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We present an analytical study of continuum 4d SUð2Þ gauge-Higgs models with a single Higgs field

with fixed length in either the fundamental or adjoint representation. We aim at analytically probing the

renowned predictions of Fradkin and Shenker on the phase diagram in terms of confinement versus Higgs

behavior, obtained for the lattice version of the model. We work in the Landau version of the ’t Hooft R�

gauges in which case we can access potential nonperturbative physics related to the existence of the

Gribov copies. In the fundamental case, we clearly show that in the perturbative regime of small gauge

coupling constant g and large Higgs vacuum expectation value (vev) �, there is a Higgs phase with

Yukawa gauge boson propagators without Gribov effects. For a small value of the Higgs vev � and/or

large g, we enter a region with Gribov-type propagators that have no physical particle interpretation: the

gauge bosons are as such confined. The transition between both behaviors is found to be continuous.

In the adjoint case, we find evidence of a more drastic transition between the different behaviors for the

propagator of the off-diagonal gauge bosons, whereas the ‘‘photon,’’ i.e. the diagonal component of

the gauge field, displays a propagator of the Gribov-type. In the limit of infinite Higgs condensate, we

show that a massless photon is recovered. We compare our findings with those of Fradkin and Shenker as

well as with more recent numerical lattice simulations of the fundamental Higgs model. We also carefully

discuss in which region of the parameter space ð�; gÞ our approximations are trustworthy.
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I. INTRODUCTION

The understanding of the transition between the con-
finement and the Higgs phase of asymptotically free
non-Abelian gauge theories in presence of Higgs fields is
a relevant and yet not fully unraveled topic. Needless to
say, such theories are the building blocks of the Standard
Model.

Numerical studies of the lattice version of these models
[1–9] have already revealed a rich structure of the corre-
sponding phase diagram, as well as mean-field approaches
to the underlying lattice models as in [10–12]. What
emerges from the lattice works is that the transition
between the confinement and the Higgs phase strongly
depends on the representation of the Higgs field.

In the case of the fundamental representation, it turns out
that these two phases can be continuously connected, i.e.
they are not completely separated by a transition line. For
the benefit of the reader, it is worth spending a few words
on this statement. We follow here the seminal work by [1],

where the lattice version of the model has been considered
for a Higgs field with fixed length, i.e. by freezing its radial
part. This amounts to keep the Higgs quartic self-coupling
very large, not to say infinite, so that the Higgs field is
frozen to its vacuum expectation value (vev). The resulting
theory has two basic parameters, the gauge coupling g and
the vev � of the Higgs field. In the plane ð�; gÞ, the Higgs
phase corresponds to the region of weak coupling, i.e.
small g and sufficiently large �. In this region, the
Wilson loop exhibits a perimeter law and the force between
two static sources is short ranged. Instead, the confining
phase corresponds to the strong coupling region in the
ð�; gÞ plane, characterized by large values of g and suffi-
ciently small �. Here, the Wilson loop gives rise to a linear
potential over some finite distance region, followed by
string breaking via scalar particle production. It turns out
that these two regions are smoothly connected. More pre-
cisely, from e.g. Fig. 1 of [6], one learns that the confining
and Higgs phases are separated by a first order line tran-
sition which, however, does not extend to the whole phase
diagram. Instead, it displays an end point. This implies that
the Higgs phase can be connected to the confining phase in
a continuous way, i.e. without crossing the transition line.
Even more striking, one observes a region in the ð�; gÞ
plane, called analyticity region [1,5,6], in which the Higgs
and confining phases are connected by paths along which
the expectation value of any local correlation function
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varies analytically, implying the absence of any disconti-
nuity in the thermodynamical quantities. According to [1],
the spectrum of the theory evolves continuously from one
regime to the other. Said otherwise, the physical states in
both regimes are generated by suitable gauge invariant
operators which, in the Higgs phase, give rise to massive
bosons while, in the confining phase, to a mesonlike state,
i.e. to a bound state of confined excitations. We shall stick
to the use of the word ‘‘phase’’ here, although it is clear
there cannot exist a local order parameter1 discriminating
between the Higgs or confinement behavior.

In the adjoint Higgs case, the breaking or not of center
symmetry and associated Polyakov loop expectation value
can in principle be used to discriminate between phases,
leading to (an) expected phase transition(s) between con-
fining and Higgs behavior, as already put forward in [1]
and tested in e.g. [2]. Moreover, as speculated in [1], the
appearance of an in some cases expected Coulomb phase
with long-range correlations was not reported. Over the
years, most attention has however been paid to the funda-
mental Higgs, due to its more direct physical relevance for
the electroweak physics.

The attentive reader will have noticed that most of the
cited works either concern lattice simulations of the gauge-
Higgs systems, or analytical mean-field analysis of the
lattice model. There is a good reason for this as the probed
physics is usually of a nonperturbative nature. Some pre-
liminary functional Dyson-Schwinger approaches to gauge
field theories supplemented with scalar fields have ap-
peared nonetheless [13,14], however these do not really
touch upon the supposed phase diagram and the analyticity
results of Fradkin and Shenker. Direct computation of
phase diagram related quantities as Polyakov loops or
even the vacuum (free) energy are noteworthy hard to
access at the functional level. Let us by the way notice
here that the proof of the Fradkin-Shenker analyticity
result, inspired by [15], heavily relies on the lattice for-
mulation of the problem. We are unaware of a strict con-
tinuum version of the theorem, although one might expect
it to hold as well. It is in any case a strong property of the
theory if it would be analytical in a certain region of the
phase diagram. In some cases, the Fradkin and Shenker
result has been related to the Lee-Yang theorem that
also handles analyticity properties of statistical systems
[16,17]. One can imagine a lot of subtleties making any
concrete analytical study of the Higgs phase diagram trou-
blesome. To name only one, renormalization will require
us to consider the gauge coupling constant at a particular
renormalization scale and the issue of strong versus weak
coupling is directly set by the size of this scale. We will
come back to this issue later.

The aim of this work is that of investigating the tran-
sition between the Higgs and the confinement phase within
a continuum quantum field theory. The setup which we
shall follow is that of taking into account the nonperturba-
tive effect of the existence of the Gribov copies [18] which
are unavoidably present in the gauge fixing quantization
procedure.2 In particular, as already shown in the case of
three-dimensional gauge theories [21], this framework en-
ables us to encode nonperturbative information about the
phases of the theory in the two-point correlation function
of the gauge field in momentum space. The transition
between one phase to another is detected by the corre-
sponding change in the pole structure of the gluon
propagator. More precisely, a gluon propagator of the
Gribov-type, i.e. displaying complex conjugate poles, has
no particle interpretation, being well suited to describe the
confining phase. Here, a word of caution is at place. We
shall deliberately use the word ‘‘confining’’ hereafter to
refer to particle propagators with complex poles, as these
cannot describe asymptotically observable particle states.
However, a clear connection between the intricate non-
perturbative gauge boson propagator(s) and eventually also
vertices to e.g. the area law of the Wilson loop has to the
best of our knowledge never been established in the litera-
ture. That Gribov-like propagators can be connected to
the Polyakov loop and its vacuum expectation value has
recently received some interest [22]. A propagator of the
Yukawa-type, i.e. displaying a real pole in momentum
space, signals that the theory is located in the Higgs phase.
The philosophy of our approach is that we can already

learn something about the potential phase structure by
analyzing the properties of the elementary fields’ propa-
gators. In the conclusion of this paper, we will give an
outlook how to really probe the phase diagram using an
order parameter as should be. For what concerns the spec-
trum, as mentioned before this would boil down to analyz-
ing interpolating gauge invariant operators. Let us take
for example a fundamental Higgs field and consider the
operator �yD��. In the case that the Gribov restriction

is trivial and we only have a Higgs vev, this operator will
simply reflect the (massive) gauge bosons, a fact naively
appreciable by ‘‘replacing’’�with �. However, if we were
to enter the confining regime, we would need to extract the
spectrum of colorless bound states using the elementary
Green functions, which is as difficult as constructing the
QCD spectrum from the gluon/quark Green functions. We
shall not have to say anything more about this as it clearly
falls well beyond the current scope. The construction of a
physical pure gauge spectrum out of unphysical Gribov
propagators is an ongoing project, see for instance [23–26].
By quantizing the theory in the Landau gauge and by

performing the restriction to the so-called Gribov region
1Nor can the Polyakov loop P serve as an order parameter

since the presence of a fundamental Higgs field breaks the center
symmetry in a hard way, giving anyhow a nontrivial expectation
value to P .

2See [19,20] for a pedagogical introduction to the Gribov
problem.
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� [18–20] in order to take into account the effect of the
Gribov copies, we shall be able to discuss the changes in
the gluon propagator when the parameters ð�; gÞ are varied
from the Higgs weak coupling region to the confining
strong coupling region. As we shall see in detail, in the
case of the fundamental representation we shall be able
to detect a region in the ð�; gÞ plane, characterized by the
line3 a ¼ 1

2 , with

a ¼ g2�2

4 ��2eð1�32�2

3g2
Þ : (1)

The Higgs region will correspond to values of ð�; gÞ for
which a > 1

2 , while the confining phase will be located in

the region a < 1
2 . Moreover, the gluon propagator evolves

in a smooth continuous way from the confining to the
Higgs region, namely we observe a continuous evolution
of the poles of the propagator from a Gribov-type to the
Yukawa behavior. In addition, we shall be able to evaluate
the vacuum energy in Gribov’s original approximation and
check explicitly that it is a continuous function, together
with its first and second derivative, of the parameter a
across the transition line a ¼ 1

2 . The third derivative of

the vacuum energy displays a discontinuity across a ¼ 1
2 .

However, we shall be able to check that the line a ¼ 1
2 is

not located in the Fradkin-Shenker analyticity region,
something which we cannot access within the present
approximation as a ¼ 1

2 corresponds to a region wherein

we cannot really trust the made approximations. Though,
we are able to confirm within a continuum field theory that
the transition between the Higgs and the confining phase
occurs in a smooth way, something which is far from being
trivial. Another relevant result of our analysis is that, in the
Higgs phase, there is no need to implement the restriction
to the Gribov region�. Said otherwise, in the Higgs phase,
the values of the parameters ð�; gÞ are such that the theory
automatically lies within the Gribov region �, so that the
Gribov horizon is never crossed. This is a quite relevant
observation which has an important physical consequence.
It ensures that, in the weak coupling region, the standard
Higgs mechanism takes place without being affected
by the restriction to the Gribov region. We have thus a
truly nonconfining theory whose asymptotic states are the
massive gauge bosons.

When the Higgs field is in the adjoint representation, our
results indicate that things change drastically, as also ex-
pected from lattice investigations. Here, the phase structure
looks much more intricate as well as the evolution of the
two-point correlation function of the gauge field. In addi-
tion of the confining phase, in which the gluon propagator

is of the Gribov-type, we shall find what can be called a
Uð1Þ confining phase, in which the third component A3

� of

the gauge field displays a Gribov-type correlation function,
while the remaining off-diagonal components, A�

�, � ¼ 1,

2, are of the Yukawa-type. It is worth noticing here that this
phase has been reported in lattice investigations of the
Georgi-Glashow model [27,28], i.e. of three-dimensional
gauge theories with a Higgs field in the adjoint.
Unfortunately, until now, we are unaware of lattice studies
of the gluon propagator in four dimensions with Higgs field
in the adjoint.4 So far, only the case of the fundamental
representation has been addressed [7,8]. From that point
of view, we hope that our results will stimulate further
studies of the gluon propagator on the lattice in order to
confirm the existence of the Uð1Þ confining phase in four
dimensions, to the extent that the diagonal gauge boson
propagator is not of the massless type for finite value of the
Higgs condensate. A lattice study of the adjoint Higgs
phase diagram was presented in [30], giving evidence of
a massless Coulomb phase in the limit of infinite Higgs
condensate �. More precisely, the theory was shown to
reduce to a compact Uð1Þ model with its confinement-
deconfinement transition. We do however not expect such
a transition in the continuum version of QED. We shall
see that in the limit � ! 1 we can however recover also
a massless photon. This is not as trivial a result as it
might appear since it involves a delicate cancelation
between diverging Higgs condensate and vanishing
Gribov parameter.
The paper is organized as follows. In Sec. II we discuss

the restriction to the Gribov region in the case of the
fundamental representation. The behavior of the gluon
propagator and of the vacuum energy are discussed within
Gribov’s approximation. In Sec. III we address the more
intricate case of the Higgs field in the adjoint representation.
Section IV collects our conclusion.

II. RESTRICTION TO THE GRIBOV REGION �
WITH A FUNDAMENTAL HIGGS FIELD

Let us consider first the case of SUð2Þ Yang-Mills
theories interacting with Higgs fields in the fundamental
representation. This will be the most interesting case for
future reference as well, when the physical case of
SUð2Þ �Uð1Þwill be analyzed, i.e. the electroweak theory.
Working in Euclidean space and adopting the Landau

gauge, @�A
a
� ¼ 0, the action of the current model is

specified by the following expression:

S ¼
Z

d4x

�
1

4
Fa
��F

a
�� þ ðDij

��jÞyðDik
��

kÞ

þ �

2
ð�y�� �2Þ2 þ ba@�A

a
� þ �ca@�D

ab
� cb

�
; (2)

3The quantity �� stands for the energy scale which shows up in
the renormalization of ultraviolet divergent quantities. In the
present case, dimensional regularization in the MS scheme is
employed.

4Adjoint lattice gauge-Higgs systems have been studied in e.g.
[2,29] but not directly from the propagator viewpoint.
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where the covariant derivative is defined by

Dij
��j ¼ @��

i � ig
ð�aÞij
2

Aa
��

j: (3)

The field ba stands for the Lagrange multiplier implement-
ing the Landau gauge, @�A

a
� ¼ 0, while ð �ca; caÞ are the

Faddeev-Popov ghosts. The indices i, j ¼ 1,2 refer to
the fundamental representation, and �a, a ¼ 1, 2, 3, are
the Pauli matrices. The vacuum configuration which
minimizes the energy is achieved by a constant scalar field
parametrized as

h�i ¼ 0

�

 !
: (4)

It will be understood that we work in the limit � ! 1 for
simplicity, i.e. we have a Higgs field frozen at its vacuum
expectation value, as in [1] and most other works.

All components of the gauge field acquire the same mass

m2 ¼ g2�2

2 . In fact, for the quadratic part of the action we

have now

Squad¼
Z
d4x

�
1

4
ð@�Aa

��@�A
a
�Þ2þba@�A

a
�þg2�2

4
Aa
�A

a
�

�
:

(5)

As already mentioned in the Introduction, the aim of the
present work is that of analyzing the possible nonperturba-
tive dynamics of the model by taking into account the
Gribov copies. In the Landau gauge,5 this issue can be
faced by restricting the domain of integration in the path
integral to the so-called Gribov region � [18–20], defined
as the set of all transverse gauge configurations for which
the Faddeev-Popov operator is strictly positive, namely

� ¼ fAa
�; @�A

a
� ¼ 0;�@�D

ab
� > 0g: (6)

The region � is known to be convex and bounded in all
directions in field space. The boundary of �, where the
first vanishing eigenvalue of the Faddeev-Popov operator
appears, is called the first Gribov horizon. Away to imple-
ment the restriction to the region � has been worked out
by Gribov in his original work. It amounts to impose the
no-pole condition [18–20] for the connected two-point
ghost function Gabðk;AÞ ¼ hkjð�@DabðAÞÞ�1jki, which is
nothing but the inverse of the Faddeev-Popov operator
Mab � �@�D

ab
� ðAÞ. One requires that Gabðk;AÞ has no

poles at finite nonvanishing values of k2, so that it stays

always positive. In that way one ensures that the Gribov
horizon is not crossed, i.e. one remains inside �. The only
allowed pole is at k2 ¼ 0, which has the meaning of
approaching the boundary of the region �.
Following Gribov’s procedure [18–20], for the

connected two-point ghost function Gabðk;AÞ at first order
in the gauge fields, one finds

Gabðk;AÞ ¼ 1

k2

�
�ab � g2

k�k�

k2

Z d4q

ð2�Þ4 "
amc"cnb

� 1

ðk� qÞ2 ðA
m
�ðqÞAn

�ð�qÞÞ
�
; (7)

where use has been made of the transversality condition
q�A�ðqÞ ¼ 0. Taking into account that all masses of

the gauge field are degenerate in color space, Eq. (5),
we introduce the ghost form factor 	ðk;AÞ as

Gðk;AÞ ¼ �abGab

3

¼ 1

k2

�
1þ k�k�

k2
2g2

3

Z d4q

ð2�Þ4
Aa
�ðqÞAa

�ð�qÞ
ðq� kÞ2

�

� 1

k2
ð1þ 	ðk;AÞÞ � 1

k2

�
1

1� 	ðk;AÞ
�
: (8)

The quantity 	ðk;AÞ turns out to be a decreasing function
of the momentum k [18–20]. Thus, the no-pole condition
for the ghost function Gðk; AÞ is implemented by imposing
that [18–20]

	ð0;AÞ � 1; (9)

where 	ð0;AÞ is given by

	ð0;AÞ ¼ g2

6

Z d4q

ð2�Þ4
Aa
�ðqÞAa

�ð�qÞ
q2

: (10)

This expression is obtained by taking the limit k ! 0 of
Eq. (8), and by making use of the property

Aa
�ðqÞAa

�ð�qÞ ¼
�
��� �

q�q�

q2

�
!ðAÞðqÞ ) !ðAÞðqÞ

¼ 1

3
Aa
�ðqÞAa

�ð�qÞ; (11)

which follows from the transversality of the gauge field,
q�A

a
�ðqÞ ¼ 0. Also, it is useful to remind that, for an

arbitrary function F ðp2Þ, we have
Z d4p

ð2�Þ4
�
��� �

p�p�

p2

�
F ðp2Þ ¼ A���; (12)

where, upon contracting both sides of Eq. (12) with ���,

A ¼ 3

4

Z d4p

ð2�Þ4 F ðp2Þ: (13)

5It is perhaps worthwhile pointing out here that the Landau
gauge is also a special case of the ’t Hooft R� gauges, which
have proven their usefulness as being renormalizable and offer-
ing a way to get rid of the unwanted propagator mixing between
(massive) gauge bosons and associated Goldstone modes,
�A�@�
. The latter terms indeed vanish upon using the gauge
field transversality. The upshot of specifically using the Landau
gauge is that it allows us to take into account potential non-
perturbative effects related to the gauge copy ambiguity.
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A. Gribov’s gap equations

In order to ensure the restriction to the Gribov region �
in the functional integral, we encode the information of the
no-pole conditions into a step function [18–20]:

Z ¼
Z
½dA��ð@AÞ det ð�@DabÞ�ð1� 	ð0;AÞÞe�SYM : (14)

Though, as our interest for now lies only in the study of the
gauge boson propagators, we shall consider here the
quadratic approximation for the partition function, namely

Zquad ¼
Z d#

2�i#
½dA�e#ð1�	ð0;AÞÞ

� e�
1
4

R
d4xð@�Aa

��@�A
a
�Þ2� 1

2�

R
d4xð@�Aa

�Þ2�g2�2

4

R
d4xAa

�A
a
� ;

(15)

where use has been made of the integral representation

�ðxÞ ¼
Z i1þ�

�i1þ�

d#

2�i#
e#x: (16)

Before we go any further, we wish to point out that the
generalization of this paper beyond the current approxima-
tion could be worked out as well. We restrict ourselves now
to lowest order, that is making use of the above expression
(10) which corresponds to the one-loop ghost self-energy
upon taking averages with the (eventually adapted) parti-
tion function. Using a saddle point approximation à la
Gribov [18], we shall soon see that imposing 	ð0Þ � 1 is
actually implying 	ð0Þ ¼ 1 in the thermodynamic limit.
The result will be a modified partition function, which due
to themade one-loop approximation for the ghost self-energy
will be of a quadratic nature in the gauge boson fields.6 Using
the same tools, it is in principle possible to include higher
order corrections to the no-pole function 	ð0; AÞ and thus to
the ghost self-energy, which will lead to a modified partition
function (action) beyond the quadratic terms. The eventual
addition to the action can be resummed to all orders, as
shown recently in [31] building on earlier work [32].
Zwanziger followed a different route than Gribov to arrive
at an action, valid to all orders of perturbation theory, that
makes sure the border of � is not crossed, see [20] and
original references therein. At lowest order, his action co-
incided with Gribov’s, a fact that turns out to be generally
true as proven in [31]. Zwanziger’s achievement was thus
the explicit construction of an action implementing the
restriction to the Gribov region �. The Gribov-Zwanziger
(GZ) action contains a new term �R

d4x
4AM�1A, thus
nonlocal. It can however be localized by introducing suitable
auxiliary fields, eventually providing us with a local action
that can be studied using the vocabulary and tools of local
quantum field theory. The parameter 
4 corresponds

precisely to the saddle point of Gribov—including the
gap equation it satisfies, to be discussed hereafter—and
is fixed by a self-consistency condition (also known as the
horizon condition) that is expressible in terms of the vac-

uum energy, @Evac

@
 ¼ 0. For explicit examples where the GZ

action and no-pole function were evaluated to higher order,
let us refer to [33,34].
We shall also not dwell upon renormalization details

here, we expect that the proof of the pure gauge case as
in [20,35] can be suitably adapted, given that a decent
discussion, based on the Ward identities constraining the
generating functional, will demand us to keep the Higgs
coupling � as a free, to be renormalized parameter. The
formal limit � ! 1 has thus to be considered in principle
at the end of any computation. Upon using the local GZ
action, we do not see any obstacle against such renormal-
ization proof, which we reserve for future work given its
extensive technical nature. Let us already remind here that
this action displays a very rich set of Ward identities,
severely restricting the possible counterterm [20,35,36].
The introduction of a Higgs sector, which is after all also
constrained by the Becchi-Rouet-Stora-Tyutin (BRST)
invariance is a manageable generalization. In any case, a
realistic description of a gauge-Higgs system will have a
variable finite value for the Higgs coupling as well. When
a clean renormalization procedure becomes available, a
more thorough investigation of e.g. scheme dependence
of results can also be studied. In a continuum approach, the
renormalization procedure will always introduce scale and
scheme dependence into any result. Physical quantities
should however become less and less sensitive to these
choices if the order of approximation is increased. In this
paper, we choose to adopt the standard (simplifying)
assumption of � ! 1 to get already an idea of what is

happening,7 next to using the MS prescription.
After simple algebraic manipulations, one gets for (15)

Zquad ¼
Z d#e#

2�i#
½dA�e�1

2

R
d4q

ð2�Þ4A
a
�ðqÞP ab

��A
b
�ð�qÞ

; (17)

with

P ab
��¼�ab

�
���

�
q2þ�2g2

2

�
þ
�
1

�
�1

�
q�q�þ#

3

g2

q2
���

�
:

(18)

The parameter � is understood to be zero at the end in order
to recover the Landau gauge. Evaluating the inverse of the

6The one-loop ghost propagator contains tree level gauge
boson propagators.

7The number of continuum results for the � ! 1 phase
diagram are almost nonexistent, let stand alone for the � <1
case. To our knowledge, even the lattice case with finite Higgs
coupling is far less worked out or simulated into details. Let us
furthermore point out that this limit is not problematic in the
current lowest order approximation, since the Higgs field does
not couple directly to the ghost fields, henceforth the here
employed ghost self-energy, i.e. the crux quantity 	ð0Þ, is not
influenced by Higgs field dynamics at one-loop order.
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expression above and taking the limit � ! 0, for the gluon
propagator one gets

hAa
�ðqÞAb

�ð�qÞi ¼ �ab q2

q4 þ g2�2

2 q2 þ g2

3 #

�
��� �

q�q�

q2

�
:

(19)

It remains to find the gap equation for the Gribov parameter
#, enabling us to express it in terms of the parameters of
the starting model, i.e. the gauge coupling constant g and
the vev of the Higgs field �. In order to accomplish this task
we follow [18–20] and evaluate the partition function
Zquad. First, we integrate out the gauge fields, obtaining

Zquad ¼
Z d#

2�i
eð#�ln#ÞðdetP ab

��Þ�1
2: (20)

Making use of

ðdetP ab
��Þ�1

2 ¼ e�1
2 ln detP

ab
�� ¼ e�1

2 Tr lnP
ab
�� ; (21)

for the determinant in expression (20) we get

ðdetP ab
��Þ�1

2¼ exp

�
�9

2

Z d4q

ð2�Þ4 ln
�
q2þg2�2

2
þg2#

3

1

q2

��
:

(22)

Therefore,

Zquad ¼
Z d#

2�i
efð#Þ; (23)

where, in the thermodynamic limit,8

fð#Þ ¼ # � 9

2

Z d4k

ð2�Þ4 ln

�
k2 þ g2�2

2
þ #

3

g2

k2

�
: (24)

Expression (23) can be now evaluated in the saddle point
approximation [18–20], i.e.

Zquad � efð#�Þ; (25)

where the parameter #� is determined by the stationary
condition

@f

@#� ¼ 0; (26)

which yields the following gap equation:

3

2
g2
Z d4q

ð2�Þ4
1

q4 þ g2�2

2 q2 þ g2

3 #
� ¼ 1: (27)

Notice also that the function fð#�Þ has the meaning of the
vacuum energy Ev of the system. More precisely

Ev ¼ �fð#�Þ; (28)

as it is apparent from the expression of the partition
function Zquad, Eq. (25). To discuss the gap equation (27),

we decompose the denominator according to

q4 þ g2�2

2
q2 þ g2

3
# ¼ ðq2 þm2þÞðq2 þm2�Þ; (29)

with

m2þ ¼ 1

2

0
B@g2�2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4�4

4
� 4g2

3
#�

s 1
CA;

m2� ¼ 1

2

0
B@g2�2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4�4

4
� 4g2

3
#�

s 1
CA:

(30)

Making use of the MS renormalization scheme in
d ¼ 4� " and of the standard integral

Z ddp

ð2�Þd
1

p2 þ �2
¼ � �2

16�2

2

�"
þ �2

16�2

�
ln

�2

��2
� 1

�
; (31)

for the gap equation (27) we consequently get�
1þ m2�

m2þ �m2�
ln

�
m2�
��2

�
� m2þ

m2þ �m2�
ln

�
m2þ
��2

��
¼ 32�2

3g2
:

(32)

In order to analyze this equation we rewrite it in a more
suitable way, i.e.

m2�
m2þ �m2�

ln

�
m2�
��2

�
� m2þ

m2þ �m2�
ln

�
m2þ
��2

�

¼ �m2þ �m2�
m2þ �m2�

�
1� 32�2

3g2

�

¼ m2þ �m2�
m2þ �m2�

ln
�
e
�ð1�32�2

3g2
Þ�
; (33)

so that

m2� ln

0
@ m2�

��2e
ð1�32�2

3g2
Þ

1
A ¼ m2þ ln

0
@ m2þ

��2e
ð1�32�2

3g2
Þ

1
A; (34)

whose final form can be written as

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
ln ðaÞ ¼ �

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

ln
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

þ
�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

ln
�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

; (35)

8We remind here that the term ln# in expression (20) can be
neglected in the derivation of the gap equation, Eq. (27), when
taking the thermodynamic limit, see [18–20] for details. With
hindsight, this actually corresponds to replacing the � function
by a � function in the adapted measure of Eq. (14). This is
related to the fact that the infinite dimensional gauge field
integration space concentrates its measure around the boundary
of that space. We refer the interested reader to [20] and
references therein for an elaborate derivation and discussion.
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where we have introduced the dimensionless variables

a ¼ g2�2

4 ��2e
ð1�32�2

3g2
Þ
; � ¼ 16

3

#�

g2�4
	 0; (36)

with 0 � � < 1 in order to have two real, positive, dis-
tinct roots ðm2þ; m2�Þ, Eq. (30). It is worth emphasizing
that the renormalization scale �� could be exchanged in
favor of the invariant scale �MS, defined at one-loop as

�2
MS

¼ ��2e
1
�0

1

g2ð ��Þ; (37)

with �0 given by [37,38]

� ¼ �g3�0 þOðg5Þ; �0 ¼ 1

16�2

�
11

3
N � 1

6
T

�
;

(38)

where T is the Casimir of the representation of the Higgs
field equaling T ¼ 1

2 , respectively T ¼ 2, for the funda-

mental, respectively adjoint, representation of SUð2Þ.
For � > 1, the roots ðm2þ; m2�Þ become complex

conjugate, and the gap equation takes the form

2
ffiffiffiffiffiffiffiffiffiffiffiffi
� � 1

p
ln ðaÞ ¼ �2 arctan

� ffiffiffiffiffiffiffiffiffiffiffiffi
� � 1

p �
� ffiffiffiffiffiffiffiffiffiffiffiffi

� � 1
p

ln �:

(39)

Moreover, it is worth noticing that both expressions (35)
and (39) involve only one function; i.e. they can be
written as

2 ln ðaÞ ¼ gð�Þ; (40)

where for gð�Þ we might take

gð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�
�
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

ln
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

þ
�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

ln
�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p ��

; (41)

which is a real function of the variable � 	 0. Expression
(39) is easily obtained from (35) by rewriting it in the
region � > 1. In particular, it turns out that the function
gð�Þ � �2 ln 2 for all � 	 0, and strictly decreasing. As
consequence, for each value of a < 1

2 , Eq. (40) has always

a unique solution with � > 0. Moreover, it is easy to
check that gð1Þ ¼ �2. Therefore, we can distinguish
ultimately three regions, namely

(a) when a > 1
2 , Eq. (40) has no solution for � . As the

gap equation (27) has been obtained by acting with
@
@# on the expression of the vacuum energy Ev ¼
�fð#Þ, Eq. (28), we are forced to set # ¼ 0. This
means that, when a > 1

2 , the dynamics of the system

is such that the restriction to the Gribov region
cannot be consistently implemented. As a conse-
quence, the standard Higgs mechanism takes place,
yielding three massive gauge fields, according to

hAa
�ðqÞAb

�ð�qÞi ¼ �ab 1

q2 þ g2�2

2

�
��� �

q�q�

q2

�
:

(42)

For sufficiently weak coupling g2, we underline that
a will unavoidably be larger than 1

2 .

(b) When 1
e < a < 1

2 , Eq. (40) has a solution for

0 � � < 1. In this region, the roots ðm2þ; m2�Þ are
real and the gluon propagator decomposes into the
sum of two terms of the Yukawa-type:

hAa
�ðqÞAb

�ð�qÞi ¼ ���

�
Fþ

q2 þm2þ
� F�

q2 þm2�

�

�
�
��� �

q�q�

q2

�
; (43)

where

Fþ ¼ m2þ
m2þ �m2�

; F� ¼ m2�
m2þ �m2�

: (44)

Moreover, due to the relative minus sign in Eq. (43)
only the componentFþ represents a physical mode.

(c) For a < 1
e , Eq. (40) has a solution for � > 1. This

scenario will always be realized if g2 gets suffi-
ciently large, i.e. at strong coupling. In this region
the roots ðm2þ; m2�Þ become complex conjugate and
the gauge boson propagator is of the Gribov-type,
displaying complex poles. As usual, this can be
interpreted as the confining region.

In summary, we clearly notice that at sufficiently weak
coupling, the standard Higgs mechanism, Eq. (42), will
definitely take place, as a > 1

2 , whereas for sufficiently

strong coupling, we always end up in a confining phase
because then a < 1

2 .

Having obtained these results, it is instructive to go back
where we originally started. For a fundamental Higgs, all
gauge bosons acquire a mass that screens the propagator in
the infrared. This effect, combined with a sufficiently small
coupling constant, will lead to a severely suppressed ghost
self-energy, i.e. the average of (10) (to be understood after
renormalization of course). If the latter quantity will
a priori not exceed the value of 1 under certain conditions,
the theory is already well inside the Gribov region and
there is no need to implement the restriction. Actually, the
failure of the Gribov restriction for a > 1

2 is exactly because

it is simply not possible to enforce that 	ð0Þ ¼ 1.
Perturbation theory in the Higgs sector is in se already
consistent with the restriction within the 1st Gribov hori-
zon. Let us verify this explicitly by taking the average of
(10) with as a tree level input propagator a transverse
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Yukawa one with mass m2 ¼ g2�2

2 , cf. Eq. (5). Using that

there are 3 transverse directions9 in 4d, we easily get

	ð0Þ ¼ 3g2

2

Z d4q

ð2�Þ4
1

q2ðq2 þ g2�2

2 Þ

¼ � 3

�2

Z d4q

ð2�4Þ
1

q2 þ g2�2

2

¼ � 3g2

32�2

�
ln
g2�2

2 ��2
� 1

�
:

(45)

Introducing a as in (36), we may reexpress the latter

result as

	ð0Þ ¼ 1� 3g2

32�2
ln ð2aÞ: (46)

For a > 1
2 , the logarithm is positive and it is then evident

that 	ð0Þ will not cross 1, indicating that the theory

already is well within the first Gribov horizon.
Another interesting remark is at place concerning the

transition in terms of a varying value of a. If a crosses 1
e ,

the imaginary part of the complex conjugate roots becomes
smoothly zero, leaving us with 2 coinciding real roots,
which then split when a grows. At a ¼ 1

2 , one of the roots

and its accompanying residue vanishes, to leave us with a
single massive gauge boson. We thus observe all these
transitions are continuous, something which is in qualita-
tive correspondence with the theoretical lattice predictions
of the classic work [1] for a fundamental Higgs field that is
‘‘frozen’’ (� ! 1). Concerning the somewhat strange in-
termediate phase, i.e. the one with a Yukawa propagator
with a negative residue, Eq. (43), we can investigate in
future work in more detail the asymptotic spectrum based
on the BRST tools developed in [39] when the local action
formulation of the Gribov restriction is implemented.

B. The vacuum energy, phase transition
and how trustworthy are the results?

Let us look at the vacuum energy Ev of the system,
which can be easily read off from expression (23), namely

Ev ¼ �#� þ 9

2

Z d4k

ð2�Þ4 ln

�
k2 þ g2�2

2
þ #�

3

g2

k2

�
; (47)

where #� is given by the gap equation (27). Making use of

Z ddp

ð2�Þd ln ðp2 þm2Þ ¼ � m4

32�2

�
2

�"
� ln

m2

��2
þ 3

2

�
; (48)

it is very easy to write down the vacuum energy:
(i) For a < 1

2 , we have

8

9g4�4
Ev ¼ 1

32�2

�
1�32�2

3g2

�
�1

2

�

32�2

þ1

4

1

32�2

�
ð4�2�Þ

�
lnðaÞ�3

2

��

þ1

4

1

32�2

��
1þ ffiffiffiffiffiffiffiffiffiffiffi

1��
p �

2
ln
�
1þ ffiffiffiffiffiffiffiffiffiffiffi

1��
p �

þ
�
1� ffiffiffiffiffiffiffiffiffiffiffi

1��
p �

2
ln
�
1� ffiffiffiffiffiffiffiffiffiffiffi

1��
p ��

;

(49)

where � is obtained through Eqs. (40) and (41).
Let us also give the expressions of the first two
derivatives of EvðaÞ with respect to a. From the
gap equation (40), we easily get

@�

@a
¼ 2

a

1

g0ð�Þ : (50)

Therefore

@

@a

�
8

9g4�4
Ev

�
¼ 1

64�2

1

a
ð2� �Þ;

@2

@a2

�
8

9g4�4
Ev

�
¼ 1

64�2

1

a2

�
� � 2� 2

g0ð�Þ
�
:

(51)

(ii) For a > 1
2 ,

8

9g4�4
Ev¼ 1

32�2

�
1�32�2

3g2

�
þ 1

32�2

��
lnðaÞ�3

2

��

þ 1

32�2
ln2: (52)

Owing to the fact that g0ð0Þ ¼ �1, it turns out that
vacuum energy EvðaÞ is a continuous function of the
variable a, as well as its first and second derivative.
The third derivative develops a jump at a ¼ 1

2 . We might

be tempted to interpret this as indicating a third order
phase transition at a ¼ 1

2 . The latter value actually cor-

responds to a line in the ðg2; �Þ plane according to the
functional relation (36). However, we should be cautious
to blindly interpret this value. It is important to take a
closer look at the validity of our results in the light of the
made assumptions. More precisely, we implemented the
restriction to the horizon in a first order approximation,
which can only be meaningful if the effective coupling
constant is sufficiently small, while simultaneously

9We have been a bit sloppy in this paper with the use of
dimensional regularization. In principle, there are 3� � trans-
verse polarizations in d ¼ 4� � dimensions. Positive powers in
� can (and will) combine with the divergences in ��1 to change
the finite terms. However, as already pointed out before, a careful
renormalization analysis of the Gribov restriction is possible,
see e.g. [20,35] and this will also reveal that the ‘‘1’’ in the
Gribov gap equation will receive finite renormalizations, com-
patible with the finite renormalization in e.g. 	ð0Þ, basically
absorbable in the definition a. The main results of our current
paper thus remain correct and we leave the full renormalization
details for later.
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emerging logarithms should be controlled as well. In the
absence of propagating matter, the expansion parameter

is provided by y � g2N
16�2 as in pure gauge theory. The size

of the logarithmic terms in the vacuum energy
(that ultimately defines the gap equations) are set by

m2þ ln
m2

þ
��2 and m2� ln m2�

��2 . A good choice for the renormal-

ization scale would thus be ��2 � jm2þj: for (positive)
real masses, a fortiori we have m2� <m2þ and the second
log will not get excessively large either because m2� gets
small and the prefactor is thus small, or m2� is of the
order of m2þ and the log itself small. For complex con-
jugate masses, the size of the log is set by the (equal)
modulus of m2
 and thus both small by our choice of
scale.

Let us now consider the trustworthiness, if any, of the
a ¼ 1

2 phase transition point. For a� 1
2 , we already know

that � � 0, so a perfect choice is ��2 �m2þ � g2�2

2 . Doing

so, the a equation corresponds to

1

2
� e�1þ 4

3y (53)

so that y� 4. Evidently, this number is thus far too big to
associate any meaning to the ‘‘phase transition’’ at a ¼ 1

2 .

Notice that there is no problem for the a small and a large

region. If �2 is sufficiently large and we set ��2 � g2�2

2 we

have a small y, leading to a large a, i.e. the weak coupling
limit without Gribov parameter and normal Higgs-like
physics. The logs are also well tempered. For a small �2,

the choice ��2 � ffiffiffiffiffiffiffiffiffiffi
g2��

p
will lead to

a� ðsmall numberÞe�1þ 4
3y (54)

so that a small a can now be compatible with a small y,
leading to a Gribov parameter dominating the Higgs in-

duced mass, the ‘‘small number’’ corresponds to g2�2ffiffiffiffiffiffiffi
g2��

p .

Due to the choice of ��2, the logs are again under control in
this case.

Within the current approximation, we are thus forced to
conclude that only for sufficiently small or large values of
the parameter a we can probe the theory in a controllable
fashion. Nevertheless, this is sufficient to ensure the
existence of a Higgs-like phase at large Higgs condensate,
and a confinement-like region for small Higgs condensate.
The intermediate a region is more difficult to interpret due
to the occurrence of large logs and/or effective coupling.
Notice that this also might make the emergence of this
double Yukawa phase at a ¼ 1

e � 0:37 not well established

at this point.

III. RESTRICTION TO THE GRIBOV
REGION � WITH AN ADJOINT

HIGGS FIELD

Let us face now the case in which the Higgs field
�a transforms according to the adjoint representation of
SUð2Þ. For the action, we now have

S ¼
Z

d4x

�
1

4
Fa
��F

a
�� þ 1

2
Dab

� �bDac
� �c

þ �

2
ð�a�a � �2Þ2 þ ba@�A

a
� þ �ca@�D

ab
� cb

�
; (55)

where the covariant derivative is defined by

ðD��Þa ¼ @��
a þ g�abcAb

��
c: (56)

The vacuum configuration which minimizes the energy is
achieved by a constant scalar field satisfying

�a�a ¼ �2: (57)

Setting

h�ai ¼ ��a3; (58)

for the quadratic part of the action involving the gauge field
Aa
�, one gets

Squad ¼
Z

d3x

�
1

4
ð@�Aa

� � @�A
a
�Þ2 þ ba@�A

a
�

þ g2�2

2
ðA1

�A
1
� þ A2

�A
2
�Þ
�
; (59)

from which one notices that the off-diagonal components
A�
�, � ¼ 1, 2 acquire a mass g2�2. We again take � ! 1.

In order to implement the restriction to the Gribov
region �, we start from the expression of the two-point
ghost function Gabðk;AÞ of Eq. (7). In contrast with the
case of the fundamental representation, in order to cor-
rectly take into account the presence of the Higgs vacuum,
Eq. (58), we must decompose Gabðk;AÞ into its diagonal
and off-diagonal components, according to

G abðk; AÞ ¼ ���Goffðk;AÞ 0
0 Gdiagðk;AÞ

� �
; (60)

where

Goffðk;AÞ ¼ 1

k2

�
1þ g2

k�k�

2k2

Z d4q

ð2�Þ4
1

ðq� kÞ2

� ðA�
�ðqÞA�

� ð�qÞ þ 2A3
�ðqÞA3

�ð�qÞÞ
�

� 1

k2
ð1þ 	offðk;AÞÞ � 1

k2

�
1

1� 	offðk;AÞ
�
;

(61)
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Gdiagðk;AÞ ¼ 1

k2

�
1þ g2

k�k�

k2

Z d4q

ð2�Þ4
1

ðq� kÞ2

� ðA�
�ðqÞA�

� ð�qÞÞ
�

� 1

k2
ð1þ 	diagðk;AÞÞ � 1

k2

�
1

1� 	diagðk;AÞ
�
:

(62)

The quantities	offðk;AÞ,	diagðk;AÞ turn out to be decreas-
ing functions of the momentum k [18–20]. Thus, in the
case of the adjoint representation, the no-pole condition for
the ghost function Gabðk; AÞ is implemented by demanding
that [18–20]

	offð0;AÞ � 1; 	diagð0;AÞ � 1; (63)

where 	offð0;AÞ, 	diagð0;AÞ are given by

	offð0;AÞ¼g2

4

Z d4q

ð2�Þ4
ðA3

�ðqÞA3
�ð�qÞþ 1

2A
�
�ðqÞA�

�ð�qÞÞ
q2

;

	diagð0;AÞ¼g2

4

Z d4q

ð2�Þ4
ðA�

�ðqÞA�
�ð�qÞÞ

q2
; (64)

where use has been made of Eqs. (11)–(13).
To implement the restriction to theGribov region� in the

functional integral, we proceed as before and encode the
no-pole conditions, Eq. (63), into step functions [18–20],
obtaining

Zquad ¼
Z d�

2�i�

d!

2�i!
½dA�e�ð1�	diagð0;AÞÞe!ð1�	offð0;AÞÞ

� e�
1
4

R
d4xð@�Aa

��@�A
a
�Þ2� 1

2�

R
d4xð@�Aa

�Þ2�g2�2

2

R
d4xA�

�A
�
� :

(65)

Notice that, in the case of the adjoint representation,
two Gribov parameters ð�;!Þ are needed in order to
implement conditions (63), see also the three-dimensional
case recently discussed in [21]. After simple algebraic
manipulations, we get

Zquad¼
Z d�e�

2�i�

d!e!

2�i!
½dA��½dA3�

�e
�1

2

R
d4q

ð2�Þ4A
�
�ðqÞP ��

��A
�
� ð�qÞ�1

2

R
d4q

ð2�Þ4A
3
�ðqÞQ��A

3
�ð�qÞ

; (66)

with

P ��
�� ¼ ���

�
���ðq2 þ �2g2Þ þ

�
1

�
� 1

�
q�q�

þ g2

2

�
�þ!

2

�
1

q2
���

�
;

Q�� ¼ ���

�
q2 þ!g2

2

1

q2

�
þ
�
1

�
� 1

�
q�q�;

(67)

where again � ! 0 is understood to recover the Landau
gauge. Evaluating the inverse of the expressions above and
taking the limit � ! 0, for the gluon propagators one gets

hA3
�ðqÞA3

�ð�qÞi ¼ q2

q4 þ !g2

2

�
��� �

q�q�

q2

�
; (68)

hA�
�ðqÞA�

� ð�qÞi

¼��� q2

q2ðq2þg2�2Þþg2ð�2þ!
4Þ
�
����

q�q�

q2

�
: (69)

To establish the gap equations for the Gribov parameters
ð�;!Þ, we evaluate the partition function Zquad in the tree

level approximation. As done before, we integrate out the
gauge fields, obtaining

Zquad ¼
Z d�

2�i�

d!

2�i!
e�e!ðdetQ��Þ�1

2ðdetP ��
��Þ�1

2;

(70)

where the determinants in expression (70) are given by

ðdetQ��Þ�1
2 ¼ exp

�
� 3

2

Z d4q

ð2�Þ4 ln

�
q2 þ!g2

2

1

q2

��
;

ðdetP��
��Þ�1

2 ¼ exp

�
�3

Z d4q

ð2�Þ4 ln

�
ðq2 þ g2�2Þ

þ g2
�
�

2
þ!

4

�
1

q2

��
: (71)

Therefore,

Zquad ¼
Z d�

2�i

d!

2�i
efð!;�Þ; (72)

where, in the thermodynamic limit [18–20]

fð!;�Þ ¼�þ!� 3

2

Z d4q

ð2�Þ4 ln
�
q2þ!g2

2

1

q2

�

� 3
Z d4q

ð2�Þ4 ln
�
ðq2þg2�2Þþg2

�
�

2
þ!

4

�
1

q2

�
:

(73)

We again proceed by evaluating expression (72) in the
saddle point approximation [18–20], i.e.

Zquad � efð��;!�Þ; (74)

where the parameters �� and !� are determined by the
stationary conditions

@f

@�� ¼
@f

@!� ¼ 0; (75)

which yield the following gap equations:
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3

2

�
g2

2

�Z d4q

ð2�Þ4
0
@ 1

q4 þ !�g2
2

þ 1

q2ðq2 þ g2�2Þ þ g2ð��
2 þ !�

4 Þ

1
A ¼ 1; (76)

3

�
g2

2

�Z d4q

ð2�Þ4
�

1

q2ðq2 þ g2�2Þ þ g2ð��
2 þ !�

4 Þ
�
¼ 1; (77)

allowing us to express ��, !� in terms of the parameters
�, g.

Let us start by considering the second gap equation,
Eq. (77), and decompose the denominator according to

q4 þ g2�2q2 þ � ¼ ðq2 þ q2þÞðq2 þ q2�Þ;

� ¼ g2
�
��

2
þ!�

4

�
;

(78)

with

q2þ ¼ 1

2

�
g2�2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4�4 � 4�

q �
;

q2� ¼ 1

2

�
g2�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4�4 � 4�

q �
:

(79)

Let us discuss first the case of two real, positive, different

roots, namely 0 � � < g4�4

4 . From (31), we reexpress the

gap equation (77) as�
1þ q2�

q2þ � q2�
ln

�
q2�
��2

�
� q2þ

q2þ � q2�
ln

�
q2þ
��2

��
¼ 32�2

3g2
:

(80)

Introducing now the dimensionless variables10

b ¼ g2�2

2 ��2eð1�32�2

3g2
Þ ¼

1

2e
ð1�272�2

21g2
Þ
g2�2

�2
MS

;

� ¼ 4�

g4�4
	 0; 0 � � < 1;

(81)

and proceeding as in the previous case, Eq. (80) can be
recast in the following form:

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
ln ðbÞ ¼ �

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

ln
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

þ
�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

ln
�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

; (82)

or compactly,

2 ln b ¼ gð�Þ; (83)

with the same function as already defined in the funda-
mental sector, Eqs. (40) and (41). Also here, Eq. (83)

remains valid also for complex conjugate roots, viz.
� > 1. We are then easily lead to the following cases.

A. The case b < 1
2

Using the properties of gð�Þ, it turns out that Eq. (82)
admits a unique solution for �, which can be explicitly
constructed with a numerical approach. More precisely,
when the mass scale g2�2 is sufficiently smaller than
�2

MS
, i.e.

g2�2 < 2e
ð1�272�2

21g2
Þ
�2

MS
; (84)

we have what can be called a Uð1Þ confined phase. In fact,
in this case, the gap equations (76) and (77) can be
rewritten as

3

�
g2

2

�Z d4q

ð2�Þ4
�

1

q4 þ g2 !�
2

�
¼ 1; (85)

3

�
g2

2

�Z d4q

ð2�Þ4
0
@ 1

q2ðq2 þ g2�2Þ þ g2ð��
2 þ !�

4 Þ

1
A ¼ 1: (86)

Moreover, making use of

Z ddp

ð2�Þd
1

p4 þm4
¼ 2

�"

1

16�2
� 1

16�2

�
ln
m2

��2
� 1

�
; (87)

the gap equation (85) gives

�
g2!�

2

�
1=2 ¼ ��2e

ð1�32�2

3g2
Þ ¼ �2

MS
eð1�272�2

21g2
Þ: (88)

Therefore, for b < 1
2 , the A

3
� component of the gauge field

gets confined, exhibiting a Gribov-type propagator with
complex poles, namely

hA3
�ðqÞA3

�ð�qÞi ¼ q2

q4 þ !�g2
2

�
��� �

q�q�

q2

�
: (89)

Relying on Eq. (82) we can then distinguish the two
phases:
(i) when 1

e < b < 1
2 , Eq. (82) has a single solution with

0 � � < 1. In this region, the roots ðq2þ; q2�Þ are thus
real and the off-diagonal propagator decomposes
into the sum of two Yukawa propagators

hA�
�ðqÞA�

� ð�qÞi

¼ ���

�
Rþ

q2 þ q2þ
� R�

q2 þ q2�

��
��� �

q�q�

q2

�
;

(90)

where

10We introduced the renormalization group invariant scale
�MS.
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Rþ ¼ q2þ
q2þ � q2�

; R� ¼ q2�
q2þ � q2�

: (91)

However, due to the relative minus sign in Eq. (90),
only the component Rþ can be associated to a
physical mode, analogously as in the fundamental
case. Also here, a further study using BRST tools
will be devoted to this. Due to the confinement of the
third component A3

�, this phase is referred as the

Uð1Þ confining phase. It is worth observing that it is
also present in the 3d case, with terminology coined
in [27], see also [21].

(ii) For b < 1
e , Eq. (82) has a solution for � > 1. In this

region the roots ðq2þ; q2�Þ become complex conju-
gate and the off-diagonal gluon propagator is of
the Gribov-type, displaying complex poles. In this
region all gauge fields display a propagator of the
Gribov-type. This is the SUð2Þ confining region.

Similarly, the above regions are continuously connected
when b varies. In particular, for b!< 1

2 , we obtain � ¼ 0 as

solution.

B. The case b > 1
2

Let us consider now the case in which b > 1
2 . Here, there

is no solution of Eq. (82) for the parameter �, as it follows
by observing that the left-hand side of Eq. (82) is always
positive, while the right-hand side is always negative. This
has a deep physical consequence. It means that for a Higgs
mass m2

Higgs ¼ g2�2 sufficiently larger than �2
MS

, i.e.

g2�2 > 2e
ð1�272�2

21g2
Þ
�2

MS
; (92)

the gap equation (77) is inconsistent. It is then important
to realize that this is actually the gap equation obtained
by acting with @

@� on the vacuum energy Ev ¼ �fð!;�Þ,
Eq. (73). So, we are forced to set �� ¼ 0, and confront the
remaining ! equation, viz. Eq. (76):

3

2

�
g2

2

�Z d4q

ð2�Þ4
0
@ 1

q4 þ !�g2
2

þ 1

q2ðq2 þ g2�2Þ þ g2!�
4

1
A ¼ 1;

(93)

which can be transformed into

4 ln ðbÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
h
�
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

ln
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

þ
�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

ln
�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

� ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
ln�� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

ln 2
i

� hð�Þ (94)

after a little algebra, where � ¼ !�
g4�4 . The behavior of hð�Þ

for � 	 0 is more complicated than that of gð�Þ. Because
of the � ln� contribution, hð�Þ becomes more and more

positive when � approaches zero. In fact, hð�Þ strictly
decreases from þ1 to �1 for � ranging from 0 to þ1.

It is interesting to consider first the limiting case b!> 1
2 ,

yielding � � 1:0612. So, there is a discontinuous jump in �
(i.e. the Gribov parameter for fixed v) when the parameter
b crosses the boundary value 1

2 .

We were able to separate the b > 1
2 region as follows:

(a) For 12 < b< 1ffiffiffiffiffiffiffiffiffiffiffi
2e

pp � 0:51, we have a unique solution

� > 1, i.e. we are in the confining region again,
with all gauge bosons displaying a Gribov-type of
propagator with complex conjugate poles.

(b) For 1ffiffiffiffiffiffiffiffiffi
2

p
e

p < b<1, we have a unique solution

� < 1, indicating again a combination of two
Yukawa modes for the off-diagonal gauge bosons.
The ‘‘photon’’ is still of the Gribov-type, thus
confined.

Completely analogous as in the fundamental case, it can be
checked by addressing the averages of the expressions (64)
that for b > 1

2 and ! obeying the gap equation with � ¼ 0,

we are already within the Gribov horizon, making the
introduction of the second Gribov parameter � obsolete.
It is obvious that the transitions in the adjoint case are far

more intricate than in the earlier studied fundamental case.
First of all, we notice that the photon (diagonal gauge
boson) is confined according to its Gribov propagator.
There is never a Coulomb phase for b <1. The latter
finding can be understood again from the viewpoint of
the ghost self-energy. If the diagonal gluon would remain
Coulomb (massless), the off-diagonal ghost self-energy,
cf. Eq. (64), will contain an untamed infrared contribution
from this massless photon,11 leading to an off-diagonal
ghost self-energy that will cross the value 1 at a momentum
k2 > 0, indicative of trespassing the first Gribov horizon.
This crossing will not be prevented at any finite value of the
Higgs condensate �; thus we are forced to impose at any
time a nonvanishing Gribov parameter !. Treating the
gauge copy problem for the adjoint Higgs sector will
screen (rather confine) the a priori massless photon.
An interesting limiting case is that of infinite Higgs

condensate, also considered in the lattice study of [30].
Assuming � ! 1, we have b ! 1 according to its defi-
nition (81). Expanding the gap equation (94) around
� ¼ 0þ, we find the limiting equation b4 ¼ 1

� , or equiv-

alently !� / �8
MS

=g4�4. Said otherwise, we find that also

the second Gribov parameter vanishes in the limit of
infinite Higgs condensate. As a consequence, the photon
becomes truly massless in this limit. This result provides—
in our opinion—a kind of continuum version of the exis-
tence of the Coulomb phase in the same limit as in the
lattice version of the model probed in [30]. It is instructive

11The photon indeed keeps it coupling to the charged
(¼ off-diagonal) ghosts, as can be read off directly from the
Faddeev-Popov term ca@�D

ab
� cb.
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to link this back to the off-diagonal no-pole function, see
Eq. (64), as we have argued in the proceeding paragraph
that the massless photon leads to 	offð0Þ> 1 upon taking
averages. However, there is an intricate combination of the
limits � ! 1, !� ! 0 preventing such a problem here.
Indeed, we find in these limits, again using dimensional

regularization in the MS scheme, that

	offð0Þ ¼ 3g2

4

0
@Z d4q

ð2�Þ4
1

q4 þ !�g2
2

þ
Z d4q

ð2�Þ4
1

q2ðq2 þ g2�2Þ þ !�g2
4

1
A

¼ � 3g2

128�2

�
1

2
ln
!�g2

2 ��4
þ ln

g2�2

��2
� 2

�

¼ � 3g2

128�2

�
1

2
ln
!�g6�4

2 ��8
� 2

�

���!b4¼��1

� 3g2

64�2
ln 8g2 þ 1

2
: (95)

The latter quantity is always smaller than 1 for g2 positive,
meaning that we did not cross the Gribov horizon. This
observation confirms in an explicit way the intuitive
reasoning also found in Sec. 3.4 of [40], at least in the
limit � ! 1. The subtle point in the above analysis is
that it is not allowed to naively throw away the 2nd integral
in the first line of (95) for � ! 1. There is a logarithmic
ln� (� ! 1) divergence that conspires with the ln!�
(!� ! 0) divergence of the 1st integral to yield the final
reported result. This displays that, as usual, certain care is
needed when taking infinite mass limits in Feynman
integrals.

C. The vacuum energy in the adjoint case

As done in the case of the fundamental representation,
let us work out the expression of the vacuum energy Ev, for
which we have the one-loop integral representation

Ev ¼ ��� �!� þ 3

2

Z d4q

ð2�Þ4 ln ðq4 þ 2�0Þ

þ 3
Z d4q

ð2�Þ4 ln ðq4 þ g2�2q2 þ �Þ; (96)

where

�0 ¼ g2!�

4
; � ¼ g2

�
��

2
þ!�

4

�
: (97)

Based on (48) and on

Z d4q

ð2�Þ4 ln ðq4 þm4Þ ¼ � m4

32�2

�
ln
m4

��4
� 3

�
; (98)

we find

Ev ¼ � 2

g2
ð�þ �0Þ � 3�0

32�2

�
ln
2�0

��4
� 3

�

þ 3

32�2

�
q4�
�
ln
q2�
��2

� 3

2

�
þ q4þ

�
ln
q2þ
��2

� 3

2

��
: (99)

We can introduce b via its definition (81) to write after
simplification

Ev

g4�4
¼� 1

g2
� 3�0

128�2
ðlnð2b2�0Þ�1Þþ3ð4�2�Þ

128�2

�
lnb�1

2

�

þ 3

128�2

��
1� ffiffiffiffiffiffiffiffiffiffiffi

1��
p �

2
ln
�
1� ffiffiffiffiffiffiffiffiffiffiffi

1��
p �

þ
�
1þ ffiffiffiffiffiffiffiffiffiffiffi

1��
p �

2
ln
�
1þ ffiffiffiffiffiffiffiffiffiffiffi

1��
p ��

; (100)

with

�0 ¼ 4�0

g4�4
; � ¼ 4�

g4�4
: (101)

First, for b < 1=2, we can use the !-gap equation (85) to
establish �0 ¼ 1

2b2
, and thus

Ev

g4�4
¼ � 1

g2
þ 3

256b2�2
þ 3ð4� 2�Þ

128�2

�
ln b� 1

2

�

þ 3

128�2

��
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

2
ln
�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

þ
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

2
ln
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p ��

; (102)

where � is determined by Eqs. (82) and (83).
For b > 1=2, we can remember that � ¼ 0 and thus

� ¼ �0, in which case we can easily obtain

Ev

g4�4
¼�

�
1

g2
þ 3

64�2

�
þ 3

64�2
�þ 3

32�2

1

4
ð4� 2�Þ ln ðbÞ

þ 3

32�2

1

4

��
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1��
p �

2
ln
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1��
p �

þ
�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1��
p �

2
ln
�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1��
p ��

� 3

32�2

1

4

�
2� ln

� ffiffiffi
�

p �
þ 2� ln

ffiffiffi
2

p þ 2� ln ðbÞ
�
;

(103)

with � now given by Eq. (94).
It is worth noticing that the discontinuity in the parame-

ter � directly reflects itself in a discontinuity in the vacuum
energy, as is clear from the plot of Fig. 1.
Investigating the functional (100) in terms of � and �0, it

is numerically (graphically) rapidly established there is

always a solution to the gap equations @Ev

@� ¼ @Ev

@�0 ¼ 0 for

b < 1
2 , but the solution �� is pushed towards the boundary

� ¼ 0 if b approaches 1
2 , to subsequently disappear for

b > 1
2 .

12In that case, we are forced to return on our steps as

12The gap solutions correspond to a local maximum, as iden-
tified by analyzing the Hessian matrix of 2nd derivatives.
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in the fundamental case and conclude that � ¼ 0, leaving
us with a single variable � ¼ �0 and a new vacuum
functional to extremize. There is a priori no reason why
these 2 intrinsically different vacuum functionals would be
smoothly joined at b ¼ 1

2 . This situation is clearly different

from what happens when a potential has e.g. 2 different
local minima with different energy, where at a first order
transition the two minima both become global minima,
thereafter changing their role of local versus global.
Evidently, the vacuum energy does not jump since it is
by definition equal at the transition.

Nevertheless, a completely analogous analysis as for the
fundamental case will learn that b ¼ 1

2 is beyond the range

of validity of our approximation.13 The small and large
b results can again be shown to be valid, so at large
b (� large Higgs condensate) we have a mixture of
off-diagonal Yukawa and confined diagonal modes and at
small b (� small Higgs condensate) we are in a confined
phase. In any case we have that the diagonal gauge boson is
not Coulomb-like, its infrared behavior is suppressed as it
feels the presence of the Gribov horizon.

IV. CONCLUSION

In this work we have attempted at studying the tran-
sition between the Higgs and the confinement phase
within a continuum quantum field theory. The problem
has been addressed by restricting the domain of integra-
tion in the functional integral to the so-called Gribov
region �, which enables us to take into account the
nonperturbative effect of the Gribov copies. This frame-
work allows us to discuss the transition between the

Higgs phase and the confinement phase by looking at
the pole structure of the two-point gluon correlation
function. Both fundamental and adjoint representation
for the Higgs field have been considered. The output of
our investigation reveals that the case of the fundamental
representation is different from that of the adjoint repre-
sentation, a feature in agreement with the results of
numerical lattice simulations [1–9].
In the case of the fundamental representation, the gluon

propagator evolves in a continuous way from a confining
propagator of the Gribov-type to a Yukawa-type propa-
gator describing the Higgs phase. Again, this feature is in
qualitative agreement with lattice results [1–9], which
show that the transition between the Higgs and the con-
fining phase occurs in a continuous way. Moreover, we
have been able to show that, in the weak coupling region,
i.e. in the Higgs phase, there is no need to implement the
restriction to the Gribov region �. Said otherwise, in this
region, the presence of the Higgs field automatically
ensures that the theory lies within the Gribov region, so
that the Gribov horizon is not crossed. This is a relevant
result, implying that, at weak coupling, the usual Higgs
mechanism takes place, being not affected by the exis-
tence of the Gribov copies. A safely asymptotic noncon-
fining theory can be introduced, with massive gauge
bosons as asymptotic states.
In the adjoint representation things look quite different.

Besides the confining phase, in which the gluon propa-
gator is of the Gribov-type, our results indicate the
existence of what can be called a Uð1Þ confining phase
for finite values of the Higgs condensate. This is a phase
in which the third component A3

� of the gauge field dis-

plays a propagator of the Gribov-type, while the remain-
ing off-diagonal components A�

�, � ¼ 1, 2, exhibit a

propagator of the Yukawa-type. Interestingly, this phase
has been already detected in the lattice studies of the
three-dimensional Georgi-Glashow model [27,28]. A sec-
ond result of our analysis is the absence of the Coulomb
phase for finite Higgs condensate. For an infinite value of
the latter, we were able to clearly reveal the existence of a
massless photon, in agreement with the lattice suggestion
of [30].
Summarizing, it seems safe to state that the results we

have obtained so far can be regarded as being in qualitative
agreement with the lattice findings and worth to be
pursued. Let us end by giving a preliminary list of points
for future investigation:
(i) In the pure gauge case, it has been shown in past years

that the Gribov theory dynamically corrects itself via
the condensation of the auxiliary fields arising when
the restriction to theGribov region is implemented in a
local and renormalizable way. This has led to the
refined Gribov-Zwanziger (RGZ) theory [36,41–43],
resulting in propagators and dynamics in very good
agreementwith lattice investigations [44–47]. Itwould

FIG. 1 (color online). Plot of the vacuum energy in the
adjoint representation as a function of the parameter b. The
discontinuity at b ¼ 1

2 is evident.

13A little more care is needed as the appearance of two Gribov
scales complicate the log structure. However, for small b the
Gribov masses will dominate over the Higgs condensate and we
can take �� of the order of the Gribov masses to control the logs
and get a small coupling. For large b, we have �� ¼ 0 and a
small !�: the first log will be kept small by its prefactor and the
other logs can be managed by taking �� of the order of the Higgs
condensate.
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be worth to discuss the transition between the Higgs
and confining phase within the RGZ framework. This
might give more reliable quantitative results to be
compared with the (yet to be obtained) lattice data.
In order to tackle this more general approach, we
need the local GZ action, which we in any case plan
to study in the presence of Higgs fields to gain clear
control over the renormalization, as we have already
mentioned in the main text below Eq. (16).

Skipping the details, what happens in the refined sce-
nario is that the vacuum state changes due to dimension
two condensates consisting of gluons and/or the
alluded to auxiliary fields that implement the local
version of the Gribov restriction. In such case, the
dynamics thus takes place around a corrected Gribov
vacuum, thereby also changing the propagators. For
example, in the pureYang-Mills case, it was shown that
[36,41,42]

pure Gribov propagator ;
p2

p4 þ 
4
���!dynamical refinement

RGZ propagator;
p2 þM2

p4 þ p2ðM2 þm2Þ þ 
̂4
; (104)

where m2 and M2 correspond to the d ¼ 2 condensates,
and 
̂4 is a linear combination of 
4, m2 and M2.
Simultaneously, the ghost self-energy, viz. the no-pole
function 	ð0Þ, becomes strictly smaller than one, i.e. the
theory is no longer concentrated on the boundary of the
Gribov region � [36,41,42].
One may expect that a similar phenomenon could occur
when Higgs field are introduced, however the analysis of
such complication is skipped in this first trial for simplicity.
It is already a quite demanding task to correctly describe
the full GZ dynamics without Higgs fields (see e.g. [36]),
inclusion of a Higgs vev can only further complicate
matters. But the possibility is there that the additional
d ¼ 2 condensates influence the phase diagram, or at least
in particular the properties of the propagator, for example
by changing the conditions at which the poles become
complex conjugate.

(ii) Within the present approximation, we were not able
to address in a concrete and detailed way the issue
of the characterization of the phase diagram in the
ð�; gÞ plane. To that aim, it might be interesting to
embed in our framework the Polyakov loop P as
order parameter of the Higgs-confinement transi-
tion, as studied in [6]. In [22], the pure gauge
thermodynamics at finite T was investigated by
using the RGZ gluon and ghost propagators. In
particular, an approximate effective action for hP i
was constructed. We can try to couple hP i to the
Gribov effective action and investigate the interplay
of both Gribov mass and hP i in terms of a varying
Higgs condensate g2�2, the latter quantity playing
the role of temperature as in [22]. Notice thus that
knowledge of the elementary propagators (the con-
tent of this work) is indispensable to study the
Polyakov loop behavior as the genuine (pseudo)
order parameter.

(iii) Certainly, the extension of the present investigation
to the case of the gauge group SUð2Þ �Uð1Þ [48]
has an apparent interest, due to its relationship with
the electroweak theory. Since the latter is based on
a fundamental Higgs and since we have shown
in this paper that in the ‘‘perturbative regime’’
(sufficiently large Higgs condensate and small ef-
fective coupling constant) in the fundamental case
the Gribov dynamics becomes trivial, we can expect
to recover at least a massless photon for the QED
part of the SUð2Þ �Uð1Þ gauge theory in the same
region of (physically relevant) parameter space. Our
preliminary findings [48] do support this naive ex-
trapolation of the here presented work. The concrete
analysis is however rather cumbersome; details are
thus to be reported at a later stage in [48].

(iv) Finally, we hope that our results will motivate further
lattice investigations on the behavior of the gluon and
ghost propagators in presence of Higgs fields.
Although these studies have been already started in
the case of the fundamental representation [7,8], it
would be quite interesting to have at our disposal also
data for the case of the adjoint representation.

ACKNOWLEDGMENTS

The Conselho Nacional de Desenvolvimento Cientı́fico
e Tecnológico (CNPq-Brazil), the Faperj, Fundação de
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