
Twisted-mass potential on the non-Abelian string world sheet induced by bulk masses

Pavel A. Bolokhov,1 Mikhail Shifman,2 and Alexei Yung2,3

1Theoretical Physics Department, St. Petersburg State University, Ulyanovskaya 1, Peterhof, St. Petersburg, 198504, Russia
2William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA

3Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia
(Received 24 August 2013; published 11 October 2013)

We derive the twisted-mass potential in N ¼ ð2; 2Þ CPN�1 theory on the world sheet of the non-

Abelian string from the bulk N ¼ 2 theory with massive (s)quarks by determining the profile functions

of the adjoint fields. Although this potential was indirectly found some time ago, this is the first direct

derivation from the bulk. As an application of the adjoint field profiles, we compute and confirm the j��j
potential (where � is a scalar field in the gauge supermultiplet), which arises in the effective two-

dimensional theory on the string due to the supersymmetry breaking bulk mass term �A2 for the adjoint

matter.
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I. INTRODUCTION

Phenomena on the non-Abelian flux tubes (strings) in
supersymmetric QCD, such as 2D-4D correspondence
(see, e.g., the review publications [1,2]) attract exceeding
attention now [3]. A wide variety of nonperturbative
effects was addressed in theories which support such
flux tubes [4]. Supersymmetry plays a special role in a
number of aspects. Typically, the flux tubes require the
existence of scalar fields. N ¼ 2 supersymmetric QCD
supplies both scalar quarks and adjoint scalars. In addi-
tion, the power of supersymmetry manifests itself in
providing a setting for obtaining exact results (see, e.g.,
Refs. [5–8]).

The string becomes non-Abelian if it gives rise to the
so-called orientational moduli living on its world sheet
[9–12]. In the context of gauge theories, this typically
requires UðNÞC � SUðNÞF spontaneously broken down to
color-flavor locked diagonal SUðNÞCþF. Then the orienta-
tional moduli span a CPN�1 space, and the latter becomes
the target space of the two-dimensional theory on the world
sheet [2].

A soft breaking of N ¼ 2 supersymmetry down to
N ¼ 1 in the bulk gives rise to a richer set of theories
on the string world sheet. For the most part in this paper,
however, we will deal with the N ¼ 2 gauge theory.

When nonvanishing (s)quark mass parameters are intro-
duced in the bulk theory, the global SUðNÞCþF group is
explicitly broken, and, strictly speaking, the non-Abelian
strings are no longer. The moduli parameters are lifted, and
a shallow potential is generated. The only true minima are
the so-called ZN strings. In terms of the two-dimensional
world sheet theory, these strings are described by the vacua
of the two-dimensional potential.

The fact of its existence and the form of this potential
has been known for a long time [13,14]. Indeed, the only
form compatible with N ¼ ð2; 2Þ supersymmetry in two
dimensions is

Vtwisted-mass
1þ1 ¼ X jmjj2jnjj2 �

�����Xmjjnjj2
�����2: (1.1)

Here mj are the mass parameters and nj the orientational

(quasi)moduli. On geometrical grounds, this potential was
found in Ref. [12] by Hanany and Tong. Derivation of this
potential from the bulk theory was only carried out in the
SU(2) case [11]. As we will discuss below, the quark mass
parameters induce a nonvanishing expectation value for the
adjoint fields. An ansatz was proposed for the adjoint field

aSUð2Þ in Ref. [11], the substitution of which into the bulk
action produced the expected result (1.1). This paper ex-
tends the SUð2ÞC � SUð2ÞF bulk theory to the general case
of SUðNÞC � SUðNÞF. We propose an ansatz for the ad-
joint fields in the general case for the first time. We confirm
our expressions by substituting the adjoints into the bulk
action. This procedure produces a consistent expression
both for the two-dimensional action and for its normaliza-
tion integral and in this way provides us with a direct
derivation of the world sheet potential (1.1).
As another application of our ansatz for the adjoint

fields, we are able to confirm the potential

V1þ1 ¼ 4�j�Um��Nð
ffiffiffi
2

p
�þmÞj; (1.2)

arising on the world sheet [15] once the N ¼ 2 super-
symmetry in the bulk is broken by a quadratic superpoten-
tial for the adjoint superfields�A2 down toN ¼ 1. Here
� is a scalar field of the gauge multiplet in the world sheet
CPN�1 model, m is the average quark mass, while �U and
�N are the mass terms of the bulk U(1) and SUðNÞ adjoint
matter, respectively. This potential becomes nontrivial
once the quark masses are nondegenerate and breaksN ¼
ð2; 2Þ world sheet supersymmetry down to N ¼ ð0; 2Þ.
For the case of a single-trace bulk deformation operator

(i.e., �U ¼ �N) this potential acquires a particularly
simple form:
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V1þ1 ¼ 4�j ffiffiffi
2

p
�N�j: (1.3)

Although our derivation is valid only to the linear order in �, it is carried out starting directly from the bulk theory.

II. ADJOINT FIELDS

We start with the N ¼ 2 Supersymmetric Quantum Chromodynamics with Nf ¼ Nc ¼ N flavors transforming

according to the fundamental representation of the gauge group Uð1Þ � SUðNÞ. In order for the theory to support non-
Abelian strings, we introduce the Fayet–Illiopolous (FI) terms into the theory. The bosonic part of the Lagrangian is as
follows:

L ¼ 1

2g22
TrðFSUðNÞ

�� Þ2 þ 1

g21
ðFUð1Þ

�� Þ2 þ 2

g22
TrjD�a

SUðNÞj2 þ 4

g21
j@�aUð1Þj2

þ TrjD�qj2 þ TrjD�
�~qj2 þ Vðq; ~q; aUð1Þ; aSUðNÞÞ: (2.1)

Here FSUðNÞ
�� and FUð1Þ

�� are the field strengths of the non-Abelian and Abelian gauge fields, correspondingly, and aSUðNÞ and
aUð1Þ are the scalar adjoint fields (scalar superpartners of the gauge fields). The quark fields q and ~q which comprise the
quark hypermultiplet are written in the color–flavor matrix notation (the first index of such a matrix refers to color and the
second to flavor). The potential in the theory with N ¼ 2 supersymmetry is

Vðq; ~q; aUð1Þ; aSUðNÞÞ ¼ g22 Tr

�
1

g22
½aSUðNÞ �aSUðNÞ� þ 1

2
Tsðq �q� �~q ~qÞ

�
2 þ g21

8
ðTrðq �q� �~q ~qÞ �N�3Þ2 þ g22 TrjTsq~qj2

þ g21
2

��������Trq~q�N

2
�

��������2þ2Tr

��������ðaUð1Þ þ aSUðNÞÞqþ q � m̂ffiffiffi
2

p
��������2þ2Tr

��������ðaUð1Þ þ aSUðNÞÞ �~qþ �~q � m̂ffiffiffi
2

p
��������2

:

(2.2)

Here Ts takes a traceless part of an expression. Parameter
�3 denotes the (real) D-term FI parameter, while � is the
(complex) F-term FI parameter. When the N ¼ 2 super-
symmetry is not broken, these parameters are equivalent,
and only one is necessary. Wewill therefore only use �3 but
will still call it � for brevity. Matrix m̂ here denotes the
diagonal matrix of the quark mass parameters:

m̂ ¼

m1

m2

. .
.

mN

0
BBBBBB@

1
CCCCCCA: (2.3)

Because this is a matrix in the flavor space, it multiplies
matrix q on the right. For the theory to be accessible
semiclassically, we canonically assume the FI parameter
to be large, ffiffiffi

�
p � �SUðNÞ; m:

A. Zero masses

We start from the case in which the (s)quark masses
vanish. Again, in this section we assume the FI F-term
equal to zero, with the D-term denoted as

�3 � � � 0:

When the bare quark mass matrix vanishes,

m̂ ¼ 0;

the theory supports non-Abelian string solutions. We will
not review the perturbative spectrum of this model, refer-
ring the reader to Ref. [2]. We will just point out that the
r ¼ N vacuum of the potential (2.2) can always be chosen
in the color-flavor locked form:

hqkAi ¼ ffiffiffi
�

p 1 0 . . .

. . . . . . . . .

. . . 0 1

0
BB@

1
CCA; h~qAki ¼ 0: (2.4)

As currently we hold m̂ ¼ 0, the adjoint fields vanish in
this vacuum,

haSUðNÞi ¼ haUð1Þi ¼ 0: (2.5)

The string solutions are found as profile functions of the
quark and gauge fields, which tend to the vacuum values at
the infinity, but with a winding of one of their components
in the plane perpendicular to the string—that is what keeps
the string stable. The string ansatz for the scalar fields is

q ¼ �q ¼ �; ~q ¼ �~q ¼ 0; aUð1Þ ¼ aSUðNÞ ¼ 0:

(2.6)

The quark matrix � is described in terms of the profile
functions �1ðrÞ and �2ðrÞ,

�ðrÞ ¼ �2 þ n �n � ð�1 ��2Þ: (2.7)

We chose here a singular gauge in which the quarks do not
wind at all, but the gauge fields do, for which purpose they
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have to be singular at the core of the string r ¼ 0.
The ansatz for the gauge fields is

ASUðNÞ
j ¼ �jk

xk

r2
fNðrÞðn �n� 1=NÞ;

AUð1Þ
j ¼ 1

N
�jk

xk

r2
fðrÞ:

(2.8)

These string profiles obey the first-order Bogomol’nyi-
Prasad-Sommerfield (BPS) equations

@r�1ðrÞ ¼ 1

Nr
ðfðrÞ þ ðN � 1ÞfðrÞÞ�1ðrÞ;

@r�2ðrÞ ¼ 1

Nr
ðfðrÞ � fNðrÞÞ�2ðrÞ;

@rfðrÞ ¼ Ng21
4

rð�1ðrÞ2 þ ðN � 1Þ�2ðrÞ2 � N�Þ;

@rfNðrÞ ¼ g22
2
rð�1ðrÞ2 ��2ðrÞ2Þ;

(2.9)

supplemented with the appropriate boundary conditions

�1ð0Þ¼0; �2ð0Þ�0; �1ð1Þ¼ ffiffiffi
�

p
; �2ð1Þ¼ ffiffiffi

�
p

;

fNð0Þ¼1; fð0Þ¼1; fNð1Þ¼0; fð1Þ¼0: (2.10)

The latter conditions at infinity ensure that the fields tend to
their vacuum values, while the conditions in the string core
are needed for the finiteness of the string tension [and do
not restrict the value of �2ð0Þ other than that it cannot
vanish].

The above ansatz describes a family of solutions, labeled
by the CPN�1 moduli variables nl,

~n 2 CN; j ~nj2 ¼ 1: (2.11)

These so-called orientationalmoduli ‘‘rotate’’ the solution
in the SUðNÞ � Uð1Þ space. Each solution actually
breaks the color-flavor group SUðNÞCþF down to
SUðN � 1Þ � Uð1Þ. Thus, there are as many as

SUðNÞ
SUðN � 1Þ � Uð1Þ � CPN�1 (2.12)

solutions, which are labeled by the vector ~n. Note that in
the ansatz (2.6), (2.7), and (2.8), in our notation, n �n is a
matrix.

It is these moduli that give the string the name non-
Abelian. They live on this string. In order to see this, one
allows them to be weekly dependent on t and z (longitudi-
nal) coordinates. Then it can be shown [2] that the bulk
theory induces a ‘‘live’’ action for ~n on theworld sheet of the
strings. Theway this happens is that when t, z dependence is
introduced, the ansatz (2.8) has to be extended—the longi-
tudinal components of the gauge field now get excited,

ASUðNÞ
� ¼ i½n �n; @�ðn �nÞ��ðrÞ; � ¼ 0; 3: (2.13)

Here �ðrÞ is a new profile function with a boundary
condition,

�ð0Þ ¼ 1; (2.14)

which again is needed for finiteness of the string tension.
When now all the profiles (2.6), (2.7), (2.8), and (2.13) are
substituted into the bulk action (2.1), and integrated over
the transverse coordinates, the following theory emerges on
the world sheet of the string:

S ¼ 2	
Z

d2xðj@�nj2 þ ð �n@�nÞ2Þ; (2.15)

with the summation index � running over the longitudinal
coordinates (0 and 3). Here 	 is a normalization constant,
arising due to the transverse integration of the profile
functions,

	¼ 2�

g22
�

Z
rdr

�
ð@r�Þ2 þ 1

r2
f2Nð1��Þ2

þ g22

�
ð1� �Þð�1 ��2Þ2 þ 1

2
�2ð�2

1 þ�2
2Þ
��
; (2.16)

and effectively becoming the coupling constant of the
two-dimensional theory. Minimization of Eq. (2.16) with
respect to �ðrÞ gives

�ðrÞ ¼ 1��1

�2

: (2.17)

If one now takes into account the BPS equations (2.9) for
the profiles, then the integral in Eq. (2.16) reduces to unity,
and

	 ¼ 2�

g22
: (2.18)

Note that the action (2.15) could and would actually
have higher-order derivative corrections, running in
powers of

@�

g2
ffiffiffi
�

p : (2.19)

Below the scale of the inverse thickness of the string,
g2

ffiffiffi
�

p
, where the world sheet description (2.15) is valid,

such corrections are negligible.

B. Nonvanishing masses

When nonzero masses are introduced in the theory (2.1),
the situation changes significantly. The non-Abelian
strings cease to be solutions of equations of motion,
and the orientational moduli ~n are lifted.1 They become

1These moduli are lifted at the quantum level even if all mass
terms vanish. But this is a quantum effect. The above statement
can be reformulated more accurately as follows: the orientational
moduli ~n are lifted at the classical level if mi � mj � 0.
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quasimoduli, as a shallow potential is generated on the
world sheet. Only when ~n equals one of

~nvac ¼ ð0; . . . ; 1; . . . ; 0Þ (2.20)

does the string become a BPS solution again, in the sense
of the low-energy Abelian theory. As there are N such
strings, they are called the ZN strings.

The ansatz for the squarks and gauge fields remains the
same:

q ¼ �q ¼ �;

~q ¼ �~q ¼ 0;

ASUðNÞ
j ¼ �jk

xk

r2
fNðrÞðn �n� 1=NÞ;

AUð1Þ
j ¼ 1

N
�jk

xk

r2
fðrÞ:

(2.21)

The first obvious change, revealed by inspecting the last
two lines of Eq. (2.2),

2Tr

��������ðaUð1Þ þ aSUðNÞÞqþ q � m̂ffiffiffi
2

p
��������2

þ 2Tr

��������ðaUð1Þ þ aSUðNÞÞ �~qþ �~q � m̂ffiffiffi
2

p
��������2

; (2.22)

is that the vacuum values of the adjoint scalars are no
longer zero,

aUð1Þ ¼ haUð1Þi ¼ � mffiffiffi
2

p ; haSUðNÞi ¼ � �̂mffiffiffi
2

p : (2.23)

Here m is the average mass parameter, and �̂m is the
diagonal matrix of the mass differences,

^�mj ¼ m̂j �m; m ¼ 1

N

X
m̂j: (2.24)

The second ‘‘massive’’ F term in Eq. (2.22) is respon-
sible for making the non-Abelian string a quasisolution,
except when ~n takes one of its vacuum values (2.20).

As is shown in the first line of Eq. (2.23), the U(1) scalar

aUð1Þ does not develop any profile and always sits in its
vacuum. Its sole purpose is to cancel the average massm in
the above F terms (since the average mass is essentially a
unit matrix, it commutes with q, and the cancellation
happens everywhere). In fact, the average quark mass can

be eliminated by the shift of aUð1Þ.
A very different thing happens to the SUðNÞ field aSUðNÞ.

As the average mass has been canceled everywhere, it is

only �̂m that is left to cancel. However, the latter is not
generically proportional to the unit matrix, and so the
complete cancellation can only happen at infinity (or
whenever ~n ¼ ~nvac, in which case q commutes with every-

thing). Therefore, field aSUðNÞ does have a profile, which
asymptotically tends to the vacuum value given by the
mass differences in Eq. (2.23).

The ansatz for the non-Abelian adjoint field aSUðNÞ has
been known for the case of the SU(2) gauge group [11].
In this case the CP1 moduli variables nl can be traded for
O(3) variables Sa,

Sa ¼ ð �n
anÞ: (2.25)

In terms of these, the known ansatz looks as

aSUð2Þ ¼ aa

a

2
¼ ��mffiffiffi

2
p ð
3!ðrÞ þ S3Sa
að1�!ðrÞÞÞ:

(2.26)

Here �m is the only mass difference ðm1 �m2Þ=2, and the
reason that the third direction enters explicitly is because

�̂m / 
3 in this case. The profile function!ðrÞ satisfies the
boundary conditions

!ð0Þ ¼ 0; !ð1Þ ¼ 1 (2.27)

and is found by a minimization procedure, giving

!ðrÞ ¼ �1ðrÞ
�2ðrÞ : (2.28)

The role of this profile function is to give aSUð2Þ an inter-
polation between the vacuum value (when ! ¼ 1),

aSUð2Þð1Þ ¼ � �̂mffiffiffi
2

p ¼ ��m � 
3ffiffiffi
2

p ; (2.29)

and its value at the core of the string (when ! ¼ 0),

aSUð2Þð0Þ ¼ ��mffiffiffi
2

p S3ðSa
aÞ: (2.30)

The latter expression is proportional to Sa
a and commutes
with the gauge field (which is proportional to the same
matrix structure). This is needed so that the kinetic term of

aSUð2Þ containing the commutator ½ASUð2Þ
� ; aSUð2Þ� does not

produce a divergent contribution to the string tension, due
to the singularity of the gauge field at the core. At the same

time, if ~S happens to be parallel to the third axis (i.e., the
string is in the vacuum), then !ðrÞ in Eq. (2.26) cancels
away, and the adjoint field takes its vacuum value every-
where in the space.
We now give the generalization of the ansatz (2.26) to

the case of the SUðNÞ gauge group. The expression appears
to be more involved than its SU(2) counterpart, namely,

aSUðNÞ ¼ � 1ffiffiffi
2

p ð�̂m� ð1�!ðrÞÞ½n �n½n �n; �̂m��Þ: (2.31)

We will show that !ðrÞ is the same profile function as in
Eq. (2.26).
Before discussing the properties of this ansatz, we first

bring a few useful relations involving matrix n �n. These
relations owe to the fact that

ðn �nÞ2 ¼ n �n: (2.32)
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We notice that expression (2.31) involves the second

commutator of n �n and the mass difference matrix �̂m.
It appears that the third commutator of n �n and any matrix
actually equals the first commutator of these,

½n �n½n �n½n �n; M̂��� ¼ ½n �n; M̂�: (2.33)

Expression (2.31) takes the vacuum value �̂m at infinity
and rotates it as r goes to zero. The only available ‘‘color’’
parameter for such a rotation is n �n. Let us show that indeed
such a rotation takes place. Note that, because of the
property (2.32), an exponent involving n �n will always
reduce to trigonometric functions. Then a ‘‘rotation’’ of

any matrix M̂ will look as follows:

ei�n �n � M̂ � e�i�n �n ¼ M̂þ i sin� ½n �n; M̂�
� ð1� cos�Þ½n �n½n �n; M̂��: (2.34)

Getting rid of the imaginary part, expression (2.31) can
then be written as

� ffiffiffi
2

p � aSUðNÞ ¼ 1

2
ei�n �n � �̂m � e�i�n �n

þ 1

2
e�i�n �n � �̂m � ei�n �n; (2.35)

where

cos�ðrÞ ¼ !ðrÞ: (2.36)

Another way of writing this is to notice that an exponent of
commutators of n �n with any matrix (i.e., a commutator
exponent analogous to that in the kinetic term of the adjoint
scalar) will similarly be reducible to trigonometric func-
tions owing to Eq. (2.33). Then our ansatz can be written as
a ‘‘cosine’’:

� ffiffiffi
2

p � aSUðNÞ ¼ ei�½n �n�� þ e�i�½n �n��

2
�̂m: (2.37)

Now let us discuss the properties of this ansatz. First of
all, it is easy to see that it is a traceless matrix. Next, we
repeat, as r goes to infinity [!ðrÞ ! 1, and � ! 0], the
adjoint field approaches the vacuum value:

aSUðNÞ ���!r!1 haSUðNÞi ¼ � �̂mffiffiffi
2

p : (2.38)

On the other hand, at the core of the string, the solution
turns into a matrix,

� ffiffiffi
2

p � aSUðNÞð0Þ ¼ �̂m� ½n �n½n �n; �̂m��; (2.39)

which, because of property (2.33), commutes with n �n. This
way, at the string core, the adjoint field commutes with the
gauge field [proportional to n �n� 1=N; see Eq. (2.21)], and
the gauge field singularity is avoided. Note that, unlike in
the case of SU(2), the adjoint field does not become
proportional solely to n �n� 1=N at the core.

It is also easy to check the BPS condition on the solution
(2.31). Indeed, when ~n ¼ ~nvac, matrix n �n commutes with
anything, and the right-hand side in Eq. (2.31) reduces to
the vacuum value

aSUðNÞð ~nvacÞ ¼ haSUðNÞi ¼ � �̂mffiffiffi
2

p (2.40)

everywhere in the space.
Finally, it is slightly more technical, but straightforward,

to check that Eq. (2.31) reduces to Eq. (2.26) for the gauge
group SU(2), i.e., is a correct generalization.
The ansatz (2.31) is not the only generalization of the

SU(2) formula (2.26). In fact, if one took the ‘‘direct’’
correspondence rules [see the definition (2.25)],

�m
3 ! �̂m;
Sa
a

2
! n �n� 1=N; S3 ! ð �n
3nÞ;

(2.41)

and applied them to Eq. (2.26), the following expression
would emerge:

� 1ffiffiffi
2

p ð�̂m �!ðrÞ þ 2ð1�!ðrÞÞ � ð �n �̂mnÞðn �n� 1=NÞÞ:

The latter expression certainly does reduce to Eq. (2.26) if
one again assumes N ¼ 2. However, this expression does
not work for genericN. Most obvious is the fact that it does
not satisfy the BPS condition—it does not reduce to the
constant vacuum value when ~n ¼ ~nvac.
At the same time, when one takes Eq. (2.31) and sub-

stitutes it into the bulk action (2.1), the following potential
emerges on the world sheet of the string:

4�

g22

Z
rdr

�
ð@r!Þ2 þ 1

r2
f2N!

2 þg22

�
!ð�1 ��2Þ2

þ 1

2
ð1�!Þ2ð�2

1 þ�2
2Þ
��

�
Z

d2xðð �nj�̂mj2nÞ� jð �n �̂mnÞj2ÞþOð�̂m4Þ: (2.42)

We notice that the normalization integral here appears to be
the same as in Eq. (2.16), which, therefore, gives us via
minimization

!ðrÞ ¼ 1� �ðrÞ ¼ �1ðrÞ
�2ðrÞ ; (2.43)

and the whole integral in the first two lines of expression

(2.42) reduces to unity. As for the corrections Oð�̂m4Þ,
they look as [here the representation (2.35) is helpful in
finding their form]

Oð�̂m4Þ ¼ 2�
Z

rdr
1

2
ð1�!2Þ2 � ð�̂mÞ4; (2.44)

where ð�̂mÞ4 is an expression involving ~n and the fourth

power of �̂m. The profile integral in the above expression
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is saturated at the thickness of the string. Therefore, by
dimensional counting, these corrections are suppressed by
a power of �,

Oð�̂m4Þ � j�̂mj2 � j�̂mj2
g22�

; (2.45)

and can be ignored on the same grounds as the higher-order
derivatives (2.19).

Taking Eq. (2.43) into account, we write the result for

aSUðNÞ as

aSUðNÞ ¼ � 1ffiffiffi
2

p ð�̂m� �ðrÞ½n �n½n �n; �̂m��Þ: (2.46)

We observe that this expression provides us with the
expected form of the twisted-mass potential on the world
sheet of the string,

2	
Z

d2xðð �nj�̂mj2nÞ� jð �n �̂mnÞj2Þ

¼ 2	
Z

d2x

�X jmkj2jnkj2 �
��������Xmkjnkj2

��������2
�
: (2.47)

Here we use the well-known shift invariance of this poten-

tial in order to replace ^�mk by mk.
To conclude this section, we note that the twisted-mass-

deformed CPN�1 model can be nicely rewritten as a strong
coupling limit of a U(1) gauge theory [16]. In this descrip-
tion the meaning of the twisted-mass potential becomes
transparent. Namely, the potential reduces to the mass
terms for ~n fields. The bosonic part of the action reads

S¼
Z
d2x

�
2	jr�nkj2þ 1

4e2
F2
��þ 1

e2
j@��j2

þ2	j ffiffiffi
2

p
�þmkj2jnkj2þ2e2	2ðjnkj2�1Þ2

�
: (2.48)

Here � is a scalar superpartner of the U(1) gauge field. In
the limit e2 ! 1, fields A� and � can be excluded by

virtue of the algebraic equations of motion, namely

A� ¼ � i

2
ð �n@�n� @� �nnÞ; � ¼ �Xmjffiffiffi

2
p jnjj2:

(2.49)

Substitution of this into Eq. (2.48) brings us back to the
CPN�1 model with the potential (2.47).

III. POTENTIAL ON THE HETEROTIC
VORTEX STRING

One interesting kind of deformation of the N ¼ 2
theory supporting vortex strings is achieved by introducing
quadratic terms for the adjoint fields in the superpotential,

WA � Trð�UðAUð1ÞÞ2 þ�NðASUðNÞÞ2Þ: (3.1)

Here we have introduced parameters �U, �N , which are
related to �1, �2 of Ref. [17] via

2

�U ¼
ffiffiffiffi
2

N

s
�1; �N � �2: (3.2)

Such a superpotential breaks supersymmetry to N ¼ 1.
The world sheet theory on the heterotic vortex string was
studied in detail in Refs. [17–19] for the bulk theory with
massless quarks and nonzero FI D term �3 and in Ref. [15]
for the theory with massive quarks and zero �3.
We have a chance now to directly confirm the moduli

potential arising on string to the linear order in the
supersymmetry-breaking parameters �U and �N [15]. In
such a theory, the FI F terms are induced implicitly, due to
the superpotential (3.1),

1

2
g21jTrq~qþ ffiffiffi

2
p

N�U � aUð1Þj2

þ g22 TrjTsq~qþ ffiffiffi
2

p
�2 � aSUðNÞj2: (3.3)

From now on we assume that �3 ¼ 0, while the effective
FI F components � are generated due to nonzero vacuum
values (2.23) of the adjoint fields. In particular, the average
quark mass cannot be excluded any longer. It becomes a
new parameter which determines the average quark con-
densate. More precisely, classically the quark vacuum
expectation values (VEVs) are determined by

�j 	 2ð�Umþ�N
^�mjÞ: (3.4)

If the quark mass differences vanish, these parameters
reduce to a single FI term which does not break N ¼ 2
supersymmetry in the bulk and N ¼ ð2; 2Þ supersymme-
try on the world sheet in the linear order in � [20,21].
However, once the quark mass differences are small but
nonvanishing, the color-flavor group SUCþFðNÞ is broken
because both the adjoint and quark VEVs are no longer
equal (i.e., flavour-universal). In this case a shallow poten-
tial is generated in the world sheet CPN�1 model breaking
N ¼ ð2; 2Þ supersymmetry down to N ¼ ð0; 2Þ [15].3

The non-Abelian string becomes a heterotic string [17,19].
To derive the world-sheet potential, we substitute the

expression (2.46) into the F terms (3.3) and expand the

latter to the linear order in �̂m. The first term in Eq. (3.3)

does not contain �̂m and is just part of the average (i.e.,
zero-order) string tension

2�j�̂j ¼ 2� � j2�Umj: (3.5)

2One of the advantages of the new notation is that the so-called
‘‘single-trace’’ operator corresponds to the case �U=�N ¼ 1.
We, however, will duplicate the key results in both notations.

3Note that this does not happen in the theory with the FI D
term. Namely, the twisted-mass potential of the previous section
does not break N ¼ ð2; 2Þ supersymmetry on the world sheet.
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As for the second term, we notice that when plugging in
the adjoint field

aSUðNÞ ¼ � 1ffiffiffi
2

p ð�̂m� �ðrÞ½n �n½n �n; �̂m��Þ;

its commutator part does not contribute at the linear
order—the traceless part of q~q is proportional to n �n�
1=N, and

Tr n �n½n �n; 
� ¼ 0:

Therefore, only the vacuum value haSUðNÞi plays a role
here. The profile integral involving �1ðrÞ and �2ðrÞ in
q~q reduces to an integral of a total derivative due to the
BPS equations (2.9),

2�
Z

rdrg22ð�1 ��2Þ2 ¼ 4�
Z

dr@rfNðrÞ ¼ �4�;

and the resulting linear terms are

2� �
�
�Nð �n �̂mnÞ � �Um

j�Umj þ ��Nð �n�̂mynÞ � �Um

j�Umj
�
:

(3.6)

Now it is obvious that this expression comprises the
linear terms in the expansion of the absolute value in a

series in �̂m,

V1þ1 ¼ 4� � j�Umþ�Nð �n �̂mnÞj
¼ 4� �

�
�Umþ�Nð �n �̂mnÞ � �Um

j�Umj
þ ��Nð �n�̂mynÞ � �Um

j�Umj þ � � �
�
: (3.7)

In terms of parameters �1 and �2, this formula reads

V1þ1 ¼ 4� �
��������

ffiffiffiffi
2

N

s
�1mþ�2ð �n �̂mnÞ

��������
¼ 4� �

� ffiffiffiffi
2

N

s
�1mþ�2ð �n �̂mnÞ � �1m

j�1mj
þ ��2ð �n�̂mynÞ � �1m

j�1mj þ � � �
�
: (3.8)

The above formulas perfectly agree with the two-
dimensional potential found in Ref. [15]. Adding and subtract-
ing �Nm ¼ �Nmð �nnÞ inside the absolute value, and trading
variables ~n for an auxiliary variable � via (2.49),4 we have

V1þ1ð�Þ ¼ 4� � j�Um��Nð
ffiffiffi
2

p
�þmÞj

¼ 4� �
��������

ffiffiffiffi
2

N

s
�1m��2ð

ffiffiffi
2

p
�þmÞ

��������: (3.9)

Note that now (in contrast to the case of the FI D term)
the vacuum energies of this world sheet potential give the
string tensions,

Tj ¼ V1þ1ð�jÞ; (3.10)

where �j are VEVs of the field � in the N vacua of the

CPN�1 model. Classically
ffiffiffi
2

p
�j ¼ �mj. This is the way

the potential (3.9) was conjectured in Ref. [15]. Indeed,
using Eq. (3.4) we find correct string tensions

Tj ¼ 2�j�jj: (3.11)

We can see that in theCPN�1 model with potential (3.9) for
generic quark masses the N ¼ ð0; 2Þ supersymmetry of
the action is broken by the choice of the vacuum already
at the classical level. The vacuum energies in the N vacua
of the CPN�1 model are generically all different.
To conclude this section, let us note that the potential

(3.9) gives quantum corrections to the string tensions [15].
In the quantum theory, the VEVof the� field in each of the
N vacua of the CPN�1 model with a weak deformation
(3.9) is given by solutions of the equation [16,22–24]

YN
i¼1

ð ffiffiffi
2

p
�þmiÞ ¼ �N

CP; (3.12)

where �CP is the scale of the CPN�1 model. Solutions �i

to this equation give exact string tensions via Eq. (3.10)
with all corrections in powers of �CP=mi included.

IV. CONCLUSIONS

We found an expression [Eq. (2.46)] for the adjoint
field profiles for the non-Abelian vortex configuration in
N ¼ 2 supersymmetric QCD with the gauge group UðNÞ
and N flavors. This expression enabled us to derive the
twisted-mass potential (2.47) on the vortex world sheet
starting from the bulk theory.
In the case in which N ¼ 2 supersymmetry is softly

broken by an operator �A2, which at the same time
stabilizes the string acting as an effective FI F term, we
managed to use expression (2.46) to derive and confirm to
the linear order the potential (3.9) generated on the world
sheet. Our result is in agreement with the potential found in
Ref. [15] and removes the ambiguity of adding a potential
vanishing in the critical points of Eq. (3.9).
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