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We discuss how internal rotation with fixed angular frequency can affect the solitons in the baby

Skyrme model in which the global Oð3Þ symmetry is broken to the SOð2Þ. Two particular choices of the

potential term are considered, the ‘‘old’’ potential and the ‘‘new’’ double vacuum potential, We do not

impose any assumptions about the symmetry on the fields. Our results confirm existence of two types of

instabilities determined by the relation between the mass parameter of the potential � and the angular

frequency !. It is shown that multi-Skyrmions in the model with old potential at some critical value of the

angular frequency become unstable with respect to decay into single Skyrmion constituents.
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I. INTRODUCTION

The so-called baby Skyrme model is a modified version
of the nonlinear Oð3Þ � model in 2þ 1 dimensions [1], a
low-dimensional simplified theory which resembles the
conventional Skyrme model in many important respects.
This model has a number of applications, e.g. in condensed
matter physics where Skyrmion configurations were
observed experimentally [2], or in the topological quantum
Hall effect [3].

Together with the original Skyrme model in d ¼ 3þ 1
[4] and the Faddeev-Skyrme model [5], the baby Skyrme
model can be considered as a member of the Skyrme
family. Indeed, the Lagrangian of all these models has
similar structure; it includes the usual Oð3Þ sigma model
kinetic term, the Skyrme term, which is quartic in deriva-
tives, and the potential term which does not contain the
derivatives.

According to the Derrick’s theorem [6], the Skyrme term
is always required to support existence of soliton configu-
rations. In d ¼ 2þ 1 the potential term is also necessary to
obtain the localized field configurations with finite energy.
In d ¼ 3þ 1 the last term is optional; it gives a mass to the
excitations of the scalar field, so in the context of the usual
Skyrme model it is referred to as ‘‘pion mass term.’’ It is
known that its appearance might seriously affect the struc-
ture of the solutions of the Skyrme model [7]. On the other
hand, the form of the potential term in the baby Skyrme
model is largely arbitrary; there are different choices
related with various ways of symmetry breaking [8–10].

Note that the solitons of the models of the Skyrme
family possess both rotational and internal rotational (or
isorotational) degrees of freedom. The traditional approach
to study the spinning solitons is related with rigid body
approximation, both in the context of the Skyrme model
[11,12] and in the baby Skyrme model [13]. The assump-
tion is that the solitons could rotate without changing
its shape. This restriction can be weakly relaxed by

consideration of the radial deformations which would not
violate the rotational symmetry of the hedgehog configu-
ration [13,14]. Evidently, this approximation is not very
satisfactory; a consistent approach is to solve the full
system of field equations without imposing any spatial
symmetries on the isospinning solitons. Furthermore,
almost all previous studies of spinning solitons (see e.g.
[15,16]) were concerned with minimization of the total
energy functional EJ½�� for fixed value of the isospin J.
However, if we do not assume the spinning soliton will
have precisely the same shape as the static soliton, this
approach becomes rather involved; it is related to the
numerical solution of the complicated differential-integral
equation.
Very recently the isospinning soliton solutions were

considered in the Faddeev-Skyrme model beyond rigid
body approximation [15,17]. The approach of the paper
[17] is to consider the static pseudoenergy minimization
problem, where the pseudoenergy functional F!½��
depends parametrically on the angular frequency !. The
important conclusion, which is general for all models of
the Skyrme family, is that there is a new type of instability
of the solitons due to the extra nonlinear velocity depen-
dence generated by the Skyrme term [17].
In this paper, we aim to perform the analysis of the

critical behavior of the isospinning solitons of the baby
Skyrme model without imposing any spacial symmetries.
We confirm existence of two types of instabilities deter-
mined by the relation between the mass parameter of
the potential � and the frequency ! similar to the
pattern observed in the Faddeev-Skyrme model [15,17].
Interestingly, we observe that the critical behavior of the
isospinning baby Skyrmions depends also on the structure
of the potential of the model, for example in the case of the
‘‘old’’ model [1] the isospinning configurations of higher
degree may become unstable with respect to decay into
constituents.
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Note that we do not consider the very interesting case of
the family of the potentials discussed by Karliner and Hen
[9]. Here we also restrict our consideration to configurations
of degree 1 � B � 5. A more systematic investigation of
the spinning baby Skyrmions for various potentials and for
larger values of Bwill be presented elsewhere in our work in
collaboration with Battye and Haberichter [18].

In the next section we briefly review our approach to the
minimization problem of finding isospinning solitons of the
baby Skyrme model. The numerical results are presented in
Sec. III where we considered behavior of the isorotating
solitons in two different cases, the old baby Skyrme model
[1] and the ‘‘new’’ double vacuum model [19]. We give our
conclusions and remarks in the final section.

Last but not least, we consider our results to be comple-
mentary to the independent findings of Battye and
Haberichter presented in the recent paper [20].

II. BABY SKYRME MODEL

As a starting point we consider the rescaled Lagrangian1

of the Oð3Þ � model with the Skyrme term in 2þ 1
dimensions [1]:

L ¼ @�� � @��� 1

4
ð@��� @��Þ2 �U½��; (1)

where � ¼ ð�1; �2; �3Þ denotes a triplet of scalar fields
which satisfy the constraint j�j2 ¼ 1. Topologically the
field is the map�: R2 ! S2 characterized by the topologi-
cal charge B ¼ �2ðS2Þ ¼ Z. Explicitly,

B ¼ 1

4�

Z
R2

� � @1�� @2�: (2)

Note that the first two terms in the functional (1)
are invariant under the global Oð3Þ transformations; this
symmetry becomes broken via the potential term. The

standard choice of the potential of the baby Skyrme model
is [1]

U½�� ¼ �2½1��3�; (3)

thus the symmetry is broken to SOð2Þ and there is a unique
vacuum �1 ¼ ð0; 0; 1Þ. The corresponding solitons of
degree B ¼ 1, 2 are axially symmetric [1]; however, the
rotational symmetry of the configurations of higher degree
becomes broken [13].
The residual symmetry of the configurations with

respect to the rotations around the third axis in the internal
space allows us to consider the stationary isospinning (i.e.
internally rotating) solitons,

ð�1 þ i�2Þ � ð�1 þ i�2Þei!t; (4)

where ! is the angular frequency. The corresponding
conserved quantity is the angular momentum J ¼
!�½��, where �½�� is the moment of inertia; thus the
total energy of the spinning field configuration is

EJ½�� ¼ V½�� þ J2

2�½�� :

Evidently, the isorotations (4) of the energy functional of
the baby Skyrme model yield the pseudoenergy functional

F!½�� ¼
Z
R2

�
1

2
ð½2�!2ð�1 ��Þ2�ð@i� � @i�Þ

þ!2½�1 � ð�� @i�Þ�2Þ
þ 1

4
ð@i�� @j�Þ2 þ ðU½�� �!2ð�1 ��Þ2Þ

�

¼ V � 1

2
!2�ð�Þ; (5)

where the V is the potential energy of the nonrotated
configuration and the moment of inertia is

�ð�Þ ¼
Z
R2

fð�1 ��Þ2½1þ ð@i� � @i�Þ� � ½�1 � ð�� @i�Þ�2g: (6)

The isospinning solitons correspond to the stationary
points of the functional (5), which has the same dimen-
sional structure as the total energy functional; thus, the
standard scaling arguments in two spatial dimensions [6]
yield the virial relation

G ¼ V; (7)

where G ¼ 1
4

R
R2
ð@i�� @j�Þ2 and V ¼ R

R2
ðU½�� �

!2ð�1 ��Þ2Þ are two integrals which must be positively
defined.

However, the pseudoenergy (5) is not bounded from

below for!>!1 ¼
ffiffiffi
2

p
independently from the particular

choice of the potential U½�� [17]. Indeed, the first term in
(5) effectively defines the geometry of the deformed sphere
S2 squashed along the direction �1, the metric on this

space becomes singular at ! ¼ !1 ¼
ffiffiffi
2

p
.

The second critical frequency is related to the condition
of positiveness of the effective potential,

U!½�� ¼ U½�� �!2ð1��2
3Þ;

it approaches zero at some critical value ! ¼ !2. In this
limit the isospinning solitons of the baby Skyrme model
cease to exist because the vanishing of the potential makes
the configuration unstable; the virial relation (7) becomes

1Our conventions are slightly different from usual choice [1];
the kinetic term differs from the standard one by a factor of 2.
Evidently, corresponding rescaling of the mass parameter �
allows us to recover the latter conventions.
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violated. It is particularly convenient to investigate the
critical behavior of that type not in the case of the potential
(3) but for the double vacuum model [19] with another
choice of the rotationally invariant potential,

U½�� ¼ �2½1��2
3�: (8)

Evidently in that case the critical value!2 ¼ �. Below we
consider the pattern of critical behavior in both models.

The traditional approach to study the solitons of the
model (1) is related to separation of the radial and angular
variables [1,13]; thus, the consideration becomes restricted
to the case of rotationally invariant configurations and the
corresponding Euler-Lagrange equations are reduced to a
single ordinary differential equation on radial function
fð�Þ. However, more detailed analyses reveal that the
higher charge B � 3 baby Skyrmions may not possess
rotational symmetry [1,21]; starting from some critical
value of the mass parameter � the global minimum of
the energy functional corresponds to the configurations
with discrete symmetries.

The violation of the rotation invariance in the baby
Skyrme model attracted a lot of attention recently; it was
demonstrated that the effect strongly depends on the par-
ticular choice of the potential of the model [8–10]. Thus,

considering the isorotating baby Skyrmions we will con-
sider the complete system of coupled partial differential
equations on the triplet of functions�ð�; �Þ which follows
from the Lagrangian (1) in two cases of the rotationally
invariant potentials, the standard potential (3) and the
double vacuum model (8). Note that our numerical results
indicate that another possible choice of the rotationally
invariant holomorphic potential U½�� ¼ �2½1��3�4
[22] does not admit isorotations; the configuration be-
comes unstable for any nonzero value of the parameter !.

III. NUMERICAL RESULTS

In this section the results of numerical simulations of the
isospinning baby Skyrme model will be presented. The
numerical calculations are mainly performed on an equi-
distant grid in polar coordinates � and �, employing the
compact radial coordinate x ¼ �=ð1þ �Þ 2 ½0:1� and � 2
½0; 2��. To find stationary points of the functional (5),
which depends parametrically on !, we implement a sim-
ple forward differencing scheme on a square lattice with
lattice spacing �x ¼ 0:01. Typical grids used have sizes
120� 120. The relative errors of the solutions are of order
of 10�4 or smaller. To check our results for correctness we
checked that the corresponding virial relation (7) holds; as
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FIG. 1 (color online). Pseudoenergy, energy and isospin of the B ¼ 1 baby Skyrmion in the model with potential (3) are plotted as
functions of angular frequency !, and the energy is plotted as a function of isospin J at �2 ¼ 0:5, 2, 4, 16.
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a further verification we evaluated the value of the topo-
logical charge by direct integration of (2).

Each of our simulations began at! ¼ 0 at fixed value of
�, then we proceed by making small increments in !.
Initial configurations we created using ansatz

�1 ¼ sin fð�Þ cos ðB�Þ;
�2 ¼ sin fð�Þ sin ðB�Þ;
�1 ¼ cos fð�Þ;

(9)

where the input profile function is defined as fð�Þ ¼
4 arctan e��. Evidently this corresponds to the configura-
tion of degree B with standard boundary conditions on the
profile function fð�Þ. Generally, in our calculations we do
not impose any assumptions about the spatial symmetries
of the components of the field � although in the next
section we briefly considered the axially symmetric iso-
spinning multi-Skyrmions.

A. Old baby Skyrme model

First we consider evolution of the baby Skyrmions in the
model with potential (3). Note that the rotationally invari-
ant ansatz (9) corresponds to the ring baby Skyrmions
which in the standard conventions, for B> 2 and
�2 ¼ 0:1, are not absolute minima but rather the saddle

points of the energy functional [1,21]; they are unstable
with respect to perturbations which break this symmetry.2

However, the situation may change as the mass parameter
increases, for larger values of� the solutions may preserve
the axial symmetry. Indeed the larger parameter � is the
smaller the soliton size is; in the limit of very large mass
the potential term can be considered as a sort of constraint
on the field component �3 with �2 acting like a Lagrange
multiple. Note that in that limit the baby Skyrmions are, in
fact, compactons, the fields reach the vacuum values at
finite distance from the center of the soliton and they do not
have asymptotic tails [23]. In our calculations we mainly
considered relatively large values of �> 1.
In Fig. 1 we present typical graphs of the soliton

energies, both as functions of! and as functions of isospin
J for a range of values of �. When the mass parameter
�2 < 2 we observe critical behavior of the first type, the
effective potential vanishes and both the energy and the
angular momentum diverge. When �2 increases further, a
second type of critical behavior is observed, our algorithm
ceases to find any critical points when ! is taking the

values !>
ffiffiffi
2

p
though the energy and the angular
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FIG. 2 (color online). Pseudoenergy, energy and isospin of the rotationally invariant baby Skyrmion solutions in the model with
potential (3) are plotted as functions of angular frequency !. The energy is presented as a function of isospin J at �2 ¼ 4.

2We remind that the kinetic term in standard conventions
differs from our term by a factor of 1=2.
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momentum remain finite. Note that the plots of the energy
of the baby Skyrmions as a function of isospin look similar
with the dependencies EðJÞ in the Faddeev-Skyrme model
[17], up to some value of J the energy remains almost
constant; i.e. the configuration spins as a rigid rotator, then
the curve EðJÞ becomes linear up to a critical value at
which the solution breaks up.

Interestingly, for the rotationally invariant configura-
tions which we can construct using the hedgehog ansatz
[1] and considering relatively large values of the mass
parameter �, we observe crossing in both F!ð!Þ and
Eð!Þ curves as displayed in Fig. 2. Indeed, our numerical
simulations confirm that for some (third) critical value of
frequency !3 the pseudoenergy of the axially symmetric
B � 2 multi-Skyrmion becomes higher than the pseudoe-
nergy of the system of B charge one baby Skyrmions, so
the configurations are unstable with respect to decay into
constituents as shown in Fig. 3. Typically, increasing the
value of the mass parameter � will increase the stability of
the rotationally invariant multisolitons, the critical values
of the frequencies which correspond to the crossing be-
tween the F!ð!Þ curves then increase.

B. Double vacuum baby Skyrme model

Let us now briefly consider the new baby Skyrme model
with double vacuum potential (8). First, we observed some

similarity with the case of the model with old potential
considered above. As the angular frequency ! increases
the radius of the configuration is getting larger whereas its
qualitative shape does not change. In Fig. 4 we present
typical plots of the B ¼ 1 Skyrmion energies, both as
functions of ! and as functions of isospin J for a range
of values of �. Again, we observe critical behavior of two
different types, if the mass parameter satisfies the condition
�2 � !2

1 ¼ 2 the effective potential vanishes at � ¼ !2

and both the energy and the angular momentum diverge
(cf. Fig. 1). In the second case �2 > 2 we observe another
type of the critical behavior; as ! approaches the critical
value !1 the rotational invariance of the configuration
becomes slightly broken as shown in Fig. 6 and then the
configuration ceases to exist. However, both the energy and
the angular momentum of the Skyrmion remain finite up to
the critical value !1.
Note that the charge B solutions of the model with

double vacuum potential are rotationally invariant. Both
the pseudoenergy and the total energy of these multi-
Skyrmions are always lower than the pseudoenergy and
the energy of the system of B individual charge one sol-
itons, so the system remains stable with respect to decay
into constituents. Indeed, we do not observe crossings in
F!ð!Þ curves displayed in Fig. 5 which one has to compare
with similar curves for the rotationally invariant soliton

FIG. 3 (color online). Critical behavior of the rotationally invariant soliton solutions of the model with potential (3). The contour
plots of the energy density of the rotationally invariant (upper row) baby Skyrmions with charges B ¼ 2, 3, 4, 5 and�2 ¼ 8 at! ¼ 0:8
and their decay into B charge one solitons (2nd and 3rd rows).
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FIG. 4 (color online). Pseudoenergy, energy and isospin of the B ¼ 1 baby Skyrmion in the model with potential (8) are plotted as
functions of the angular frequency !. The energy E is plotted as a function of isospin J at �2 ¼ 0:5, 1, 2, 4, 32.

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

Fω /B

ω

 B=1 
 B=2 
 B=3 
 B=4 
 B=5 

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

E/B

ω

 B=1 
 B=2 
 B=3 
 B=4 
 B=5 

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

J/B

ω

 B=1 
 B=2 
 B=3 
 B=4 
 B=5 

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  1  2  3  4  5  6  7

E

J

 B=1 
 B=2 
 B=3 
 B=4 
 B=5 

FIG. 5 (color online). Pseudoenergy, energy and isospin of the baby Skyrmion solutions in the model with potential (8) are plotted as
functions of angular frequency !, and the energy as a function of isospin J at �2 ¼ 4.
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solutions of the old baby Skyrme model we presented
in Fig. 2.

IV. CONCLUSIONS

We have studied isospinning soliton solutions of
the low-dimensional baby Skyrme model of degree
1 � B � 5 with two types of potential, the old model
and the new double vacuum model. Similar to the case of
the isospinning solitons of the Faddeev-Skyrme model
[15,17,24], we used reformulation of the minimization
problem considering the stationary points of the pseudoe-
nergy functional F!ð!Þ which we found numerically
without imposing any assumptions about the spatial sym-
metries. Our results confirm that the solitons persist for all

range of values of ! � min f ffiffiffi
2

p
; �g, where � is the mass

of the scalar excitations, and their qualitative shape is
independent of the frequency !. Thus, there are two types
of instabilities of the solitons, one is due to radiation of the
scalar field and another one is related to destabilization of
the rotating solitons by nonlinear velocity terms [17].

Apart from the above feature, we have found that the
critical behavior of isospinning configurations strongly
depends on the structure of the potential term of the model.
The multisolitons of the new baby Skyrme model remain
stable with respect to decay into constituents of smaller
charge up to the critical value of the angular parameter! at

which the configuration ceases to exist; however, the
charge B> 3 solitons of the old model decay into constit-
uents at some value of ! at which the pseudoenergy of the
isospinning configuration per unit charge becomes higher
than the pseudoenergy of the system of isospinning baby
Skyrmions of lower charge. Also note that our results
indicate that the solitons of the holomorphic model do
not admit isorotations.
Similar results about the critical behavior of the isospin-

ning solitons in the old baby Skyrme model were reported
in a very recent paper [20]. More systematic investigation
of the spinning baby Skyrmions for various potentials and
for larger values of B will be presented elsewhere in our
work in collaboration with Battye and Haberichter [18].
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