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We discuss the emergence of an inflationary phase in supergravity with the super-Higgs effect due to

dynamical spontaneous breaking of supersymmetry, in which the role of the inflaton is played by the

gravitino condensate. Realistic models compatible with the Planck satellite cosmic microwave back-

ground data are found in conformal supergravity scenarios with dynamical gravitino masses that are small

compared to the Planck mass, as could be induced by a nontrivial vacuum expectation value of the dilaton

superfield of appropriate magnitude.
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I. INTRODUCTION

Inflation [1], especially the version with a scalar field
(inflaton) rolling slowly towards a nontrivial global mini-
mum of its potential [2,3], is a successful framework for
explaining general features of cosmology and notably the
data on the cosmic microwave background (CMB) from
the WMAP [4] and Planck satellites [5]. Although these
measurements have excluded most of the monomial poten-
tials for single-field inflation [6], many models survive,
including Starobinski’s Rþ R2 model [7] and Higgs
inflation and its variants [8,9].

It was suggested long ago that inflation cries out for
spontaneously broken supersymmetry [10], since a very
flat inflationary potential would be more natural than in
nonsupersymmetric models. In a recent work [11] we
updated phenomenological studies of nonmonomial infla-
tionary potentials [6] within supersymmetry, showing that
a toy flat-space supersymmetric Wess-Zumino model with
a single chiral scalar superfield gives rise to an inflaton
potential that is comfortably consistent with the Planck
data.

The inclusion of supergravity effects is desirable if not
essential for realistic supersymmetric models of inflation,
and the Starobinski-type inflationary potential has recently
been shown [12] to emerge from certain no-scale super-
gravity models. Several other interesting works on infla-
tionary scenarios in supergravity models have appeared
recently [13], reviving interest in the cosmological rele-
vance of such models, and there have also been interesting
new nonsupersymmetric approaches [14].

Complementary to the above approaches is the work
of [15], where a minimal supergravity inflation scenario
is realized in the context of broken global supersymme-
try, and the inflationary phase is connected with a
renormalization-group flow from the ultraviolet (UV) to
the infrared (IR) of a constrained chiral scalar superfield
appearing [16] in the broken superconformal current
Ferrara-Zumino [17] multiplet in theories with F-type

breaking of supersymmetry. The IR limit of this chiral
superfield constitutes the well-known Volkov-Akulov
[18] Goldstino supermultiplet, whose spin-1=2 compo-
nent is the Goldstino Majorana fermion that appears in
spontaneously broken global supersymmetry. In this sce-
nario, the inflaton is identified with the scalar component
of the chiral superfield in the UV limit. Upon appropriate
embedding in supergravity, its Kähler potential may be
chosen so as to yield successful small-field inflation in
agreement with the Planck data [5]. It was also shown in
this framework [15] that there is a relation between the
scale of global supersymmetry breaking and the amount
of non-Gaussian fluctuations generated by the inflaton
field.
In the present work we pursue another avenue for

producing inflation in supergravity models, which may
be realized in models in which local supersymmetry is
broken dynamically. Such scenarios differ from those
examined in [15] in that in our approach it is the grav-
itino condensate field that plays the role of the inflaton
via its one-loop effective potential. Nevertheless, as we
discuss in detail, the presence of a super-Higgs effect
[19,20], in which global supersymmetry is broken at a
scale

ffiffiffi
f

p
leading to a nonlinear realization of supersym-

metry with a Volkov-Akulov Goldstino, is essential in
providing the scale of inflation, since the Hubble parame-
ter is related to

ffiffiffi
f

p
. However, unlike the situation in [15],

knowledge of the potential of the scalar supermultiplet of
the Ferrara-Zumino current conformal anomaly [17] in
the UV is not necessary. In our scenario, small-field
inflation is realized in the IR limit via the one-loop
effective potential of the gravitino condensate field that
is formed as a result of the four-fermion gravitino inter-
actions in the torsion part of the minimal N ¼ 1 super-
gravity action [21].1 Our analysis of the one-loop

1For early work on gravitino condensates and a possible
application to inflation, within extended (superstring-inspired
higher-dimensional) supergravity models, see [22,23].
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effective potential is performed in Minkowski space-time,
as in [24,25].2 We ignore consistently the quantum
(super)gravity corrections by working [29] with a con-
formal supergravity action [30] in which the dilaton is
stabilized by a suitable potential, which we do not spec-
ify in our analysis here.3 We assume that it determines a
vacuum expectation value (VEV) that fixes the coupling

of the four-gravitino torsion self-interactions, ~� ¼ e�h’i�
to be stronger than the standard gravitational coupling, �,
in the Einstein-frame formalism of the N ¼ 1 conformal
supergravity. In this way, quantum-gravity corrections
can be safely ignored when constructing the potential
that is used in our study of inflation.

The shape of the potential depends on a cutoff scale, and
a flat potential near the origin that leads to small-field
inflation can be obtained for values of the cutoff that are
low relative to the coupling ~�. Agreement with the Planck
data [5] can be obtained for a suitable value of the cutoff
relative to a transmutation mass scale. This yields a mini-
mal inflationary scenario in the simplest (conformal) su-
pergravity model, which does not require knowledge of the
Kähler potential, unlike other models in the literature.
Moreover, as already mentioned, our scenario differs
from that of [15] in that it occurs in the IR with the role
of the inflaton being played by the gravitino condensate,
not the UV scalar supermultiplet that contains the
Goldstino.4 The inflationary era in our scenario coincides
with a flow of the gravitino condensate field towards its
nontrivial minimum at the end of inflation. The space-time
at the end of inflation is flat Minkowski in our toy example
of simple (conformal) supergravity without coupling to
matter.5 We stress that one feature of such a conformal
simple supergravity model is that the constraint imposed
by the CMB data [6] on the scale of the potential relative to
the slow-roll parameter � is satisfied for relatively large
conformal gravitational coupling: ~� � �, which is an
essential feature of our approach.

The structure of the article is as follows: in Sec. II we
review the super-Higgs effect and the breaking of local
supersymmetry, and the resulting effective infrared super-
gravity Lagrangian with a cosmological constant. In
Sec. III we construct and study the structure of the one-
loop effective action in flat Minkowski space-time of the
gravitino condensate in conformal N ¼ 1 supergravity
models. The details of our inflationary scenario based on
the corresponding one-loop effective potential are dis-
cussed in Sec. IV, followed by a comparison with current
data. Finally, Sec. V summarizes our conclusions and the
outlook.

II. THE SUPER-HIGGS EFFECTAND THE
DYNAMICAL BREAKING OF

CONFORMAL SUPERGRAVITY

We start by reviewing the situation where global super-
symmetry is broken by an appropriate F term due to some
chiral superfield acquiring a vacuum expectation value:

hFi ¼ f � 0: (1)

The corresponding Goldstone field is a fermion called the
Goldstino, a Majorana fermion field �ðxÞ with spin 1=2,
whose low-energy interactions are described by a Volkov-
Akulov–type Lagrangian [18] that realizes global super-
symmetry nonlinearly:

L� ¼ �ðf2Þ det
�
�
�
� þ i

1

2f2
����@��

�
: (2)

The infinitesimal parameter of the nonlinear realization of
global supersymmetry is �:

�� ¼ f�þ i
1

f
�����@��: (3)

The coupling of the Goldstino to supergravity generates a
mass for the gravitino through the absorption of the
Goldstino, via the super-Higgs effect envisaged in
[19,20], and we now review some aspects that are relevant
for our discussion.
We consider N ¼ 1 supergravity theory in four space-

time dimensions in the second-order formalism [21]:

e�1L ¼ � 1

2�2
RðeÞ � 1

2
���	
 �c ��5��D	c 


� 11�2

16
½ð �c �c

�Þ2 � ð �c ��5c
�Þ2�

þ 33

64
�2ð �c ��5��c �Þ2 þ � � � ; (4)

where �2 � 8�G � 1
M2

Pl

(with MPl the reduced Planck

mass) is the gravitational constant, e ¼ ffiffiffiffiffiffiffi�g
p

is the vier-

bein determinant, R½e� is the scalar curvature andD� is the

gravitational covariant derivative, both in the absence of
torsion, and the dots indicate contributions of the minimal
set of auxiliary fields ðA�; S; PÞ required for closure of the

2A full analysis of the one-loop effective action of N ¼ 1
supergravity has been performed in [26], taking quantum gravity
metric fluctuations into account as in [27], with similar results
for the shape of the effective potential and its link to inflation as
our flat-space analysis here. That work also counters the objec-
tions of [28] to the work of [24,25], by finding cases in which
there are no imaginary parts in the effective action coming from
quantum metric fluctuations.

3In our case we shall deal with single-field inflation, since the
gravitino condensate is a single real scalar field. Hence non-
Gaussianities are not present when the dynamics of the dilaton is
ignored, as assumed here.

4Of course, as the latter requires a redefinition of the gravitino
when the super-Higgs effect is in operation [19], eliminating the
Goldstino from the physical spectrum and making the gravitino
massive, the condensate contains contributions from the
Goldstino, but the underlying physics is different.

5The coupling to matter leads to decays of the gravitino and
subsequent reheating, but such issues are beyond the scope of
this article.
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local supersymmetry algebra, which we do not write
explicitly here, as they are of no special interest for our
purposes.

When global supersymmetry is spontaneously broken
(1), the gravitino is coupled to the Goldstino field � via the
embedding of (2) in the supergravity context, yielding the
super-Higgs effect [19]. To see this, we promote the global
supersymmetry of (2) to a local one, by allowing the
parameter �½x� to depend on the space-time coordinates,
and couple the action (2) to that ofN ¼ 1 supergravity in
such a way that the combined action is invariant under the
following local supersymmetry transformations:

�� ¼ f�½x� þ � � � ; �ea� ¼ �i� ��½x��ac �;

�c � ¼ �2��1@��½x� þ � � � ; (5)

where the � � � in the � transformation denote nonlinear
�-dependent terms [cf. (3)]. The action that changes by a
divergence under these transformations is the standard
N ¼ 1 supergravity action plus

L� ¼ �f2e� i

2
����@��� ifffiffiffi

2
p ����c � þ � � � ; (6)

which contains the coupling of the Goldstino to the grav-
itino. The Goldstino can be gauged away [19] by a suitable
redefinition of the gravitino field and the tetrad. One may
impose the gauge condition

c ��
� ¼ 0; (7)

but this leaves behind a negative cosmological constant
term, �f2e, so the total Lagrangian after these redefini-
tions reads

Leff ¼�f2eþðN ¼1supergravity Lagrangian inEq:ð4ÞÞ:
(8)

The presence of four-gravitino interactions in the standard
N ¼ 1 supergravity Lagrangian in the second-order for-
malism, due to the fermionic contributions to the torsion in
the spin connection, implies that an induced gravitino mass
term is generated dynamically.

To see this, one may linearize the appropriate
four-gravitino mass terms of the N ¼ 1 supergravity
Lagrangian in the second-order formalism [17] by means
of an auxiliary scalar field 	ðxÞ [24]:

Leff ¼ � 1

2�2
RðeÞ � 1

2
���	
 �c ��5��D	c 
 þ 	2ðxÞ

� ffiffiffiffiffiffi
11

p
�	ðxÞð �c ��

��c �Þ þ � � � ; (9)

with ��� � 1
4 ½��; ���, where the � � � indicate terms that

we are not interested in, including other four-gravitino
interactions with �5 insertions, as well as other standard
N ¼ 1 interactions and auxiliary supergravity fields. On
account of the gauge-fixing condition (7) and the anticom-
mutation properties of the Dirac matrices ��, we have

�c ��
��c � ¼ � 1

2
�c �c

�: (10)

The formation of a condensate

h	ðxÞi � 	� h �c ��
��c �i � 0; (11)

which should be independent of x because of the trans-
lation invariance of the vacuum, is possible when the
effective action (9) is minimized along the lines in [24].
Such a condensate corresponds to a dynamically generated
gravitino massM3=2. The formation of the condensate may

cancel the negative cosmological constant term [19,24],
since it contributes to the vacuum energy a term of the form

Z
d4xe	2 > 0; (12)

and at tree level one can cancel the negative cosmological
constant of the Volkov-Akulov Lagrangian [(6) and (8)],
which depends on the supersymmetry breaking scale f2,
by setting

	2 ¼ f2: (13)

In [25], a one-loop effective potential analysis has demon-
strated that such a cancellation occurs for a suitable value
of the parameter f. Whether the situation persists to higher
orders, so that the cancellation of the effective cosmologi-
cal constant can be achieved exactly, is not known.
We stress at this stage the important role of gravitino

torsion condensates in providing the appropriate cosmo-
logical constant terms in the effective action that cancel
any bare contribution, leading to vanishing vacuum energy
at the nontrivial minimum of the (one-loop) effective
potential. This property is known in general relativity as
parallelism, and played an important role in early studies
of (spontaneous) compactification of higher-dimensional
supergravities, such as 11-dimensional supergravity [22],
yielding four-dimensional manifolds with zero cosmologi-
cal constant.
The above considerations have been disputed in [28],

where it was claimed that, in a linearized-gravity approxi-
mation, g�� ¼ g0�� þ h��, about a de Sitter solution of the

field equations coming from the one-loop effective action,
integrating out the metric fluctuations h�� in the way

suggested in [27] leads to imaginary parts in the effective
action, indicating an instability of the gravitino condensate.
However, these claims were revisited in [26], where it was
found that there are solutions corresponding to nontrivial
minima of the effective potential where such imaginary
parts are not present. In fact, the corresponding one-loop
effective potential computed with the quantum-
gravitational fluctuations has exactly the double-well
shape of the potential of [25] in flat space-time, supporting
the claim of [25] for the possibility of dynamical breaking
of local supergravity.
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In the present work we revisit such a scenario for
N ¼ 1 dynamical supergravity breaking with a view to
inflation, with the role of the inflaton being played by the
gravitino condensate field that is responsible for providing
a mass for the gravitino field via its VEV. We stress that, in
the dynamical supergravity breaking scenarios of standard
supergravity discussed in [24,25], the gravitino mass is of
the order of Planck mass. However, for the purpose of
our analysis we require a gravitino that is light compared
to the Planck mass scale. In order to obtain such a light
dynamical gravitino mass one should consider extended
versions of N ¼ 1 supergravity coupled conformally to
additional fields.

One such extension was discussed in [29], where we
extended N ¼ 1 supergravity to include a Barbero-
Immirzi field, which was identified with a complex chiral
superfield coupled conformally to the supergravity action.
The scalar component of this superfield is identified with a
complex scalar field, whose real part is the dilaton respon-
sible for breaking of (super)conformal symmetry, and
whose imaginary part is an axion associated with a field
extension of the Barbero-Immirzi parameter [31]. The

fermionic Majorana spin-1=2 component of this chiral
superfield (dilatino) can be identified with the Goldstino
field, whose infrared behavior is described by the Volkov-
Akulov Lagrangian (2), with a coupling to the N ¼ 1
supergravity action given by (6). As in standard supergrav-
ity, the Goldstino field is eaten by the appropriate compo-
nent of the gravitino, as in (7), and its only remnant is a
negative cosmological constant�f2 in the effective action.
We assume that the dilaton is stabilized by minimization of
an appropriate potential whose details are not specified.
Since broken global supersymmetry implies a nonzero
(positive) nontrivial minimum for the dilaton potential,
such terms are absorbed in f2.
The important difference from the standard supergravity

action induced by such a stabilized dilaton is that the
coupling constants of the four-gravitino interactions, in
the Einstein frame where the scalar curvature term and
the kinetic term of the gravitino are canonically normal-
ized, is no longer the gravitational coupling �2, but a scaled
one, involving multiplicative factors of the dilaton VEV. In
particular, the relevant supergravity terms in the Einstein
frame (denoted by a superscript E) now read [29,30]

LEðeEÞ�1 ¼ � 1

2�2
REðeEÞ � 1

2
���	
c 0

��5��D
E
	c

0

 � e2’VE � 11�2

16
e�2’½ðc 0

�c
0�Þ2 � ðc 0

��5c
0�Þ2�

þ 33

64
�2e�2’ðc 0	�5��c

0
	Þ2 þ � � �

¼ � 1

2�2
REðeEÞ � 1

2
���	
c 0

��5��D
E
	c

0

 � e2’VE þ 	2ðxÞ þ

ffiffiffiffiffiffi
11

p
2

�	ðxÞe�’ðc 0
�c

0�Þ þ �2ðxÞ

þ
ffiffiffiffiffiffi
11

p
2

e�’�i�ðxÞðc 0
��5c

0�Þ þ
ffiffiffiffiffiffi
33

p
2

�e�’i��ðc 0	�5��c
0
	Þ þ � � � ; (14)

where ’ denotes the (constant in space-time) dilaton VEV
that breaks conformal symmetry and global supersymme-
try, c 0

� denotes the canonically normalized gravitino with
a standard kinetic term as in N ¼ 1 supergravity, and
the � � � denote structures, including auxiliary fields, that
are not of interest here. In writing (14) we have expanded
the four-gravitino terms into detailed structures to exhibit
explicitly the terms that generate masses, and we have
linearized the four-gravitino terms. The condensate of
interest to us is the VEV of the linearizing field 	ðxÞ,
h	ð0Þi, which is independent of space-time coordinates,
because of translation invariance. As already mentioned,
the minimum of the dilaton potential contributes to the
cosmological constant, and the terms e2’VE above are
identified with the (negative) cosmological constant �f2

associated with the scale of global supersymmetry break-
ing that appears when the Goldstino field is coupled to the
Lagrangian (14), as in (8).

Due to the presence of the dilaton VEV ’, the
Lagrangian (14) has an extra phenomenological parameter
as compared to the standard supergravity case, namely the

interaction constant in front of the four-gravitino
terms:

~� ¼ e�’�: (15)

In the absence of a nontrivial dilaton VEV, ’ ¼ 0, the
supergravity Lagrangian reduces to the standard N ¼ 1
Lagrangian and the conformal coupling ~� becomes iden-
tical to the gravitational constant �. We considered in [29]
the case where ~� � �, in which case the quantum-
gravitational fluctuations of the metric field could be safely
ignored, and performed a consistent analysis of dynamical
gravitino mass generation in Minkowski space-time. As we
show in this work, such a situation also favors inflationary
phenomenology.
In Sec. III, we construct the one-loop effective action of

conformal supergravity models and study the formation of
gravitino condensates with mass scales much lighter than
the Planck mass. In Sec. IV we argue for inflation via the
effective potential of the condensate field around its origin,
and perform a phenomenological analysis finding consis-
tency with the Planck [5] CMB data.
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III. ANALYSIS OF THE ONE-LOOP
EFFECTIVE POTENTIAL

After integrating out the gravitino field in a flat
Minkowski space-time, we arrive at a one-loop effective
potential. This can be obtained by following the analysis of
[25], but replacing the gravitational coupling in that work
by the new coupling ~� (15). In a Minkowski space-time the
effective potential is divergent in the ultraviolet, so to
regularize this divergence one needs to impose a UV
momentum cutoff �, which is a phenomenological
parameter in our inflationary scenario, as we discuss below.
This sets the scale of inflation and also of the associated
dynamical mass of the gravitino that is obtained at the end
of the inflationary period, as we also see below. Keeping
just the lowest-order terms in the derivative expansion, the
one-loop effective action takes the generic form,

� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðZ½	�@�	@�	�V eff½	�Þ þ � � � ; (16)

where the � � � denote higher-order derivatives, Z½	�
is the wave function renormalization, and V eff is the
effective potential for the 	 field, defined as V eff ¼
��½nonderivative terms in	�.

The (one-loop) wave-function renormalization Z½	�,
which promotes the initially auxiliary condensate field 	
into a dynamical one, can be obtained by similar diagram-
matic methods as used in the analysis of composite Higgs
models [32], thanks to a close analogy of the dynamical
local supersymmetry breaking with the dynamical break-
ing of gauge symmetries in those models. The gravitino
condensate field plays the same role as the top-quark
(fermion) condensate field in [32]. Specifically, one may
split the condensate field into its classical vacuum expec-
tation value (VEV) and quantum ~	 parts: 	 ¼ h	i þ ~	ðxÞ,
where h	i yields a bare gravitino mass. Using the massive
gravitino propagator in flat space [21], one may write a
Schwinger-Dyson–like gap equation for the gravitino field,
and construct the propagator for the condensate field 	 by
summing the appropriate scalar channel bubble diagrams
generated using the four-fermion gravitino terms in the
supergravity action, as depicted in Fig. 1.

The details are not relevant for our purposes here, the
important point is the UV-divergent structure of the wave-
function renormalization factor Z½	�. Using the Fourier
transform of a massive gravitino propagator [21],

~Pab ¼ �
�
ð�ab þ papb=M

2
3=2Þði��p� �M3=2Þ

þ 1

3
ð�a � ipa=M3=2Þði��p� þM3=2Þ

� ð�b � ipb=M3=2Þ
��

ðp2 þM2
3=2Þ; (17)

where M3=2 / h	i is the gravitino mass and, following a

similar analysis as in [32], one may derive the scalar-
condensate propagator, from which one can deduce the
UV structure of the wave-function renormalization in
(16). The bubble graphs of Fig. 1 may be resummed to
yield the propagator �sðpÞ of the scalar condensate, which
has the generic structure

�sðpÞ � i

p2 þM2
	

�
�
Oð�4Þ þOð�2Þ þO

�
ln

�
�

�

�
2
���1

;

(18)

where we have separated the various terms according to
their UV-divergent structure, namely quartic, quadratic and
logarithmic UV divergences, and M	 denotes the conden-

sate mass. In the dynamical Higgs scenario of [32], the
resummation of the bubble graphs of Fig. 1 would lead to
the prediction that the condensate mass is twice the
top-quark mass. Renormalization-group studies then
show that the condensate mass is actually slightly higher
than the renormalized top-quark mass, and is cutoff depen-
dent in general. In our case the situation is more compli-
cated, since there are various types of four-fermion
interactions that should be taken into account, all with
similar strength �~�2. We do not perform their full resum-
mation here, being content with the estimate of the con-
densate mass made in the next section, based on the
minimization of the one-loop effective potential. Here we
sketch the analysis, concentrating on the derivation of the
logarithmic scaling of the wave-function renormalization
with the cutoff scale. Using the appropriate gap equation
for the dynamically generated gravitino mass [24], namely,

3

44~�2
¼

Z �
d4kð4þ k2=M2

3=2Þ
1

k2þM2
3=2

¼�2½�4=ð2M2
3=2Þþ 3�2� 3M2

3=2 ln ð�2=M2
3=2þ 1Þ�;

(19)

arising from the requirement of the vanishing of the tad-
pole of the quantum field ~	ð0Þ [24], one observes that the
power UV divergences inside the brackets in the above
expression for �sðpÞ cancel out, leaving only the logarith-
mic terms to contribute to the wave-function renormaliza-
tion Z½	�. Using a transmutation scale �, the latter can be
written generically as

Z½	� � const� ln

�
�2

�2

�
; (20)

FIG. 1. Generic diagrammatic structure of the scalar-channel
bubble four-gravitino Feynman graphs (continuous lines) con-
tributing to the condensate-field 	 propagator (dashed line) in
N ¼ 1 supergravity.
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where the proportionality constant denotes numerical coefficients whose precise value is not relevant for our purposes [we
note, though, that such coefficients contain factors 1=ð4�Þ2 �Oð1=100Þ]. The canonically normalized scalar condensate
field � that plays the role of the inflation is then

�ðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� const� ln

�
�2

�2

�s
~�	ðxÞ: (21)

Using the standard propagator of the (massless) gravitino field [21] in Minkowski space-time, the one-loop effective
potential for the field 	ðxÞ at one-loop order is then found to be [25]

e�1V eff ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
Lim
V!1

�
1

2V

X1
n¼1

ð ffiffiffiffiffiffi
11

p
~�Þ2n

2n
Tr½Pab	�2n

�
þ f2 � 	2

�

¼ 4

ð2�Þ4
Z �

d4p ln

�
1þ 11

~�2	2

p2

�
þ f2 � 	2

¼
�

1

4�3

��
121

2
~�04	4

�
ln ð11~�02	2=�02Þ � 1

2

�
þ 11~�02	2�02

�
þ f2 � 	2

¼ ð~�0Þ�4

��
1

4�3

��
121

2

4

�
ln

�
11
2

~�02�02

�
� 1

2

�
þ 
2

�
11

4�3
~�02�02 � 1

�
þ f2 ~�04

�
; (22)

where ~�0 � ~�ð�Þ1=4, �0 � �ð�Þ1=4. This rescaling has
been performed in order for the one-loop corrections of
the effective potential to have the same form as in [25],
where such � factors were lacking. For brevity, in the
remainder of this article we use the unprimed notation
for both ~� and �, with the understanding that now ~� is
given by

~� ¼ e�’ð�Þ1=4� ¼ e�ð’�1
4 ln�Þ�; (23)

instead of (15). In (22), V ! 1 is a space-time volume,
which cancels the

R
d4x factor for constant fields 	 (as

appropriate for the evaluation of the effective potential)
and Pab is the (massless) gravitino propagator, which, after
using the gauge condition (7), becomes

Pab ¼ � 1

2

�b�
�@��a

h
; (24)

where h � @�@� is the d’Alembertian. Its Fourier
transform reads

~Pab ¼ 1

2
i
�b�

�p��a

p2
; (25)

which has been used to obtain the final expression for the
effective potential given in the last line of (22), which we
shall use in our discussion of inflation in the next section.
The field 
 is a dimensionless rescaled condensate field,
	2 ! ~��4
2, or, in terms of �:


 ¼
�
~�

�

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 const� ln ð�2

�2Þ
q ��: (26)

The expression (22) contains the following undetermined
parameters that are to be constrained by observation:

(i) the cutoff�, which appears in the one-loop effective
potential through the dimensionless combination
~�2�2 and in the regularized logarithmic divergence
of the wave-function renormalization of the kinetic
term of the one-loop effective action through the
dimensionless combination ln ð�2=�2Þ, where � is
a transmutation scale;

(ii) the overall scale of the effective potential ~��4,
which may be adjusted by varying the VEV of the
dilaton field;

(iii) the scale of the cosmological constant f2, which is
related to the scale of global supersymmetry
breaking.

The appearance of the super-Higgs effect guarantees the
existence of the third parameter, which is important for
ensuring that the effective potential is nonnegative for
certain values of � and f2, as we discuss below, and has
a minimum at zero cosmological constant as seen in Fig. 2,
allowing us to interpret terms of the form h	i �c 0

�c
0� as

corresponding to gravitino mass terms [25,29] in
Minkowski space-time. In general, the shape of the poten-
tial depends on the value of the cutoff � relative to the
coupling ~�. Specifically, as the combination ~�2�2 becomes
smaller, the potential develops the nontrivial minima and
dynamical breaking of supergravity and inflation can
occur. In Fig. 3 we display various shapes of the potential
before local supersymmetry breaking for indicative values
of ~�2�2 from large to small.
The reader might worry that, by ignoring the quantum

gravitational fluctuations, we may arrive at an inconsistent
result for the behavior of the effective potential, but this is
not the case. As demonstrated in [26], a rigorous incorpo-
ration of such metric fluctuations into the effective action,
following [27], still produces effective potentials of the
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form of Fig. 2. In such a case, instead of formulating the
effective theory in flat Minkowski space-times, we con-
sider Euclidean de Sitter backgrounds, with a one-loop

renormalized cosmological constant ~�> 0. The quantityffiffiffiffiffiffiffiffiffi
1=~�

q
now plays the role of the UV regulator, and in this

case one may consider minimization of the effective action

in the Minkowski space-time limit where ~� ! 0, while f2

can be adjusted appropriately so that the value of the one-
loop effective potential (including the effects of quantum
gravity fluctuations) at the nontrivial minimum of the
condensate 	 vanishes as in the case of [25]. A detailed
analysis performed in [26] confirms the existence of such
solutions, without the presence of imaginary parts in the
one-loop effective action, contrary to the claims in [28].

IV. AN INFLATIONARY SCENARIO BASED
ON GRAVITINO CONDENSATION

An important feature of the effective potential (22), or
those derived in [26] with the inclusion of metric fluctua-
tions about a de Sitter background, is its flatness around
the local maximum, where the potential is approximately

constant and Oðf2Þ. We now discuss scenarios exploiting
this flatness of the effective potential to drive an infla-
tionary cosmological phase, which ends before the con-
densate field 	 rolls down to the nontrivial minimum at
which the value of the effective potential vanishes. We see
now the importance of a nontrivial super-Higgs effect,
because it is the VEV of the F term of the global super-
symmetry breaking chiral field, f2, that determines the
size of the Hubble parameter during the inflationary era.
However, in our conformal supergravity scenario, the
overall dilaton factor appearing in ~� (23) also contributes
to setting the scale in terms of the actual Planck mass,
which is important for the phenomenological exploring of
CMB constraints on this inflationary potential, as we
discuss below.
We are interested in an inflationary phase at small con-

densate fields �ðxÞ or, equivalently, 
ðxÞ around the local
maximum of the potential, where the latter assumes an
approximately constant value of order f2. The slow-roll
conditions for the inflaton (gravitino condensate) field
are valid in a region on either side of the origin, as we
now show.

(a) (b) (c)

FIG. 3 (color online). The shape of the one-loop effective potential (22) for various values of the product ~�2�2 as the cutoff runs
from the UV to the IR, before symmetry breaking. Decreasing ~�2�2 further yields the inflationary potential shown in the left panel of
Fig. 2. (a) ~�2�2 ¼ 4�3

11 ð1þ 10Þ. (b) ~�2�2 ¼ 4�3

11 ð1þ 1Þ. (c) ~�2�2 ¼ 4�3

11 ð1þ 0:5Þ.

FIG. 2 (color online). Left panel: The one-loop effective potential (22) for the field 	ðxÞ in the one-loop effective action (14) of the
N ¼ 1 conformal supergravity, which is suitable for dynamical breaking of local supersymmetry and the generation of a gravitino
mass. Right panel: For the indicated values of the relevant parameters the effective potential (which is symmetric about the origin)
vanishes at its nontrivial minima: 
 ¼ 
min, corresponding to a vanishing effective cosmological constant at one-loop order.
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The relevant slow-roll inflationary parameters are
defined in terms of the potential V by [6]

�¼ 1

2
M2

Pl

�
V0

V

�
2
; ¼M2

Pl

�
V 00

V

�
; �¼M4

Pl

�
V0V000

V2

�
;

(27)

where the primes denote differentiation with respect to the
canonically normalized inflaton field � (21), which yield
the following observables:

tensor=scalar ratio: r ¼ 16�;

scalar spectral index: ns ¼ 1� 6�þ 2: (28)

For completeness, we also consider the running of the
spectral index, �s � dns=d ln k, which affects the scalar
power spectrum [6]

PðkÞ ¼ A exp

�
ðns � 1Þ ln ðk=k0Þ þ 1

2
�sln

2ðk=k0Þ
�
; (29)

where k0 is a pivot point, typically taken to have the value
k0 ¼ 0:002. In terms of the slow-roll parameters, �s is
given by

�s ¼ 1

8�2

�
��

4
þ 2�� 3�2

�
: (30)

This is in principle an important ambiguity in fits to the
CMB data: for example, the general inflationary fit to the
Planck data yields �s ¼ �0:0134� 0:0090 [5], which is
compatible with zero at the 1:5-
 level. However, �s is
expected to be very small in generic slow-roll models.
Below we verify that this is indeed the case in our
gravitino-condensate model, so that its predictions can be
confronted with constraints obtained from the data assum-
ing that �s ’ 0. The magnitude of the primordial density
perturbations imposes the constraint�

V

�

�1
4 ¼ 0:0275�MPl (31)

on the value of the inflationary potential [6]. Finally, the
number of e-foldings for the duration of the slow roll, i.e.,
while the inflaton field has values in the interval 0<�i <
�<�e is given by

N ¼ � 1

M2
Pl

Z �e

�i

V

V 0 d�: (32)

Motivated by the need to consider asymptotically flat
Minkowski space-time at the end of the inflationary epoch,
where the gravitino acquires a mass dynamically, we make
the following important observation. If we set in (26)

~�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 const� ln

�
�2

�2

�s
� 1; (33)

then the dimensionless field 
 becomes identical to the
dimensionless field �=MPl that plays the role of the

inflation. The condition (33) is consistent with ignoring
the quantum fluctuations of the graviton field.
To ensure a scalar spectral index (28) in agreement with

the value measured by Planck [5], namely ns ’ 0:960�
0:007, we require a relatively small  parameter and thus
must choose the dimensionless parameter ~�2�2 appropri-
ately. Typical values we obtain for our scenario are such
that the coefficient of the 
2 term in the effective potential
(22) takes a negative value �� 0:0022, i.e.,

�1þ 11~�2�2

4�3
¼ �0:0022; (34)

while the following value of the cosmological constant f2

guarantees a consistent nontrivial minimum of the poten-
tial at which the one-loop effective potential vanishes:

f2 ¼ 0:2574~��4: (35)

With these values the effective potential that we use to
analyze inflation acquires the form

e�1V eff infl ¼ ~��4½0:4878
4 ln
2 � 0:2549
4

� 0:0022
2 þ 0:2574�; (36)

which is plotted in Fig. 2. The nontrivial minima of this
potential (which is symmetric about the origin) occur for


min ’ �1:0125; (37)

implying via (14) a dynamical gravitino mass of order:

M
dyn
3=2 ¼

ffiffiffiffiffiffi
11

p
~��1j
minj ’ 1:0125

ffiffiffiffiffiffi
11

p �
�

~�

�
MPl

¼ 3:3581

�
�

~�

�
MPl; (38)

which, in view of (33), is much lighter than the Planck

mass MP ¼ ffiffiffiffiffiffiffi
8�

p
MPl, an important consistency require-

ment on the model.
As is clear from Fig. 4, the slow-roll inflationary phase

occurs for field values in the region

0:0025� 0:0005<
j�j
MPl

< 0:0045� 0:0005; (39)

for which the slow-roll parameters (27) and the running of
the spectral index are well within the current experimental
constraints [5]. In particular, during the inflationary slow-
roll phase, the (approximately constant) value of the effec-
tive potential that fixes the Hubble parameter HI is

�4Veff infl ’
�
�

~�

�
4
0:2574;

HI ¼ �ffiffiffi
3

p V1=2
eff infl � 0:2929

�
�

~�

�
2
MPl: (40)

As seen in the top panels of Fig. 4, this yields a very small
value of � ¼ Oð10�9Þ, and hence a value of r ¼ Oð10�8Þ
that is far below the Planck sensitivity [5] and the
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predictions of the Starobinsky [7] and Higgs inflation
models [8]. On the other hand, as seen in the middle panels
of Fig. 4, this model yields  ¼ Oð10�2Þ and hence a
Planck-compatible value of ns for all the values of 

displayed. Finally, we see in the bottom panel of Fig. 4
that this model yields � ¼ Oð10�4Þ, and hence a running
spectral index (30) of order �s ¼ Oð10�6–10�5Þ, which is
consistent with the current experimental data [5,6]. The
number of e-foldings in the region (39) is N ¼ Oð30–50Þ.
Since there is a single real (composite) inflaton field, non-
Gaussianities in the CMB are negligible, unlike the case of

[15], where a complex scalar partner of the Goldstino
participates in inflation, leading [33] to non-Gaussianities
linked to the scale of global supersymmetry breaking.
The first part of (40) tells us that the magnitude of the

potential (31) is appropriate for

~�

�
¼ Oð103Þ � 1; (41)

which is compatible with our assumptions in this work.
From (33), then, we observe that (41) is satisfied for
transmutation mass scales � in the infrared regime:

FIG. 4 (color online). The slow-roll parameters (27) and the scalar spectral index ns as functions of the dimensionless inflaton field 

for the inflationary scenario induced by the one-loop effective potential (22) of the gravitino condensate field 	ðxÞ in the effective
action (14) of N ¼ 1 conformal supergravity. Inflation ends well before the gravitino acquires its full dynamically generated mass at
the nontrivial minimum of the potential at 	�Oð~�2Þ.
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ln ð�2

�2Þ>Oð108Þ, which is a consistency check of our

analysis. Equation (41) implies a light gravitino with a
dynamically generated mass (38) of order of the GUT
scale,

M
dyn
3=2 � 8� 1015 GeV; (42)

and, on account of (40), a Hubble parameter during
inflation of order

HI � 1:4� 10�8MPl ’ 3:4� 1010 GeV; (43)

which is well below the upper bound HI<
3:7� 10�5MPl ¼ Oð1012Þ GeV imposed by the Planck
upper limit on the tensor-to-scalar ratio [5], r0:002 < 0:12
(as evaluated at the pivot scale k? ¼ 0:002 Mpc�1).
Finally, we obtain from (35) a global supersymmetry-
breaking scale of order of the GUT scale,ffiffiffi

f
p � 1:73� 1015 GeV: (44)

At the end of inflation, the gravitino condensate field rolls
fast towards its nontrivial minimum, at which local super-
symmetry breaks dynamically, with the gravitino acquiring
a nontrivial mass (38). The condensate field is massive in
this phase, with a squared mass M2

	 that is given by the

second derivative of the effective potential with respect to
the condensate field, evaluated with the value of this field at
the nontrivial minimum (37). Using (41), we find that this
mass is of order

M	 � 2
ffiffiffi
2

p �
�

~�

�
MPl

¼ ffiffiffiffiffiffiffiffiffiffiffi
8=11

p
Mdyn

3=2 � 7� 1015 GeV� 0:003MPl: (45)

We note that the gravitino-condensate field mass is slightly
smaller than the dynamical gravitino mass, indicating
strong binding energy, unlike the dynamical Higgs case
[32]. However, as we already mentioned, much more work
is needed before definite conclusions on the precise relation

between the gravitino and condensate masses are reached,
which falls beyond the scope of the present work. For our
purposes here, the above mass estimate should only be
viewed as indicative of the order of magnitude.
After inflation, the gravitino condensate performs

coherent oscillations about its nontrivial minimum, and
this phase corresponds to the reheating of the Universe,
via decays of the condensate fields to matter and radiation,
which depends upon the coupling of the supergravity
model to matter. We do not discuss any details of the
phenomenology of this phase in the current article, as our
purpose here is simply to propose a paradigm for a novel
inflationary scenario due to gravitino condensation that is
compatible with the data.

V. SUMMARYAND OUTLOOK

We have presented in this paper a new inflationary
scenario in supergravity, in which the inflaton is identified
with the gravitino condensate that forms dynamically and
breaks local supersymmetry in a conformal supergravity
model, with the complex scalar superfield corresponding to
the conformal factor containing dilaton and axion fields.
The scale of inflation is linked to the scale

ffiffiffi
f

p
of global

supersymmetry breaking, and inflation is associated with
an infrared phase, in which the gravitino condensate rolls
down its potential towards a nontrivial minimum, where
the gravitino becomes massive. In this way we have
obtained a successful model for inflation that exploits the
flatness of the one-loop effective potential of the gravitino
condensate near the origin. The scenario is a truly minimal
inflationary scenario, both in its field content and because it
does not rely on detailed knowledge of the dilaton super-
field potential.
We have found the following hierarchy of mass scales in

our conformal supergravity model for inflation, which is
compatible with the current astrophysical data on inflation
coming from the Planck satellite [5]:

Planck mass: MP=GeV ¼ 1:2� 1019;

>gravitino mass: M
dyn
3=2=GeV� 8� 1015;

>gravitino� condensate mass: M	=GeV ¼
ffiffiffiffiffiffiffiffiffiffiffi
8=11

p
M

dyn
3=2=GeV� 7� 1015;

>global super symmetry� breaking scale:
ffiffiffi
f

p
=GeV ¼ 1:7� 1015;

>Hubble scale during inflation: HI=GeV ¼ 3:4� 1010;

DilatonVEV: e�’ ¼ Oð103Þ; (46)

while the slow-roll inflationary phase occurs for small field values in the region (39):

6� 1015 <
j�j
GeV

< 1:1� 1016; (47)

and is characterized by the parameters � ¼ Oð10�9Þ, r ¼ Oð10�8Þ, ¼ Oð10�2Þ, � ¼ Oð10�4Þ, and a Planck-compatible
scalar spectral index in the range ns 2 ð0:966–0:955Þ.
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One avenue for further research is the study of gravitino
properties such as decays in such models, along the lines of
[34]. The presence of a conformal factor affects the grav-
itino decay width and, depending on its value, one may
obtain, e.g., in models with neutralino dark matter, a differ-
ent density of dark matter relics than in standard super-
gravity, which could have important phenomenological
consequences for collider searches of supersymmetry.

More complete studies in this context should include
conformal supergravity models in which additional scalar
fields, such as those appearing in the standard model, enter
the conformal factor as in the analysis of [30]. Such fields
have, in the corresponding Jordan frame, nonminimal cou-
plings with the curvature that might lead, when combined
with our dynamical scenario, to acceptable slow-roll con-
ditions for inflation in the early Universe [8,9,30]. The

success of such a program would depend on details of
the scalar field potentials, which induce interactions among
those fields and the gravitino condensate in the effective
potential. These more complicated models would exhibit
non-Gaussianities, and it will be interesting to examine
their phenomenology in light of Planck satellite data. We
do not address such issues here but we hope to come back
to them in the future.
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