
Tunneling decay of false vortices

Bum-Hoon Lee,1,2,* Wonwoo Lee,2,† Richard MacKenzie,3,‡ M. B. Paranjape,3,§

U.A. Yajnik,4,∥ and Dong-han Yeom2,5,¶

1Department of Physics and BK21 Division, Sogang University, Seoul 121-742, Korea
2Center for Quantum Spacetime, Sogang University, Seoul 121-742, Korea
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We consider the decay of vortices trapped in the false vacuum of a theory of scalar electrodynamics in

2þ 1 dimensions. The potential is inspired by models with intermediate symmetry breaking to a

metastable vacuum that completely breaks a Uð1Þ symmetry, while in the true vacuum, the symmetry

is unbroken. The false vacuum is unstable through the formation of true vacuum bubbles; however, the rate

of decay can be extremely long. On the other hand, the false vacuum can contain metastable vortex

solutions. These vortices contain the true vacuum inside in addition to a unit of magnetic flux and

the appropriate topologically nontrivial false vacuum outside. We numerically establish the existence of

vortex solutions which are classically stable; however, they can decay via tunneling. In general terms, they

tunnel to a configuration which is a large, thin-walled vortex configuration that is now classically unstable

to the expansion of its radius. We compute an estimate for the tunneling amplitude in the semiclassical

approximation. We believe our analysis would be relevant to superconducting thin films or superfluids.
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I. INTRODUCTION

Vortices are topological solitons in a spontaneously
broken Uð1Þ gauge theory of a complex scalar field � in
two space dimensions. The potential is minimized for a
nonzero value of j�j, so the space of vacua is a circle, as
is spatial infinity. In a finite-energy field configuration, �
must tend toward a vacuum at infinity, but its phase can
change by 2� as the polar angle changes by 2�, resulting
in a vortex. (More generally, the phase can change by 2�n,
resulting in an n vortex, the integer n being the winding
number of the configuration.) Continuity of � dictates that
it must vanish somewhere (normally taken to be the
origin); thus, the core of the vortex has nonzero energy
density. Finiteness of energy also requires that the vortex
has a (quantized) magnetic flux in its core.

In such a model in three space dimensions, the soliton
becomes a one-dimensional topological defect, as de-
scribed by Abrikosov [1] and by Nielsen and Olesen [2].
These objects exist in many realistic models in particle
physics; in the cosmology of such models, they are formed
during phase transitions in the early Universe [3] and are
known as cosmic strings. In condensed matter physics,
they appear as vortex lines in type-II superconductors [4].

Vortices and strings also appear in global (that is,
nongauged) models with a complex scalar field alone.
In a condensed matter context, global strings correspond
to vortex lines in superfluid 4He, where the scalar field
is the condensate wave function [5]. A global vortex has
a logarithmically divergent energy; hence, in the two-
dimensional context, they must come in vortex-antivortex
pairs. In three dimensions the global vortex string must be
finite and joined to form a closed loop. This last condition
can be relaxed if gravitation is also taken into account,
and the condition becomes simply that the energy be finite
within a Hubble radius [6].

In this paper we will restrict ourselves to the case of

2þ 1-dimensional gauge theory vortices. Due to the form

of the potential [see Eq. (3) below], there is an important

difference between the vortices in our model and those

discussed in Refs. [1,2]. In both cases the field interpolates

between zero at the origin and a nonzero value at spatial

infinity, but in standard vortices this corresponds to going

from a maximum of the potential to the true vacuum at

infinity. Our vortices have the opposite behavior, in a sense,

in that the scalar field goes from the true vacuum at the

origin to a symmetry-breaking false vacuum at infinity.
The scalar field profile as a function of r is determined

by the equations of motion, of course, but two possible
profiles can be identified. The first is a ‘‘thin-wall’’ profile,
for which the scalar field remains at its central value� ¼ 0
inside the core of the vortex then quickly jumps up to a
value very close to the final symmetry-breaking value,
which it then approaches exponentially. The second is a
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‘‘thick-wall’’ or normal vortex, for which the scalar field
varies throughout the core of the vortex. Thin-wall vor-
tices are desirable as they allow certain simplifications in
the analysis; however, they are harder to produce (that is,
they arise in a smaller region of parameter space), as we
will see.

It is not obvious that the potential we consider will give
rise to classically stable vortices (whether thin wall or thick
wall). Indeed, simply expanding the interior region where
j�j ’ 0 should eventually give rise to a lower energy. It is
possible, however, that there is an energy barrier separating
the initial vortex configuration and any lower-energy con-
figuration, giving rise to a classically stable vortex.

In Fig. 1 we have drawn four possible examples of
the scalar potential, starting with (A), which is the usual
quartic symmetry-breaking potential with a maximum at
� ¼ 0 and with vacuum at j�j ¼ 1 after a suitable rescal-
ing; (B), where a metastable local minimum (false vac-
uum) is formed at � ¼ 0; (C), where this minimum
becomes degenerate with the symmetry-breaking mini-
mum; and (D), where the roles of the two vacua are
reversed, with � ¼ 0 and j�j ¼ 1 becoming the true and
false vacua, respectively.

In cases (A) and (B), it is easily shown that a vortex
solution exists and is stable both classically and quantum
mechanically. To see this, note that the energy of the flux
trapped in a vortex of core size R makes a contribution of

order ð�R2=2Þj ~Bj2 ¼ �2=ð�R2Þ, where � is the total flux,
stabilizing the configuration against collapse. On the other
hand, the potential term will diverge as ��R2Vð0Þ (where
in these cases Vð0Þ> 0) for large R, stabilizing the con-
figuration against expansion.

The covariant derivative of the scalar field also contrib-
utes an energy linear in R, whether the configuration is a
thin-wall or thick-wall vortex. In the thin-wall case, for a
large vortex, the dynamics governing the edge of the vortex
should be independent of its size, and since the scalar field
must vary from the value zero inside to one outside,
the linear distance over which it will do so should be

independent of R. Hence, the gradient behaves as �1=�
for some constant � representative of the wall thickness.
Its square gives the energy density, which is distributed
over a circumference of length �R, giving the stated
behavior. For a thick-wall vortex, the gradient energy is
distributed evenly over the size of the vortex; then it will
behave as �1=R; squaring and multiplying by the area of
the core gives an R-independent contribution to the energy.
However, in this case, the potential is nonzero throughout
the core, again giving a contribution �R2. Thus, in either
of these cases, the energy in the scalar field stabilizes the
configuration against infinite dilation.
Case (C) is the critical case, but here also the vortex

solution exists and is classically stable. The potential en-
ergy from the regions where the scalar field is nonzero
contributes as in cases (A) and (B), preventing infinite
dilation, and as before the magnetic flux prevents collapse
of the vortex. This vortex could tunnel quantum mechani-
cally to an infinitely large and infinitely diluted vortex.
However, the amplitude for such a transition probably
vanishes. Thus, case (C) is not the boundary of classical
stability, and continuity suggests that for case (D) there will
also exist classically stable vortex configurations as long as
Vð0Þ is close enough to zero, and indeed we will see that
this is the case. This paper is concerned with the quantum
mechanical disintegration of such vortices.
This could potentially be important for the following

reason. In a model for which the potential is given by case
(D), if the Universe is trapped in the false vacuum with
j�j ¼ 1, then the vacuum will ultimately decay. Standard
vacuum decay [7] is exponentially suppressed, so the
Universe could be trapped in a false vacuum for a very
long time. But generically vortices will be formed in a
symmetry-breaking phase transition. If this phase transi-
tion is followed by a second phase transition, which
restores the symmetry [for instance, going from case (A)
to case (D)], then these vortices have a core which is true
vacuum. Intuitively, this might speed up vacuum decay,
since the vortex core provides a region of space where
the scalar field already is where it ultimately will be; we
might suspect therefore that vortices have an important
effect on vacuum decay. Although this is not necessarily
the case, as we will show below, it is possible for vortex-
mediated vacuum decay to be much faster than normal
vacuum decay.
In the next section, we present the model in detail and

discuss vortex solutions in it. The two types of vortices
mentioned above will be examined. In the potential we
have chosen, the simplest with the desired vacuum struc-
ture, thin-wall vortices require a large winding number.
It is possible that this conclusion depends on the detailed
form of the potential.
In the following section, we discuss the decay of vortices

via tunneling. The analog of the bounce (instanton) solu-
tion of conventional vacuum decay will be discussed, and

1 |φ|

V(φ*φ) (A)
(B)
(C)
(D)

FIG. 1 (color online). The potential (2) varying from the
standard symmetry-breaking form (A) to one with a symmetric
true vacuum and symmetry-breaking false vacuum (D).
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expressions for its action will be given for three cases
(thick-wall vortices, thin-wall vortices, and vortices in
the so-called dissociation limit, a point in parameter space
where thin-wall vortices become unstable). Not surpris-
ingly, in the latter case, the presence of vortices will indeed
have an important effect on the decay of a false vacuum.

II. FALSE-VACUUM VORTEX SOLUTION

A. Setup

We consider the Abelian Higgs model (spontaneously
broken scalar electrodynamics) with a modified scalar
potential. The Lagrangian density of the model has the
form

L ¼ � 1

4
F��F

�� þ ðD��Þ�ðD��Þ � Vð���Þ; (1)

where F�� ¼ @�A� � @�A� and D�� ¼ ð@� � ieA�Þ�.

The potential is a sixth-order polynomial in � [8,9],
written

Vð���Þ ¼ �ðj�j2 � �v2Þðj�j2 � v2Þ2: (2)

Note that the Lagrangian is renormalizable in 2þ 1 di-
mensions. The fields � and A�, the vacuum expectation

value v, and the charge e all have mass dimension 1=2,
while the constants � and � are dimensionless parameters
controlling the strength of the self-interaction of the
scalar field. The value of � determines the shape of the
potential (see Fig. 1), the case of interest (D) correspond-
ing to 0< �< 1 (beyond which there is no longer a
barrier between j�j ¼ 0 and j�j ¼ 1). The potential en-
ergy density of the false vacuum j�j ¼ v vanishes, while
that of the true vacuum is Vð0Þ ¼ ���v6. Instanton-type
solutions corresponding to true vacuum bubbles (in a sea
of the false vacuum) will then have finite (Euclidean)
action.

After rescaling by appropriate powers of v and � so that
all fields, constants, and the spacetime coordinates are
dimensionless, the Lagrangian density is still given by

Eq. (1), multiplied by an overall factor of ��1=2, where
now the potential is

Vð���Þ ¼ ðj�j2 � �Þðj�j2 � 1Þ2: (3)

The overall factor does not affect the equations of motion
and for the quantum theory is absorbed into an appropri-
ate redefinition of ℏ. The potential for a value of � in the
range of interest is exhibited in Fig. 2.

As mentioned in the introduction, in a false-vacuum
universe, topologically nontrivial field configurations
(vortices) exist. These configurations may or may not be
classically stable, but even if classically stable, they can
tunnel quantum mechanically to a configuration of the
same energy with a large core of true vacuum, which will
then expand rapidly.

We will look for rotationally symmetric solutions for �
and A� in polar coordinates ðr; �; tÞ. We use the following

time-dependent ansatz for a vortex of winding number n:

�ðr; �; tÞ ¼ fðr; tÞein�; Aiðr; �; tÞ ¼ �n

e

"ijrj

r2
aðr; tÞ;

(4)

where "ij is the two-dimensional Levi–Civita symbol.
The energy functional for the vortex has the form

E½A�;�� ¼
Z

d2x

�
þ 1

2
F0iF0i þ 1

4
FijFij þ ðD0�Þ�ðD0�Þ

þ ðDi�Þ�ðDi�Þ þ Vð���Þ
�
: (5)

Substituting Eqs. (3) and (4) into Eq. (5), we obtain

E ¼ 2�
Z 1

0
drr

�
n2 _a2

2e2r2
þ n2a02

2e2r2
þ _f2 þ f02

þ n2

r2
ð1� aÞ2f2 þ ðf2 � �Þðf2 � 1Þ2

�
; (6)

where the prime and dot denote differentiation with respect
to r and t, respectively. We see that there are three parame-
ters at play: the electric charge e, the parameter �, and the
winding number n.

B. Static solution

The static vortex solution is the minimum of this func-
tional (without the time-derivative terms); the variational
field equations are

f00 þ f0

r
� n2

r2
ð1� aÞ2f� ðf2 � 1Þð3f2 � ð1þ 2�ÞÞf ¼ 0;

(7)

a00 � a0

r
þ 2e2ð1� aÞf2 ¼ 0: (8)

The form of the functions fðrÞ and aðrÞ can be found
numerically using the following boundary conditions:

fðrÞ ! 0; aðrÞ ! 0 as r ! 0; (9)

-0.1
 1

|φ|

V(φ*φ)

FIG. 2. The rescaled potential (3) with � ¼ 0:1.
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fðrÞ ! 1; aðrÞ ! 1 as r ! 1: (10)

Conditions (9) are imposed for smoothness of the fields
at r ¼ 0, while Eqs. (10) are required for finiteness of
the energy. More precisely, the behavior for small r can
be found by linearizing the equations, which indicates
that f� rn and a� r2 as r ! 0. As r ! 1, we write
fðrÞ ¼ 1� �ðrÞ and aðrÞ ¼ 1� c ðrÞ and linearize in �
and c . These functions obey modified Bessel equations,

and we find �ðrÞ � r�1=2e�2
ffiffiffiffiffiffiffi
1��

p
r and c ðrÞ ! r1=2e�

ffiffi
2

p
er

as r ! 1 [10].
Numerical solutions for fðrÞ and aðrÞ are displayed in

Fig. 3(a) for n ¼ e ¼ 1, � ¼ 0:1. The vortex solution is
classically stable. The asymptotic behavior (as r ! 0 and
r ! 1) of the profile functions fðrÞ and aðrÞ is as ex-
pected. The solution has a thick-wall profile, unlike the
case of usual vacuum bubbles studied in Ref. [7] which
have a thin wall in the limit that the vacuum degeneracy
splitting, controlled by the value of �, is very small. But it
should be noted that here we are looking for classically
stable soliton solutions and not instanton-type solutions
analogous to the thin-wall vacuum bubbles found in
Ref. [7]. Nonetheless, it will prove useful to have a
thin-wall vortex solution since then tunneling can be analyzed
without recourse to numerical simulation, as indeed was the
case in Ref. [7]. We have not found any such solutions with

n ¼ 1. Thismaybe a consequence of the formof the potential
chosen, although we have yet to consider other potentials
to see if thin-wall vortices with n ¼ 1 can be produced.
However, with the potential (3), thin-wall solutions do exist
for sufficiently small � and sufficiently large n [11–13]; one
such solution is displayed in Fig. 3(b).
The various contributions to the energy density as well

as the total energy density are shown for these solutions in
Fig. 4; all of these vanish as r ! 1, as expected. Note that
in both cases, the potential energy density is negative as
r ! 0; it then rises to a maximum and returns to zero, as
expected given the profile of fðrÞ and the form of the
potential (see Fig. 2). The total energy of the thick-wall
vortex is 5.38 in dimensionless units, which will be com-
pared with that of an ansatz we will use in the next section.
That of the thin-wall vortex for the parameters of Fig. 3(b)
is 92.5 in dimensionless units.
Let us finish this section with a few comments regarding

vortices with n ¼ 1. As � varies, the potential changes in a
way that has a dramatic effect on the vortices; this effect
can be described as a sort of phase transition in that below a
certain critical value of � (which depends on e), thick-wall
vortices exist, while above it no stable vortices are found.
(It appears that thin-wall vortices are not seen for this
potential for n ¼ 1.) This phase transition is not a complete
surprise: for � < 0, � ¼ 0 has greater potential energy
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FIG. 3 (color online). Vortex profile for (a) thick-wall and (b) thin-wall vortices. Displayed are the functions fðrÞ and aðrÞ and the
magnetic field BðrÞ ¼ na0ðrÞ=er. (a) Vortex (n ¼ 1, e ¼ 1:00, e ¼ 0:10) and (b) Vortex (n ¼ 50, e ¼ 1:00, e ¼ 0:005).
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FIG. 4 (color online). Scalar field gradient energy density 	grad, magnetic field energy density 	mag, potential energy density 	pot,
and total energy density 	tot for (a) thick-wall and (b) thin-wall vortices. (a) Vortex (n ¼ 1, e ¼ 1:00, e ¼ 0:10) and (b) Vortex
(n ¼ 50, e ¼ 1:00, e ¼ 0:005).
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than � ¼ 1, so the vortex is certainly stable. For reasons
outlined above, this is no longer clear if � > 0, and indeed
as � goes from below 1 to above, � ¼ 1 goes from being a
local minimum to a local maximum, and solutions of the
form we are looking for certainly do not exist. This is borne
out by a scan of parameter space [see Fig. 5(a)], which
shows that the stable thick-wall vortex no longer exists
well below � ¼ 1. There is also a relatively mild depen-
dence on e, although e ! 0 is a delicate limit since setting
e ¼ 0 decouples the gauge and scalar fields, and the vortex
becomes a global topological defect.

There is remarkably little variation in the form of the
stable vortex as the parameters vary. Of course the details
depend on the parameters, but generally the stable vortices
look much like that displayed in Fig. 3(a), even when very
close to the phase transition, as illustrated in Fig. 5(b).

Although thin-wall vortices (for n ¼ 1) do not exist in
the above model, unstable thin-wall configurations of large
radius can be constructed, so one can imagine a tunneling
event from the thick-wall solutions above to an unstable
thin-wall configuration of the same energy, which would
then expand rapidly. In the next section, wewill first discuss
the quantummechanical tunneling ofn ¼ 1 vortices to such
unstable thin-wall configurations. Subsequently, we will
consider the tunneling of large-n thin-wall vortices, where
the thin-wall nature simplifies the analysis.

III. FATE OF THE FALSE VORTEX
VIA TUNNELING

Wewish in this section to study the quantum mechanical
decay of false vortices in the model discussed above. There
are two reasons for doing so. First, it is intrinsically inter-
esting to determine the vortex lifetime. Second, in a
cosmological model where the Universe is in a false

vacuum with j�j ¼ 1, it will eventually tunnel to the true
vacuum with a rate which can be calculated following the
standard method presented in Ref. [7]. But the Universe
would generically contain vortices, and it is interesting
and potentially important to see what effect a gas of false
vortices would have on the tunneling rate. One might
imagine that, given that the core of the vortex is already
in the true vacuum, the presence of vortices could cause
the Universe to tunnel more rapidly than it would in the
absence of vortices. We will discuss these matters in this
section, beginning with the case of thick-wall vortices.

A. Thick-wall ansatz (n¼ 1)

The action of the ansatz (4) with n ¼ 1 is

S ¼
Z

dtðT � EÞ;

where T is the kinetic energy

T ¼ 2�
Z 1

0
drr

�
_f2 þ _a2

2e2r2

�
; (11)

where E is the energy of a static configuration,

E ¼ 2�
Z 1

0
drr

�
f02 þ ð1� aÞ2

r2
f2 þ a02

2e2r2

þ ðf2 � �Þðf2 � 1Þ2
�
: (12)

In this section, for illustrative purposes we will use
parameter values e ¼ 1, � ¼ 0:1.
In principle, we would like to find the instanton (or

bounce), which in our case is the solution to the
Euclidean field equations which tends toward the vortex
as Euclidean time 
 ! �1, reaches a turnaround point at

 ¼ 0, and returns to the vortex as 
 ! þ1. This is a

 0
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 0.3

 0  1  2  3  4 e

(a)       ε
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no stable vortex
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f
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B

FIG. 5 (color online). (a) Scan of parameter space for n ¼ 1, illustrating what can be described as a sort of phase transition dividing
parameter space into two regions, one where classically stable thick-wall vortices exist and one where they do not exist. The curved
solid line is the actual phase transition calculated numerically. The horizontal dotted line is that corresponding to the piecewise ansatz
[see Eq. (14)]. (b) Numerical solutions found for (i) � ¼ 0:179, in the stable region, and (ii) � ¼ 0:180, in the unstable region.
Although very close to the phase transition, the stable solution is qualitatively very similar to that displayed in Fig. 3(a). The unstable
solution displayed is in fact an artifact of the numerical algorithm, arising because the boundary condition imposed at the maximal
radius presupposes f ’ 1 [see the discussion following Eqs. (9) and (10)]. For instance, if the range of integration (that is, the
maximum radius) is increased, the numerical solution expands along with it. No such finite-size effects occur for the stable solution.
(a) no stable vortex and (b) Vortex (n ¼ 1, e ¼ 1:00).
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daunting task, and we will instead analyze a simplified
problem replacing the full space of field configurations
by a one-parameter family of configurations, parametrized
by the radius of the vortex. This reduces the problem to a
one-dimensional tunneling problem. In the semiclassical
approximation, the tunneling rate of this one-dimensional
problem is proportional to e�SE , where SE is the action of
the solution of the Euclidean equation of motion with the
appropriate boundary conditions. Since we have not solved
the full field equations, the actual bounce action will be
lower, so the tunneling rate determined from the one-
dimensional tunneling problem will be a lower bound on
the true semiclassical tunneling rate.

We begin by determining the minimum-energy configu-
ration within a family of configurations representing a
vortex of width R, treating R as a variational parameter.
This family is given by [see Fig. 6(a)]

fðrÞ¼
(
r=R r<R

1 r>R
; aðrÞ¼

(ðr=RÞ2 r<R

1 r>R
: (13)

For any R, this configuration has the correct asymptotic
form both as r ! 0 and as r ! 1. The field a describes a
uniformmagnetic field for r < Rwith unit flux. The energy
as a function of R is

EðRÞ ¼ 4�

3
þ 2�

e2R2
þ �R2ð1� 4�Þ

12
¼ 4�

3
þ 2�

R2
þ �R2

20
;

(14)

where the latter expression is for e ¼ 1, � ¼ 0:1. EðRÞ has
a minimum for any e as long as � < 1=4, which bears at
least some resemblance to the scan of parameter space
for the exact numerical solution displayed in Fig. 5. Let
its minimum value be E0 at R ¼ R0. For the values of

the parameters considered in this section, E0 ¼ 4�=3þ
2�=

ffiffiffiffiffiffi
10

p ’ 6:18 and R0 ¼ 401=4 ’ 2:51. The former is
somewhat higher than the actual minimum value 5.38
given above, as anticipated; the latter is in excellent
qualitative agreement with Fig. 3(a).
We will assume the tunneling proceeds within a space of

configurations parametrized by RðtÞ, defined as follows.
For R< R0, the configuration is a ‘‘squeezed’’ vortex
described by Eq. (13). For R> R0, the vortex will be
assumed to have the following profile [see Fig. 7(a)]:

fðrÞ ¼

8>>><
>>>:
0 r < R� R0

r�ðR�R0Þ
R0

R� R0 < r < R

1 r > R

;

aðrÞ ¼
8<
: ðr=RÞ2 r < R

1 r > R
:

(15)

The energy of this configuration is given by substituting
Eq. (15) into Eq. (12), which yields

EðRÞ ¼ 2�

e2R2
þ 2�

�
R

R0

� 1

�
2
log

R

R� R0

þ �

30R4
ð60R4 � 20R3R0 � 5R2R0

2 þ 6RR0
3 � R0

4Þ

þ �R0

420
ð64R� 29R0Þ � ��

15
ð15R2 � 14RR0 þ 4R0

2Þ

¼ 2�

R2
þ 2�

�
R

R0

� 1

�
2
log

R

R� R0

þ �

30R4
ð60R4 � 20R3R0 � 5R2R0

2 þ 6RR0
3 � R0

4Þ

� �

700
ð70R2 � 43RR0 þ 67R0

2Þ; (16)

where the latter expression is for e ¼ 1, � ¼ 0:1.

 1

R r

(a) f
a

 0
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 10
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R0  5  7.5 R

(b)   E(R)

FIG. 6 (color online). (a) Piecewise vortex ansatz. (b) Vortex energy EðRÞ for e ¼ 1, � ¼ 0:1.
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Equations (14) (for R< R0) and Eq. (16) (for R> R0)
give the potential for the one-dimensional problem, which
is displayed in Fig. 7(b). It has the expected form, with a
local minimum at R ¼ R0 separated by a barrier from the
region corresponding to a wide thin-wall vortex for which
the energy is unbounded from below as R ! 1. R1 is the
radius at which the thin-wall vortex energy equals that
of the vortex solution; for the values of the parameters
considered in this section, R1 ¼ 10:86.

The tunneling process corresponds to a quantum tran-
sition from R0 through the classically-forbidden region to
R1. This transition is mediated by an instanton or bounce
solution of the Euclidean equations of motion. We will find
an approximation to the exact bounce by analyzing the
(Euclidean) dynamical equations for Rð
Þ, where 
 is the
Euclidean time.

The tunneling problem is defined by a potential, which is
�EðRÞ (shifted so that the energy of the one-dimensional
problem is zero) combinedwith a kinetic energy termwhich
is determined by substituting Eq. (15) [withR ! Rð
Þ] into
Eq. (11), the dot now being interpreted as a derivative with
respect to 
. This yields the following expression for the
Euclidean action of an arbitrary path RðtÞ:

SE½Rð
Þ� ¼
Z

d
ðBðRÞ _R2 þ ðEðRÞ � E0ÞÞ; (17)

with EðRÞ as given in Eq. (16) and

BðRÞ ¼ �

�
2R

R0

� 1þ 1

e2R2

�
: (18)

The action (17) can be interpreted as that of a particle
with a position-dependent mass moving in the potential
E0 � EðRÞ. We are interested in the bounce, the solution
for which the particle starts at rest at R ¼ R0 as 
 ! �1,
rolls toR1, and then returns toR0 as 
 ! þ1. In Euclidean
spacetime, the bounce corresponds to a vortex for which
the radius varies in time, starting at R0, increasing to R1,
and then returning to R0. Of course, this is a Euclidean
motion, not an actual physical motion. In real spacetime,
the most that can be said is that a quantum fluctuation takes

the vortex to the larger radius R1, after which it expands
normally according to the Minkowski equations of motion
[essentially, rolling down the slope at R ¼ R1 in Fig. 7(b)
toward R ¼ 1]. Since both the mass and the potential are
independent of time, the resulting Euler–Lagrange equa-
tion has a first integral, which is

BðRÞ _R2 � EðRÞ þ E0 ¼ 0; (19)

where we have used the fact that the particle starts at rest
at R0. The action for the classical motion starting at R0

and ending at R1 is

SthickB ¼ 2
Z R1

R0

dR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðRÞðEðRÞ � E0Þ

q
; (20)

the factor 2 is because the bounce is a ‘‘round trip’’
between R0 and R1. The integral cannot be evaluated,
except by numerical integration. The result is not terribly
illuminating, and rather than pursue this, we will consider
a different case where the analysis can be pushed further
in the next subsection.

B. Thin-wall vortices (n � 1)

As we saw earlier, thin-wall vortices exist if n is suffi-
ciently large. In this case, we can imagine that the bounce
is a sequence of thin-wall vortices in a potential much like
that depicted in Fig. 7(b) (the details of course will be
different). The fact that the vortex is of thin-wall type
allows us to compute explicitly the Euclidean action within
the thin-wall approximation.
It is intuitively clear that thin-wall vortices will occur if

n is sufficiently large, roughly because the vortex size will
increase with magnetic flux, while the spatial scale over
which the scalar field varies is on the order of its Compton
wavelength, which is independent of n. Thus, the transition
zone from the interior of the vortex, where f ’ 0, to
the exterior, where f ’ 1, occurs over some length scale
�� 1, while R � 1, in agreement with the numerical
solution depicted in Fig. 3(b). The existence of thin-wall

 1

R-R0 R r

(a) f
a

 0

E0

 10

R0 5 R1 R

E(R)(b)

FIG. 7 (color online). (a) Ansatz for vortex configurations with R> R0. (b) Vortex energy EðRÞ for e ¼ 1, � ¼ 0:1, using Eq. (14) for
r < R0 and Eq. (16) for r > R0. The dashed curve represents the continuation of Eq. (14) outside its domain of validity for the
tunneling process.
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vortices has also been shown explicitly and studied from
various points of view in Refs. [11–14].

We must reintroduce n into the action, giving

S ¼
Z

dtðT � EÞ;

where the kinetic term is

T ¼ 2�
Z 1

0
drr

�
_f2 þ n2 _a2

2e2r2

�
(21)

and the energy of a static configuration is now

E ¼ 2�
Z 1

0
drr

�
f02 þ n2ð1� aÞ2

r2
f2 þ n2a02

2e2r2

þ ðf2 � �Þðf2 � 1Þ2
�
: (22)

Let us first determine the energy as a function of R of a
static thin-wall configuration. We can divide the energy
integral (22) into three regions:

EðRÞ ¼ Eint þ Ewall þ Eext: (23)

In the interior region (r < R� �=2), we assume that the
fields are fðrÞ ¼ 0, aðrÞ ¼ ðr=RÞ2. Then only the third and
fourth terms of Eq. (22) contribute, and we find

Eint ¼ 2�n2

e2R2
� ��R2; (24)

where we have dropped corrections smaller by a factor
�=R.

Inside the wall (R� �=2< r < Rþ �=2), we can re-
place factors r in the integral by R, to leading order. In
the second and third terms of Eq. (22), we can assume
1� a� 1=R, a0 � 1=R, and f ’ 1, so (assuming e� 1)
these terms are of order n2=R3. Since we expect R � 1,
these terms are small compared to the first term of Eq. (24),
so they can safely be dropped to leading order. For the first
and fourth terms of Eq. (22), the equation of motion for f is

f00 þ f0

r
� n2

r2
ð1� aÞ2f� ðf2 � 1Þð3f2 � ð1þ 2�ÞÞf ¼ 0:

(25)

The second and third terms of this equation can be dropped
since r � 1 in this region. Multiplying by f0, we can
integrate the equation, giving

f02 ¼ ðf2 � �Þðf2 � 1Þ2: (26)

Thus,

Ewall ¼ 4�R
Z Rþ�=2

R��=2
drf02

¼ 4�R
Z Rþ�=2

R��=2
drf0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf2 � 1Þ2ðf2 � �Þ

q

¼ 4�R
Z 1

0
df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf2 � 1Þ2ðf2 � �Þ

q
: (27)

To leading order, we can put � ¼ 0, giving Ewall ¼ �R.
In the exterior region (r > Rþ �=2), we assume fðrÞ ¼

aðrÞ ¼ 1, and we find Eext ¼ 0. Summing the three
contributions, we find

EðRÞ ¼ 2�n2

e2R2
þ �R� ��R2: (28)

Finding the expected minimum of this function involves
solving a fourth-order polynomial equation, which cannot

be done exactly. It is useful to define R̂ ¼ ð2n=eÞ�2=3R,

ÊðR̂Þ ¼ ð2n=eÞ�2=3EðRÞ=� and �̂ ¼ ð2n=eÞ2=3�. In terms
of these new variables,

ÊðR̂Þ ¼ 1

2R̂2
þ R̂� �̂R̂2; (29)

involving only one parameter �̂, which we assume is small.
This function is displayed in Fig. 8 for the parameters used
in Fig. 3(b) (for which �̂ ¼ 0:108).

ÊðR̂Þ displays the same qualitative features for any
positive �̂ smaller than a critical value, which turns out

to be �̂c ¼ 3=211=3 ’ 0:24. At that value, the points R̂0

and R̂1 coalesce, forming an inflection point at ðR̂; ÊÞ ¼
ðR̂c; ÊcÞ ¼ ð24=3; 3=24=3Þ, and the tunneling barrier disap-

pears. If �̂ > �̂c, ÊðR̂Þ is a monotonic decreasing function,
there is no classically stable vortex. We will return to the
near-critical case �̂ � �̂c in Sec. III C.

FIG. 8. The rescaled energy ÊðR̂Þ with �̂ ¼ 0:108. Numerical
values for the three parameters shown are Ê0 ¼ 1:38, R̂0 ¼ 1:09,
and R̂1 ¼ 7:61.
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We can calculate R̂0 and Ê0 perturbatively in �̂ � 1;
to lowest order we can simply drop the third term of

Eq. (29), and we find R̂0 ¼ 1, Ê0 ¼ 3=2, with corrections
(positive and negative, respectively) of order �̂. The

larger radius R̂1 does not exist for �̂ ¼ 0, but it can be

written as a Laurent series; it is R̂1 ¼ 1=�̂ with a (nega-
tive) correction of order 1. These corrections are easily
calculated and are in good agreement with the values
given in Fig. 8. In terms of the original variables, we find

R0 ¼
�
2n

e

�
2=3

; E0 ¼ 3�

2

�
2n

e

�
2=3

; R1 ¼ 1

�
; (30)

with corrections smaller by a factor �̂ ¼ ð2n=eÞ2=3�. R0

and E0 are in good agreement with the size and energy
of the thin-wall vortex found numerically earlier [see
Figs. 3(b) and 4(b)].

The form of EðRÞ indicates that bounce solutions exist.
In order to compute their Euclidean action, we need to
determine the kinetic term (21). Once again we can con-
sider three regions (interior, wall, and exterior). In the
interior, f ¼ 0, while a ¼ ðr=RðtÞÞ2, so _a ¼ �2r2 _R=R3,
and we find

Tint ¼ �n2

e2

_R2

R2
: (31)

Inside the wall, we can assume that fðr; tÞ is a function of
r� RðtÞ, that is, the time dependence of fðr; tÞ is due only
to translation by RðtÞ, the position of the wall. Then

@f

@t
¼ �f0ðrÞ _RðtÞ;

and the first term of Eq. (21) is

2�
Z Rþ�=2

R��=2
drf02 _R2 ¼ �R

2
_R2;

where we have used the fact that the integral has already
been evaluated in Eq. (27). As was the case with the
evaluation of the energy, the second term of Eq. (21) is
smaller than Eq. (31) by a factor (�=R), so it can be
dropped, and

Twall ¼ �R

2
_R2:

Outside the wall both f and a are constant, and the con-
tribution to Eq. (21) vanishes, so the kinetic term is

T ¼ Tint þ Twall ¼
�
�n2

e2R2
þ �R

2

�
_R2: (32)

We can now write the Euclidean action:

SE ¼
Z

dt

��
�n2

e2R2
þ�R

2

�
_R2þ 2�n2

e2R2
þ�R� ��R2�E0

�
:

We are now in a position to write an expression for
the bounce action, following the procedure used to obtain
Eq. (20). The result is

SthinB ¼2
Z R1

R0

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�n2

e2R2
þ�R

2

��
2�n2

e2R2
þ�R���R2�E0

�s

¼2�

�
2n

e

�
4=3Z R̂1

R̂0

dR̂

R̂2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

4
þR̂3

2

��
1

2
�Ê0R̂

2þR̂3��̂R̂4

�s
;

(33)

where we have gone to the hatted variables defined earlier.

Note that the last factor is the energy function ÊðR̂Þ � Ê0

multiplied by R̂2. This function, a quartic polynomial, has

four real roots, two of which are R̂0 and one of which is R̂1.

The final root, which wewill call R̂2, can be determined as a

power series in �̂; we find R̂2 ¼ �:5þOð�̂Þ. Thus, we can
write

SthinB ¼ 2�

ffiffiffî
�

2

s �
2n

e

�
4=3 Z R̂1

R̂0

dR̂

R̂2
ðR̂� R̂0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R̂3 þ 1

2

�
ðR̂1 � R̂ÞðR̂� R̂2Þ

s
: (34)

For small �̂, we can make the approximations R̂0 ¼ 1,

R̂1 ¼ 1=�̂, R̂2 ¼ �:5, and Ê0 ¼ 3=2, giving

SthinB ¼ 2�

ffiffiffî
�

2

s �
2n

e

�
4=3 Z 1=�̂

1

dR̂

R̂2
ðR̂� 1Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R̂3 þ 1

2

��
1

�̂
� R̂

��
R̂þ 1

2

�s
: (35)

Finally, since the integral is dominated by R̂ � 1, we can
drop the factors 1=2 (an approximation for which the
validity can easily be verified), after which the integral
can be evaluated exactly, giving

SthinB ¼ 2�

ffiffiffî
�

2

s �
2n

e

�
4=3 Z 1=�̂

1
dR̂ðR̂� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

�̂
� R̂

�s

¼ 2�

ffiffiffî
�

2

s �
2n

e

�
4=3 4

15

�
1

�̂
� 1

�
5=2 ’ 4

ffiffiffi
2

p
�

15

1

�2
; (36)

where, in the last step, we have made the approximation
ð1=�̂Þ � 1 ’ 1=�̂ and we have also returned to the original
variables. Interestingly, the action is independent ofn [aside
from the fact that Eq. (36) was derived for thin-wall vorti-
ces, an approximation that is valid only for n � 1].
Recall that SthinB is an upper bound to the bounce action;

thus, it gives a lower bound on the decay rate for the vortex,
which is

�thin ¼ Athine�SthinB : (37)
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The coefficient Athin comes from the determinant arising in
the saddle-point evaluation of the path integral, as dis-
cussed in Refs. [7,15]. This determinant factor must ex-
clude the integration over the zero modes. The only zero
mode of the vortex is because of time translation invari-
ance. The position of the vortex is fixed once and for all.
Thus, the integration over the direction of the time trans-
lation zero mode in the determinant is removed, and in-
stead the time at which the bounce occurs is integrated
over. This change of variables gives rise to a Jacobian
factor which is evaluated in Ref. [7] and yields the decay
rate of the vortex

�thin ¼ Athin

�
SthinB

2�

�
1=2

e�SthinB ; (38)

with a minor abuse of notation, as Athin now is the deter-
minant excluding the zero mode.

As stated earlier, we are interested in comparing the
decay rate of a gas of vortices, each of which decays
with rate (38), with that of the ordinary (translation-
invariant) vacuum. For the latter, we imagine that the
Universe is in a false vacuum with � ¼ 1 (up to an
irrelevant position-independent phase). The decay rate
per unit volume is calculated using the method of
Ref. [7]. The bounce is the path in configuration space of
least action, and we assume that � is always real (in what
follows we write � ¼ f) and that the gauge fields are not
excited. Thus, we work with the Lagrangian

L ¼ ð@�fÞ2 � VðfÞ;
with V as in Eq. (3). Furthermore, we assume that the
bounce is a function only of the Euclidean radial coordi-

nate 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ x2

p
. The Euclidean action and equation of

motion are then

SvacB ¼ 4�
Z 1

0
d		2ðf02 þ VðfÞÞ; f00 þ 2

	
f0 ¼ V0ðfÞ:

If we view f as the position of a particle on a half-line
and 	 as a time coordinate, this equation describes the
particle moving in a potential �V with a time-dependent
friction term. The bounce solution has fð	 ¼ 0Þ ’ 0 and
f0ð	 ¼ 0Þ ¼ 0, the exact starting value being that for
which fð	Þ ! 1 as 	 ! 1. As demonstrated in
Ref. [7], if we assume that � � 1, then the bounce will
be of thin-wall type, with f staying very near the false
vacuum f ¼ 0 for a long time then making a rapid
transition to near f ¼ 1, asymptotically approaching
that value as 	 ! 1. Since the transition occurs for
	 � 1, the friction term can be neglected, and the poten-
tial can be taken to be that with � ¼ 0. The equation of
motion is then that of a soliton much like the kink of �4

theory:

f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðfÞj�¼0

q
¼ fð1� f2Þ: (39)

It is easily integrated to obtain the explicit profile [call it
fKð	Þ], but in fact this is not necessary; all we need is the
action, which is

SvacB ¼ 4�
Z 1

0
d		2ðf0Kð	Þ2 þ VðfKÞÞ

¼ 4

3
�R3ð��Þ þ 4�R2

Z 1

0
d	f0Kð	Þ2:

Equation (39) enables us to write the latter integral,Z 1

0
d	f0Kð	Þ2 ¼

Z 1

0
dffð1� f2Þ ¼ 1

4
;

so

SvacB ¼ �

�
R2 � 4

3
�R3

�
:

Minimizing with respect to R gives us the radius of the
thin-wall bounce as well as its action:

R ¼ 1

2�
; SvacB ¼ �

12�2
: (40)

The thin-wall bubble admits three zero modes corre-
sponding to spacetime translation invariance. Thus, the
determinant factor must exclude these modes, while we
must integrate over the spacetime position of the bubble.

This gives rise to a factor of ðSvacB =2�Þ3=2, as explained in
Ref. [7]. From this, the false vacuum decay rate (the decay
rate per unit time) for a large volume � is

�vac ¼ �Avac

�
SvacB

2�

�
3=2

e�SvacB ; (41)

where, as in Eq. (37), Avac comes from the determinant
(again excluding zero modes) arising in the saddle-point
evaluation of the path integral.
We cannot directly compare Eqs. (38) and (41), of

course, because we imagine that the volume � contains a
large number of vortices (the density of which depends on
details of the cosmological phase transition giving rise
to them and on the subsequent expansion of the Universe
until vacuum decay occurs) and also because a universe
containing vortices could decay via vortex tunneling or via
ordinary vacuum decay with bubble nucleation far from
any vortex (assuming the vortices are well separated).
However, we can say that the presence of vortices has
two effects on vacuum decay: first, it reduces the volume
available for ordinary vacuum decay (which presumably
must happen sufficiently far from a vortex); secondly, it
allows for decay via vortex tunneling. While a detailed
analysis is probably fairly involved, given that the vortex
bounce action (36) is greater than the vacuum bounce
action (40), it seems likely that vortices impede vacuum
decay rather than speeding it up. For instance, if we simply
neglect the contribution of ordinary vacuum decay to the
decay of a gas of vortices (a reasonable approximation
if the density of vortices is high enough), then we can
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compare the two rates: if N vortices are in the volume �,
we find

�vac

N�thin
¼

�Avac
�
SvacB

2�

	
3=2

e
� �

12�2

NAthin
�
SthinB

2�

	
1=2

e
�4

ffiffi
2

p
�

15�2

¼ �Avac

NAthin

ffiffiffi
5

p

21=496�2
e
ð4
ffiffi
2

p
15 � 1

12Þ��2 :

Unfortunately, the exponential factors work strongly
against the speed-up of vacuum decay by vortices since
the last factor is exp ððpositiveÞ=�2Þ, which (recalling that
we have assumed � � 1 from the beginning) is exponen-
tially large.

It would be useful if we could estimate the value ofN for
a volume � or, in other words, the density of the vortices

	 ¼ N

�
: (42)

Standard analysis for estimating the density of topological
defects during phase transition is based on the work of
Kibble [3] and Zurek [16]; however, this analysis depends
strongly on the model that describes the phase transition.
Our model is reliable only well after the phase transition
and therefore should not be used to estimate the vortex
density. If this density is sufficiently large in the parameters
of the Lagrangian, then the vortex induced decay rate could
in fact dominate over the vacuum bubble decay rate.

An important observation is that ordinary vacuum decay
depends only on the parameters of the potential (� here),
whereas in principle vortex tunneling depends also on the
winding number of the vortex and on e. [These depen-
dences happened to cancel in Eq. (36), but they do not
cancel generally.] This suggests that we examine parame-
ters where the vortex tunneling is sped up (by reducing the

tunneling barrier between R̂0 and R̂1 in Fig. 8), a situation
to which we now turn our attention.

C. Thin-wall vortices and the dissociation point

It is clear from the discussion following Eq. (29) that
within the thin-wall approximation, changing parameters
of the model can lead to an effective energy functional for
which vortices are no longer classically stable; this occurs
for �̂ > �̂c as first analyzed in Ref. [17]. We call the critical
point �̂ ¼ �̂c the dissociation point. If we approach this
point from the side of stable classical vortices, they will
simply dissociate and trigger the conversion of the false
vacuum to true vacuum without any suppression. For
�̂ & �̂c, the suppression will be tiny, and we expect vorti-
ces, if present, to have a dramatic effect on the stability of
the vacuum.

To study this effect, we must evaluate the action (34) to

leading order as �̂ ! �̂�c . In this limit (see Fig. 9), R̂0ð�̂Þ
and R̂1ð�̂Þ approach R̂c, and Ê0ð�̂Þ approaches Êc.

Indeed, in this limit we can write

ÊðR̂Þ ¼ 1

2R̂2
þ R̂� �̂R̂2 ’ Ê0 þ cðR̂� R̂0Þ2ðR̂1 � R̂Þ

(43)

for R̂ near R̂c, where R̂0, R̂1, Ê0, and c are functions of �.
Let � parameterize the approach to the dissociation point:

�̂ ¼ �̂cð1� �Þ: (44)

Then we can write

R̂0 ¼ R̂cð1� �0Þ;
R̂1 ¼ R̂cð1þ �1Þ;
Ê0 ¼ Êcð1þ �2Þ;

where we expect �0;1;2 to go to zero as � ! 0. By expand-

ing the two expressions for Ê given in Eq. (43) in powers

of R̂� R̂c, we can calculate �0;1;2 as well as c. This is

somewhat tedious but straightforward; we find

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂cR̂

4
c

3
�

s
; �1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂cR̂

4
c

3
�

s
;

�2 ¼ �̂cR̂
2
c

Êc

�; c ¼ 2

R̂5
c

or, using the values for �̂c, R̂c and Êc given earlier,

�0 ¼
ffiffiffiffi
�

2

r
; �1 ¼

ffiffiffiffiffiffi
2�

p
; �2 ¼ �

2
; c ¼ 1

27=3
:

To evaluate the action (33), we rewrite the last term as

1

2
� Ê0R̂

2 þ R̂3 � �̂R̂4 ¼ R̂2ðÊðR̂Þ � Ê0Þ
¼ R̂2cðR̂� R̂0Þ2ðR̂1 � R̂Þ;

giving

SthinB ¼ 2�

�
2n

e

�
4=3Z R̂1

R̂0

dR̂

R̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

4
þ R̂3

2

�
cðR̂� R̂0Þ2ðR̂1 � R̂Þ

s
:

Now, for small �, the region of integration is small, and we

can approximate R̂ ’ R̂c except in the last two factors,
giving

SthinB ’ 2�

�
2n

e

�
4=3

ffiffiffiffiffiffiffiffi
cR̂3

c

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ R̂3

c

2

s Z �1

��0

drðrþ �0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 � r

p
;

where we have gone to the integration variable r defined

by R̂ ¼ R̂cð1þ rÞ. The integral is standard and is equal to

ð4=15Þð�0 þ �1Þ5=2; substituting the values given earlier
for the parameters, we find

SthinB ’ 2�

�
2n

e

�
4=3 2�5=1235=2

5
�5=4; (45)
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which goes to zero as � ! 0, which is the dissociation
point, as anticipated in Ref. [17] and also discussed in
Ref. [18].

This result is interesting. If we imagine a supersymmet-
ric theory spontaneously breaking at an intermediate high
energy length scale to a broken Abelian symmetry, we
expect that there will be vortex lines trapped in the
Universe. As it cools, the broken symmetry is restored,
and the Universe is prone to vacuum decay. This decay
due to the usual bubbles as analyzed by Coleman [7] is
generically exponentially suppressed. However, as the
Universe cools, the coupling constant associated with the
broken Abelian gauge theory in principle renormalizes in
the opposite fashion to an asymptotically free theory.
Therefore, the Abelian gauge coupling constant e

decreases as the Universe cools. As it decreases, �̂ ¼
ð2n=eÞ2=3� increases, and if �̂ ! �̂c, the vortex lines will
simply dissociate. Indeed, as the coupling constant
decreases, the tunneling amplitude is unsupressed as is
evident from Eq. (45).

It is important to underline that the energy of our vorti-

ces behaves like n2=3. This implies that the broken vacuum
is in fact analogous to a type-I superconductor [19]. One
vortex of a large number of flux quanta n is energetically
favored to n vortices each of only one flux quantum.
Clearly the energy of the latter is linearly proportional
to n, En single flux vortices � n which is always greater than

Esingle vortex of flux n � n2=3 that we find for thin-walled vor-

tices. Therefore, in our model, if there is trapped magnetic
field in the vacuum, then it will be segregated in one or a
few vortices of large total magnetic flux in each. These
vortices will be necessarily thin walled, exactly as is
required for our analysis, and will promote decay of the
vacuum.

In fact, to compute the actual decay of vortex lines in a
three-dimensional context (as opposed to the vortices con-
sidered in this work) requires a more detailed analysis,
involving an effective field corresponding to the radius of
the thin-walled cosmic string as a function of the Euclidean
time and the spatial coordinate along the string, rather than
the simple 2þ 1-dimensional analysis presented here.
That analysis will appear in a forthcoming paper [20].

IV. DISCUSSION

We have discussed the possibility that vortices in a
universe trapped in a symmetry-breaking false vacuum
can have a significant effect on vacuum decay. If a classi-
cally stable vortex decays into a large vortex which is
classically unstable, this vortex will expand, leaving be-
hind it the symmetry-preserving vacuum. It is possible that
conventional vacuum decay proceeds by tunneling and
is exponentially suppressed, while vortex tunneling is un-
suppressed or is only slightly suppressed. In this case, the
presence of vortices in the universe would catalyze vacuum

decay. As we have seen, this occurs as one approaches
the dissociation limit [9], in which the tunneling barrier
between a classically stable vortex and an unstable, ex-
panding vortex shrinks away (see Fig. 9). Thus, there is a
range of parameter space for which the vortices are clas-
sically stable but trigger the decay of the false vacuum in
an essentially unsuppressed manner.
If we imagine a symmetry-breaking scenario where a hot

initial state condenses and is trapped in the false vacuum
state, evidently over causally disconnected regions, the
order parameter can be pointing in different directions.
As the state cools, this gives rise to an intermediate state
of essentially the false vacuum, punctuated by quantum
mechanically unstable vortices. If the decay of these
vortices is essentially unsuppressed, the false vacuum is
quickly converted to true vacuum via the tunneling that we
have described and the liberation of the trapped flux in the
vortices.
Our analysis could find applications in condensed matter

situations, for example, in the transition from the A to B
phase of superfluid 3He, where it is observed that a phase
transition occurs many orders of magnitude faster than the
expected quantum mechanical decay rate, currently an
open problem [21]. Second, a type-II superconductor in
the intermediate-field region (between the upper and lower
critical fields [19]) is penetrated by vortices. A supercon-
ductor described by the model discussed in this paper (or
one with similar features) would be unstable but could be
extremely long lived. However, the presence of vortices, if
the model is near its dissociation point, would destabilize
the superconductivity.
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