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We point that any theoretically found value for an electromagnetic multipole of a baryon or a meson

should be subjected to ‘‘renormalization’’ due to nonlinearity of QED. We find third-power nonlinear

corrections to the Coulomb and other static electric fields, as well as to the electric and magnetic dipole

fields, as we work within QED with no background field. The nonlinear response function on which we

base our consideration is the fourth-rank polarization tensor, calculated within the local (infrared)

approximation of the effective action, the results being applicable to weakly varying and not too strong

fields. It is established that the nonlinear corrections to magnetic moments of some baryons and mesons,

fitting the present approximate scheme, match the existing indeterminacy in their theoretical values.
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I. INTRODUCTION

Quantum electrodynamics (QED) is a nonlinear theory
that includes effective interaction between electromagnetic
fields realized by creation of virtual pairs of charged par-
ticles, electrons, and positrons that interact with the elec-
tromagnetic fields before annihilating. The nonlinearity
becomes usually essential when the electromagnetic fields
involved in the problem reach and exceed the characteristic
‘‘Schwinger’s’’ value of the order of m2=e, where m and e
are electron mass and charge, respectively.1 In the Gauss
system of units, this value is BSch ¼ 4:4� 1013 G for a
magnetic and ESch ¼ 1:3� 1016 V=cm for an electric
field, while in the Heaviside-Lorenz (HL) system, mostly
used in the present paper, these values are 1:2� 1013 G
and 0:37� 1016 V=cm, respectively.

Apart from the customary reference to sufficiently large
magnetic fields that existed in the early Universe [5] or are
existing [4,6] in pulsars and magnetars (to be discussed in
Sec. V below), it has lately been noted that the electric fields
above Schwinger’s value are expected [7] to occur in quark
stars and that a very strong magnetic field is also formed for
a short timewhen accelerated charged particles (heavy ions)
collide, provided that the impact parameter is nonzero [8].
Once the magnetic field arising in the collision is of the
order of hadron mass-squared and is thus apt to interfere
with strong interactions, this circumstance already evokes
vivid activity in QCD [9], lattice calculations [10] included.

Presently, we have also to note that large electric
and magnetic fields may be associated with baryons and

mesons, due to their charges and/or to their electric and
magnetic multipole moments. Generally, large fields occur
in the vicinity of charged elementary particles or particles
carrying a magnetic or electric moment, or both. Where
these are protons, neutrons, and, generally, atomic nuclei,
the stemming nonlinearity may affect the atomic spectra.
[Within a nonlinear electrodynamics theory, other than
QED, namely, the noncommutative U?ð1Þ-gauge theory,
this issuewas touched upon in [11].] Consider, for instance,
the neutron, whose magnetic momentM is of the order of

2 nuclear magnetons �N ¼ 5:05� 10�24 g1=2 cm5=2 s�1.
The magnetic dipole field at the distance r is, at its
maximum, �2M=r3. It reaches Schwinger’s value

4:4� 1013 g1=2 cm�1=2 s�1 at the distance an order of mag-
nitude larger than the neutron magnetic size of �1 fm;
therefore, the nonlinear correction to the nucleon magnetic
moment interaction with the orbital electron comes into
play at a distance of about five-thousandth of the Bohr
radius, which may be significant in the atomic scale.
There is a vast literature on nonlinear effects in QED,

where the electromagnetic field, which is necessary to be
taken as large, is the so-called external field that forms the
vacuum background; see, e.g., the monographs [12–14]. In
this approach, a great advantage of going beyond the
perturbation expansions in powers of the external field is
achieved thanks to the use of special fields that admit exact
solutions for the Dirac electron Green function, like fields
constant in space and time and the plane wave (laser) field.
In the present, as well as in the previous [15], paper, we are
interested also in another class of fields, namely, those that
are produced by spherically and cylindrically symmetric
static sources, including the fields of the electric and
magnetic dipole. As far as exact Dirac solutions for such
fields are either unknown or overcomplicated to exploit, we
treat them by relying on the power expansion and take into
account the lowest nontrivial power. Their strength should
be enough to make the contribution of nonlinearity signifi-
cant but still sufficiently small to keep below the value
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1The only known exception is provided by the resonance [1] in

the vacuum polarization responsible for the capture of the photon
[2] in pulsar magnetospheres, where the photon forms a mixed
state with the mutually bound eþe� pair [3,4]. This effect is
essential at the magnetic field values of already � 0:1BSch.
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where the power expansion remains meaningful. On this
basis we considered previously the magnetic field pro-
duced by a static charge placed in a strong constant and
homogeneous magnetic field [15]. The latter was treated as
the nonperturbative background—it might exceed the
Schwinger value—whereas the contribution of the static
charge was retained up to the second power. The very
existence of this contribution (the magnetoelectric effect
in QED) is provided by the three-photon diagram (third-
rank polarization tensor) off the photon mass shell, non-
zero against the external background. Now we switch off
the background field and confine ourselves to various static
sources in the blank vacuum. This time, the third-rank
polarization tensor vanishes due to the C invariance, and
the first nonlinear self-coupling of the sources originates
from the fourth-rank polarization tensor associated with the
four-photon diagram. This diagram, when reduced to the
mass shell of four or two photons, describes the photon-by-
photon scattering and scattering of a photon off a Coulomb
center, respectively. This exhausts all scattering processes
with the four-prong diagram [16]. However, when all four
photon legs are taken off-shell, i.e., beyond the photon
dispersion curves, this diagram can be used for calculation
of self-couplings of various sources of electromagnetic
fields. We present a framework for considering slowly vary-
ing in time and space sources on the basis of the effective
action formalism, where the fourth-rank polarization tensor
is calculated by four field differentiations of the effective
action, where the latter is taken as a local functional of the
field invariants. This corresponds, inmomentumspace to the
infrared limit of small 4-momenta. This framework supplies
us with the simplest possible approximation, wherein the
self-coupling becomes first pronounced. For a pointlike
electric charge, the nonlinear correction to the Coulomb
field, valid at large distances [17,18] (commented on also
in [15]), is reproduced. Extended electric and magnetic
sources of various symmetries are studied, and nonlinear
corrections to the fields produced by them are found, the
most attention being paid to the electric andmagnetic dipole
fields. These fields reproduce themselves under themapping
due to the nonlinearity, while the resulting magnetic and
electric moments undergo nonlinear corrections, becoming
subject of cubic equations.

Our numerical estimates show that the fields of giant
magnetic dipoles, the pulsars [19], do produce essential
nonlinear corrections, before they reach values of the order
of 1015 G, when we are already taken out of the scope of
validity of our power expansion. The nonlinear corrections
can hardly be distinguished by a far-remote observer, since
these lead only to renormalization of the magnetic mo-
ment. However, inside and in the close vicinity of magne-
tars the nonlinear corrections to any theoretically derived
model values of the magnetic field are huge and must be
taken into account when considering various physical pro-
cesses in these regions.

We find that the magnetic moment of the neutron is too
large to be treated within the present power-expansion
approach. Nevertheless, the nonlinear corrections to
smaller magnetic moments of some other baryons and
mesons do fit this approach and prove to be of the same
order of magnitude as the existing indeterminacy in the
theoretical results for their magnetic moment values calcu-
lated within the theory of strong interactions. This means
that the nonlinearity of QED will have to be taken into
account already at the very next step of perfection of the
theoretical predictions for the magnetic moments of these
neutral particles and resonances (experimental values for
them are absent).
Before proceeding, we find it interesting to note in

passing that the magnetization of extreme magnetars may
be associated with the magnetic moment of the neutron. If
one imagines a neutron star as composed of neutrons in a
ferromagnetic state, i.e., with all magnetic moments of the
constituent neutrons arranged in parallel to each other, and
packed as densely as their electromagnetic size permits, the
magnetization of that star would be the same as the mag-
netization of an individual neutron, defined as its magnetic
moment per unit volume. This is about (see Sec. IXB
below) 3� 1016 G, the magnetar value. This numerical
observation may support the idea of essential hadron con-
tribution (developed, e.g., in [20]) into the magnetic field of
neutron stars (apart from electron currents).
The paper is organized as follows. In Sec. II, for any

U(1)-gauge-invariant P-even theory we present the non-
linear Maxwell equations for field potentials to the accu-
racy of the fourth power in gauge fields.
The second-, third-, and fourth-rank polarization tensors

are calculated in Appendix A by differentiations of the
effective action over the external constant field to be set
equal to zero afterwards.When there is no background, only
the third-power nonlinear vacuum response, contained in
the fourth-order field derivative of the effective action,
survives the infrared limit. The quadratic nonlinear re-
sponse is absent, as noted above. As for the linear response,
it is trivial in the zero-momentum limit: The second-rank
polarization tensor vanishes due to the correspondence
principle. We define a nonlinearly induced current as the
source of the nonlinear correction to the fields.
In Sec. III, we derive a representation for the nonlinear

field strengths in special cases where either only a mag-
netic or electric field is present. These representations
contain projection operators. In Sec. VIII A, the highly
symmetric configurations are considered, for which these
projection operators are identities, and the fields are
mapped to their nonlinear counterparts in a local way. In
this context, nonlinear corrections to spherically symmet-
ric extended charges, charged thread, charged plane of
finite thickness, and a wire with current are found. More
complicated cylindrically symmetric dipole fields pro-
duced by a current and by a charge distributed in a special
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way over the surface of a sphere are studied in Sec. VIII B.
The details of calculations intended to realize the projec-
tion operators are given in Appendix B (magnetic dipole)
and Appendix C (electric dipole). The resulting equations
for self-coupling of dipole moments are discussed. We
found that there is no spontaneous creation of these quan-
tities thanks to a special property of the second derivative
of the effective action that reflects the causality and uni-
tarity properties of the effective action. At the last step the
Euler-Heisenberg (local) effective action is used to specify
the results dynamically to QED.

In Sec. V, we make numerical estimates of the results as
applied to magnetic stars and hadrons. The contents are
summarized in concluding Sec. VI.

We adhere to the rationalized Heaviside system of
units with ℏ ¼ c ¼ "0 ¼ 1 throughout, unless otherwise
indicated.

II. NONLINEAR ELECTROMAGNETIC
FIELD EQUATIONS

We describe the effective action

� ¼
Z

LðzÞd4z (1)

in QED as the Legendre transform of the generating func-
tional of the Green functions [21]. It is, in its turn, the
generating functional of the one-particle-irreducible verti-
ces. Equation (1) is a nonlocal functional, L being the
effective Lagrangian, which depends on the relativistic
field invariants FðxÞ ¼ 1

4F��ðxÞF��ðxÞ and GðxÞ ¼
1
4F��ðxÞ ~F��ðxÞ and, generally, on their space-time deriva-

tives of any order. Here the field strength is F��ðxÞ ¼
@�A�ðxÞ � @�A�ðxÞ, with A�ðxÞ being the field potentials,

and ~F��ðxÞ ¼ 1
2 �����F

��ðxÞ is the dual tensor, where

����� is the fully antisymmetric Levi-Civita tensor, such

that �0123 ¼ 1. The Greek indices span the four-
dimensional Minkowski space taking the values 0, 1, 2,
and 3. The metric tensor is ð���Þ ¼ diagð1;�1;�1;�1Þ,
and Latin indices take the values 1, 2, and 3.

Beyond QED, the action (1) should be thought of as a
primarily given classical action of a nonlinear theory, e.g.,
the Born-Infeld action or any of its nonlocal generaliza-
tions. As a matter of fact, the contents of this article, down
to the very last step, where we refer to the Euler-
Heisenberg Lagrangian, are independent of special dynam-
ics: It covers QED as well as any other nonlinear
electrodynamics.

Define the total action Stot with the external current J�:

Stot ¼SþSint; S¼Sfreeþ�; Sfree ¼�
Z
FðzÞd4z;

Sint ¼�
Z
J�ðzÞA�ðzÞd4z: (2)

The minimum action principle �Stot
�A�ðxÞ ¼ 0 leads to the

equations of motion for the field:

J�ðzÞ ¼ �Sfree
�A�ðxÞ þ

��

�A�ðxÞ : (3)

These provide exact nonlinear equations for the c-valued
electromagnetic field potential A� that include all quantum
corrections inherent in QED. The linear part of these
equations makes the standard Maxwell equations, valid
in the small-field limit, in an equivalent medium formed
by the polarized vacuum with or without external field
background.
Note that when writing Eqs. (2) and (3) we adhere

to the HL system, since the energy of the free field, as
well as the Maxwell equations, does not contain the
factor 1=4	.

III. EXPANSION IN POWERS OF THE FIELD
ABOVE THE BACKGROUND

Subdivide the current in two parts: J�ðxÞ ¼ j�ðxÞ þ
J �ðxÞ, where J �ðxÞ is the current supporting an external

field A�ðxÞ via the exact nonlinear Maxwell equation

J �ðxÞ ¼ �S

�A�ðxÞ
��������A¼A

¼ ½h��� � @�@��A�ðxÞ þ ��

�A�ðxÞ
��������A¼A

:

We shall seek solutions in the form A�ðxÞ ¼ A�ðxÞ þ
a�ðxÞ. The current j�ðxÞ is supposed to be small, and then

we can expand ��
�A�ðxÞ in powers of the small field a�ðxÞ

above the external field background. Hence, (3) becomes

j�ðxÞ¼½h����@�@��a�ðxÞþ
Z
d4y���ðx;yÞa�ðyÞ

þ1

2

Z
d4yd4u���
ðx;y;uÞa�ðyÞa
ðuÞ

þ1

6

Z
d4yd4ud4v���
�ðx;y;u;vÞa�ðyÞa
ðuÞa�ðvÞ;

(4)

whereh ¼ @20 � r2 andwe have restricted ourselves to the

third-power terms in the expansion. The expansion parame-
ter can be revealed no sooner than the matrix coefficients of
the expansion (2-, 3-, and 4-rank polarization tensors)

���ðx; x0Þ ¼ �2�

�A�ðxÞ�A�ðx0Þ
��������A¼A

; (5)

���
ðx; x0; x00Þ ¼ �3�

�A�ðxÞ�A�ðx0Þ�A
ðx00Þ
��������A¼A

; (6)

���
�ðx;x0;x00;x000Þ

¼ �4�

�A�ðxÞ�A�ðx0Þ�A
ðx00Þ�A�ðx000Þ
��������A¼A

(7)
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are calculated within one or another dynamic scheme. The
polarization tensors of every rank ���...
ðx; x0; . . . ; x00Þ
satisfy the continuity relations with respect to every argu-
ment and every index as a consequence of the gauge
invariance.

In this work, we shall mainly deal with external fields
F �� ¼ @�A� � @�A� equal to zero and call this back-

ground the blank vacuum. (The only exceptions are calcu-
lations in Appendix A, which include the field F ��

constant in space and time within the framework explained
in [15]). In this case (also for the constant background)
all-rank polarization tensors depend on their coordinate
differences. Equation (4) is the field equation for small
electromagnetic perturbations a�ðxÞ ¼ A�ðxÞ �A�ðxÞ
over the blank vacuum, caused by a small external current
j�ðxÞ and taken to the lowest-power nonlinearity.

With the definition of the photon propagator D��ðx; x0Þ,
D�1

��ðx�x0Þ¼ ½���h�@�@���ð4Þðx0 �xÞþ���ðx�x0Þ;
(8)

the nonlinear field equations (4) take the form of (the set
of) integral equations

a�ðxÞ¼
Z
d4yD��ðx�yÞj�ðyÞþ

Z
d4yD��ðx�yÞjnl� ðyÞ;

(9)

jnl�ðxÞ¼�1

2

Z
d4yd4u���
ðx;y;uÞa�ðyÞa
ðuÞ

�1

6

Z
d4yd4ud4v���
�ðx;y;u;vÞa�ðyÞa
ðuÞa�ðvÞ;

(10)

where we define jnl�ðxÞ and call it the ‘‘nonlinearly induced
current.’’

IV. INFRARED APPROXIMATION AND ITS
APPLICATION IN NO-EXTERNAL-FIELD

VACUUM

From now on, we shall restrict ourselves only to slowly
varying fields a�ðxÞ and, correspondingly, to consideration
of the sources j�ðyÞ that give rise to such fields via Eqs. (9)
and (10). To this end, we may take the effective action � in
the local limit, where the field derivatives are disregarded
from this functional. We also call this limit infrared, be-
cause the variational derivatives for the n-rank polarization
operators (5)–(7) become in the local limit their low-
momentum asymptotes �kn, where the momentum k� is

the variable, Fourier conjugate to x�. The resulting expres-

sions for (5)–(7) with the background fields F �� ¼
@�A� � @�A� being arbitrary combinations of constant

and homogeneous electric and magnetic fields are
calculated in the infrared limit following the same method

as in [15] and listed in Appendix A, Eqs. (A1)–(A3).
Henceforward, however, we set the background field F ��

equal to zero everywhere, because we are interested only in
the blank vacuum as the background medium in the present
work, leaving the F �� � 0 calculations as a billet for a

future use. Then the variational derivatives in (5)–(7) are
expressed in terms of derivatives ofLðF;GÞwith respect to
the field invariants reduced to the null external fieldA ¼ 0.

Define LF ¼ @L
@F jF¼0;G¼0, LG ¼ @L

@G jF¼0;G¼0, LFF ¼
@2L
@F2 jF¼0;G¼0, LFG ¼ @2L

@F@G jF¼0;G¼0, and LGG ¼
@2L
@G2 jF¼0;G¼0. The relations LF ¼ LG ¼ 0 hold thanks to

the correspondence principle, that reads that in the infrared
limit the standard linear Maxwell equations for the no-
background-field case should be exact, not subject to any
corrections. Another reason for LG (also for LFG) to

vanish is the P invariance. Setting F �� ¼ ~F �� ¼ 0 in

(A1)–(A3), we make sure that the linear response in the
blank vacuum is trivial in the local (infrared) limit2 (and
not beyond it, of course):

���ðx; yÞ ¼ 0 (11)

while the quadratic response disappears:

���
ðx; y; uÞ ¼ 0; (12)

the latter property being as a matter of fact a consequence
of C invariance, valid beyond the infrared approximation
as well. As for the cubic response, it is governed by the
fourth-rank tensor (7), which in the current case follows
from (A3) to be

���
�ðx; y; u; vÞ

¼
Z

d4z

�
P��
���
�

@�4ðx� zÞ
@z�

@�4ðy� zÞ
@z�

� @�4ðu� zÞ
@z


@�4ðz� vÞ
@z�

�
; (13)

where we define the constant tensor P ��
���
� as

P��
���
�¼LFF½ð�������������Þð��
��
���
��
Þ
þð�������������Þð��
��
���
��
Þ
þð�
���
��
��
�Þð�������������Þ�
þLGG½��������

þ��������



þ��������

�: (14)

When deriving this expression, we have restricted our-
selves to the P-even theories, to which class QED belongs,

2This consequence of the correspondence principle LF ¼ 0 is
seen in the structure of the renormalized polarization operator in
the momentum representation prescribed by the standard renor-
malization procedure (see, e.g., [16]) that respects that principle,
�R

�� ¼ ð���k
2 � k�k�Þð�ðk2Þ ��ð0ÞÞ: This goes to zero as

�k4 in the infrared limit.
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by imposing the extra condition LFG ¼ 0. Integrating (13)
by parts, we obtain

���
�ðx;y;u;vÞ¼�P ��
���
�

@

@x�

��
@�4ðy�xÞ

@x�

�

�
�
@�4ðu�xÞ

@x


��
@�4ðx�vÞ

@x�

��
: (15)

With the account of (11) and (12), the Maxwell equations
(4) including the cubic nonlinearity reduce to

j�ðxÞ ¼ ½h��� � @�@��a�ðxÞ � jnl�ðxÞ; (16)

where the nonlinearly induced current (10) is

jnl�ðxÞ¼�1

6

Z
d4yd4ud4v���
�ðx;y;u;vÞa�ðyÞa
ðuÞa�ðvÞ:

(17)

Divide the field into the sum of ‘‘linear’’ and ‘‘nonlinear’’
parts

a�ðxÞ ¼ a�linðxÞ þ a�nlðxÞ (18)

so that Eq. (16) becomes

j�ðxÞ ¼ ½h��� � @�@��a�linðxÞ; (19)

jnl�ðxÞ ¼ ½h��� � @�@��a�nlðxÞ: (20)

In the forthcoming sections, to solve the cubic nonlinear
Maxwell equations, the set (16) and (17), we will be
treating the nonlinearity by iterations. For the time being,
however, we continue to keep it as it is, i.e., to be express-
ing the nonlinearly induced current jnl�ðxÞ in terms of the

exact fields a�ðxÞ as given by (17).
With the use of (15) and of integration by parts we find

jnl�ðxÞ ¼
P ��
���
�

6

@

@x�

�Z @�4ðy� xÞ
@x�

a�ðyÞd4y
Z @�4ðu� xÞ

@x

a
ðuÞd4u

Z @�4ðx� vÞ
@x�

a�ðvÞd4v
�

¼ P ��
���
�

6

@

@x�

�
@a�ðxÞ
@x�

@a
ðxÞ
@x


@a�ðxÞ
@x�

�
:

Defining f��ðxÞ as the double of the antisymmetric part

of @
@x�

a�ðyÞ, i.e., f��ðxÞ ¼ @
@x�

a�ðyÞ � @
@x�

a�ðyÞ, and real-

izing that the symmetric part of @
@x�

a�ðyÞ becomes zero

after the contraction with P��
���
� (because it is anti-

symmetric under the interchange of the respective pair of
indices: � $ �, 
 $ 
, and � $ �), we get

jnl�ðxÞ ¼
P��
���
�

48

@

@x�
½f��ðxÞf

ðxÞf��ðxÞ�:

So the nonlinearly induced current is given by

jnl�ðxÞ ¼ 1

4
LFF

@

@x�
½f��ðxÞf�
ðxÞf�
ðxÞ�

þ 1

4
LGG

@

@x�
½~f��ðxÞf�
ðxÞ~f�
ðxÞ�: (21)

In terms of the field strengths E ¼ EðxÞ and B ¼ BðxÞ,
defined asEiðxÞ ¼ fi0ðxÞ andBiðxÞ ¼ ~fi0ðxÞ ¼ 1

2 �ijkf
jkðxÞ,

and bearing inmind that f�
ðxÞf�
ðxÞ ¼ 2ðB2ðxÞ �E2ðxÞÞ
and f�
ðxÞ~f�
ðxÞ ¼ �4ðEðxÞ � BðxÞÞ, we obtain

jnl�ðxÞ ¼ 1

2
LFF

@

@x�
½f��ðxÞðB2ðxÞ �E2ðxÞÞ�

� LGG

@

@x�
½~f��ðxÞðEðxÞ �BðxÞÞ�: (22)

Defining jnl�ðxÞ ¼ ðjnl0 ðrÞ;�jnlðrÞÞ, one can get the gen-

eral nonlinear current in terms of the electromagnetic field

jnl0 ðxÞ¼
1

2
LFFr � ½ðB2�E2ÞE��LGGr � ½ðE �BÞB�; (23)

jnlðxÞ¼�1

2
LFF

�
@

@t
½ðB2�E2ÞE�þr�½ðB2�E2ÞB�

�

þLGG

�
@

@t
½ðE �BÞ�Bþr�½ðE �BÞE�

�
: (24)

V. STATIONARY NONLINEAR MAXWELL
EQUATIONS IN BLANK VACUUM

We want to solve (16) and (17) by assuming the time
independence, so we define the nonlinear electric field Enl

and magnetic induction Bnl as

E nlðrÞ ¼ ra0nlðrÞ; BnlðrÞ ¼ r� anlðrÞ: (25)

According to (20) these satisfy the following Maxwell
equations with the stationary source jnl�ðxÞ:

r �EnlðrÞ ¼ jnl0 ðrÞ; r� EnlðrÞ ¼ 0;

r �BnlðrÞ ¼ 0; r� BnlðrÞ ¼ jnlðrÞ: (26)

Note that, owing to the absence of linear response (11),
field strengths and inductions do not differ: EnlðrÞ ¼
DnlðrÞ and BnlðrÞ ¼ HnlðrÞ.
It is important to keep in mind that these Maxwell

equations refer to HL units.

VI. ELECTROSTATICS

To find the nonlinear electric field for a pure electro-
static problem, i.e., setting BðrÞ ¼ 0, we start from the
nonlinear charge density correction due to the fourth-rank
tensor (23):
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jnl0 ðrÞ ¼ � 1

2
LFFr � ½EðrÞE2ðrÞ�; (27)

bearing in mind that the vector current density disappears
in the electrostatic case, jnlðrÞ ¼ 0, according to (24).
Using the first equation from (26), one can write

r �
�
EnlðrÞ þ 1

2
LFFEðrÞE2ðrÞ

�
¼ 0: (28)

We introduce the notation

EðrÞ ¼ � 1

2
LFFEðrÞE2ðrÞ: (29)

The general solution to Eq. (28) is defined up to the curl
of some vector field �ðrÞ:

EnlðrÞ ¼ EðrÞ þ ½r��ðrÞ�: (30)

The second equation from (26) allows one to fix �ðrÞ
according to

½r� ½r��ðrÞ�� ¼ �½r� EðrÞ�; (31)

in other words, the vector field �ðrÞ must satisfy the
following Poisson’s equation:

�r2�ðrÞ þ rðr ��ðrÞÞ ¼ �½r� EðrÞ�: (32)

The field �ðrÞ is defined by (31) up to a gradient: The
transformation �ðrÞ ! �0 ¼ �þ r� leaves Eq. (31)
intact. By choosing � to satisfy the equation r2� ¼
�r ��ðrÞ, we come to r ��0 ¼ 0. Then the trans-
formed equation (32) becomes (we omit the prime)

r2�ðrÞ ¼ ½r� EðrÞ�:
Therefore, the solution (30) to the Maxwell equation is

the longitudinal projection of the field EðrÞ (29), i.e.,

Enl
i ðrÞ ¼

rirj

r2
EjðrÞ ¼ �rirj

4	

Z Ejðr0Þ
jr� r0j dr

0 (33)

or, equivalently,

Enl
i ðrÞ ¼ � ri

4	

Z 1

jr� r0j r
0
jEjðr0Þdr0: (34)

Note that the substitution of the Coulomb field of a
pointlike charge into (33) or into (34) would cause the
divergency of the integral near r0 ¼ 0: The present ap-
proach fails near the point charge, since it is not applicable
to its strongly inhomogeneous field. Dealing with the point
charge would require going beyond the infrared approxi-
mation followed to in the present work. Nevertheless, (33)
[or (34)] is sound as applied to extended charges to be
considered in the next section.

The nonlinear scalar potential corresponding to the
field (34) is

a0nlðrÞ ¼
1

4	

Z r0 � Eðr0Þ
jr� r0j dr0: (35)

VII. MAGNETOSTATICS

One can calculate the nonlinear magnetic field similarly
to the previous subsection. Define

hðrÞ ¼ � 1

2
LFFBðrÞB2ðrÞ: (36)

By setting EðrÞ ¼ 0 in (23) and (24), we find the non-
linear current for the case, where only a magnetic field is
developed:

jnl0 ðxÞ ¼ 0; jnlðxÞ ¼ r� hðrÞ: (37)

Then it follows from the fourth equation in (26) that

BnlðrÞ ¼ hðrÞ þ r�ðrÞ: (38)

Now from the third equation from (26) one has

r � BnlðrÞ ¼ r � hðrÞ þ r2�ðrÞ ¼ 0:

Therefore, as in the electric case, the scalar field �ðrÞ
must satisfy the following Poisson equation:

r2�ðrÞ ¼ �r � hðrÞ:
Hence, one can find the magnetic induction BnlðrÞ, bear-
ing in mind (38), as the transverse projection of the field
hðrÞ, i.e.,

Bnl
i ðrÞ¼

�
�ij�

rirj

r2

�
hjðrÞ¼hiðrÞþ

rirj

4	

Z hjðr0Þ
jr�r0j dr

0;

(39)

or

Bnl
i ðrÞ ¼ hiðrÞ þ 1

4	
ri

Z r0
j � hjðr0Þ
jr� r0j dr0: (40)

The corresponding vector potential is

anlðrÞ ¼ 1

4	

Z r0 � hðr0Þ
jr� r0j dr0: (41)

As far as practical applications of the equations derived
in this section for the nonlinear electric (34) and magnetic
(39) fields are concerned, we shall as a matter of fact take
their right-hand sides with the linear approximations E ’
ElinðrÞ ¼ ra0linðrÞ, B ’ BlinðrÞ ¼ r� alinðrÞ substituted

into the expressions (29) for EðrÞ and (36) for hðrÞ, respec-
tively. Nevertheless, certain issues can and will be dis-
cussed based on exactly nonlinear equations. For this
reason we shall, for the time being, retain exact fields in
(33) and (40).

VIII. APPLICATIONS TO SPECIAL STATIC AND
STATIONARY SOURCES

In this section, we are concerned with applications to
special charge configurations like a charged sphere, infinite
thread, infinite plane, infinite wire with a current, and
electric and magnetic dipoles.
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A. Sources providing degeneracy of the
projection operators

Equations (33) and (39) obtained above map the time-
independent electric and magnetic fields to their nonlinear
counterparts. Generally, these mappings are nonlocal thanks
to the presence of the inverse differential operatorr�2. This
fact also makes them more difficult to calculate. However,
there are some trivial cases when a high symmetry of the
problem turns the projection operators in (33) or (39) into
unit operators and thereby reduces the nonlinearity to a local
form. In this subsection,we concentrate on such cases, first of
all on the spherically symmetric case, which is very impor-
tant, because it leads to the known nonlinear correction to the
Coulomb field, produced by an O(3)-symmetrically charged
sphere. If the radius of the charge is not too small (it must
have a small derivative, as our assumption), it may describe
the electric field produced by the nuclei of some atoms.
Furthermore, there are some cases, whose symmetry in-
cludes translation invariance, where charge and current dis-
tributions are not localized (infinite plane and infinite thread
andwire), and it is easy to show that the projection operator is
the identity operator as well.

1. Spherical symmetry: Charged sphere

Spherical symmetry implies that any vector may be
directed only along the radius vector r. As applied to the
vector (29), this rule reads EiðrÞ ¼ xi�ðrÞ, where the scalar
� may depend only on the distance r ¼ ðx2kÞ12. It is easy to

check by direct differentiation that

rirjðxj�ðrÞÞ ¼ r2xi�ðrÞ; (42)

i.e., the projection acts as the identity operator:
rirj

r2 ¼ �ij.

Then Eq. (33) states that the corrected nonlinear
electric field in the entire space is just EnlðrÞ ¼ EðrÞ ¼
� 1

2LFFE
2ðrÞEðrÞ. Hence, within the cubic approximation

(4) the total (nonlinearly corrected) electric field, equal to
EðrÞ ¼ ElinðrÞ þ EnlðrÞ in accord with (18), is subject to
the following cubic equation:

EðrÞ ¼ ElinðrÞ � 1

2
LFFEðrÞE2ðrÞ: (43)

With the Euler-Heisenberg Lagrangian [18] one can

calculate that LFF ¼ e4

45	2m4 , where m is the electron

mass, while its charge e is to be taken in the same system
of units as LFF.

As long as this coefficient is very small, it hardly makes
sense to treat the nonlinearity in Eq. (43) seriously. Instead,
it is sufficient to keep EðrÞ ’ ElinðrÞ in its right-hand side.
Then the approximate solution to this equation is given as

EðrÞ ¼ ElinðrÞ
�
1� 2�

45	

�
eElinðrÞ
m2

�
2
�
: (44)

This expression can be trusted for the field values

ElinðrÞ & m2

e

ffiffiffiffiffiffiffi
45	
2�

q
. This upper bound of applicability is

higher than Schwinger’s characteristic value ESch ¼ m2

e .

However, if the field compares with this characteristic
value and exceeds it, the vacuum instability via spontane-
ous production of electron-positron pairs [22] is expected
to become more and more essential, which fact would
require a revision of our result.
If the standard Coulomb field q

4	r2
r
r linearly produced by

a point charge q is used for ElinðrÞ in (44), the latter is
reduced to the known [17,18] expression for the nonlinear
correction to this field valid for large distances from the
charge, which is highly singular in the origin r ¼ 0 if
(unrighteously) extrapolated into this point. (The less sin-
gular behavior near the origin, which is just an addition to
the standard Coulomb behavior, was found in [17] by using
the solution for the Dirac propagator in the Coulomb field,
apart from the Ueling-Silber linear correction [18].) For the
atomic field with q ¼ Ze and Z about a few tens, the
essential correction of 10�5 is achieved at the distance
from the nucleus about the electron Compton length.
Equation (44) can be applied to an extended spherically

symmetric charge q, say, a homogeneously charged sphere
with the radius R. We define two regions r < R and r > R,
and the linear electric field is given by

ElinðrÞ ¼ �ðR� rÞE<ðrÞ þ�ðr� RÞE>ðrÞ; (45)

where

E<ðrÞ ¼ qr

4	R3
er; E>ðrÞ ¼ q

4	r2
er: (46)

This field should be used in (44) to produce a finite value in
the origin r ¼ 0.

2. Cylindric plus translation symmetry: Charged plane,
charged thread, and current-carrying wire

Three other cases, when the projections in (33) or in (39)
reduce to trivial identities, may be revealed.
One of them is supplied by the translation invariance

along every plane orthogonal to a given axis (axis 3, for
instance), characteristic of a finite-thickness infinite plane
charged homogeneously along the directions 1 and 2. Then
E1;2ðrÞ ¼ 0, E3ðrÞ ¼ x3�ðx3Þ; hence, when applied to EðrÞ,
the projection operator is unity:

rirj

r2 ¼ �ij. Then, in place

of (44) we get

E3ðx3Þ¼Elin
3 ðx3Þ

�
1� 2�

45	

�
eElinðx3Þ

m2

�
2
�
; E1;2¼0: (47)

If, besides, the volume charge density � is also homoge-
neous along axis 3, so that finally � ¼ const, and the plane
is situated symmetrically with respect to the coordinate
plane x3 ¼ 0, its standard electric field

Elinðx3Þ ¼ �

�
d

2
� jx3j

�
E<ðx3Þ þ�

�
jx3j � d

2

�
E>ðx3Þ;

(48)
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E<ðx3Þ ¼ �x3e3; E>ðx3Þ ¼ �d

2
sgnðx3Þe3; (49)

where sgnðx3Þ ¼ jx3j
x3

and d is the thickness of the plane,

should be used in (47) for obtaining the nonlinear exten-
sion of the field produced by this charged plane.

Another case when the projection operator trivializes is
provided by the cylindric symmetry under rotations around
axis 3 supplemented by the invariance under translations
along this axis. This type of symmetry is peculiar to an
infinite round-cylindric thread homogeneously charged
along itself and O(2)-symmetrically charged across. Then
E3ðrÞ ¼ 0, E1;2ðrÞ ¼ �1;2�ð�Þ, where � is the radius vector

in the (1,2) plane. In this case, it is again easy to check by
direct differentiation that rðr � ��ð�ÞÞ ¼ r2��ð�Þ and
hence the projection operator in (33) is unity. Then, in
place of (44) the relation

E1;2ð�Þ¼Elin
1;2ð�Þ

�
1� 2�

45	

�
ejElinð�Þj

m2

�
2
�
; E3¼0; (50)

should hold. If, besides, the volume charge density � is
independent also of the radius �, � ¼ const, the standard
electric field of the homogeneously charged straight thread
with the radius R and its axis coinciding with the coordi-
nate axis 3

Elinð�Þ¼�ðR��ÞE<ð�Þþ�ð��RÞE>ð�Þ; (51)

E<ð�Þ¼��

2
e�; E>ð�Þ¼�R2

2�
e�; e�¼�

�
(52)

is to be substituted into (50).
The same symmetry as that of the infinite thread

above is inherent to the straight infinite round-cylindric
wire carrying a constant current with O(2)-invariant
density. This time, the field (36) has the structure hðrÞ ¼
e3 � r�ðje3 � rjÞ, where e3 is the unit vector along axis 3,
and je3 � rj ¼ �. Now r � hðrÞ ¼ 0, and the projection
operator in (39) is unity again, so that Bnl

i ðrÞ ¼ hiðrÞ.
Now if we take a fully homogeneous current density j

per unit area, flowing along the positive direction, and
calculate the linear magnetic field produced by it, we get
the standard relation

Blinð�Þ ¼ �ðR� �ÞB<ð�Þ þ�ð�� RÞB>ð�Þ; (53)

B<ð�Þ¼ j�

2
e�; B>ð�Þ¼ jR2

2�
e�; e�¼e3��

�
(54)

to be used in the expression

B�ð�Þ ¼ Blin
� ð�Þ

�
1� 2�

45	

�eBlin
� ð�Þ
m2

�
2
�

(55)

that follows from (39) and (36) for the present type of
symmetry of the problem.

B. Cylindric symmetry: Elementary dipoles

In this subsection, we proceed with other cases of cy-
lindric symmetry, but without any translation invariance.
We will calculate nonlinear corrections to the fields of
magnetic and electric dipoles by realizing nontrivial pro-
jections in (33) or in (39).

1. Magnetic dipole

Let there be a sphere with the radius R and a time-
independent current jðrÞ concentrated on its surface:

jðrÞ ¼ 3
M� r

r4
�ðr� RÞ: (56)

HereM is a constant vector directed, say, along axis 3. The
current density (56) obeys the continuity condition
r � jðrÞ ¼ 0, and its flux lines are circular in the planes
parallel to the plane (1,2). The magnetic field produced by
this current via the Maxwell equation r� BlinðrÞ ¼ jðrÞ
is, everywhere outside the sphere, the magnetic dipole
field3

B> ¼ �M
r3

þ 3
r �M
r5

r; (57)

with the constant vector density M introduced in (56),
playing the role of the corresponding magnetic moment.
Inside the sphere the magnetic field is constant:

B< ¼ 2M
R3

: (58)

It turns to infinity for a pointlike dipole R ¼ 0.
We should stress that Eqs. (57) and (58) are used to

define the magnetic moment in both the (rationalized)
Heaviside-Lorentz and Gauss systems of units, provided
that the right- and left-hand sides refer to one and the same
system. This form of equation may be called dimension
covariant.
We have

BlinðrÞ ¼ �ðR� rÞB<ðrÞ þ�ðr� RÞB>ðrÞ; (59)

where

�ðxÞ ¼
�
1 if x > 0;

0 if x < 0;
(60)

is the step function. Each function B_ðrÞ satisfies the
sourceless Maxwell equation r� B_ðrÞ ¼ 0, whereas
the delta function in the current density (56) is produced
by differentiation of the step function in (59) under the curl
operation. The relative coefficient 2 in (58) is chosen so as
to make the field also satisfy the other Maxwell equation
r �BlinðrÞ ¼ 0. Consequently, the radial component
r � BlinðrÞ of the field (59) is continuous at the border of

3The extra factor of 4	 should appear in (56) in the Gauss
system in accordance with the fact that this factor is present in
the right-hand side of the Maxwell equation used.
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the sphere r ¼ R, while its tangent component in the plane
spanned by the vectors r and M, is not. (Its component in
the plane orthogonal to r andM disappears.) We write the
field (59) as

BlinðrÞ ¼
�
2M
R3

cos �er � 2M
R3

sin �e�

�
�ðR� rÞ

þ
�
2M
r3

cos�er þM
r3

sin �e�

�
�ðr� RÞ; (61)

where � is the angle between the vectors r and M and the
unit vectors er and e� are, respectively, along r and
along the tangent direction in the plane spanned by these
vectors, directed in such a way that e� be opposite toM at

� ¼ 	=2. Let us calculate the field (36) taken on the linear
expression (61) for B:

�2hðrÞR9

LFFM3
¼ð8cos�er�8sin�e�Þ�ðR�rÞ

þ
��

2
R9

r9
cos�þ6

R9

r9
cos3�

�
er

þ
�
4
R9

r9
sin��3

R9

r9
sin3�

�
e�

�
�ðr�RÞ: (62)

The further calculations of the nonlinear magnetic field of
a dipole following (40) are traced in Appendix B. The
result is

�2R9

LFFM3
BnlðrÞ ¼

���
88

15
� 324

385

r2

R2

�
cos �þ 108

77

r2

R2
cos 3�

�
er þ

��
� 88

15
� 432

385

r2

R2

�
sin�þ 108

77

r2

R2
sin 3�

�
e�

�
�ðR� rÞ

þ
���

28

5

R3

r3
� 18

35

R5

r5
� 2

33

R9

r9

�
cos �þ

�
6

7

R5

r5
þ 6

11

R9

r9

�
cos 3�

�
er þ

��
14

5

R3

r3
þ 18

35

R5

r5
þ 56

33

R9

r9

�
sin �

þ
�
� 9

14

R5

r5
� 21

22

R9

r9

�
sin 3�

�
e�

�
�ðr� RÞ: (63)

For the inside region of the sphere, i.e., when r < R,
we see that the solution is regular at the origin and
directed, as expected, alongM:Bnlð0Þ¼� 44

15R9LFFM3e3.
For the outside region, i.e., when r > R, we see that the
field has three powers of the ratio of the distance from the
origin to the radius of the sphere: the ninth, the fifth, and,
most interesting, the third power, the latter just like the
linear field (59). This means that, at large distances from
the origin, the correction to the field behaves in the
same way as the linear field. [This is in contrast to the
field of electric monopole given by (44) after the Coulomb
field is substituted into it, where the correction decreases
as the sixth power, while the linear (Coulomb) field
decreases as the second power.] Therefore, imposing
r � R, we have

BnlðrÞjr�R ¼ � 7

5
LFF

M3

R6r3
ð2 cos�er þ sin �e�Þ: (64)

In terms of the linear field (59) the total (nonlinearly
corrected) field is the sum of the linear field and the non-
linear field, according to (18):

BðrÞjr�R ¼ BlinðrÞ
�
1� 7

5
LFF

M2

R6

�
: (65)

Note that, unlike Eq. (61), the expressions (63)–(65) refer
only to HL system, since Eq. (40) is a solution to the
Maxwell equation (26) written in that system.

For the Euler-Heisenberg Lagrangian, one has

LFF ¼ e4

45	2m4
¼ e2

45	2

�
1

BSch

�
2
: (66)

Once the Euler-Heisenberg Lagrangian L is a function of
the product eB (or of e2F), it is dimension invariant, i.e., the
same in HL and Gauss systems. Hence the variational
derivative LFF (66) is dimension covariant. This implies

that in it one may take e either equal to its Gauss value

eG ¼ ð1=137Þ1=2 and, correspondingly, choose BSch ¼
BG
Sch ¼ m2=eG ¼ 4:4� 1013 G or, alternately, take e¼

eHL¼ð4	=137Þ and BSch ¼ BHL
Sch ¼ m2=eHl ¼ 1:24�

1013 G. It is understood that in the two cases the field
squaredF insideLFF should be simultaneously normalized

differently. However, when substituting (66) in (65), only
HLvalues should be used. So, inQED the overall field of the
magnetic dipole is given by

BðrÞjr�R ¼ BlinðrÞ
�
1� 7

5

e2

45	2

�
e

m2

M
R3

�
2
�

¼ BlinðrÞ
�
1� 7

5

e2

180	2

�
B<

BSch

�
2
�
: (67)

The latter equation is to be presented in the final form,
independent of a system of units,

BðrÞjr�R ¼ BlinðrÞ
�
1� 7

5

�

45	

�
B<

BSch

�
2
�
: (68)

Once the form (64)–(68) of the magnetic dipole field far
from the source has proved to be invariant under nonlinear
correction, we may abandon the approximationB ’ BlinðrÞ
used when calculating hðrÞ above. This means that M in
(62)–(64) may be thought of as the final, nonlinearly
corrected, magnetic moment Mnlc. Then it becomes
subject to the cubic equation
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M nlc ¼ M� 7

5
LFFMnlc

�
Mnlc

R3

�
2
: (69)

This equation shows nonlinear self-coupling of the mag-
netic moment. The minus sign here excludes its sponta-
neous production when the ‘‘bare’’ magnetic moment is
not present (M ¼ 0) as long asLFF > 0. (The positivity of
LFF is a consequence of causality and unitarity [23].) In

the approximation of B ’ BlinðrÞ, the correction to the
magnetic moment looks like

Mnlc ¼ M
�
1� 7

5
LFF

M2

R6

�
: (70)

2. Electric dipole

Let there be a sphere with the radius R and a time-
independent charge j0ðrÞ concentrated on its surface:

j0ðrÞ ¼ 3
p � r
r4

�ðr� RÞ: (71)

Here p is a constant vector directed, say, ‘‘to the North,’’
i.e., along axis 3. The current density (71) obeys the con-
tinuity condition @0j0 ¼ 0. It is continuously distributed
over the surface, the ‘‘northern’’ hemisphere being posi-
tively and ‘‘southern’’ hemisphere negatively charged. The
extremum charge densities are achieved at the poles, while
the equator remains neutral. The electric field produced by

this current via theMaxwell equationr � ElinðrÞ ¼ j0ðrÞ is,
outside of the sphere r > R, where j0ðrÞ ¼ 0, the electric
dipole field

E>ðrÞ ¼ � p

r3
þ 3

r � p
r5

r; (72)

with the constant vector density p playing the role of the
corresponding electric moment. Inside the sphere the elec-
tric field is constant:

E<ðrÞ ¼ � p

R3
: (73)

It turns to infinity for a pointlike dipole R ¼ 0. We have

ElinðrÞ ¼ �ðR� rÞE<ðrÞ þ�ðr� RÞE>ðrÞ: (74)

Each functionE+ðrÞ satisfies the sourceless Maxwell equa-
tionr � E+ðrÞ ¼ 0, whereas the delta function in the current
density (71) is produced by differentiation of the step func-
tion� in (74) under the divergence operation in theMaxwell
equation r � ElinðrÞ ¼ j0ðrÞ. The relative coefficient�1 in
(73) is chosen so as to make the field also satisfy the other
Maxwell equationr�ElinðrÞ ¼ 0. Consequently, the com-
ponent e� �ElinðrÞ of the field (74) tangent to the sphere is
continuous at the border of the sphere r ¼ R, while its
perpendicular component r �ElinðrÞ is not.
By doing the same calculations as in the previous sub-

section (see Appendix C), we find the nonlinear correction
to the electric field of the dipole taken in the approximation
EðrÞ ’ ElinðrÞ (now � is the angle between r and pÞ:

�2R9

LFFp
3
EnlðrÞ¼

���
�13

15
þ324

385

r2

R2

�
cos��108

77

r2

R2
cos3�

�
erþ

��
13

15
þ432

385

r2

R2

�
sin��108

77

r2

R2
sin3�

�
e�

�
�ðR�rÞ

þ
���

2

5

R3

r3
þ18

35

R5

r5
þ68

33

R9

r9

�
cos�þ

�
�6

7

R5

r5
þ60

11

R9

r9

�
cos3�

�
erþ

��
1

5

R3

r3
�18

35

R5

r5
þ76

33

R9

r9

�
sin�

þ
�
9

14

R5

r5
�45

22

R9

r9

�
sin3�

�
e�

�
�ðr�RÞ: (75)

At large distances we have

EðrÞjr�R¼ElinðrÞþEnlðrÞjr�R¼ElinðrÞ
�
1� 1

10
LFF

�
p

R3

�
2
�
;

(76)

where ElinðrÞ ¼ E>ðrÞ ¼ p
r3
ð2 cos�er þ sin �e�Þ is the

(outer) linear electric field (72). With the Euler-
Heisenberg Lagrangian, we use (66) for LFF. Then the
overall field in QED is given by

EðrÞjr�R ¼ ElinðrÞ
�
1� 2

45

�

45	

�
E<

ESch

�
2
�
; (77)

where ESch is Schwinger’s characteristic value for electric
field. The form (77) is valid in both HL and Gauss systems
of units.

The statements made about the magnetic moment M
and its magnetic field at the end of the previous subsection
can be repeated as applied to the electric moment p and its

electric field. For instance, the analog of (69) is the equa-
tion for self-interacting electric dipole

pnlc ¼ p� pnlc

10
LFF

�
pnlc

R3

�
2
; (78)

where p is the ‘‘bare’’ moment, introduced in (71), and pnlc

is the nonlinearly corrected moment.
The vast difference of the results (76) and (77) of the

present subsection from those relating to the spherical-
symmetric case of Sec. VIII A 1, namely, from Eqs. (43)
and (44), is that the correction in (76) and (77) contains
only internal properties of the source and does not depend
on the distance from it, in contrast to (43) and (44).
Equations (76) and (77) may be thought of as a sort of
renormalization of the dipole moment p, whereas (44) is
not a correction to the charge q but rather the field renor-
malization. The same remark is valid also for the magnetic
dipole of the previous subsection, Eqs. (64)–(70).
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IX. SOME NUMERICAL ESTIMATES

The nonlinear corrections to electromagnetic fields in
the blank vacuum considered in the previous sections
are cubic with respect to the primary, linear fields. This
means that these are most essential for large fields. In this
section, we discuss numerically a few important instances
of strong fields.

A. Baryons and mesons

The neutron magnetic moment in nuclear magnetons
�N ¼ e

2mp
, where mp is the proton mass (recall that, in

Gauss units, eℏ
2mpc

¼ 5:05078324� 10�24 erg=G), is mea-

sured [24] with the high precision of 
M ¼ 0:0000005�N

to be

M ¼ �1:9130427�N: (79)

The magnetic radius of the neutron is believed to make (up
to the third decimal point)

R ¼ 0:862 fm: (80)

The linear magnetic field (57) of the neutron due to its
magnetic moment at a distance r (along the magnetic mo-

ment direction) is Blin ¼ 2M
r3
. It reaches Schwinger’s criti-

cal value, equal to BSch ¼ 4:4� 1013 G in Gauss units, at
r ¼ rc ¼ 7:55 fm. Then, the field exceeds Schwinger’s
value, when we are closer to the neutron than its
7:55=0:86 ¼ 8:8 radii.

The magnetization of a neutron, defined within the

simple model of Sec. VIII B 1 as M ¼ 3M
4	R3 , makes in

Gauss units

M ¼ 3:75� 1015 G ¼ 852BSch; (81)

and the magnetic field (58) at its electromagnetic
radius (80) is about 3� 1016 G. The value (81) is of the
order of magnetization of a strongest magnetar field and
may be understood as magnetization of a neutron star,
provided the latter is viewed upon as a spontaneously
magnetized dense matter of parallel magnetic dipoles and
neutrons, if they are as close to each other as their magnetic
radius (82). (The corresponding density of matter would be
6:2� 1014 g=cm3). For the proton the value of magnetiza-
tion is twice as large, 7:5� 1016 G ¼ 1:7� 103BSch.

With so large a magnetization, the nonlinear correction
in (70), calculated with the use of (66),

7

5
LFF

�
M
R3

�
2 ¼ 28

225	
�

�
M

BSch

�
2 ¼ 2:89

�
1:9 � 5:05
4:4ð0:86Þ3

�
2

¼ 34 � 1; (82)

takes us far out of the scope of validity of the power
expansion (4) and, certainly, out of the validity of the
infrared approximation, as long as short distances are
concerned. Therefore, for treating the neutron and proton,
as well as most other baryons, we must find a way of going

beyond this framework. A certain option is, perhaps, sug-
gested by Ref. [17], where the highly inhomogeneous
external Coulomb field is taken, equivalently, as an argu-
ment in the effective action instead of the constant
background. While leaving this task for future work, we,
however, can indicate now that the results of Sec. VIII B 1
are ready for service when particles or resonances with
smaller magnetic moments are concerned.
These may be, first of all, baryons��0, ��0, and �0. No

experimental values for their magnetic dipole moments are
available. Theoretical estimates obtained within various
methods based on quark models vary, as listed in [25],
down to very small values of 0.07 nuclear magnetons, the
parameter spread essentially exceeding the estimated theo-
retical uncertainties. Among all the calculation tools, the
QCD lattice simulations have a specially respected status
of a computational experiment, all other results being
verified in comparison with them. So, we refer to such
results in the first place. They give [26] the value
0:16ð4Þ�N for the magnetic moment of excited baryon
��0, the value �0:035ð2Þ�N for �0 decuplet member,
and 0:1�N for ��0 [27]. Then the nonlinear correction to
magnetization (and to its magnetic moment as well, assum-
ing the magnetic radius being of the same order as that of
the neutron) makes 0:23 	 1 for��0 and 0:01 	 1 for�0.
The correction for ��0 is within the range of admitted
errors 4=16 ¼ 0:25 in Ref. [26], that reports the calcula-
tions of magnetic moments fulfilled within the lattice QCD
with the extrapolation to the observable value of the pion
mass (with the help of the chiral perturbation theory). It is
the same with �0; the above nonlinear correction 0.01 lies
within the admitted range of 2=35 ¼ 0:057. (We do not
know this range for ��0.) Bearing in mind that predictions
achieved within the same lattice approach produce good
coincidence with experimentally measured magnetic mo-
ments, wherever the latter are available, neutron and proton
included, we have every reason to rely on them also as
applied to the low-magnetic-moment baryons under dis-
cussion. We conclude that the nonlinear correction to the
magnetic moment of the above baryons, as lying within the
range of existing theoretical indeterminacy and, perhaps,
within its discrepancy with a future experiment, indicates
that it may come seriously into play already at the very next
step of improving the theoretical results.
A similar situation holds true with the neutral mesons,

vector meson K�0, axial meson K�0
1 , and tensor meson

K�0
1 . According to [28], their magnetic moments within

the quenched lattice QCD are, respectively, �0:05�N ,
0:02�N , and 0:06�N . The nonlinear corrections in (70),
calculated in analogy with (82) to be 0.024, 0.04, and 0.034,
are practicallywithin the accuracies of the calculated values
as these are seen in Figs. 5, 8, and 11 of Ref. [28].
Therefore, magnetic moments of particles, after being

theoretically calculated, are subject to ‘‘nonlinear renor-
malization’’ before comparing with experiment. This also
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relates to particles with larger magnetic moments, although
the nonlinear theory in the form presented here is not yet
applicable to them.

A serious question, however, is whether a theoretical
prediction may intrinsically contain the electromagnetic
nonlinearity, making, thereby, the above renormalization
unnecessary. This is definitely not the case with the
quenched lattice QCD simulations, because the latter in-
clude only Feynman path integrals over the electrically
neutral gluonic (gauge) fields and not over the charged quark
fields. This statement is true not only as applied to the so-
called background field method used in [26], that handles
two-point correlation functions responsible for the mass
shift in a small magnetic field, but also to the form-factor
method, dealing with three-point functions [29]. Although
each of other numerous theoretical methods exploited for
calculation of magnetic moments requires, generally, an
individual attention, especially if the quenched lattice ap-
proximation is abandoned, the typical situation with all of
them is that the electric charge of a quark is introduced
only as multiplied by a magnetic field. By following the
definition of themagneticmoment as a linear response to the
magnetic field, the latter is to be taken in the zero limit.
Consequently, the result is just proportional to the electric
charge (see, e.g., the chiral perturbation theory calculation
in [30] or the one with the help of light cone QCD sum
rules [31]), without any vacancy left for the nonlinear
electromagnetism.

B. Pulsars

Near the surface at the north magnetic pole of a fast
rotating radio pulsar [19] (also for certain magnetars [32]),
we may accept that the magnetic field is close to
Schwinger’s value B< ’ BSch. Then at large distances
from the surface the relative nonlinear correction to the
magnetic field [the second term in the brace of Eq. (68)] is
’ 7� 10�5, the absolute correction to the field being thus
’ 3� 109 G. Some magnetars [33] (soft gamma-ray re-
peaters, anomalous x-ray pulsars, etc.) are believed to have
magnetic fields up to 1015 G, (and, under certain assump-
tions, even 2 orders larger [34]). Then, in absolute value the
nonlinear correction may achieve the huge value of some-
what below 1014 G, which may influence the fundamental
physical processes in the neutron star magnetosphere and
hence the mechanisms of their radiation.

We can rely on Eqs. (64)–(70) until the correction in
them exceeds, say, 10%. The ratio between the nonlinear
field and the linear field behaves as the distance to the
surface increases. Whereas at large distances from the
pulsar the corrected field follows the same magnetic dipole
law (57) as the primary, linear field, near the surface it
considerably deviates from the field of magnetic dipole. At
large distances, this ratio is constant, and the nonlinear
effect manifests itself as a renormalization of the observed
dipole field and its magnetic moment.

For larger magnetization of a magnetar, which might,
within the concept of its purely ferromagnetic neutron star
nature, ultimately reach the magnetization of the neutron
(81), we fall beyond the applicability of Eqs. (64)–(70), as
discussed in connection with (82) above.

X. CONCLUSION

In this paper, we considered nonlinear Maxwell
equations (4), (9), and (10) in QED and other nonlinear
Abelian gauge theories without an external field by includ-
ing the nonlinearity to the third power with respect to the
field. The nonlinearity was taken into account within the
low-frequency, low-momentum approximation for the off-
shell four-prong photon diagram, to which end the 4-rank
polarization tensor (13) and (14) [also in an external field
(A3)] is calculated as the fourth derivative over the
4-potential of the effective action taken in the local ap-
proximation, i.e., the one where its possible dependence
upon the space-time derivatives of the field strength is
neglected. All the results are expressed in terms of the
second derivatives of the local effective action over the
two field invariants. In QED the role of this effective action
is played in our calculations by the one-loop Euler-
Heisenberg action.
The nonlinearly induced current (17) to be treated as a

source in the standard Maxwell equations (26) is expressed
in terms of the field strengths as (22). The field equations
are written separately for the special cases when a static
electric [(33) and (29)] or static magnetic [(39) and (36)]

field is present alone. The projection operators
rirj

r2 and

�ij � rirj

r2 involved in these cubic integro-differential

equations become trivial, when higher symmetries are
prescribed to the solutions. Such are the cases of the
electric field produced by a spherically symmetric charge
distribution, charged finite-thickness plane, and straight-
linear thread and the case of the magnetic field produced by
a straight current-carrying wire. The above cubic equa-
tions, when treated perturbatively, give nonlinear correc-
tions to the corresponding fields (44), (47), (50), and (55).
For a lower, cylindric symmetry of the field produced by
the homogeneously magnetized sphere (56), and by the
homogeneously electrically polarized sphere (71), the no
longer trivial projection operators are realized by using
spherical harmonic expansion to lead to the following
results: The primary dipole electric and magnetic fields
reproduce themselves at large distances after the nonline-
arity is switched on, the electric and magnetic moments
undergoing nonlinear renormalizations. The equations for
self-coupling of electric and magnetic dipole moments are
(78) and (69), respectively. No spontaneous electricization
nor magnetization occurs.
Numerical estimates in QED witness that the magnetic

field due to the magnetic moment of the neutron is too large
at its surface to be treated in the framework of the power
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expansion with respect to the field. On the contrary, (small)
magneticmoments of the baryons��0,�0, and��0, and also
the bosonsK�0,K�0

1 , andK�0
1 , do fit the cubic approximation,

and the corresponding nonlinear corrections to them lie
within the limits admitted by the theoretical indetermina-
cies. Irrespective of where our present cubic infrared ap-
proximation is applicable and where it is not, values for
magnetic and electric dipole moments calculated within a
certain version of the theory of strong interactions should
undergo nonlinear electromagnetic renormalization before
being compared with experiment. In the cases of applicabil-
ity considered here, the nonlinear corrections fall within the
range of theoretical uncertainties.

In pulsars and magnetars, the relative nonlinear correc-
tions to their magnetic moments do not exceed magnitudes
admitted by the validity of the cubic approximation as long
as the surface magnetic field remains below 1:6� 1015 G
(in Gauss units). Whereas the nonlinearity just renormal-
izes the value of the surface magnetic field estimated by an
Earth observer, it causes the difference with the ‘‘unrenor-
malized’’ local value that may be obtained by using certain
theoretical model ideas about the origin of the magnetic
field of a neutron star. The absolute difference may achieve
the huge value of up to �1014 G—not going beyond the

approximation. Surely, many physical processes in a mag-
netic field are sensitive to such changes.
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APPENDIX A

Here we list the variational derivatives of the effective
action � (1) assuming that the Lagrangian L does not
depend upon derivatives of the field strengths. All the
equations below are understood as reduced to a space-
and time-independent background field F�� ! F ��.

The second-order derivative is

�2�

�A�ðxÞ�A�ðyÞ ¼
Z

d4z

�
@L

@F
ð������ � ������Þ þ @L

@G
����� þ @2L

@F2
F��F�� þ @2L

@G2
~F��

~F��

þ @2L

@F@G
½F��

~F�� þ ~F��F���
��

@

@z�
�4ðx� zÞ

��
@

@z�
�4ðy� zÞ

�
: (A1)

The third-order derivative is (note that the F

 tensor, which produces zero factor in the no-background field case dealt
with in the body of the paper, appears in every term)

�3�

�A�ðxÞ�A�ðyÞ�A
ðuÞ¼
Z
d4z

�
ð�������������Þ

�
@2L

@F2
F

þ @2L

@G@F
~F



�
@

@z

�4ðu� zÞ

þ�����

�
@2L

@F@G
F

þ @2L

@G2
~F



�
@

@z

�4ðu� zÞþ

�
@3L

@F3
F��F��F

þ @3L

@G@F2
F��F��

~F



�

� @

@z

�4ðu� zÞþ@2L

@F2

�
F��

�
��


@

@z�
���


@

@z�

�
þF��

�
��


@

@z�
���


@

@z�

��
�4ðu� zÞ

þ ~F��
~F��

�
@3L

@F@G2
F

þ @3L

@G3
~F



�
@

@z

�4ðu� zÞþ @2L

@G2
½ ~F�����

þ ~F�����

� @

@z

�4ðu� zÞ
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@F@G

�
F�����
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�
@

@z

�4ðu� zÞ

��
@

@z�
�4ðx� zÞ

��
@

@z�
�4ðy� zÞ

�
: (A2)

The fourth-order polarization tensor, responsible for the first nonlinear correction in the no-external-field case, is
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�4�

�A�ðxÞ�A�ðyÞ�A
ðuÞ�A�ðvÞ ¼
Z

d4z
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APPENDIX B

Here we continue the calculation of nonlinear correction to the magnetic dipole field starting with Eq. (62). Write the

divergence of (62) in terms of the spherical harmonics Y0
1ð	Þ ¼ 1

2

ffiffiffi
3
	

q
cos� and Y0

3ð	Þ ¼ 1
4

ffiffiffi
7
	

q
ð5cos 3�� 3 cos �Þ as

�108

LFFM
3
r � hðrÞ ¼ �16�ðr� RÞ

ffiffiffiffi
	

3

r
Y0
1ð	Þ þ R9

r9
�ðr� RÞ

�
56

5

ffiffiffiffi
	

3

r
Y0
1ð	Þ þ 24

5

ffiffiffiffi
	

7

r
Y0
3ð	Þ

�

þ R9

r10
�ðr� RÞ

�
�72

ffiffiffiffi
	

3

r
Y0
1ð	Þ � 24

ffiffiffiffi
	

7

r
Y0
3ð	Þ

�
: (B1)

We separate variables into radial and angle (normalized spherical harmonics) parts:
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�108

LFFM
3
r � hðrÞ ¼ X

j

RjðrÞY0
j ð	Þ; (B2)

where, using the orthogonality relation
R
Y0
j ð	ÞY�m

l ð	Þd	 ¼ �jl�0m, we get

RjðrÞ ¼ �108

LFFM
3

Z
r � hðrÞY0

j ð	Þd	: (B3)

With the use of (B1) we obtain

RjðrÞ ¼
��

�16þ 56

5

R9

r9

�
�ðr� RÞ � 72

R9

r10
�ðr� RÞ

� ffiffiffiffi
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�1j þ

�
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R9
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� ffiffiffiffi
	

7

r
�3j: (B4)

We write the Green function in the following way [35]:

1

jr� r0j ¼
X1
l¼0

Xl
m¼�l

4	

2lþ 1
Ym
l ð	ÞY�m

l ð	0Þ
8<
:

r0l
rlþ1 ; if r > r0;
rl

r0lþ1 ; if r < r0:
(B5)

Let us calculate (40), by using (36), (B2), (B4), and (B5). One can separate the integrals into the two regions of the space

�2ð4	Þ3R9

LFFM3
BnlðrÞ ¼ �2ð4	Þ3R9

LFFM3
hðrÞ þ 1

4	
r
Z �Z r

0

X
j

Rjðr0ÞY0
j ð	0Þ

�X1
l¼0

Xl
m¼�l

4	

2lþ 1
Ym
l ð	ÞY�m

l ð	0Þ r0l

rlþ1

�
r02dr0

þ
Z 1

r

X
j

Rjðr0ÞY0
j ð	0Þ

�X1
l¼0

Xl
m¼�l

4	

2lþ 1
Ym
l ð	ÞY�m

l ð	0Þ rl

r0lþ1

�
r02dr0

�
d	0:

Therefore, integrating over the solid angle, we obtain
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Now we calculate the gradient in spherical coordinates
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where
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and
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Therefore, from (B4) we obtain
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and
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Substituting (62), (B8), and (B9) in (B6), we obtain the nonlinear magnetic field (63).

APPENDIX C

Here we continue the calculation of nonlinear correction to the electric dipole field starting with Eq. (74).
The electric field of an electric dipole can be dealt with analogously to the case of magnetic dipole, although we use the

longitudinal projection instead of the transverse projection. The electric field (72) can be also written as

ElinðrÞ ¼ � p

4	R3
�ðR� rÞe3 þ

�
3p

4	r3
cos �er � p

4	r3
e3

�
�ðr� RÞ: (C1)

Let us calculate (29) by substituting ElinðrÞ for EðrÞ. The product ð4	R3Þ3
p3 EðrÞE2ðrÞ is given by

�2ð4	Þ3R9

LFFp
3

EðrÞ¼ ð�cos�erþsin�e�Þ�ðR�rÞþ
��

2
R9

r9
cos�þ6

R9

r9
cos3�

�
erþ

�
4
R9

r9
sin��3

R9

r9
sin3�

�
e�

�
�ðr�RÞ:

(C2)

Using (62) one can compare EðrÞ to hðrÞ:
2ð4	Þ3R9

LFFp
3

EðrÞ � 2ð4	Þ3R9

LFFM3
hðrÞ � 9e3�ðR� rÞ: (C3)

The electric field is calculated from (33) and (C3):

� 2ð4	Þ3R9

LFFp
3

EnlðrÞ ¼ � 1

4	
r
Z r0 � ½2ð4	Þ3R9

LFFp
3 Eðr0Þ�

jr� r0j dr0 � � 2ð4	Þ3R9

LFFM3
ðBnlðrÞ � hðrÞÞ þ 1

4	
r
Z r0 � ½9e3�ðR� r0Þ�

jr� r0j dr0:

(C4)

It is easy to show that

r � ½9e3�ðR� rÞ� ¼ �9�ðr� RÞ cos �: (C5)

The second term of (C5) can be calculated in the sameway as in the magnetic case, i.e., by expanding the Green function in
spherical harmonics and calculating the solid angle integral with the help of orthogonality relations

�9
1

4	
r
Z �ðR� r0Þ cos �

jr� r0j dr0 ¼ �9
1
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Z �Z r

0

�ðR� r0Þ
jr� r0j r02dr0 þ

Z 1

r

�ðR� r0Þ
jr� r0j r02dr0

�
1

2

ffiffiffiffi
	

3

r
Y0
1ð	0Þd	0
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��Z r
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03

r2
dr0 þ

Z 1

r
�ðR� r0Þrdr0

�
1

2

ffiffiffiffi
	

3

r
Y0
1ð	Þ

�

¼ �3r
��

R3

r2
�ðr� RÞ þ r�ðR� rÞ

�
cos �

�

¼
�
6
R3

r3
�ðr� RÞ � 3�ðR� rÞ

�
cos �er þ

�
3
R3

r3
�ðr� RÞ þ 3�ðR� rÞ

�
sin �e�:

Therefore,

� 2ð4	Þ3R9

LFFp
3

EnlðrÞ � � 2ð4	Þ3R9

LFFM3
ðBnlðrÞ � hðrÞÞ þ

�
6
R3

r3
�ðr� RÞ � 3�ðR� rÞ

�
cos�er

þ
�
3
R3

r3
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�
sin �e�:

Thus the expression for electric field (75) is obtained.
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