðÞ (cf. formula 10.4.42 of [43]),

GiðÞ ¼ 1

3
BiðÞ þ

Z 

0
dt½AiðÞBiðtÞ � AiðtÞBiðÞ
:

(58)

For completeness, we note that it is also possible to per-
form the manipulations in Eq. (55) in a slightly different

way, such that the final expression on its right-hand side
can be evaluated throughout the contour B ! Be�i	 with
0 � 	 � �

2 [cf. Eq. (9)]. However, representation (55) is
directly applicable to all physically relevant situations and
thus completely serves our purposes. Specifying it to the
case of an electric field, we just have to substitute

B2 ! �E2 and k2? ! k2k: (59)

It is furthermore helpful (see below) to define the following
parameter:

�� � ½�signðB2k2?Þ~�2=3
3=2

¼ 2

3

4

1� �2

½��0signðB2k2?Þ
3=2
jðeBÞ2k2?j1=2

: (60)

For k2 ¼ 0 the parameter �þ in Eq. (60) agrees with the
parameter � as defined in Eq. (57) of [28]. As detailed in
Appendix C, Eq. (55) can be expressed in terms of
an infinite sum of Bessel functions. In turn, the generic
propertime integral (54) can be written as
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(61)

for <ðB2k2?�0Þ � 0, and

Z 1

0
dssle�i�0s�ik2?

ð1��2Þ2
48 ðeBÞ2s3 ¼ ��
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(62)

for <ðB2k2?�0Þ � 0.
As � ! 0þ, the conditions for <ðB2k2?�0Þ⋛0

basically amount to conditions for signðB2k2?�0Þ⋛0.
Correspondingly, the arguments �� of the Bessel functions
in Eqs. (61) and (62) are essentially real valued and
positive; cf. Eq. (60).

Rewriting the propertime integrals in Eq. (53) in terms
of Eqs. (61) and (62) does not allow for immediate insights.
The right-hand sides of Eqs. (61) and (62) are still
complicated expressions. However, as for real valued argu-
ments both the ordinary and the modified Bessel functions
of the first kind are real valued, the real and imaginary parts
at fixed l are disentangled in Eqs. (61) and (62), and can
thus be inferred straightforwardly.

Subsequently, we focus on limiting cases where further
analytical results are accessible: Formally, these cases can

be associated with either the limit � � j~�j ¼ j��j ! 0, or
� ! 1. It might seem somewhat unusual to include an
explicit � dependence—with � still to be integrated over—
in the definition of the parameter � which is to be sent to

zero or infinity, respectively. While the integrand of
the � integral could formally of course be expanded in a
manifestly � independent combination, like [28,29]

��1 � 1� �2

4
�

�
m2

�0

�
3=2 ¼ 2

3

m3

jðeBÞ2k2?j1=2
; (63)

instead, the true expansion parameter would still be given
by �. Performing an expansion in ��1, the � dependent
expansion coefficients would rearrange such that the
expansion is effectively in �.

1. Very weak fields—large momentum

The limit � ! 1, or equivalently [cf. Eq. (57)]

��1 ¼ 3

2

1� �2

4

��������ðeBÞ
2k2?

�3
0

��������
1
2� 1; (64)

should be compatible with the perturbative weak field
expansion as performed in Sec. III A. In this spirit, we first
write
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2 signðB2k2?Þ
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n
; (65)

where we employed Eq. (40) in the last step. One might naively expect that Eq. (65) corresponds to the maximum
information attainable in the limit � ! 1. This, however, is not true: by comparison with Eqs. (61) and (62), we infer that
Eq. (65) only accounts for the real part of the contributions embraced in curly brackets in these expressions.3 The
asymptotic behavior of the corresponding imaginary parts can be extracted from Eqs. (C17) and (C18) in the Appendix.
With regard to Eq. (61), the respective leading contribution for fixed l is given by

3As the above analytical approximations are genuinely insensitive to threshold singularities (cf. also the last paragraph of this
section), we explicitly exclude the special case <ð�0Þ � 0 from the following considerations.
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i.e., the term with all the derivatives for �þ acting on the factor exp ð��þÞ in Eq. (C17). For Eq. (62) we analogously obtain
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Accounting for these contributions in Eq. (65), we arrive at
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for <ðB2k2?�0Þ � 0, and

Z 1

0
dssle�i�0s�ik2?

ð1��2Þ2
48 ðeBÞ2s3 ¼

��i

�0

�
lþ1

�X1
n¼0

ð3nþ lÞ!
n!3n

��
2

3

�
2 signðB2k2?Þ

~�2

�
n þ i½signðB2k2?Þ
l

ffiffiffiffi
�

3

r �
3

2
~�2=3�1=3�

�
lþ1

� 1ffiffiffiffiffiffiffi
��

p
�
ðð�1Þl cos ð��Þ þ sin ð��ÞÞ

�
cos

�
�l

2

�
� sin

�
�l

2

��

þ cos ð��ÞO
�
1

��

�
þ sin ð��ÞO

�
1

��

��	
; (69)

for <ðB2k2?�0Þ � 0. With these preparations, we now aim at analytical insights into the photon polarization tensor,
Eq. (53), in the limit � ! 1. It is convenient to split the various building blocks of Eq. (53) into real and imaginary
contributions (cf. footnote 3). For the real part we obtain
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and
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We emphasize that Eqs. (70) and (71) are valid for any value of <ðB2k2?�0Þ. The distinction between the regimes with
positive and negative <ðB2k2?�0Þ is only relevant for the imaginary parts. In the regime <ðB2k2?�0Þ � 0, the imaginary
parts are given by
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and
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where we in particular made use of �2=3
� ¼ �signðB2k2?Þ~�2=3 [cf. Eq. (60)].

In the complementary regime, <ðB2k2?�0Þ � 0, they read
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To keep these expressions compact, we have only included the leading terms in Eqs. (74) and (75). However, the
corrections to Eqs. (74) and (75) can be inferred straightforwardly by setting
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Notably, the series expansions in Eqs. (70) and (71)—
constituting the real part—are governed by the combinations
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and ðeB=�0Þ2, while Eqs. (72)–(75)—the imaginary part—
are governed by �� and

�
3

2
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eB

�0

�
2 ¼ �0

k2?
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4

1� �2

�
2
signðB2k2?Þ: (78)

Let us now focus on the real part of the photon polar-
ization tensor (53). In consequence of Eqs. (70) and (71), it
can formally be expressed in terms of an infinite series in
ðeBÞ2. Obviously, a truncated version of this series yields
trustworthy results, provided that��������eB�0

��������2� 1 and ��1 � 1: (79)

As expected, these conditions are compatible with those
stated in Eq. (42) for the conventional perturbative weak

field expansion. Hence, <ð�pÞ should reproduce the per-

turbative weak field expansion, Eq. (35). Employing partial
integration with respect to �, it is straightforward to show
explicitly that the contributions	ðeBÞ0 and	ðeBÞ2 arising
in Eq. (17) agree with Eqs. (20) and (43), as derived in
Sec. III A.
Conversely, the structure of the imaginary part of the

photon polarization tensor is manifestly nonperturbative,
and thus cannot be inferred from a perturbative weak
field expansion. Having a closer look on the propertime
integrals (73) and (75), we make the following observa-
tion: focusing only on the terms written explicitly in
Eqs. (73) and (75), the non-negative integers n and j
just appear as powers—powers of the dimensionless
parameters z2 and k2?s before having carried out the

propertime integration, and powers of ð32 ~� eB
�0
Þ2 and 3

2��
thereafter. With regard to Eq. (53) this implies that to
leading order in 1=�� the sum over j can be performed
straightforwardly resulting in exponential (trigonometric)
functions. Summing up the leading terms for a given
power of the propertime variable s, the respective contri-
butions to the imaginary part of Eq. (53) can be concisely
represented as
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for <ðB2k2?�0Þ � 0, where we defined
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Accounting only for the leading term at a fixed power of s [cf. Eq. (73)] directly constrains Eq. (81) to yield trustworthy
results for
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k2?
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The first condition in Eq. (82) is obtained by demanding that the subleading contribution in Eq. (73) for n ! nþ 1, j
fixed, be substantially smaller than the leading contribution for n, j fixed. The latter follows analogously by requiring
that Eq. (73) for j ! jþ 1, n fixed, be substantially smaller than the leading contribution for n, j fixed. As we have
already limited ourselves to ��1 � 1 from the outset of this section [cf. (64)], the only new condition to be fulfilled is
j�0=k

2
?j � 1.

Recall that the radius of convergence of the series representation of n2ðzÞ, Eq. (39), guarantees the above representation
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for <ðB2k2?�0Þ � 0, where we introduced
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The neglected terms in Eq. (83) can be inferred from Eq. (76). Also Eq. (83) is limited to yield trustworthy results only for
j�0=k

2
?j � 1; cf. Eq. (82). Employing exactly the same reasoning for the sum over n also—thereby reverting to the

original representations of the scalar functions in Eq. (7)—with the help of Eqs. (72)–(75), (80), and (83), the imaginary
part of Eq. (53) can eventually be written in a very compact form. For <ðB2k2?�0Þ � 0 we obtain
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and for <ðB2k2?�0Þ � 0,
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The neglected terms in Eq. (86) can again be inferred from Eq. (76). Equations (85) and (86) constitute the full
analytical expression for the imaginary part of the photon polarization tensor at leading order in a 1=� expansion and

for j�0=k
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juj
��������uþ k2

4m2

��������<
�
�

2

�
2 jk2?j
4m2

; (87)

where we introduced u � 1
1��2 . Substituting � for u, the integration over the finite � interval translates into the integration

over an infinite range,
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2u3=2
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u�1

p . For given physical parameters the convergence criterion (87) provides a
condition on the real valued, positive integration parameter u � 1: the u integration receives a contribution from within the
radius of convergence as long as
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Larger values of u give rise to contributions outside the radius of convergence. As the evaluation of the photon polarization
tensor manifestly requires an integration from u ¼ 1 to u ! 1, one might question whether Eqs. (85) and (86) constitute
trustworthy approximations to the photon polarization tensor. However, if the main contribution to the integral stems from
the u range constrained by Eq. (88), reliable analytical results are still possible.

Taking into account the parameter integration over � in Eqs. (85) and (86) [cf. Eq. (17)], for<ðB2k2?�0Þ � 0 we obtain
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and for <ðB2k2?�0Þ � 0,
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The substitution � ! u of course implies that also the parameter � contained in the definitions of the scalar functions (7) is
expressed in terms of u, setting � ¼ ð1� 1

uÞ1=2. Accounting for the respective conditions on <ðB2k2?�0Þ, both �þ in
Eq. (89) and �� in Eq. (90) [cf. Eq. (60)] can effectively be identified with the single parameter
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where—in the second step—we made use of Newton’s
generalized binomial theorem.

To allow for further analytical insights, we now explic-
itly limit ourselves to small jk2j � m2. In this limit, the
parameter � scales as
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such that [most obviously for <ðB2k2?�0Þ � 0, featuring
an exponential suppression with increasing u] we may

expect to obtain trustworthy results under the above

constraints as long as jeBj
m2 � 1.

In the next step we aim at carrying out the u integra-
tion. Therefore, recall that for <ðB2k2?�0Þ � 0 all

contributions within the outermost curly brackets in
Eq. (89)—most explicitly before formal resummation
into trigonometric and additional exponential functions—
can be viewed in terms of an overall exponential factor
	 exp ð��þÞ multiplying an infinite series in the parame-
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such that the argument of the remaining exponential
is linear in u. With the help of the following identity
(formulas 3.383.4 and 9.232.1 of [34])Z 1
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valid for <ð�Þ> 0, the integrals over u can be expressed
in terms of the Whittaker hypergeometric function W.,.(.),
whose asymptotic expansion for large j�j, j arg�j<�
reads (formula 9.227 of [34])

W2��3
4 ;2��3

4
ð�Þ ¼ �

2��3
4 e�

�
2

�
1þO

�
1

�

��
: (96)

Hence, we have
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Most notably, the leading term of the asymptotic expan-
sion in Eq. (97) does not at all depend on the parameter
�. Moreover, adopting Eq. (97) to the calculations to be
performed here, the parameter � can be identified with
4
3
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jeBj
2m

jk2?j1=2
[cf. Eq. (94)]. Correspondingly, the subleading

terms in Eq. (97) can be safely neglected: they are of the
same order as the subleading contributions to Eq. (89),
already not explicitly taken into account. Thus, for
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m2 � 1 the u integral in Eq. (89) can be

performed by formally expanding the integrand to all
orders in u, keeping only terms linear in u in the expo-
nential. All other contributions are expanded to form
polynomials in u (cf. Appendix B). After performing
the integration with the help of Eq. (97) the result is
resummed again. This should be permissible if the main
contribution to the integral stems from 2 2m

jk?ju < �, or

equivalently, 1 � u < �
2

jk?j
2m ; cf. below Eq. (92). More

practically, for Eq. (89) this amounts to the following
recipe: replace

Z 1

1

du

u2
ffiffiffiffiffiffiffiffiffiffiffiffi
u� 1

p !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
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jeBj
m2

jk2?j1=2
2m

s
; (98)

and set u � 1 ( $ � ¼ 0) in the remaining terms. To
keep notations compact we still write the result in terms
of the scalar functions Ni with i 2 f0; 1; 2g and n2.
However, these expressions now have to be understood
to be evaluated at � ¼ 0, i.e., here [cf. Eq. (7)]

N0ðzÞ ¼ z

sin z
; N1ðzÞ ¼ z cot z; N2ðzÞ ¼ 2zð1� cos zÞ

sin 3z
; and n2ðzÞ ¼ 1� cos z

2z sin z
: (99)

As the additional constraint ð m2

jeBj
2m

jk2?j1=2
Þ jk2j
m2 � 1 implies <ð�0ju¼1Þ> 0, for Eq. (89) this procedure results in
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; (100)

now applicable for B2k2? � 0. An analogous expression can be derived from Eq. (90), adopting the same reasoning as
above, and employing the following identities:

Z 1

1

du

u2
ffiffiffiffiffiffiffiffiffiffiffiffi
u� 1

p u�e��u� cos ðbuÞ ¼
ffiffiffiffiffiffi
�

jbj
r

cos jbj � sin jbjffiffiffi
2

p
�
1þO

�
1

b

��
; (101)

Z 1

1

du

u2
ffiffiffiffiffiffiffiffiffiffiffiffi
u� 1

p u�e��u� sin ðbuÞ ¼
ffiffiffiffiffiffi
�

jbj
r

signðbÞ sin jbj þ cos jbjffiffiffi
2

p
�
1þO

�
1

b

��
; (102)

with b 2 R, � > 0 and � ! 0þ, which can be derived straightforwardly from Eq. (97). The presence of the convergence
ensuring exponential factor is most clearly visible in the second expression in the first line of Eq. (55), where an overall
term 	e��ð1��2Þ�2=3 ¼ e��u2=3 can be factored out. Hence, Eq. (90) gives rise to
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; (103)

valid for B2k2? � 0. Equations (100) and (103) constitute our result for the imaginary part of the photon polarization tensor
in the parameter regime

jk2j
m2

� ef

m2

jk2?j1=2
2m

� 1; and
2m

jk2?j1=2
� 1: (104)

Let us stress again that in order to derive the above results it was essential to systematically keep track of the orders of all
contributions, both the neglected ones and the ones taken into account explicitly.

Finally, we turn to on-the-light-cone dynamics, where the expressions are less complicated. As

k2 ¼ 0 $ k2? ¼ �k2k ¼ !2sin 2
 � 0; (105)

implies B2k2? � 0 and �E2k2k � 0, in this limit the entire information for both the magnetic and electric field cases is
contained in Eq. (100). Moreover, note that�

� 4m2 � i�þ k2

k2?

�1
2

��������k2¼0
¼ 2m

jk?j
� i for k2? > 0;

1 for k2? < 0:
(106)

Focusing on k2 ¼ 0, the p ¼ 0 component in Eq. (100) vanishes, =ð�0Þjk2¼0 ¼ 0, while the imaginary part of the other
components, p 2 fk;?g, of the photon polarization tensor can finally be written as
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(107)

in case of a magnetic field, and
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(108)

for an electric field. To arrive at these expressions we have
employed double and half angle formulas. The terms
written explicitly in Eqs. (107) and (108) constitute the
full result at leading order in the 1=� expansion for on-the-
light-cone dynamics. They are expected to grant access to
the regime characterized by [cf. Eq. (104)]

ef

m2

jk?j
2m

� 1; and
2m

jk?j � 1; (109)

or equivalently

ef

m2
� 2m

jk?j � 1; (110)

i.e., for very weak fields, but a large transversalmomentum.
The latter condition in Eq. (109) implies an explicit
restriction to kinematics allowing for the creation of real
electron positron pairs in a magnetic field from on-the-
light-cone photons, i.e., photons fulfilling k2 ¼ 0: to see
this, it is illustrative to perform a Lorentz transformation
along the direction of the magnetic field, such that the
parallel momentum component ~kk of the photons becomes
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zero, i.e., ~k0k ¼ 0. Vector components orthogonal to the
direction of the Lorentz boost remain unaltered. In this
particular reference system (denoted by 0), the particles are
still subject to a homogeneous external magnetic field. This
comes about as a Lorentz boost in the direction of the
magnetic field does not induce an electric field. However,
the light-cone condition for photons now reads k2 ¼ ~k2? �
ðk00Þ2 ¼ 0, and the on-set condition for real pair creation
becomes

k00 ¼ j ~k?j ¼ 2m $ ! sin 
 ¼ 2m: (111)

Equations (107) and (108) are intimately related to the
absorption coefficient �p of on-the-light-cone photons,
polarized in mode p ¼ fk;?g and propagating in a
magnetic or electric field, respectively, given by [28]

�p ¼ � 1

!
=ð�pÞjk2¼0: (112)

Throughout this paper we neglect any backreaction effects
due to the production of real electron positron pairs; for
some general considerations in this direction, cf. [44–48].

With the help of the following identities,

ef

m2
¼
�
ef
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jk?j
2m

�
2m

jk?j ; and

ef

mjk?j ¼
1

2

�
ef

m2
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2m

��
2m

jk?j
�
2
;

(113)

Eqs. (107) and (108) (besides the overall factor of k2?) can
be entirely written in terms of the two independent

parameters ef
m2

jk?j
2m and 2m

jk?j . Using this replacement in

Eqs. (107) and (108) and performing an expansion in
powers of 2m

jk?j , we straightforwardly obtain
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(114)

in case of a magnetic field, and
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(115)

for an electric field. By inspection of the subleading terms,
we infer that Eqs. (114) and (115) should yield trustworthy
results, given the following hierarchy of scales:

4m2

jk2?j
� ef

m2

jk?j
2m

� 1: (116)

The terms written explicitly in Eq. (114) agree with an
expression derived for homogeneous magnetic fields by

Tsai and Erber [28]: their Eq. (59b). If, e.g., 4m
2

jk2?j
* eB

m2
jk?j
2m ,

inequality (116) is violated (cf. also [30]) and one should
rather work with Eq. (107) derived in this work.
Equation (113) implies that the dimensionless ratios
(i)

�p

!L
for a magnetic field, with Larmor frequency

!L ¼ eB
m , and

(ii)
�p

!T
for an electric field, with ‘‘tunneling frequency’’

!T ¼ eE
m ,

besides an overall factor of sin 
, are fully governed by just

two independent physical parameters, e.g., jk?j
2m and the

combined parameter ef
m2

jk?j
2m . In Figs. 1 and 2 we plot these

quantities for a fixed value of ef
m2

jk?j
2m as a function of the

parameter jk?j
2m . The photon propagation direction is as-

sumed to be orthogonal to the external field, i.e., 
 ¼ �
2 .

Alternatively, the horizontal axis in Figs. 1 and 2 can be
rescaled into the dimensionless field strength, employing
ef
m2 ¼ ðef

m2
jk?j
2m Þðjk?j2m Þ�1. The curves marked with squares are

obtained from Eqs. (114) and (115). For fixed values of the

combination ef
m2

jk?j
2m , they turn out to be completely inde-

pendent of jk?j
2m . For f ¼ B ¼ E, Eq. (114) can be mapped

FIG. 1 (color online). Photon absorption coefficient �k;? in a
magnetic field in units of the Larmor frequency!L ¼ eB

m plotted as a

function of the dimensionless ratio jk?j
2m ; the photon propagation

direction is assumed to be orthogonal to the magnetic field, i.e., 
 ¼
�
2 , such that jk?j ¼ !: results as obtained from Eq. (114) originally

derived by Tsai and Erber (curves marked with squares), the new
approximation (107) devised in this work (marked with triangles),
and the method of stationary phase (D1) (marked with circles).
While—for the explicit parameters adopted here—the approxima-

tion of Tsai andErber is only applicable for largevalues of jk?j2m * 25,

the results of our new approximation are in good agreement with

those of the method of stationary phase for jk?j
2m * 4.
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onto Eq. (115) by exchanging the polarization compo-
nents, �k $ �?. Hence, apart from this change, the

curves marked with squares in Figs. 1 and 2 fall on top
of each other. The curves marked with triangles in Fig. 1
are obtained from Eq. (107) and those marked with
triangles in Fig. 2 from Eq. (108). For comparison, we
additionally depict the results obtained with the method
of stationary phase [30,31,49], also expected to yield
reliable results in the parameter regime under considera-
tion (cf. Appendix D). Equations (D1) and (D2) result in
the curves marked with circles.

As expected, for a given polarization mode and for large

values of jk?j
2m , compatible with Eq. (116), the curves in

Figs. 1 and 2 basically fall on top of each other; for the

explicit value of the combined parameter ef
m2

jk?j
2m ¼ 10�2

adopted in Figs. 1 and 2, Eq. (116) results in the condition
jk?j
2m � 10. For jk?j

2m * 4 the curves marked with triangles

corresponding to our new approximation are in good agree-
ment with those marked with circles obtained by the
method of stationary phase, derived in a completely differ-
ent way. This is perfectly compatible with the regime of

applicability of our new approximation, ef
m2

jk?j
2m � 1 and

2m
jk?j � 1. Outside their range of applicability, i.e., for 4m

2

jk2?j
*

ef
m2

jk?j
2m , the Tsai and Erber type approximations (114) and

(115) generically seem to overestimate the imaginary part
of the photon polarization tensor for magnetic fields, while
they tend to underestimate it in case of an electric field.
Let us finally emphasize that the results obtained in this

section give rise to smooth analytic curves in Figs. 1 and 2,
even though the original expression of the photon polar-
ization tensor in a magnetic field (2) is known to exhibit
singularities at each threshold of electron-positron pair
creation in the state with the given Landau quantum
numbers [12,15,50,51] [cf. also Eq. (A11) below]. These
singularities are commonly denoted as threshold, root
or cyclotron resonances in the literature, and give rise to
a sawtooth pattern in actual numerical evaluations
[18,30,52]. As demonstrated by [30], the above types of
approximations can be considered as providing us with the
smoothed out limit of the original sawtooth pattern aver-
aged over a characteristic distance of the order of the
separation between two subsequent peaks.

2. Weak fields—large momentum,
and momentum dominance

We now focus on the limit � ! 0, i.e., the regime where

� ¼ 2

3

4

1� �2

�������� �3
0

ðeBÞ2k2?

��������
1
2� 1: (117)

While the analogous condition for � ! 1, Eq. (64), could
be fulfilled throughout the interval of integration over
the parameter �, this is not true for Eq. (117) which is
obviously violated for � ! �1.
Employing the identities in Appendix C 2 and using the

Cauchy product, Eqs. (61) and (62) can be written in terms

of an infinite series representation in powers of ~�2=3,
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0
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ð~�2=3Þ3nþ2

þ signðB2k2?Þffiffiffi
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22n
ð~�2=3Þ3nþ3

	
; (118)

FIG. 2 (color online). Absorption coefficient �k;? in an electric
field in units of the tunneling frequency !T ¼ eE

m plotted as a

function of the dimensionless ratio jk?j
2m ; the photon propagation

direction is assumed to be orthogonal to the electric field, i.e.,

 ¼ �

2 , such that jk?j ¼ !: results as obtained from Eq. (115)

(curves marked with squares), the new approximation (108)
devised in this work (marked with triangles), and the method
of stationary phase (D2) (marked with circles). For the explicit
parameters adopted here, Eq. (115) yields trustworthy results

only for large values of jk?j
2m * 25. In full agreement with Fig. 1,

the results of our new approximation are compatible with those

of the method of stationary phase for jk?j
2m * 4.
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where de ¼ min fn 2 Zjn � g denotes the smallest integer no less than , and

�ðnÞ ¼ Xn
m¼0

ð�1Þnþm�ð2nþ 2Þ
ðm!Þ�ð2nþ 2�mÞ

�
1

�ðmþ 2
3Þ�ð2n�mþ 7

3Þ
� 1

�ðmþ 4
3Þ�ð2n�mþ 5

3Þ
�
: (119)

Let us emphasize that Eq. (118), which only depends on ~�2=3 and not on the parameters �� sensitive to the sign of
<ðB2k2?�0Þ, is true for any value of <ðB2k2?�0Þ. More schematically, Eq. (118) has the following structure:

Z 1
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dssle�i�0s�ik2?

ð1��2Þ2
48 ðeBÞ2s3 	
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�0

�
lþ1½1þOð~�2=3Þ
: (120)

The leading contribution to Eq. (120) in the limit � ! 0 is
independent of �0, which drops out in the ratio ~�2=3=�0.
As a direct consequence, also the following dimensionless
ratios�~�2=3eB

�0

�
2 ¼

�
2

3

4

1� �2

�4
3

�jðeBÞ2j
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�1
3
signðB2Þ; (121)
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�~�2=3eB
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¼
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4
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�
2
signðB2k2?Þ; (123)

which are naturally induced when adopting Eq. (118) in
Eq. (53), do not depend on �0. Contrarily, the divergence
for � ! �1 encountered in ~�2=3 	 �0ð1 � �2Þ�2=3

[cf. Eq. (57)] is not diminished in any of these elementary
ratios. Hence, the divergence for � ! �1 contained in ~�2=3

can be seen as opposing the expansion in Eq. (118): the
higher the order in the expansion, the worse the divergence.
Of course, the photon polarization tensor (53) features
additional � dependencies besides those contained in the
above propertime integrals. However, even though the
above contributions get multiplied with polynomials in
�2, divergences for � ! �1 persist. After rewriting the
propertime integral in Eq. (53) in terms of an infinite series
in powers of ~�2=3, the � dependence of Eq. (53) is encoded
in terms of the form ð�2Þ�=ð1� �2Þ�, with exponents
� � 0 and�> 0. The expansion (118) generically induces
contributions with �> 1. The integration of such terms
over the full � regime in Eq. (17) yields a finite result for
�< 1,

Z 1

�1
d�

ð�2Þ�
ð1� �2Þ� ¼ �ð1� �Þ�ð12 þ �Þ

�ð32 þ �� �Þ ; (124)

and diverges for � � 1. Let us emphasize that the original
propertime expression was completely well behaved for all
values of �. The convergence problems for � ! �1 are a
direct consequence of the expansion performed here. Of
course, one could think about adopting Eq. (118) in a
certain range of the � interval only, while treating the

remainder, e.g., numerically. This is however outside the
scope of the present paper which aims at analytical insights
into parameter regimes, where unambiguous, overall
expansion parameters can be identified. Moreover, in
Refs. [28,29] Tsai and Erber have presented analytical
results for the regime � ! 0, by effectively resorting to a
leading order expansion in ~�2=3. Our goal is to carefully
rederive and confirm their results, while—at the same
time—pointing out possible limitations.
To circumvent the divergence problems—and in order to

make the subsequent discussion most transparent—we
substitute � for ~u ¼ 1� �2, such that

R
1
�1 d� ! R

1
0

d~uffiffiffiffiffiffiffi
1�~u

p .

Thereafter we split the integration into two intervals,

namely
R
1
0 d~u ! Rc=�

0 d~uþ R
1
c=� d~u, where we defined

�2=3 � 1=ð~u ~�Þ2=3 ¼ 1

�0ðc=�Þ
�������� 9

64
ðeBÞ2k2?

��������1=3

; (125)

and introduced the additional—for themoment unspecified—
dimensionless parameter c, which is chosen to fulfill

c

�
� 1; while jcj � 1: (126)

Thegeneric propertime integral,written in termsof the ‘‘new’’
variables ~u and �, reads [cf. Eq. (65)]Z 1

0
dssle�i�0s�ik2?

ð1��2Þ2
48 ðeBÞ2s3

¼
Z 1

0
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3ð~u�Þ2s3 ; (127)

with �0ð~uÞ ¼ m2 � i�þ k2

4
~u2. While the first condition in

Eq. (126) will allow us to approximate
Rc=�
0 d~ufð~uÞ � c

� �
½fðc=�Þ � fð0Þ
, where fð~uÞ denotes the integrand of
the ~u integral, the second one ensures the parameter
~�2=3 ¼ 1=ð~u�Þ2=3 to be small for ~u 2 ½c=� . . . 1
 and thus
Eq. (117) to hold throughout the respective integration
interval. Equation (126) and (the right-hand side of)
Eq. (127) imply that the relevant propertime integrations can
still be performed with Eq. (118), replacing�0 ! �0ð~uÞ and
~�2=3 ! 1

ð~u�Þ2=3
�0ð~uÞ

�0ðc=�Þ . For the two different ~u intervals

Eq. (120) implies
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(128)

where we also used Eq. (40), and
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���
: (129)

Adopting Eqs. (128) and (129) to the basic building blocks
of Eq. (53), we can infer their scaling under the above
assumptions. The corresponding explicit expressions are
relegated to Appendix C 3, Eqs. (C21)–(C24). Let us
emphasize that in Appendix C 3 we carefully keep track
of the various powers of the parameter ~u ¼ 1� �2 in
Eq. (53): we in particular make use of the fact that—as
outlined in detail in Appendix B—a global factor
	ð1� �2Þ can be factored out of the functions Nð2nÞ

0 ,
Nð2nÞ

1 and Nð2nÞ
2 , with n 2 N, and a factor 	ð1� �2Þ2 out

of the function nð2nÞ2 , with n � 2. This turns out to be
absolutely essential in singling out the correct scaling
behavior of the leading contribution of Eq. (53) for large
values of �. Moreover, note that

k2?

�
eB

�2=3�0

�
2 	 �2=3�0; while

k2k

�
eB

�2=3�0

�
2 	 k2

�
eB

�2=3�0

�
2 � �2=3�0:

(130)

As �0 drops out in the product �2=3�0 [cf. below
Eq. (120)], the argument of �0 is not relevant in combina-
tions of the form �2=3�0, which thus are independent of c.

In a first step we treat the auxiliary parameter c
as a dimensionless numerical constant, chosen to fulfill
Eq. (126). Correspondingly, specializing to on-the-light-
cone dynamics from the outset, i.e., setting k2 � 0,
the leading contribution to Eqs. (C21)–(C24) in the limit
characterized by both

1

�0

� 1 and
jeBj
m2

� 1; (131)

with [cf. Eq. (125)]

�2=3
0 � �2=3jk2¼0 ¼

j9k2?ðeBÞ2j1=3
4m2

; (132)

is expected to scale 	m2�2=3
0 . In particular, it is in

general not sufficient to demand j1=�j � 1 alone as also

contributions 	ðeB=�0Þ2l with l 2 N0, which are
unscreened by inverse powers of �, are induced.
Condition (131) implicitly contains a restriction to
jk?j=ð2mÞ � 1. Alternatively, it can be represented as

2m

jk?j �
jeBj
m2

� 1: (133)

Obviously this ordering of scales holds for weak fields
and a large transversal momentum. Off the light cone the
situation is slightly more involved: from Eqs. (C21)–(C24)
it is straightforward to infer that in order to guarantee the

leading contribution to scale as �2=3, besides��������1

�

��������� 1 and

�������� eB

�0ðc=�Þ
��������� 1 (134)

we have to demand [cf. also Eq. (130)]�������� k2

�2=3�0

��������� 1;

�������� k2

�2=3�0

k2

�m2

��������� 1; and

��������
�

eB

�2=3�0

�
2 k2

�2=3�0

��������� 1:

(135)

However, the parameter regime for the leading contri-

bution to scale 	�2=3 could in principle even be charac-
terized by fewer constraints, as certain contributions
in our decomposition (128) and (129) could vanish or
cancel, and thereby render some constraints irrelevant.
Correspondingly, the conditions stated here are all suffi-
cient but not mandatorily necessary. Expanding the fraction

1
�0ðc=�Þ as follows,

1

�ðc=�Þ ¼
1

m2 þ k2

4
c2

�2

¼ 1

m2

�
1þO

�
k2

4�2m2

��
; (136)

it is easy to see that in particular for
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1

�0

�1;
jeBj
m2

�1 and

�
1

�0

�
2=3 jk2j

m2
�1 (137)

all conditions in Eqs. (134) and (135) can be met simulta-
neously. Focusing on k2 ¼ 0, the last condition is trivially
fulfilled and Eq. (131) is retained.

By inspection of the building blocks in Appendix C 3 we
find another viable choice of the dimensionless parameter
c, compatible with Eq. (126) and the expansions performed
in Eqs. (C21)–(C24), namely

c2=3 �
�
9

64

�
1=3 jeBj

�0ðc=�Þ ; and thus

�
c

�

�
2=3 ¼

��������eBk2?
��������1=3

:

(138)

For this choice, the ratio jeBj=ðc2=3�0Þ corresponds to a
purely numeric value. For the leading contribution to scale

as �2=3 we now have to demand��������1

�

���������1;

��������eBk2?
���������1;

�������� k2

�2=3�0

���������1;

�������� eB

�2=3�0

���������1;

�������� k2
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k2

eB

��������2
��������eBk2?

���������1; and

�������� k2

�2=3�0

k2

m2

��������2
��������eBk2?

���������1:

(139)

Specializing to on-the-light-cone dynamics from the out-
set, we are only left with the following two conditions:

1

�0

� 1; and

��������eBk2?
��������� 9

64
� 0:14; (140)

which imply that the transversal momentum is the domi-
nant scale, i.e., momentum dominance. Let us emphasize
that conditions (140) are also compatible with the limiting
case m ! 0, which is, e.g., of relevance in the search for
minicharged particles [53–55].

Thus, in particular in the two limits characterized by
Eqs. (134)–(137) and Eqs. (139) and (140) the infinite
series in Eq. (53) can be reliably truncated and the leading

term, which scales as �2=3, stems from the following con-
tribution of Eq. (53) (cf. Appendix C 3):8><
>:
�k
�?
�0

9>=
>;¼ �

2�
k2?ðeBÞ2

Z 1

�1

d�

2

Z 1

0
dsse�i�0s�ik2?
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1
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2 �Nð2Þ

0

0

9>=
>;: (141)

Most notably, this particular contribution can be evaluated
directly with the help of Eqs. (118) and (124): as the �
integration converges, a decomposition of the � integral as
introduced below Eq. (124) is not necessary, thereby ren-

dering the contribution 	�2=3 manifestly independent
of any auxiliary parameter c. Let us however emphasize
again that such decomposition becomes important in the

determination of higher order contributions, and was
absolutely essential to establish a consistent truncation
scheme and constrain its range of applicability.
Carrying out the integrations in Eq. (141), we finally

obtain (cf. also Appendix B)8><
>:
�k
�?
�0

9>=
>;¼ 2

3
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�
jðeBÞ2k2?j1=3
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ffiffiffiffi
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7�ð16Þ
ð1� i

ffiffiffi
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8><
>:
3

2

0

9>=
>;: (142)

The analogous result for an electric field is obtained
straightforwardly, employing the electric-magnetic duality
(9). Equation (142) comprises the results derived by Tsai
and Erber for homogeneous magnetic fields: the real part
corresponds to Eq. (10) of [29], while the imaginary part
amounts to Eq. (59a) of [28]. Our results both complement
and go beyond those of Tsai and Erber: we now have
explicitly shown that Eq. (142) is only applicable in the
regimes as characterized by Eqs. (134)–(137) and
Eqs. (139) and (140), respectively.

C. Strong field limit

Aiming at the strong field limit, i.e., the regime where the
scale ef, f 2 fB; Eg dominates all other physical scales
available in the problem, it is helpful to introduce the dimen-
sionless parametery � e�iz ¼ e�ieBs, which transforms into

e�z0 ¼ e�eEs under the electric-magnetic duality. Given that
the propertime integration contour lies slightly below the real
positive s axis [cf. the discussion in the context ofEq. (9)] this
parameter obviously fulfills 0 � jyj< 1 for eBs � 0, and
y ¼ 1 for eBs ¼ 1. The results to be discussed in the current
section will then arise from formal expansions in this pa-
rameter and in k2?=ð2eBÞ [for electric fields: k2k=ð2eEÞ].
Expansions of this type were pioneered by Shabad [12]
(see also [15]). Here, our focus ultimately is on compact
analytical expressions, with basically all integrations carried
out, thereby allowing for immediate insights into the physical
parameters’ dependencies. For the subsequent considera-
tions it is convenient towrite the phase factor as [cf. Eq. (22)]

�0 ¼ �k
0 þ n2k

2
?. With the help of the following identity,

�i2zn2 ¼ �1þ y1þ� þ y1��

� ð2� y1þ� � y1��ÞX1
n¼1

y2n; (143)

we write

e�in2k
2
?s¼ e�i2zn2

k2?
2eB

¼ e�
k2?
2eBe

k2?
2eBðy1þ�þy1��Þ

�exp

�
� k2?
2eB

ð2�y1þ��y1��ÞX1
n¼1

y2n
	
; (144)
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and as �1 � � � 1, obtain

e�in2k
2
?s ¼ 1þX1

l¼1

1

l!

�
k2?
2eB

�
l

�
�
ð�1Þl þ e�

k2?
2eB½ylð1þ�Þ þ ylð1��Þ


	

þO
�
k2?
2eB

�
Oðy2Þ: (145)

In Eq. (145) we have neglected all the terms which are at
least of Oðy2Þ, irrespective of the value of �. Given the
original � interval, � 2 ½�1 . . . 1
, the expansion is not

strict in the sense that for l � 2 the term ylð1þ�Þ also
contributes beyond Oðy2Þ, namely for � 2 ½2�l

l . . . 1
.
Analogously, the term ylð1��Þ is of Oðy2Þ for � 2
½�1 . . . l�2

l 
. An explicit restriction to Oðy2Þ could, e.g., be
implemented by an adequate restriction of the � integration
interval. Here we stick to the full � interval. This will
allow us to identify and explicitly evaluate certain generic
building blocks of the photon polarization tensor in the
Landau level representation to be obtained below. It will
in particular enable us to exactly account for logarithmic
contributions	ðeBÞ�2 ln ðeBÞ also.
Moreover, we write

N0

s
¼ ieB

X1
n¼0

f½1þ �ð2nþ 1Þ
y1þ� þ ½1� �ð2nþ 1Þ
y1��gy2n;

N1

s
¼ ieBð1� �2Þ
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1þ 2
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y2n
�
;

N2

s
¼ 4ieB

X1
n¼1

n½2n� ðnþ 1Þðy1þ� þ y1��Þ
y2n:
(146)

The contact term was originally given in terms of a field
independent integral representation [cf. Eqs. (15) and (16).
To guarantee its correct inclusion when aiming at results in
the strong field limit, we do not naively insert the above
series representations (145) and (146) into the original
expression of the photon polarization tensor (15), but first
rewrite Eq. (15) in the following form [cf. Eq. (24)]:8>><

>>:
�k
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9>>=
>>; ¼ �
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>>>:
k2k�1 þ k2?�0

k2k�0 þ k2?�2

k2�0

9>>>=
>>>;; (147)

where we have introduced the shortcut notation

�i ¼ �k
i þ

Z 1�i�

0

ds

s
e�i�k

0
sðe�in2k

2
?s � 1ÞNi; (148)

with i 2 f0; 1; 2g. Equation (147) has the advantage that
the UV divergence to be canceled by the contact term
already cancels on the level of the integrand of the �
integral [cf. Eqs. (26)–(28)]. Correspondingly, the �
integration does not have to be performed to arrive at
a manifestly finite expression. This was not true for the
original representation (15). A naive expansion of
Eq. (15) would immediately result in spurious contribu-
tions that can be attributed to an inadequate treatment
and erroneous cancellation of the UV divergence.
Conversely, the terms in Eq. (147) are manifestly finite
and perfectly amenable for a strong field expansion: the
second term in Eq. (148) can be straightforwardly con-
verted into a series in y with the help of the above
identities, yielding
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; (149)
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; (150)
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?s � 1Þ ¼ ieB
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O
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k2?
2eB

�
Oðy2Þ: (151)

Here we have performed a double expansion in both k2?=ð2eBÞ and y, and have neglected terms which are suppressed by at
least a factor of y2k2?=ð2eBÞ. Conversely, we have in particular kept all contributions with a y dependence of the form
ynð1þ�Þ, with n 2 N, that in the vicinity of � ! �1 approach y0, and whose field dependence becomes increasingly less
pronounced. However, note the overall multiplicative factor (1þ �) counteracting this behavior by diminishing corre-
sponding contributions. An analogous representation for the first term in Eq. (148) can be obtained from Eqs. (25)–(28),
employing
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cos ð�zÞ
sin ðzÞ ¼ iðy1þ� þ y1��ÞX1

n¼0

y2n;
sin ð�zÞ
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y2n; cot ðzÞ ¼ i
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; (152)

and the following identity:

Z 1�i�

0

ds

s
e�i�k

0
s ¼ c

�
�k

0

2eB

�
� ln

�
�k

0

2eB

�
þ X1

n¼0

Z 1�i�

0
dse�i�k

0
syn ¼

�X1
n¼1

1

n
� �

�
� ln

�
�k

0

2eB

�
; (153)

where � denotes the Euler-Mascheroni constant. Equation (153) can be derived straightforwardly from formula 8.361.8
of [34], Z 1

0

dz0

z0
e�i�z0 ¼ c ði�Þ � ln ði�Þ þ

Z 1

0
dz0e�i�z0 1

1� e�z0 ; (154)

valid for Imð�Þ< 0, and the exact series representation of the digamma function, formula 8.362 of [34],

c ðÞ ¼ ��� 1


þ X1

n¼1



nðþ nÞ ¼ ��� 1


þ X1

n¼1

�
1

n
� 1

þ n

�
: (155)

Note that, even though the original propertime integral
expression on the left-hand side of Eq. (153) seems
a priori independent of the external field, its right-hand
side—constituting a (strong field) series, or equivalently
Landau level representation of the original propertime
integral—features an explicit field dependence. This
comes about as follows: the propertime parameter s is a
dimensionful quantity of dimension mass-squared, to be
rendered dimensionless by an additional physical mass
scale. Aiming at a strong field expansion, the dominant
scale is	eB. We argue that the natural reference scale is in
fact given by �m ¼ mnþ1 �mn ¼ 2eB, corresponding to
the ‘‘mass difference’’ between two consecutive Landau
levels, labeled by integers n and nþ 1, and featuring
magnetic field dependent masses m2

n ¼ m2 þ 2eBn.
Thus, the quantity 2eB constitutes the reference scale to

render s dimensionless, which explains the occurrence of

the ratio �k
0=ð2eBÞ on the right-hand side of Eq. (153). By

means of the electric-magnetic duality (9) the above rea-

soning also holds for the case of an electric field. Here, the

corresponding dimensionless ratio in the argument of the

logarithm is given by �k
0=ð2eEÞ.

Let us emphasize that the above ad hoc assumption can

be explicitly confirmed and verified, noting that the results

of Eqs. (163)–(165) below, utilizing this assumption in

their derivation, can alternatively be derived from the

functions �k
i ðBÞ with the propertime integrations already

carried out [cf. Eq. (34)]. Following this alternative ap-

proach, no ambiguity arises; cf. below Eq. (165) and also

[56]. Employing Eqs. (152) and (153) in Eq. (25), we

obtain
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where we introduced

c:t: ¼ ð1� �2Þ
�
ln

�
m2 � i�

2eB

�
�
�X1
n¼1

1

n
� �

��
: (159)

The propertime integrations can now be performed straightforwardly: all contributions in Eqs. (149)–(151) and
(156)–(158) are proportional to powers of y ¼ e�iz, and thus only depend linearly on the propertime parameter s in
the exponential. Correspondingly, the basic building blocks of Eq. (147) can be written as
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(160)
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where Oð 1

�k
0
þ2eB

Þ is to be understood as denoting terms of the structure 1
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0
þ�eB

with � � 2, and
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Note that the right-hand sides of Eqs. (163)–(165) correspond to exact series representations of the functions on their left-
hand sides. They can alternatively be obtained by employing the exact series representation of the digamma function (155)
in the functions �k

i ðBÞ with the propertime integrations already carried out, as derived in Sec. II: While the corresponding
expressions for �k

0ðBÞ and �k
1ðBÞ can be read off from Eqs. (24) and (34), the one for �k

2ðBÞ can be derived analogously and
reads [cf. Eqs. (25) and (28)–(32)]
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d�

2

�
ð1� �2Þ ln

�
m2 � i�

2eB

�
� 1þ 3�2

2
��k

0

eB

�
1þ�k

0

eB
c

�
�k

0

2eB

��

�
�
1� �2 � 2��k

0

eB
�
�
�k

0

eB

�
2
�
c

�
�k

0

2eB
þ 1þ �

2

�	
: (166)

So far we have not really specified the para-
meter regime where the particular truncations as
performed in Eqs. (160)–(162) yield trustworthy results:
the neglect of terms of order k2?=ð2eBÞ suggests the

limitation to k2?=ð2eBÞ � 1. This condition involves

only physical parameters. Conversely, the situation is
not so clear for the second expansion, where we ne-

glected contributions 	½�k
0 þ �eB
�1 ¼ ½m2 þ �eBþ

1��2

4 k2k
�1 with � � 2. Apart from the physical para-

meters k2k, m2 and eB, these terms depend on the

integration parameter �. Hence, definitive statements
about the range of applicability of the latter expansion
can only be given after the � integration has been
carried out.

In a next step we explicitly perform the � integrations.
The corresponding results will then be expanded to allow
for analytical insights and a better understanding of the
parameter dependencies and the range of applicability of
Eqs. (160)–(165). We emphasize again that all � integra-
tions will be performed over the full � interval, � 2
½�1 . . . 1
; cf. the corresponding comment below
Eq. (145).
The � integrals to be performed in Eqs. (160)–(165) are

of the simple structure

Z
d�

�j

�k
0 þ 2eBnþ eBlð1þ �Þ ¼

Z
d�

�j

aþ 2b�þ c�2
;

(167)
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with j 2 f0; 1; 2g and coefficients

a ¼ m2 � i�þ eBð2nþ lÞ þ k2k
4
;

b ¼ eBl

2
; c ¼ � k2k

4
;

(168)

featuring the momentum and external field dependence. As
detailed in Appendix A 1, the integrals with j ¼ 1, 2 can be
expressed in terms of the most basic one with j ¼ 0. For
completeness, we also provide the explicit expressions of
the definite integral for ac > b2,

Z 1

�1
d�

1

aþ2b�þc�2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac�b2

p
�
arctan

�
bþcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac�b2

p
�
�arctan

�
b�cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac�b2

p
��

;

(169)

and in the complementary regime, ac < b2,

Z 1

�1
d�

1

aþ 2b�þ c�2

¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p
�
ln

��������c� a� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p

c� aþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p
��������

þ 2�i�

�
�k2k �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eBn

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ðnþ lÞeB

q �
2
�	
; (170)

[cf. Appendix A 1]. Together with Eqs. (A2)–(A4) in the
Appendix, Eqs. (169) and (170) explicitly confirm that
the photon polarization tensor in the presence of a
magnetic field develops an imaginary part only above
the threshold,

� k2k �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 2eBn
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ðnþ lÞeB

q �
2
; (171)

to create an electron on the nth Landau level and a
positron on the (nþ l)th level (or vice versa) [12,50].
The necessary condition for an imaginary part to occur
in Eq. (170) is �k2k � ð2mÞ2, obtained by setting n ¼
l ¼ 0 in Eq. (171); i.e., it increases steplike from zero to
a finite value at �k2k ¼ ð2mÞ2. Above this lowest thresh-

old, the next discrete increase of the imaginary part
occurs at

�k2k ¼
�
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eB

p �
2
; (172)

corresponding to n ¼ 0 and l ¼ 1. Focusing on the
strong field limit, i.e., the regime where eB is assumed
to dominate all other dimensionful parameters, eB �
fm2; jk2kj; k2?g, it is instructive to rewrite the condition

(172) as

� k2k
2eB

¼ 1þm2

eB
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m2

eB

�
1þ m2

2eB

�s
: (173)

Obviously this condition can never be fulfilled in the
strong field limit. Correspondingly, the contribution
from n ¼ l ¼ 0 encodes the full imaginary part of the
photon polarization tensor in this particular limit.
For electric fields E> 0 and l � 0, the parameter a is

genuinely complex, b is purely imaginary and only c is real
valued (cf. Appendix E). In this case we thus perform the �
integral as follows:

Z
d�

1

aþ 2b�þ c�2

¼ 1

2

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac� b2

p
�
ln

�
1� iðc�þ bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ac� b2
p

�

� ln

�
1þ iðc�þ bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ac� b2
p

��
þ C; (174)

with integration constant C, irrespective of the particular
values of a, b and c. Equation (174) genuinely features
both real and imaginary parts—in contrast to the magnetic
field there is no threshold condition, and pair production
occurs for arbitrarily weak electric fields.
In the following we organize the results of the above

integrations in terms of an expansion in inverse powers of
the parameter ef � fm2; jk2kj; k2?g. In case of a magnetic

field, the situation ac < b2 is of particular interest, as
(at least for l � 0) it is compatible with the strong field
limit, eB � fm2; jk2kjg [cf. Eq. (168)]. For fn; lg> 0, we

find for the real part of the � integration

<
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; (175)

while for l ¼ 0, n > 0 we obtain
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and for n ¼ 0, l > 0,

<
Z 1

�1
d�

1

aþ 2b�þ c�2

8>>><
>>>:

1

�

�2

9>>>=
>>>;¼ 1

leB

2
66666664

8>>>>>><
>>>>>>:

ln

�
2leB
m2

�

2� ln

�
2leB
m2

�

ln

�
2leB
m2

�
� 2

9>>>>>>=
>>>>>>;
þ 1

leB

8>>>>>><
>>>>>>:

k2k þ 1
2m

2 � 1
2k

2
k ln

�
2leB
m2

�
�
1
2k

2
k �m2

�
ln

�
2leB
m2

�
� 3

2k
2
k � 1

2m
2

5
3k

2
k � 3

2m
2 þ

�
2m2 � 1

2k
2
k

�
ln

�
2leB
m2

�

9>>>>>>=
>>>>>>;

3
77777775þO

�
1

ðeBÞ3
�
:

(177)

Of course, the corresponding integrals for n ¼ l ¼ 0 are independent of the field strength. All contributions in Eqs. (175)–
(177) are suppressed by an overall factor of ðeBÞ�1. Equations (175) and (176) can be written as strict power series in
ðeBÞ�1. Contrarily, for n ¼ 0 but arbitrary values of l 2 N also logarithmic contributions in eB show up. For extremely
large values of eB=m2 � 1 these logarithms can be sizable, i.e., ln ðeB=m2Þ � 1, and are expected to constitute the
dominant contributions at a given order in the expansion in ðeBÞ�1.

For n ¼ 0, while l > 1, we in particular obtain [cf. Eq. (177)]
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Equation (178) implies that, even though Eq. (177) starts
contributing at order ðeBÞ�1 ln ðeBÞ, the leading field de-
pendent logarithmic contribution in Eqs. (160)–(165) is
suppressed by an additional factor of ðeBÞ�1 and thus is
proportional to ðeBÞ�2 ln ðeBÞ: all terms with l ¼ 0 are
multiplied by an additional factor of 1þ � or 1� �2,
respectively, and the contribution at order ðeBÞ�1 ln ðeBÞ
completely cancels out in Eq. (178). We emphasize that the
terms written explicitly in Eqs. (160)–(165) in fact give rise
to all logarithmic contributions of the structure	ðeBÞ�n �
ln ðeBÞ, with n � 2 in the photon polarization tensor.
The calculation for the corresponding imaginary parts is

almost trivial: as already noted below Eq. (170), in the
strong field limit an imaginary part can only arise from
the contribution with n ¼ l ¼ 0. Hence, the argument of
the Heaviside function in Eq. (170) becomes independent
of the magnetic field strength and reads�k2k � ð2mÞ2. This
yields

=
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Employing Eqs. (175)–(178) in Eqs. (160)–(162), we
obtain
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while for i 2 f0; 2g we find

<
Z 1

�1

d�

2

Z 1�i�

0

ds

s
e�i�k

0
sðe�in2k

2
?s � 1ÞNiðeBsÞ

¼ O
�
1

eB

�
: (181)

This directly implies [cf. Eq. (148)]
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for i 2 f0; 2g, and
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Utilizing these findings as well as Eqs. (175)–(178) in
Eqs. (163)–(165), it is straightforward to derive
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(186)

where we defined

� � 1þ 2
X1
n¼1

�
1� 1

3n
þ 2n� 2nðnþ 1Þ ln

�
nþ 1

n

��

¼ 0:6052253730 . . . (187)

Notably the infinite sum (187) converges, such that the
results obtained in Eqs. (184)–(186) are manifestly finite.
In summary, the real part of the photon polarization tensor
(147) in the strong magnetic field limit can conveniently be
represented as
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The contributions to Eq. (188) at OðeBÞ have already
been determined by [13,57,58]. While the polarization
tensor for the k mode features a term which depends
linearly on the magnetic field strength, the corresponding
expressions for the other modes start contributing only at
order Oðln ðeBÞÞ and OððeBÞ0Þ. Particularly the term 	eB
has various important phenomenological consequences: it
leads to essential deviations of the photon dispersion law
from k2 ¼ 0; cf. [59]. Moreover, it is responsible for
modifications of the Coulomb potential in the presence
of a strong magnetic field, cf. [60–62], and gives rise to
screening effects, cf. [60,63,64]. All terms compatible
with n ¼ l ¼ 0 in Eqs. (160)–(165) can be traced back
to the function N1, giving rise to imaginary parts in
Eqs. (161) and (164) only. With the help of Eq. (179) it
is straightforward to derive
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and
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All other terms do not feature an imaginary part in the
strong field limit. Correspondingly the full imaginary part
of the photon polarization tensor (147) in the strong
magnetic field limit is given by [cf. Eq. (24) and below
Eq. (109)]

=f�kg ¼ e�
k2?
2eB=f�kjk2?¼0g

¼ ��eBe�
k2?
2eB

4m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2k þ 4m2Þk2k

q �
�
�k2k � 4m2

�
;

(191)

while =f�?g¼=f�?jk2?¼0g¼=f�0g¼=f�0jk2?¼0g¼0.

Thus, also the imaginary part of the photon polarization
tensor for the k mode features a linear magnetic field
dependence. The exponential suppression 	 exp fk2?=ð2eBÞg indicates the nonperturbative nature of Eq. (191).
We emphasize that Eqs. (188) and (191), constituting the
photon polarization tensor in the strong magnetic field
limit, are one of our main results in this section. The other
main result is an analogous expression of the polarization
tensor in the limit of strong electric fields; see Eq. (198)
below.
Even though it is well known, and has been discussed in

detail in the literature (cf., e.g., [59]), that the dispersion
law for photons propagating in such strong electromag-
netic fields deviates significantly from the dispersion law at
zero field, k2 ¼ 0, we subsequently state the results for the
quantities �p and np as defined in Eqs. (46) and (112),

involving an explicit constraint to k2 ¼ 0. We do this solely
for the sake of an easier comparison with previous results
derived in the literature. Of course, these quantities can no
longer be identified with the physical indices of refraction
and the physical absorption coefficients. Equation (191)
results in�

�k
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� 2mÞ; (192)
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where we made use of the fact that k2 ¼ 0 of course
implies k2? ¼ �k2k ¼ !2sin 2
 [cf. Eq. (105)]. Moreover,

keeping terms at order !2 only, we exactly reproduce
the expression as derived by Tsai and Erber for the
case of very-low-energy photons and eB

m2 � 1, given in

Eq. (38) of [29] and written in a slightly different
representation,
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:

(193)

Notably, Eq. (193) has also been derived by [65]
pursuing an alternative approach. By a comparison of
Eq. (193) with Eq. (38) of [29], we find the following
identity:

� ¼ 8L1 � 2�

3
� 1; (194)

where the constant L1 can be obtained from the Raabe
integral [29],

L1 ¼ 1

3
þ
Z 1

0
d ln �1ð1þ Þ ¼ 0:248754477 . . . ; (195)

with the logarithm of the generalized gamma function
given by [29,66]

ln �1ðÞ ¼
Z 

0
dt ln �ðtÞ þ 

2
ð� 1Þ � 

2
ln ð2�Þ: (196)

Correspondingly, Eq. (194) provides us with an explicit
integral representation of the infinite sum (187).
Alternatively, the constant L1, and thus the sum (187),
can also be expressed in terms of the first derivative of
the Riemann � function [7],

L1 ¼ 1

12
� � 0ð�1Þ: (197)

Let us finally note that the corresponding true physical
refractive indices and absorption coefficients could be
obtained from Eqs. (188) and (191) by taking into
account the modified light-cone condition in the
polarized quantum vacuum k2 þ�p ¼ 0 for each polar-

ization mode p.
For an electric field the relevant � integrals follow from

Eq. (174). As already noted below Eq. (174), in case of an
electric field there is no threshold condition for pair pro-
duction and the respective integrals are genuinely complex.
The expression for the photon polarization tensor in the
strong electric field limit then reads
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(198)

Note that Eq. (198) implies a strong absorption 	eE of
photons polarized in the ? mode and propagating perpen-
dicular to the electric field. Contrarily, the real part starts
contributing only at OððeEÞ0Þ. In contrast to Eq. (191),
which basically holds throughout the strong magnetic field
regime, the imaginary part of the terms written explicitly in
Eq. (198)—like the respective real part—receives correc-
tions at Oð 1eEÞ. Again, this is an explicit manifestation of

the discrete kinematic threshold structure governing pair
creation in a magnetic field, as compared to the possibility
of pair creation for arbitrary kinematics in the presence of
an electric field.

IV. CONCLUSIONS

In this paper, we have studied in detail the photon
polarization tensor in the presence of a homogeneous,
purely magnetic and electric field, respectively. The simul-
taneous study of the magnetic field case together with
the electric field case was strongly motivated by the
electric-magnetic duality (9).
While the similarities between the (proper time) expres-

sions of the photon polarization tensor for purely magnetic
and electric fields were recognized from the days of its very
first derivation, and the formal correspondence B $ iE and
k $? [cf. Eq. (8)] even employed in Urrutia’s derivation
of the polarization tensor in parallel homogeneous electric
and magnetic fields [6], we are not aware of a discussion of
the electric-magnetic duality (9) in the context of the
photon polarization tensor. As detailed in this paper, e.g.,
in the special case of a magnetic field but k2? ¼ 0, the
electric-magnetic duality allows us to explicitly perform
the propertime integration, irrespective of the kinematics
conditions—particularly also above the pair creation
threshold.
Our main focus was on explicit results for various

well-specified physical parameter regimes. After shortly
reviewing the perturbative weak field expansion, focusing
on its basic structure and regime of applicability, we
studied in great detail approximations á la Tsai and
Erber and the strong field limit.
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Approximations á la Tsai and Erber: while we retraced
the original approach of Tsai and Erber to study the propa-
gation of photons in homogeneous magnetic fields [28,29],
we did not restrict ourselves to on-the-light-cone dynamics
from the outset and in particular kept track of all the
contributions arising in this type of expansion. In this
context, we have in particular obtained new analytical
results for the imaginary part of the photon polarization
tensor at leading order in a 1=� expansion (cf. Sec. III B 1),
leading to particularly handy expressions for the photon
absorption coefficient �p of photons polarized in mode

p ¼ fk;?g in both pure magnetic and electric fields. We
have compared these expressions with both the original
expressions derived by Tsai and Erber [28,29], and results
obtained with the method of stationary phase by
[30,31,49]. Moreover, in Sec. III B 2 we have highlighted
the problems of an expansion in � ! 0, and have explicitly
studied the restrictions to be imposed on the parameter

regime for the leading contribution to scale	ðefÞ2=3, with
f 2 fB; Eg, both in case of on- and off-the-light-cone
dynamics.

Strong field limit: In Sec. III C we have obtained
analytical insights into the strong field limit, ef �
fm2; jk2kj; k2?g, by performing formal expansions in both

y ¼ e�iz and k2?=ðeBÞ for magnetic fields, and analo-

gously y ¼ e�z0 and k2k=ðeEÞ for electric fields. Having

implemented the above expansions, and resorting to a
different representation of the original contact term,
more amenable to a strong field expansion, the proper-
time integrals could be carried out straightforwardly. In
turn, also the remaining parameter integral over � could
be performed explicitly. Expanding the results of these
integrations in powers of the inverse field strength
1=ðefÞ, we have obtained closed form analytical expres-
sions of the photon polarization tensor in the strong
field limit. Here we have neglected all terms suppressed
by at least the inverse field strength, i.e., terms of
Oð1=ðefÞÞ. Noteworthy, the strong field expansion natu-
rally induces logarithmic contributions of the structure
	ðefÞ�n ln ðefÞ, with n 2 N0. As such contributions can
be large for very strong fields, we have also explicitly
accounted for the corresponding leading logarithmic
corrections.

Besides providing for reliable analytical results into
various physical parameter regimes for homogeneous elec-
tric and magnetic fields, our study is also relevant beyond
the constant field limit, namely for inhomogeneous field
configurations that may locally be approximated by a
constant: for inhomogeneities with a typical scale of varia-
tion w much larger than the Compton wavelength of the
virtual particles, w � �c ¼ 1=m, using the constant field
expressions locally is well justified [67]. Of course, also
the photon polarization tensor for other field configurations
and in scalar QED [8,15] could be studied along the very
same lines.
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APPENDIX A: USEFUL IDENTITIES

In this appendix we collect useful identities and inter-
mediate steps omitted in the main text.
To arrive at Eq. (20) from Eq. (19), and again in the

derivation of Eq. (53), we made use of the following
identity:

Z 1

�1

d�

2
ð1� �2Þe�ik21��2

4 s�iað1��2Þ2

¼
Z 1

�1

d�

2
ð1� �2Þ þ i

2

Z 1

�1

d�

2

�
�2

3
� 1

�
�2

� ½k2sþ 8að1� �2Þ
e�ik21��2

4 s�iað1��2Þ2 ; (A1)

which is obtained straightforwardly by employing
integrations by parts. In the first case we needed
Eq. (A1) with a ¼ 0, while in the second case we had
a ¼ k2?ðeBÞ2s3=48.

1. Explicit evaluation of the � integrals in Eq. (167)

The integrals (167) with j ¼ 1, 2 can be expressed in
terms of the most basic one with j ¼ 0 by employing the
following identities:

Z
d�

�

aþ 2b�þ c�2

¼ 1

2c

Z
d�@� ln ðaþ 2b�þ c�2Þ

� b

c

Z
d�

1

aþ 2b�þ c�2
; (A2)

Z
d�

�2

aþ 2b�þ c�2

¼
Z

d�@�

�
�

c
� b

c2
ln ðaþ 2b�þ c�2Þ

�

þ 2b2 � ac

c2

Z
d�

1

aþ 2b�þ c�2
: (A3)

Here and in the remainder of this section we omit the
integration constants for indefinite integrals. In consequence
of the i� contained in the parameter a [cf. Eq. (168)], for a
magnetic field the logarithm in Eqs. (A2) and (A3) can
always be rewritten in the following form:
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lnðaþ2b�þc�2Þ
¼ lnjaþ2b�þc�2j� i��ð�a�2b��c�2Þ; (A4)

and thus is purely real valued for � ¼ �1.
In case of a magnetic field, the integral (167) with j ¼ 0

can be performed with the help of formula 2.103.4 of [34],

Z
d�

1

aþ 2b�þ c�2
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ac� b2
p arctan

�
c�þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac� b2

p
�
;

(A5)

which holds for ac > b2, or equivalently, expressed in
terms of physical parameters [cf. Eq. (168)],

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2eBn

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2ðnþ lÞeB

q �
2

<�k2k<
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þ2eBn
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2ðnþ lÞeB

q �
2
: (A6)

Under the above conditions, (A5) is purely real valued. By
analytical continuation, it is straightforward to derive re-
sults for the complementary regime, ac < b2, and more
generally for genuinely complex parameters a, b and c
from Eq. (A5) also. For magnetic fields, B � 0, and
ac < b2 we obtain

Z
d�

1

aþ 2b�þ c�2

¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p
�
ln

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p
� c�� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � ac
p

þ c�þ b

��������
� i�sign½k2kðc�þ bÞ
�ðjc�þ bj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p
Þ
	
:

(A7)

This expression develops an imaginary part if the following
condition is met,

jc�þ bj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p
� 0 $ ðaþ 2b�þ c�2Þc � 0;

(A8)

and for � ¼ �1 simply implies an imaginary part for
�k2k � 0. Taking into account this condition, the imagi-

nary part only survives the integration of Eq. (A7) from
� ¼ �1 to � ¼ þ1 if

signð�c� bÞ � signðc� bÞ � 0 $ � k2k > 2eBl: (A9)

By expanding out the right-hand side, one can straightfor-
wardly prove that also the following inequality holds,

2eBl �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 2eBn
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ðnþ lÞeB

q �
2
; (A10)

which, in combination with Eq. (A9), rules out an imagi-
nary part of the photon polarization tensor in the regime
[cf. Eq. (A6)]

� k2k �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 2eBn
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ðnþ lÞeB

q �
2
: (A11)

Correspondingly, the imaginary part of Eq. (A7) integrated
over the full � interval � 2 ½�1 . . . 1
 can be written as

=
Z 1

�1
d�

1

aþ 2b�þ c�2
¼ 2��

�
�k2k � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eBn

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ðnþ lÞeB

q
Þ2
�
:

(A12)

APPENDIX B: SERIES REPRESENTATIONS OF
THE SCALAR FUNCTION NiðzÞ AND n2ðzÞ

With the definition csc z ¼ ðsin zÞ�1, the scalar func-
tions in Eq. (7) featuring a z dependence can be rewritten
as follows:

N0ðzÞ ¼ z½csc z� ð@z csc zÞ@z
ðcos�z� cos zÞ;
N1ðzÞ ¼ zð1� �2Þ cot z;
N2ðzÞ ¼ zðcos�z� cos zÞð1þ @2zÞ csc z;
n2ðzÞ ¼ ð2zÞ�1 csc zðcos�z� cos zÞ:

(B1)

For completeness, also note the following relation:

cos�z� cos z ¼ 2 sin

�
1þ �

2
z

�
sin

�
1� �

2
z

�
: (B2)

Here we aim at series representations of the form (39),

NiðzÞ ¼
X1
n¼0

Nð2nÞ
i z2n and n2ðzÞ ¼

X1
n¼0

nð2nÞ2 z2n; (B3)

with i 2 f0; 1; 2g. Employing the series representation,

cos�z� cos z¼X1
j¼0

ð�1Þj
½2ðjþ 1Þ
! ð1� �2ðjþ1ÞÞz2ðjþ1Þ; (B4)

as well as formulas 1.411.7 and 1.411.11 of [34], both valid
for jzj<�,

csc ðzÞ ¼ X1
n¼0

ð�1Þn�1 ð22n � 2ÞB2n

ð2nÞ! z2n�1;

cot ðzÞ ¼ X1
n¼0

ð�1Þn 2
2nB2n

ð2nÞ! z2n�1;

(B5)

and using the Cauchy product, we obtain
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Nð2nÞ
0 ¼ ð�1Þn Xn

j¼0

ð22j � 2ÞB2j

½2ðn� jÞ
!ð2jÞ!
�
ð1� �2ðn�jÞÞ þ 2j� 1

2ðn� jÞ þ 1
ð1� �2ðn�jþ1ÞÞ

�
; Nð2nÞ

1 ¼ ð1� �2Þð�1Þn 2
2nB2n

ð2nÞ! ;

Nð2nÞ
2 ¼ ð�1Þn Xn

j¼0

ð22j � 2ÞB2j

½2ðn� jÞ
!ð2jÞ!
�
ð1� �2ðn�jÞÞ � j� 1

n� jþ 1

2j� 1

2ðn� jÞ þ 1
ð1� �2ðn�jþ1ÞÞ

�
;

nð2nÞ2 ¼ ð�1Þn�1

2

Xn
j¼0

ð22j � 2ÞB2j

½2ðn� jþ 1Þ
!ð2jÞ! ð1� �2ðn�jþ1ÞÞ; (B6)

whereBi (i 2 N0) denote Bernoulli numbers. As all the functions Nð2nÞ
i with i 2 f0; 1; 2g, and nð2nÞ2 contain either a factor

of cot ðzÞ and csc ðzÞ or its derivatives [cf. Eq. (B1)], the series representations in Eq. (B3) are valid for jzj<�
[cf. Eq. (B5)]. Equation (B6) in particular implies

Nð0Þ
0 ¼ Nð0Þ

1 ¼ Nð0Þ
2 ¼ 1� �2; (B7)

Nð2Þ
0 ¼ ð1� �2Þ2

6
; Nð2Þ

1 ¼ � 1� �2

3
; Nð2Þ

2 ¼ ð1� �2Þð5� �2Þ
12

; (B8)

as well as

nð0Þ2 ¼ 1� �2

4
; nð2Þ2 ¼ 1

3

�
1� �2

4

�
2
; and nð4Þ2 ¼ 3� �2

90

�
1� �2

4

�
2
: (B9)

Note that for n 2 N, nð2nÞ2 is at least of Oðð1� �2Þ2Þ; i.e., an overall factor	ð1� �2Þ2 can be factored out. To see this,
we substitute �2 � 1� ~u in the expression for nð2nÞ2 as provided in Eq. (B6) and make use of the binomial theorem to

rewrite

1� �2ðn�jþ1Þ ¼ 1� ð1� ~uÞn�jþ1 ¼ � Xn�jþ1

l¼1

ð�1Þl n� jþ 1

l

 !
~ul; (B10)

resulting in

nð2nÞ2 ¼ ð�1Þn
2

Xn
j¼0

ð22j � 2ÞB2j

½2ðn� jþ 1Þ
!ð2jÞ!
Xn�jþ1

l¼1

ð�1Þl n� jþ 1

l

 !
~ul; (B11)

and focus on the contribution linear in u, given by

nð2nÞ2 j	~u ¼ �ð�1Þn
4

Xn
j¼0

ð22j � 2ÞB2j

ð2n� 2jþ 1Þ!ð2jÞ! ~u: (B12)

By comparison with Eq. (B6), we infer

nð2nÞ2 j	~u ¼ �@�n
ð2nÞ
2 j�¼1

~u

2
: (B13)

From @�n2j�¼1 ¼ � 1
2 [cf. Eq. (B1)], it is obvious that there

is a nonvanishing contribution for n ¼ 0 only, such that

nð2nÞ2 j	~u ¼
� ~u
4 for n ¼ 0;

0 for n 2 N;
(B14)

and correspondingly

nð2nÞ2 ¼
� 1��2

4 for n ¼ 0;

Oðð1� �2Þ2Þ for n 2 N:
(B15)

Substituting �2 � 1� ~u in the other expressions in
Eq. (B6) and employing Eq. (B10), it is immediately

obvious that Nð2nÞ
0 , Nð2nÞ

1 and Nð2nÞ
2 share an overall factor

of (1� �2) to be factored out.

APPENDIX C: IDENTITIES AND SERIES
REPRESENTATIONS RELEVANT FOR

SECTION III B

The Airy functions can be represented in terms of Bessel
functions [34]. For <ðÞ � 0,

AiðÞ ¼
ffiffiffiffi


p
3

�
I�1=3

�
2

3
3=2

�
� I1=3

�
2

3
3=2

��

¼ 1

�

ffiffiffiffi


3

r
K1=3

�
2

3
3=2

�
; (C1)

BiðÞ ¼
ffiffiffiffi


3

r �
I�1=3

�
2

3
3=2

�
þ I1=3

�
2

3
3=2

��
; (C2)
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and for <ðÞ � 0,

AiðÞ ¼
ffiffiffiffiffiffiffiffi�

p
3

�
J�1=3

�
2

3
ð�Þ3=2

�
þ J1=3

�
2

3
ð�Þ3=2

��
;

(C3)

BiðÞ¼
ffiffiffiffiffiffiffiffi�

3

r �
J�1=3

�
2

3
ð�Þ3=2

�
�J1=3

�
2

3
ð�Þ3=2

��
;

(C4)

with J�ðÞ the Bessel function of the first kind, and I�ðÞ
and K�ðÞ the modified Bessel functions of the first kind

and second kind, respectively.
Given that 0 � � < 1 and jB2k2?j � 0, the condition

<ðsignðB2k2?Þ~�2=3Þ � 0 is equivalent to <ðB2k2?�0Þ � 0.

Specifying Eq. (58) to  ¼ �signðB2k2?Þð32 ~�Þ2=3 and em-

ploying definition (60) as well as the following identities

(cf. formulas 6.511.3 and 6.511.11 of [34]),

Z signðB2k2?Þð32 ~�Þ2=3

0
dt

ffiffi
t

p
I�1=3

�
2

3
t3=2

�
¼
Z �þ

0
dtI�1=3ðtÞ ¼ 2

X1
n¼0

ð�1ÞnI2nþ1�1=3ð�þÞ; (C5)

Z �signðB2k2?Þð32 ~�Þ2=3

0
dt

ffiffi
t

p
J�1=3

�
2

3
t3=2

�
¼
Z ��

0
dtJ�1=3ðtÞ ¼ 2

X1
n¼0

J2nþ1�1=3ð��Þ; (C6)

also GiðsignðB2k2?Þð32 ~�Þ2=3Þ can be expressed in terms of Bessel functions; for <ðB2k2?�0Þ � 0,

Gi

�
signðB2k2?Þ

�
3

2
~�

�
2=3
�

¼ 1

3
ffiffiffi
3

p
�
signðB2k2?Þ

�
3

2
~�

�
2=3
�1

2

�
I�1=3ð�þÞ þ I1=3ð�þÞ þ 4

X1
n¼0

ð�1Þn½I�1=3ð�þÞI2nþ4=3ð�þÞ � I1=3ð�þÞI2nþ2=3ð�þÞ

	
;

(C7)

and for <ðB2k2?�0Þ � 0,

Gi

�
signðB2k2?Þ

�
3

2
~�

�
2=3
�

¼ 1

3
ffiffiffi
3

p
�
�signðB2k2?Þ

�
3

2
~�

�
2=3
�1

2

�
J�1=3ð��Þ � J1=3ð��Þ þ 4

X1
n¼0

½J�1=3ð��ÞJ2nþ4=3ð��Þ � J1=3ð��ÞJ2nþ2=3ð��Þ

	
: (C8)

In turn, Eq. (55) can be written as an infinite sum of Bessel functions; for <ðB2k2?�0Þ � 0,

Z 1

0
dse�i�0ðk2Þs�ik2?

ð1��2Þ2
48 ðeBÞ2s3 ¼ �

2

~�2=3

�0

�1=3
þ
� ffiffiffi

3
p
�

K1=3ð�þÞ � signðB2k2?Þ
iffiffiffi
3

p
�
I�1=3ð�þÞ þ I1=3ð�þÞ

þ 4
X1
n¼0

ð�1Þn½I�1=3ð�þÞI2nþ4=3ð�þÞ � I1=3ð�þÞI2nþ2=3ð�þÞ

�	
; (C9)

and for <ðB2k2?�0Þ � 0,

Z 1

0
dse�i�0ðk2Þs�ik2?

ð1��2Þ2
48 ðeBÞ2s3 ¼ �

2

~�2=3

�0

�1=3�
�
J�1=3ð��Þ þ J1=3ð��Þ � signðB2k2?Þ

iffiffiffi
3

p
�
J�1=3ð��Þ � J1=3ð��Þ

þ 4
X1
n¼0

½J�1=3ð��ÞJ2nþ4=3ð��Þ � J1=3ð��ÞJ2nþ2=3ð��Þ

�	
: (C10)

Trading the derivatives with respect to �0 for derivatives with respect to �� [cf. Eqs. (57) and (60)],

@

@�0

¼ 3

2

~�2=3

�0

�
�signðB2k2?Þ�1=3

�
@

@��

�
; (C11)

and employing
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@

@�0

�~�2=3

�0

�
¼ 0; (C12)

it is then straightforward to derive the corresponding
expressions for the generic propertime integral (54), as
provided in Eqs. (61) and (62). With the help of formula
8.406.1 of [34],

I�ðÞ ¼ e�i�2�J�ðei�2Þ; for � �< arg ðÞ � �

2
; (C13)

also Eq. (C9) can be entirely expressed in terms of Bessel
functions of the first kind.

1. Very weak fields—large momentum:
The limit � ! 1

Taking into account Eq. (C13), the behavior of Eqs. (61)
and (62) in the limit � ! 1 can be inferred from the Bessel
function of the first kind. Its asymptotic expansion for large
values of , while j arg ðÞj<�, reads (cf. formula 8.451.1
of [34])

J��ðÞ ¼
ffiffiffiffiffiffiffi
2

�

s �
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 �

2
�� �

4

��Xl�1
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þO
��

1



�
2lþ1

��	
; (C14)

where we introduced

cðnÞ� ¼ �ð�þ nþ 1
2Þ

n!�ð�� nþ 1
2Þ
: (C15)

Equation (C15) is even in �, as for n 2 N (formula 8.339.4 of [34]),

�ð�þ nþ 1
2Þ

�ð�� nþ 1
2Þ
¼ ð4�2 � 12Þð4�2 � 32Þ . . . ½4�2 � ð2n� 1Þ2


22n
: (C16)

From Eqs. (C13) and (C14) it is straightforward to derive the asymptotic expansion of the modified Bessel function of
the second kind (cf. also formula 8.451.6 of [34]). Specifying to � ¼ 1=3, one finds

K1=3ðÞ ¼
ffiffiffiffiffiffi
�

2

s
e�

�Xl�1

k¼0

1
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��
1
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l
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: (C17)

Moreover, note that

J�1=3ðÞ þ J1=3ðÞ ¼
ffiffiffiffiffiffiffi
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: (C18)

For estimates of the remainders of the asymptotic series in Eqs. (C14), (C17), and (C18) we refer the reader to [34].

2. Weak fields—large momentum, and momentum dominance: The limit � ! 0

Aiming at results for �� ! 0, it is helpful to note that the (modified) Bessel function of the first kind has an exact series
representation, formulas 8.440 and 8.445 of [34],

J�ðÞ ¼
X1
j¼0

ð�1Þj
j!�ðjþ 1þ �Þ

�


2

�
2jþ�

for j arg ðÞj<�; and I�ðÞ ¼
X1
j¼0

1

j!�ðjþ 1þ �Þ
�


2

�
2jþ�

: (C19)

Given the structure of Eqs. (61) and (62), also the following identity, formula 8.442 of [34],

J�ðÞJ�ðÞ ¼
X1
j¼0

ð�1Þj
j!

�ð2jþ1þ�þ�Þ
�ðjþ1þ�þ�Þ

�ðjþ 1þ �Þ�ðjþ 1þ �Þ
�


2

�
2jþ�þ�

; (C20)

is useful. An analogous expression for modified Bessel functions can be obtained by employing Eq. (C13) in Eq. (C20).
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3. Building blocks of the polarization tensor in the limit � ! 0

Here we provide more explicit expressions for the basic building blocks of Eq. (53) in the limit � ! 0, relevant for
the discussion in Sec. III B 2. These expressions in particular confirm that the assumptions invoked in Eq. (126) give rise to
a well-defined expansion scheme in terms of the small quantities 1

� ,
1
c and c

� . With the help of Eqs. (128) and (129),

we obtain
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and Z c=�
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as well as
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and Z 1

c=�
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; (C24)

with p 2 fk;?g and fn; jg 2 N. Note that the structure of
the contributions in the second line on the right-hand side
of Eq. (C21) and the right-hand side of Eq. (C22) is quite
similar. The same is true for the second line of Eq. (C23)
and (C24). The result of an integration over the full � (or
equivalently ~u) interval is obtained by adding Eq. (C21) to
Eq. (C23) and (C22) to Eq. (C24).

APPENDIX D: RESULTS FROM THE METHOD
OF STATIONARY PHASE

References [30,31,49] have employed the method of sta-
tionary phase to approximate the imaginary part of the photon

polarization tensor for on-the-light-cone dynamics, i.e.,
k2¼0. This approach is limited to weak fields, ef=m2 � 1,
with f ¼ fE; Bg. It constitutes a reliable approximation
(i) to the regime of relatively low photon energy, char-

acterized by
k2?
4m2 	 1, while

k2?
4m2 � 1 � eB

m2 or
k2?
4m2 �

eE
m2 , respectively,

(ii) and, given that �fðrÞ � ef
m2 (see below), also at high

photon energy,
k2?
4m2 � 1.

In order to keep this paper self-contained, we reproduce

their results here. In our conventions, the result of [30] for a

magnetic field (cf. in particular their Appendix B) reads
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with the definitions r ¼ k2?
4m2 , lBðrÞ ¼ ln

ffiffi
r

p þ1ffiffi
r

p �1
and �BðrÞ ¼

2
ffiffiffi
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p � ðr� 1ÞlBðrÞ. The corresponding result for electric

fields was first derived by [49], and also obtained by [31]. It

reads
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with lEðrÞ ¼ 2 arctan 1ffiffi
r

p and �EðrÞ ¼ ðrþ 1ÞlEðrÞ � 2
ffiffiffi
r

p
.

For completeness, note that Baier and Katkov [31]

have also determined the correction term to the very

last equation in the limit r � 1: the corresponding

result is obtained by a multiplication with the factor

(1þ 1
�

eE
k2?
).

APPENDIX E: THE PHOTON POLARIZATION
TENSOR IN THE STRONG ELECTRIC

FIELD LIMIT

Here we detail the derivation of the photon polariza-
tion tensor in the strong electric field limit, Eq. (198).
Following the derivation of the analogous expression for
strong magnetic fields in Sec. III C, we first provide the
results for the various � integrals encountered in the
derivation [cf. Eq. (167)]. Specializing to an electric

field, the coefficients a, b and c as introduced in the
main text now read [cf. Eq. (168)]
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while for l ¼ 0, n > 0, we find
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For n ¼ 0, l > 0, we obtain
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and in particular [cf. Eq. (E4)]
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Note that the left-hand sides of Eqs. (E2)–(E5) can alternatively be obtained from Eqs. (175)–(178), relabeling k $? and
substituting B ! e�i�2E [cf. Eq. (9)]. Utilizing the above identities in Eqs. (160)–(162), with k $? and B ! �iE, we
obtain
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Analogously, Eqs. (163)–(165), with k $? and B ! �iE, result in
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