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We reexamine the quantization of structure constants, or equivalently the choice of lattice in the

so-called flat group reductions, introduced originally by Scherk and Schwarz. Depending on this choice,

the vacuum either breaks supersymmetry (SUSY) and lifts certain moduli, or preserves all supercharges

and is identical to the one obtained from the torus reduction. Nonetheless the low-energy effective theory

proposed originally by Scherk and Schwarz is a gauged supergravity that describes SUSY breaking and

moduli lifting for all values of the structure constants. When the vacuum does not break SUSY, such a

description turns out to be an artifact of the consistent truncation to left-invariant forms as illustrated in the

example of ISO(2). We furthermore discuss the construction of flat groups in d dimensions and find that

the Scherk-Schwarz algorithm is exhaustive. A classification of flat groups up to six dimensions and a

discussion of all possible lattices are presented.
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I. INTRODUCTION

Since the original work by Scherk and Schwarz [1,2],
truncations onto left-invariant forms on group manifolds
(and later cosets [3]) have become a standard tool for
generating solutions of higher-dimensional gravity, where
the geometry is a direct product of a lower-dimensional
gravitational background with a manifold that allows for a
transitive action by a group G. Restricting to fields that are
singlets under the group action (which in our conventions
will be taken form the left) ensures that the solutions of the
lower-dimensional theory solve the higher-dimensional
equations of motion. Such reductions are known as
consistent truncations.

The groups in question are typically not compact, and it
is assumed that they admit a suitable lattice action � and
yield compact manifolds G=�.1 However, consistent trun-
cations to left-invariant forms can also be carried out for
noncompact group manifolds, and even for noncompact
groups admitting multiple lattice actions, the truncation is
insensitive to the choice of the lattice.2 Hence there is no
reason to believe that in general the consistent truncation
captures the full low-energy effective theory. It should
rather capture a subset of the light fields. In [5] it
was pointed out that for certain discrete choices for the
structure constants of the group G, the Scherk-Schwarz

reduction does not represent the full low-energy effective
theory of the string compactification.
In the context of supergravity, consistent reductions

on group manifolds do not break any supersymmetry of the
action. For example, reductions on group manifolds of 11-
dimensional or 10-dimensional type II supergravity generate
gauged maximal supergravities in lower dimensions. For
phenomenological applications it is desirable to find lower-
dimensional vacuum solutions of 10- or 11-dimensional
supergravity that break (part of the) supersymmetry and for
which the number of massless fields is as small as possible
(ideally none). Such compactificationswere found by Scherk
and Schwarz in [2], using compact group manifolds that
admit a flat metric for certain values of the four-dimensional
scalar fields in the left-invariant metric.3 This point in scalar
field space then corresponds to a Minkowski vacuum. Away
from the vacuum the curvature becomes negative, which
implies that those scalars that destroy the flatness property
have positive mass. When analyzing the lower-dimensional
gauged supergravity, one finds that most scalars in the left-
invariant metric are indeed stabilized and that, furthermore,
all supersymmetries have been broken. This presents a clear
phenomenological advantage compared to ordinary torus re-
ductions, which give rise to supersymmetric Minkowski so-
lutionswith the fullN ¼ 8multiplet ofmassless excitations,
described by ungauged supergravity.
The aim of this note is to emphasize the importance

of the choice of lattice (or equivalently the quantization of
the structure constants). In particular, for certain choices of
the structure constants, the flat group compactifications
possess exactly the same supersymmetry and the same
massless spectrum as the torus ones. This is due to a simple
mathematical fact, proven by Wolf [6]:
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1Note that by abuse of notation, we denote for simplicity the

division of the group G by the discrete subgroup � from the left
by G=�, though notation suggests that the quotient is from the
right.

2In [4] it was conjectured that in string theory different lattices
should represent different theories at high energies with the same
low-energy dynamics.

3We are using the term Scherk–Schwarz compactifications
only for the flat group reductions.
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Theorem 1: Any Riemannian homogeneous flat space
M is the direct product of the Euclidean plane with the
torus: M ¼ Rm � Tn.

This implies in particular that if M is a compact flat
group manifold whose lattice is preserved by the group
action, then M is a torus (as a Riemannian manifold).
Therefore, at the Scherk-Schwarz vacuum the 10- or
11-dimensional background is a (flat) torus background.
If the gauged supergravity derived from the consistent
truncation to left-invariant forms has less massless scalars
than the effective action of the torus compactification,
this means that some massless scalars of the 10- or
11-dimensional theory have been truncated away.

At this point one would be tempted to try to argue
away the Scherk-Schwarz compactifications as artifacts
of truncation.4 The key notion here is homogeneity.
Any manifold of the form M ¼ G=� is homogeneous as
a topological manifold, as the action of G from the right is
transitive on M. However, the metric on M is only left
invariant, and therefore the action from the right is not
isometric. When the lattice � does not commute with
the generators of the Lie group, the group action from
the left on the manifold M ¼ G=� is not well defined
and M is not homogeneous as a Riemannian manifold
(and therefore the theorem does not apply).

In fact, explicit constructions of flat inhomogeneous
manifolds exist in the literature, notably in [7,8]. All flat
manifolds have a torus as a covering space, and in some
cases a torus acted upon by a torsion-free crystallographic
group (rotations and translations) may serve for viable
Scherk-Schwarz compactifications. The knowledge about
the crystallographic groups is used for a classification of
flat manifolds [9], which we shall discuss in this work.
However, as we will see, many constructions lead to
manifolds that are not parallelizable and that are in many
cases even nonspin or nonorientable. Some of these arise
from higher- dimensional algebras quotiented by a group
that has a continuous as well as a discrete piece. The
existence of an underlying d-dimensional flat solvable
group (with a discrete isotropy) is however the crucial
ingredient in order to do a Scherk-Schwarz reduction on
a d-dimensional manifold, and therefore these cases do not
constitute suitable internal manifolds.

Note that though M might not be homogeneous as a
Riemannian manifold, the reduction on left-invariant forms
ofG can still be well defined and independent of the lattice
�. To bemore precise, it does depend on� only implicitly—
through the structure constants. As we shall show explicitly
in Sec. II, their quantization rule is determined by the
lattice. They, in turn, give rise to the gaugings. In all
cases, regardless of the internal space M being homoge-
neous or not, the reduction gives rise to a consistent

truncation. Whether this truncation represents the low-
energy action is entirely determined by the properties of
�. In the following we will explain this in more detail.
On the group manifold one can build a left-invariant

metric, defined as

ds2G ¼ MðGÞ
ab �

a�b; (1)

with �a being the left invariant Maurer-Cartan forms,

g�1dg ¼ �aTa; (2)

where g is an arbitrary group element and Ta the set of Lie

algebra generators. The bilinear formMðGÞ is any symmet-
ric positive definite matrix that does not depend on the
coordinates of the manifold. In the context of dimensional

reduction, MðGÞ depends on the external coordinates and
contains a set of scalar fields living on the external space.
These scalar fields span the coset GLðn;RÞ=SOðnÞ. When
the physical fluctuations in the vacuum are restricted to
these metrics and all the gauge fields are expanded accord-
ingly in the basis of left-invariant forms, the reduced theory
is a maximal gauged supergravity. For a subclass of these
metrics, the manifold will be flat, but for a generic choice it
will be curved. The vacuum and its moduli space are
defined by the space of flat metrics.5

Whenever the lattice commutes with the group action,
the one-forms dxa are globally defined, and we therefore
have the more familiar family of metrics on a torus,

ds2T ¼ MðTÞ
ab dx

adxb; (3)

where xa are the usual torus angles. Similarly, MðTÞ
ab

describes a GLðn;RÞ=SOðnÞ coset of lower-dimensional
scalar fields. The two sets of metrics coincide in those
metrics that are simultaneously flat and left invariant.
When the rest of the fields of the higher-dimensional

supergravity are expanded in terms of �a respective of
dxa, the lower-dimensional action is gauged respective of
ungauged maximal supergravity. The reason the vacuum
of the lower-dimensional gauged supergravity seems to break
supersymmetry is simply because the Killing spinors of the
higher-dimensional vacuum (e.g., Mink4 � T7) are not left
invariant underG. Sowhich reduction should be chosen? The
answer depends on the purpose of the dimensional reduction.
When used as a solution-generating technique, the left-
invariant truncation and its associated gauged supergravity
will allow one to find nontrivial solutions (with nonconstant
scalars) beyond the usual flat torus solutions. However, when
interested in the low-energy effective theory, one needs to
describe the lightest excitations. These are obviously given
by the second set of metrics, which break the left-invariant
symmetry. A similar problem arises when counting the

4Unfortunately, we succumbed to such a temptation in the first
version of this paper.

5The equations of motion require only Ricci flatness, but
Ricci-flat homogeneous parallelizable manifolds are necessarily
flat [10].
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amount of supersymmetry in the ten-dimensional vacuum
[11]. Clearly, the gauged supergravity analysis can only
capture left-invariant supercharges and so generically misses
the majority of conserved supersymmetries.

This dichotomy could happily be avoided for the groups
for which the corresponding Lie algebra cohomology is
isomorphic to the de Rham cohomology on the compact
manifold G=� obtained by the lattice action on the group.
The isomorphism holds for the so-called completely solv-
able groups, a class that includes all nilpotent groups.
In general, however, there exists only an inclusion map
between the respective cohomologies, and the Betti num-
bers for the Lie algebra cohomology give only a lower
bound for the corresponding numbers for de Rham
cohomology (see for instance [12] for more details). In
particular, flat groups are never completely solvable.

In the following section we give an explicit example that
illustrates these facts, based on the unique three-dimensional
flat groupmanifold ISO(2). A higher-dimensional version of
this example can be found in [5], where it was already noted
that for certain discrete parameters the theory is indeed
represented by the flat torus reduction. Here we show all
the discrete parameters that allow a lattice action and there-
fore a compactification, anddistinguish between thosegiving
rise to homogeneousmanifolds (and therefore tori) and those
that do not. The Scherk-Schwarz reductions (for flat groups)
only represent the low-energy effective action in the latter
case.

In Sec. III we present all the higher-dimensional flat
solvable algebras. We point out that the construction
proposed by Scherk and Schwarz is exhaustive due to a
theorem by Milnor [13]. The corresponding lattices were
also classified algorithmically [9] and constructed explic-
itly up to dimension four and partially in dimension five.
We present a very simple description of these lattices for all
dimensions and show explicitly a few examples in four
dimensions. We furthermore complete the classification in
five dimensions and discuss quantization conditions in
dimension six.

II. THREE-DIMENSIONAL SOLVMANIFOLDS

A. The solvable group ISO(2) and maximal
gauged supergravity

For any group manifold the left-invariant Maurer-Cartan
forms satisfy

d�a ¼ � 1

2
fabc�

b ^ �c; (4)

where fabc are the structure constants of the associated Lie

algebra. Any traceless (unimodular) Lie algebra in three
dimensions can be written as

fabc ¼ "bcdQ
ad (5)

with Q diagonal. If we take Q to be rank two and with two
positive eigenvalues, we get ISO(2),

Q ¼
0 0 0

0 q1 0

0 0 q2

0
BB@

1
CCA; q1; q2 > 0: (6)

The left-invariant Maurer-Cartan forms �a therefore obey

d�1 ¼ 0; d�2 ¼ q1�
1 ^ �3;

d�3 ¼ �q2�
1 ^ �2: (7)

A (local) coordinate representation can be found as follows
[ðx1; x2; x3Þ are real coordinates on ISO(2)]:

�1 ¼ dx1; (8)

�2 ¼ cos ð ffiffiffiffiffiffiffiffiffiffi
q1q2

p
x1Þdx2 þ

ffiffiffiffiffi
q1
q2

s
sin ð ffiffiffiffiffiffiffiffiffiffi

q1q2
p

x1Þdx3; (9)

�3 ¼ �
ffiffiffiffiffi
q2
q1

s
sin ð ffiffiffiffiffiffiffiffiffiffi

q1q2
p

x1Þdx2 þ cos ð ffiffiffiffiffiffiffiffiffiffi
q1q2

p
x1Þdx3: (10)

For notational simplicity, we shall take

q1 ¼ q2 ¼ q: (11)

This can always be realized by rescaling �3 with respect to
�2 (i.e., rescaling x3 with respect to x2). The Lie algebra is
solvable of degree one. The associated group manifold is
therefore called a solvable manifold.
The cohomology of the left-invariant p-forms, denoted

with Betti numbers bLp, is

bL0 ¼ 1; bL1 ¼ 1; bL2 ¼ 1; bL3 ¼ 1; (12)

where the generator of the first cohomology is �1. This can
differ from the dimensions of the de Rham cohomology
groups, as we will see, but it always gives a lower bound on
the de Rham Betti numbers. Before we further discuss this
and the related issue of compactness, let us describe the
reduction to maximal gauged supergravity.
The left-invariant metric on this manifold is given by

ds2G ¼ MðGÞ
ab �

a�b; (13)

where MðGÞ is any symmetric positive definite matrix and
hence inside GLð3; RÞ=SOð3Þ. The curvature vanishes for
the following four-dimensional family of metrics:6

MðGÞ ¼
aþ c2þd2

b c d

c b 0

d 0 b

0
BB@

1
CCA; a; b > 0: (14)

Finally, we briefly review the rough structure of the
compactified theory in either case, i.e., when the fields
are expanded in the left-invariant basis, and when the fields

6Note that the parameters c and d can be absorbed into the
definition of �2 and �3 by defining the equivalent left-invariant
one-forms ~�2 ¼ �2 þ c

b �
1 and ~�3 ¼ �3 þ d

b �
1, which also

fulfill (9) and (10). Therefore, the parameters c and d correspond
to a different choice of left-invariant one-forms.
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are expanded in the one-forms dxa. The latter is only
possible when the one-forms are globally defined, which
is the case only for certain quantization conditions, as we
will see in detail later. Wewill focus on the reduction of the
metric sector; the dilaton and form fields can be worked
out accordingly. When the fields are expanded in the left-
invariant basis, the scalar potential and its supersymmetric
solutions have been worked out in [14]. If we start in 10
dimensions then the metric ansatz is

ds210 ¼ e2�vds27 þ e2�vMabð�a þ AaÞð�b þ AbÞ; (15)

with �a either being �a or dxa, Aa are Kaluza-Klein
vectors, and the numbers �, � are chosen such that we
end up in lower-dimensional Einstein frame with canoni-
cally normalized fields, � ¼ �5�=3 and �2 ¼ 3=80. The
reduced action is

S ¼
Z ffiffiffiffiffiffiffi�g

p �
R� 1

2
ð@vÞ2 þ 1

4
TrðM�1ðDMÞM�1ðDMÞÞ

� 1

4
e�2ð���ÞvMabF

a � Fb � V

�
; (16)

where we have for the truncation to left-invariant modes

M ¼ MðGÞ and

DMðGÞ
ab ¼ @MðGÞ

ab þ 2fdcðaM
ðGÞ
bÞdA

c
ðGÞ;

Fa
ðGÞ ¼ dAa

ðGÞ þ 2fabcA
b
ðGÞ ^ Ac

ðGÞ:
(17)

The scalar potential in seven dimensions can be written as

V ¼ 1

2
e2ð���Þv½2TrðQMðGÞQMðGÞÞ � TrðQMðGÞÞ2�: (18)

In the example of ISO(2), Eq. (7) gives Q ¼ diagð0; q; qÞ,
so that V gives a mass to MðGÞ

23 and MðGÞ
22 �MðGÞ

33 .

Furthermore, the scalars MðGÞ
12 and MðGÞ

13 are eaten by the

Kaluza-Klein vectors A2
ðGÞ and A3

ðGÞ, which become in turn

massive. Thus, the Minkowski vacuum is indeed parame-

trized by the family (14), whereMðGÞ
12 andMðGÞ

13 just denote

physically equivalent choices of left-invariant one-forms

and the massless fieldsMðGÞ
11 ,M

ðGÞ
22 þMðGÞ

33 , and A
1
ðGÞ would

coincide with their counterparts on the torus if the metric

MðTÞ can be defined. The massive modesMðGÞ
23 andMðGÞ

22 �
MðGÞ

33 as well as the massive vectors A2
ðGÞ and A

3
ðGÞ, however,

would correspond to the first massive states in the Kaluza-
Klein tower of the torus. Whether the massless states of the
torus are there or not determines if the truncation to left-
invariant modes represents the low-energy limit of the
compactification. As we shall discuss now, the answer to
this question depends on the choice of lattice.

B. Lattices for ISO(2)

The group ISO(2) admits several lattices, whose action
yields compact manifolds [11,12]. Any such resulting
manifold G=� is called a solvmanifold.

For the simplest class of equivalent lattices, the coordi-
nates x2 and x3 can, without loss of generality, be chosen to
have unit length; i.e., we quotient by the usual torus lattice
so that x2 � x2 þm2 and x3 � x3 þm3 for integersm2 and
m3. The identification involving the coordinate x1 is more
subtle. In general one can take

x1 ! x1 þm1; x2 ! cos ðqm1Þx2 � sin ðqm1Þx3;
x3 ! sin ðqm1Þx2 þ cos ðqm1Þx3; (19)

with integer m1. The identification (19) leaves the
one-forms�i, i ¼ 1, 2, 3, invariant, but it cannot be defined
for arbitrary q. In other words, q obeys a quantization rule,
which for the simplest class of lattices reads

q ¼ 2�k (20)

for some integer k. Such a lattice does not break the group
ISO(2); i.e., M ¼ G=� is homogeneous as a Riemannian
manifold. One the other hand, the identification (19) just
gives the torus lattice, in agreement with Wolf’s theorem.
This can be seen by the fact that x2 and x3 also define
globally defined one-forms dx2 and dx3. Therefore, the de
Rham cohomology groups are the ones of the three-torus
[bi ¼ ð1; 3; 3; 1Þ] and larger than the Lie cohomology of
ISO(2) such that the consistent truncation to left-invariant
forms misses some massless fields in this case. In other
words, we could now study the family of globally defined
flat torus metrics,

ds2T ¼ MðTÞ
ab dx

adxb; (21)

with MðTÞ being any symmetric positive definite matrix
[living in GLð3; RÞ=SOð3Þ]. A generic metric in this
family does not possess the original ISO(2) symmetry.
If one reduces now on the one-forms dxa, we find that

there are no gaugings in four dimensions, i.e., DMðTÞ ¼
@MðTÞ, Fa

ðTÞ ¼ dAa
ðTÞ, and the consistent truncation leads

to maximal ungauged supergravity with a maximally
supersymmetric vacuum.
For further clarification let us now discuss supersymme-

try for the ISO(2) truncation. The left-invariant spinors on
the internal space are

�1ðGÞ ¼
1

0

 !
; �2ðGÞ ¼

0

1

 !
; (22)

for the vielbein �i. These spinors are not covariantly
constant, since the connection has a nontrivial component
!2

3 ¼ �q�1. Note that these spinors are related to the

left-invariant one-forms by

�a ¼ �a
ij ��

j
ðGÞ�b�

i
ðGÞdx

b: (23)

On the other hand, for the same vielbein the spinors
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�1ðGÞ ¼
cos

�
1
2qx

1

�

i sin

�
1
2qx

1

�
0
BBB@

1
CCCA; �2ðGÞ ¼

i sin

�
1
2qx

1

�

cos

�
1
2qx

1

�
0
BBB@

1
CCCA; (24)

are covariantly constant. In the Scherk-Schwarz reduction
to left-invariant modes, they are truncated away. However,
for the lattice defined by (19) and (20), these spinors are
well defined. This shows that the Minkowski vacuum
preserves 32 supercharges in the ten-dimensional theory.
From the torus point of view, the spinors (24) are the
massless modes, while the spinors (22) are (massive)
Kaluza-Klein spinor modes.

The situation is different for lattices � that lead to
inhomogeneous solvmanifolds M ¼ G=�. There are
four topologically distinct cases [9]. The first two classes
of lattices still have an identification of the form (19) for
x1, but now the quantization condition (20) is changed to

q ¼ 2�kþ 2�=n; (25)

where n ¼ 2, 4 labels the two topologically distinct cases.
Under the identification (19) the generators of ISO(2) that
shift x2 or x3 are rotated into each other for n ¼ 4 (and
each inverted for n ¼ 2), so that they are not well defined
any more on the solvmanifold.7 Therefore, the manifold
does not allow for any transitive group action from the left
and thus is not homogeneous (as a Riemannian manifold)
any more. In this way it evades Theorem 1.

The other two topologically distinct solvmanifolds have
the identifications

x1 ! x1 þm1;

x2 ! cos ðqm1Þx2 � sin ðqm1Þx3 þm2 � 1

2
m3;

x3 ! sin ðqm1Þx2 þ cos ðqm1Þx3 þ
ffiffiffi
3

p
2

m3;

(26)

with mi being integers and the quantization condition in
(25) now being n ¼ 3 and n ¼ 6 for the two topologically
distinct manifolds. Once more, (26) does not leave the
generators of ISO(2) invariant, therefore yielding an
inhomogeneous manifold. In (26) the lattice spanned by
m2 and m3 is hexagonal, to reflect the invariance under
Z6. Alternatively, one can take linear combinations of xu,
u ¼ 2, 3, to bring (26) into the integral form

x1 ! x1 þm1; xu ! ðBm1

n Þuvxv þmu; (27)

where we defined

Bn ¼ ð�1Þn 0 �1

1 1

 !
: (28)

Note that each of these four solvmanifolds can be ob-
tained from the torus by taking a freely acting Zn quotient.
This Zn preserves the left-invariant one-forms and
therefore, one can still use the ISO(2) reduction of
Scherk and Schwarz on the group to obtain a maximal
gauged supergravity, which is then preserved by the Zn

quotient (the Z4 case is discussed in detail in [7,8]).
However, here the one-forms dx2, dx3 are not globally
defined, or in other words they are not preserved by the
quotient and are therefore projected out from the spectrum.
Moreover, the covariantly constant spinors (24) are not
well defined either on the inhomogeneous solvmanifold
[i.e., for (25)]. Therefore, the ten-dimensional Minkowski
vacuum is nonsupersymmetric, and the Betti numbers of
the solvmanifold coincide with the Betti numbers of group
cohomology (and are one). From the torus perspective, the
Z4 action requires that the two-torus in the x2-x3 plane to
be rectangular, while the Z3 and Z6 action require the torus
to span an angle that is a multiple of �=3, and therefore the
modulus corresponding to its complex structure is truly
fixed. An exception is theZ2 action, which still projects out
the Killing spinors so that the vacuum is nonsupersymmet-
ric, but does not fix the complex structure of the fiber torus.
Apart from the cases discussed so far, there are two other

three-dimensional flat solvmanifolds, which have first Betti
number equal to two [9]. Both admit a one-dimensional
circle fiber that is invertedwhen going around a one-cycle in
the torus base. One of them is just the Klein bottle times a
circle, while for the other example theKlein bottle is fibered
over the circle [15]. Therefore, both examples are nonor-
ientable, thus not parallelizable, and no Scherk-Schwarz
reduction is possible.
The lessonwe learn for the torus quantization (20) also has

some consequences for the inhomogeneous solvmanifolds.
In particular, if in (25) we take k to be nonzero, the N ¼ 8
gauged supergravity will not include the lightest massive
modes of the background, but only the higher Kaluza-Klein
states. Therefore, the physically reasonable quantization
charges for the four nontrivial solvmanifolds are

q ¼ 2�=n; (29)

for n ¼ 2, 3, 4, 6. As discussed above, also the n ¼ 2 case
misses some massless fields in the Scherk-Schwarz
reduction.
Interestingly, the above quantization condition coin-

cides with the quantization conditions for S-duality trans-
formations in IIB supergravity [16]. This comes about as
follows. Maximal supergravity in nine dimensions has an
SLð2;RÞ symmetry. If we reduce this theory over a circle
and at the same time perform a Scherk-Schwarz SLð2;RÞ
twist, we obtain eight-dimensional gauged supergravity
(SUGRA). If the twist corresponds to SOð2Þ 2 SLð2;RÞ,

7In other words, the lattice does not commute with the
generators of the Lie group. Only if the lattice is in the center
of the group, the manifold can be homogeneous (as a
Riemannian manifold). This is only true for the torus, as stated
by Theorem 1.
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then the gauged supergravity can be seen as a obtained
from an ISO(2) compactification of 11-dimensional su-
pergravity. Alternatively, one can regard the SLð2;RÞ in
nine dimensions as inherited from IIB S duality. The
quantization of the S-duality symmetry then coincides
with the geometric quantization coming from the ISO(2)
lattice described above.

III. HIGHER-DIMENSIONAL SOLVMANIFOLDS

It is natural to ask about the higher-dimensional gen-
eralizations. It turns out that all flat groups are solvable
and the associated manifolds are flat solvmanifolds.
A classification technique for their possible lattices has
been found in [9]. As for the tree-dimensional case, we
shall first discuss the flat groups and then the possible
lattice actions.

A. The classification of flat groups

A classification of flat groups exists; for it, one can
consult for instance [17]. As it turns out, this classification
is based on a technique, identical to the prescription given
by Scherk and Schwarz in [1,2]. As a consequence, one
may prove that the method suggested by Scherk and
Schwarz is in fact exhaustive. We shall now review some
relevant facts. The classification of flat groups relies on a
theorem by Milnor [13].

Theorem 2: A Riemannian Lie Group G is flat if and
only if its Lie algebra g (endowed with an inner product)
splits as an orthogonal direct sum g ¼ a � n, where n
is an Abelian ideal (the nilradical) and a is an Abelian
subalgebra such that adX is antisymmetric for X 2 a.

In other words, the Lie group consists of translations
generated by Xa 2 n which are rotated into each other by
transformations generated by elements Xu 2 a. From
Theorem 2 we see that the Lie algebra must be of the form

½Xa; Xb� ¼ 0 ¼ ½Xu; Xv�; (30)

½Xa; Xu� ¼ ½Ta�uvXv; (31)

where TT
a ¼ �Ta for all a, and they are sometimes known

as the ‘‘twist matrices.’’ This algebra automatically satis-
fies the Jacobi identities and is solvable. The associated
group manifold is flat when endowed with the unit metric if
expressed in terms of the associated Maurer-Cartan forms.
The Xa and Xu form, respectively, the base and fiber of the
Scherk-Schwarz construction.

In what follows we put this construction in a practical
context and classify the algebras up to dimension six. For
that purpose it is useful to recall the normal form of an
antisymmetric matrix T. The rank r is necessarily even
dimensional, and the normal form is block diagonal with
r=2 blocks of the kind

0 �1

1 0

 !
; (32)

and the rest is zero.
In three dimensions the algebra of ISO(2) is obviously

the unique (non-Abelian) Lie algebra of a flat group since
the nilradical must be two dimensional, and the single
generator in the complement a acts as a rotation on n.
This also exhausts all possibilities in four dimensions.
First consider the case when the nilradical is three
dimensional. Due to the normal form of a 3� 3 antisym-
metric matrix, this algebra must be ISOð2Þ �Uð1Þ. Then
consider the case when the nilradical is two dimensional.
We find only the same case again since there is only
(up to rescalings) a single antisymmetric 2� 2 matrix.
In five dimensions we find more possibilities. First

consider the case of the four-dimensional nilradical.
There are two algebras depending on the rank of the single
antisymmetric matrix. If its rank is two, the algebra is
ISOð2Þ �Uð1Þ2. If its rank is four, this defines a new
algebra

½X1; Xu� ¼ Tu
vXv; ½Xu; Xv� ¼ 0; (33)

where we have

T ¼

0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

0
BBBBB@

1
CCCCCA: (34)

For any nilradical of smaller dimension, we again find only
the algebra ISOð2Þ �Uð1Þ2.
In six dimensions, we again find a new algebra. First

assume the nilradical to be five dimensional. If T has
rank four or two, we have the above two algebras plus
an Abelian direction. If the nilradical is, however, four
dimensional, there is a new example,

½X1; Xu� ¼ ½T1�uvXv; ½Xu; Xv� ¼ 0;

½X2; Xu� ¼ ½T2�uvXv; ½X1; X2� ¼ 0;
(35)

where we defined

T1 ¼

0 �1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA; T2 ¼

0 0 0 0

0 0 0 0

0 0 0 �1

0 0 1 0

0
BBBBB@

1
CCCCCA: (36)

This is nothing but ISOð2Þ � ISOð2Þ. Again for smaller
nilradicals we do not generate new examples.
With Milnor’s Theorem this classification is easily

extended to higher dimensions. In the following we will,
however, focus on the more difficult question, namely
which lattices, and therefore charge quantizations, exist
for these groups.
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B. The lattices of flat groups

After discussing the solvable groups of dimension six or
less, let us now discuss their possible lattices. A classifi-
cation of lattices in dimensions three and four as well as a
partial classification in dimension five has been performed
in [9]. In the following, we present the lattices and the
corresponding solvmanifolds.

A general lattice identifies the group coordinates of a flat
solvable manifold of dimension nb þ nf as [9]

xa ! xa þma;

xu !
�Y

a

ðBaÞma

�
u

vx
v þmaMu

a þ smu;
(37)

where xa, a ¼ 1; . . . ; nb, are identified as the coordinates
on the base torus and xu, u ¼ 1; . . . ; nf, as those on the

‘‘fiber torus’’ and ma and mu are integers that parametrize
the lattice.8 Moreover, the lattice is specified by
ðBa;M

u
a; sÞ, where the Ba span a finite Abelian subgroup

of Glðnf;ZÞ.
The form (37) is different from the one used for the

classification of solvable groups. There the rotations of
the fiber preserved lengths and therefore are elements in
SOðnfÞ, while for the lattices it is rather convenient to

assume a rectangular lattice where the linear transforma-
tions are not pure rotations, but elements in Glðnf;ZÞ.
For instance (26) represents the frame where the fiber is
only twisted by rotations, while (27) corresponds to the
frame of (37).

Note that the Ba have determinant one or minus one. To
guarantee orientability, the Ba should be within Slðnf;ZÞ.
Ma are vectors with integer entries and s is a (nonvanishing)
integer. The simplest example of a nonorientable solvma-
nifold is the Klein bottle in two dimensions, where
B1 ¼ �1 inverts the fiber. We saw that in three dimensions
all nonorientable solvmanifolds are straightforward
generalizations of the Klein bottle. In four dimensions
and higher, when the fiber is at least three dimensional,
the nonorientable solvmanifolds become richer, as the Ba

combine an involution in some direction and some Zn

action in the others. An example of a nonorientable
solvmanifold in four dimensions has

B1 ¼
�1 0 0

0 0 1

0 �1 0

0
BB@

1
CCA; (38)

which generates a Z4 subgroup of Glð3;ZÞ. In general, the
Ba 2 Glðnf;ZÞ generating nonorientable groups can be

understood as composed of involutions in one direction
and generators of an Abelian subgroup in Glðnf � 1;ZÞ.

Nonorientable solvmanifolds are a subclass of the
solvmanifolds that are not parallelizable. If a solvmanifold

is not parallelizable, it cannot be of the form G=� for a
lattice �. Such solvmanifolds are constructed from higher-
dimensional groups (see for instance [15]) and do not allow
for a standard Scherk-Schwarz reduction to gauged N ¼ 8
supergravity. An example of a five-dimensional orientable
but nonparallelizable manifold has been given in [18] and
is of the form (37) with a two-dimensional base, where
Ma ¼ 0, s ¼ 1 and

B1 ¼
1 0 0

0 �1 0

0 0 �1

0
BB@

1
CCA; B2 ¼

�1 0 0

0 �1 0

0 0 1

0
BB@

1
CCA: (39)

This manifold is not parallelizable and is not spin, as
discussed for example in [18]. In the following we will
restrict ourselves to the parallelizable cases in [9] that
allow for a Scherk-Schwarz reduction.
In four dimensions, all nontrivial parallelizable ex-

amples have a two-dimensional fiber and are therefore
very similar to the three-dimensional solvmanifolds we
discussed in Sec. II. If Ma ¼ 0 (and s ¼ 1), the manifold
is indeed just a three-dimensional solvmanifold times a
circle. The cases with nonzeroMa (and s � 1) instead give
fibrations of three-dimensional solvmanifolds over a circle.
They have the same Betti numbers and Scherk-Schwarz
reductions (and the same charge quantizations) as the cases
withMa ¼ 0 and therefore give the same maximal gauged
supergravity. However, the string spectrum on these spaces
can differ.
In five dimensions, we again find the examples that lift

from three dimensions and might involve some additional
fibrations with Ma � 0 (and s � 1), which have first Betti
number equal to three. However, there are also new ex-
amples with first Betti number equal to one, which have not
been classified in [9]. For these cases, the base is one
dimensional and M1 ¼ 0. Therefore, these solvmanifolds
are completely defined by the matrix B1 that generates a
finite subgroup of Slð4;ZÞ. The finite subgroups of Glð4Þ
have been classified in [19]. For the discussion of five-
dimensional solvmanifolds of first Betti number b1 ¼ 1, it
suffices to consider only cyclic groups, as there is only one
rotation B1 in the four-dimensional fiber. Furthermore, if B
has an eigenvector with eigenvalue one, this solvmanifold
has Betti number larger than one and therefore has already
been discussed in [9]. In Table I we give the relevant cyclic
subgroups of Slð4Þ and possible embeddings of their gen-
erator into Slð4Þ. Moreover, any subgroup of one of the
groups given in Table I also gives rise to a solvable mani-
fold. This means we can realize any group Zn with n ¼ 2,
3, 4, 5, 6, 8, 10, 12. All of these cyclic subgroups are finite
subgroups of the five-dimensional flat group (33). For all
these cases, a Scherk-Schwarz reduction to five dimensions
on this flat group is possible. The quantization condition is
in five dimensions again given by (29), but now with
n ¼ 2, 3, 4, 5, 6, 8, 10, 12.8All compact solvmanifolds are nilmanifolds fibered over tori.
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In higher dimensions, the classification of lattices
becomes more and more difficult. The reason for the
existence of an exhaustive classification in up to five dimen-
sions is the knowledge of finite Abelian subgroups of SLðnfÞ
fornf ¼ 2, 3, 4.A similar classification in higher dimensions

would give an exhaustive list of quantization conditions for
the charges in a Scherk-Schwarz compactification. We will
not attempt to do a full classification for dimension six. Let
us, however, remark that in addition to the cases that come
from lower dimensions and are only dressed by some extra
vectorsMa � 0, in six dimensions we find new flat solvma-
nifolds that correspond to the group ISOð2Þ � ISOð2Þ. These
are generalizations of the product of two three-dimensional
solvmanifolds with extra shifts Ma. Therefore, we do not
expect the quantization conditions for each ISO(2) factor
to change from (29) with n ¼ 2, 3, 4, 6, as long as the
solvmanifold is kept parallelizable.

The classification of flat groups for Scherk-Schwarz
reductions generalizes to higher dimensions in a straight-
forward way. Moreover, the physical quantization condi-
tions should always be of the form (29). In particular, if
the charge quantization is similar to (20), we expect the
manifold to be a torus.

IV. CONCLUSIONS

The above considerations illustrate that a consistent trun-
cation to left-invariantmodes does not need to coincidewith

the low-energy effective action of a generic group or coset
manifold compactification. The reason for this is that the
left-invariant modes might not be the lightest set of fields.
Similarly, the gauged supergravity analysis for the number
of preserved supersymmetries of a higher-dimensional so-
lution will only give a lower bound on the actual number of
supersymmetries since the Killing spinors do not need to be
left invariant. The proposal of Scherk and Schwarz [2] to
use flat group manifold compactifications to break super-
symmetry and stabilize moduli therefore necessarily re-
quires inhomogeneous solvmanifolds M ¼ G=�, for
which the lattice does not commute with the generators of
the group, and for which the left-invariant forms coincide
with the basis of de Rham cohomology. As we discussed
here, such constructions are based on particular choices of
lattice, or equivalently of the quantization of the structure
constants of the flat group. All flat groups also admit a
lattice that does commute with the group generators. The
resulting compact space is homogeneous, but is a torus. In
these cases, the supersymmetry breaking and moduli stabi-
lization in the reduced gauged supergravity are an artifact of
the truncation, and the ‘‘stabilized moduli’’ are simply
massive Kaluza-Klein states of the torus.
We have discussed here the flat group compactifications

only. Similar considerations apply to more general com-
pactifications with fluxes whenever the internal space is
obtained by a lattice action on a group manifold G for
which the Lie group and de Rham cohomologies differ.

TABLE I. Generators of cyclic subgroups of SLð4Þ that have no eigenvector with eigenvalue
one; they are labeled following the nomenclature of [19]. In some cases there are multiple,
equivalent generators.

Group Generator Group Generator

Z2 I0 ¼

0
BBB@
�1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCCA Z8 A1 ¼

0
BBB@

0 0 �1 0
0 0 0 �1
0 1 0 0
�1 0 0 0

1
CCCA

Z12 C1 ¼

0
BBB@
0 0 1 1
0 0 0 �1
0 1 0 0
1 0 0 0

1
CCCA Z6 K110 ¼

0
BBB@
1 0 0 �1
1 �1 0 �1
0 0 �1 �1
1 0 0 0

1
CCCA

Z10 L1 ¼

0
BBB@

1 1 1 1
�1 0 0 0
0 �1 0 0
0 0 �1 0

1
CCCA Z6 S1 ¼

0
BBB@

1 1 0 0
�1 0 0 0
0 0 0 �1
0 0 1 1

1
CCCA

Z4 D1 ¼

0
BBB@

0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

1
CCCA S2 ¼

0
BBB@

1 0 0 1
0 0 �1 0
0 1 1 0
�1 0 0 0

1
CCCA

D2 ¼

0
BBB@

0 0 1 0
0 0 0 �1
�1 0 0 0
0 1 0 0

1
CCCA S3 ¼

0
BBB@

1 0 1 0
0 0 0 �1
�1 0 0 0
0 1 0 1

1
CCCA

M. GRAÑA et al. PHYSICAL REVIEW D 88, 085018 (2013)

085018-8



On the contrary, for G=� where G is completely solvable,
such a problem does not arise and one can hope that the
gauged supergravity captures all massless modes and all
unbroken supercharges in a vacuum.

Alternatively, the truncation to left-invariant modes can
be realized as a consistent projection within string theory,
by imposing certain boundary conditions in the compact
directions and ‘‘disturbing the symmetry’’ between the
world sheet bosons and fermions, as has been studied in
[20]. However, in general, this leads to theories whose
supergravity limit might be different than those obtained
by Scherk-Schwarz reduction.
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