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The Lee-Wick Standard Model at temperatures near the electroweak scale is considered, with the aim of

studying the electroweak phase transition. While Lee-Wick theories possess states of negative norm, they

are not pathological but instead are treated by imposing particular boundary conditions and using

particular integration contours in the calculation of S-matrix elements. It is not immediately clear how

to extend this prescription to formulate the theory at finite temperature; we explore two different pictures

of finite-temperature Lee-Wick theories, and calculate the thermodynamic variables and the (one-loop)

thermal effective potential. We apply these results to study the Lee-Wick Standard Model and find that the

electroweak phase transition is a continuous crossover, much like in the Standard Model. However, the

high-temperature behavior is modified due to cancellations between thermal corrections arising from

the negative- and positive-norm states.
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I. INTRODUCTION

The Lee-Wick Standard Model (LWSM) [1] is an
extension of the Standard Model (SM) that tames the
Higgs mass hierarchy problem by modifying the dispersion
relationships of the various SM fields in order to improve
the UV behavior of the theory. This modification is accom-
plished by introducing a new mass scale �LW and extend-
ing the Lagrangian by dimension-six operators of the forms

�L ¼ ðh�Þ2=�2
LW and �L ¼ ��ið6@Þ3�=�2

LW and �L ¼
Tr½D�F��D

�F���g��=�2
LW. As such, the propagators fall

off more rapidly in the ultraviolet (UV) limit above the
scale �LW, which softens the divergences in one-loop
corrections to the Higgs self-energy from dangerous qua-
dratic ones to harmless logarithmic ones. To eliminate the
need for fine tuning, �LW should be not much larger than
the electroweak scale.

Since the LWSM augments the SM by new degrees of
freedom at the electroweak (EW) scale that are coupled to
the Higgs (and indeed, one can study a variant LWSM in
which only these fields are significant [2]), it is natural to
expect the new physics to affect the nature of the electro-
weak phase transition. This connection is further motivated
by the relationship between UV quadratic divergences and
the phenomenon of symmetry restoration [3]. That is, the
same Feynman graphs that give rise to quadratic divergen-
ces in the Higgs self-energy also yieldOðT2Þ corrections to
the effective mass at finite temperature, and thereby lift the
tachyonic Higgs mass and induce symmetry restoration. In
previous work, the free energy density and thermodynamic
properties of the LWSM plasma have been calculated [4],
and the nonthermal effective potential has been derived [5].
The goal of this paper is to study the LWSM at finite

temperature using the thermal effective potential in order
to determine the nature of the electroweak phase transition
and symmetry restoration.
The LWSM Lagrangian contains higher-order time de-

rivatives of the various SM fields, which leads to roughly a
doubling of the number of dynamical degrees of freedom.1

It is well known that such higher-derivative (HD) theories
generally suffer from a variety of pathologies (see, e.g.,
[6,7] for a pedagogical discussion). At the classical level,
Ostrogradsky’s theorem forces the Hamiltonian to be un-
bounded from below due to excitations of the new degrees
of freedom. If one departs from the canonical quantization
prescription in quantizing the theory, then the spectrum can
be rendered bounded from below, but at the cost of intro-
ducing states of negative norm, i.e., ghosts. Lee and Wick
developed a prescription for removing the ghosts and
rendering the theory predictive by treating the system as
a boundary-value problem and imposing boundary condi-
tions at future infinity [8,9] (see also [10]). Subject to these
boundary conditions, the system develops an acausal be-
havior on the timescale ��1

LW. For �LW ¼ OðTeVÞ, the
acausality is confined to microscopic scales, and thereby
evades constraints from direct laboratory observation.
Due to the pathologies of HD theories, it is a priori

unclear how to correctly and consistently formulate a
calculation at finite temperature. To illustrate where the
trouble arises, consider a classical HD theory. At finite
temperature, a system approaches thermal equilibrium by
redistributing energy between its many degrees of freedom
so as to minimize its energy and maximize its entropy.
However, for a system in which the Hamiltonian is
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1Actually, the new vector degrees of freedom are massive, and
Dirac fermion partners pick up extra poles, and therefore the
number of degrees of freedom is somewhat more than doubled.
This point is discussed in Sec. IVA; it plays an important role in
the issue of symmetry restoration.
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unbounded, the entropy can always be increased without
bound by lowering the energy of some degrees of freedom
and raising the energy of others. This discussion illustrates
why care must be taken in formulating the calculation at
finite temperature.

Developing the correct formulation of Lee-Wick theo-
ries at finite temperature is one of the goals of this paper.
Previous efforts to tackle this problem have taken different
approaches: One group studied an ideal gas of negative-
energy particles [11], whereas a second group studied the
partition function of SM particles that are able to scatter
through negative-norm narrow resonances [4]. Both groups
concluded that the contribution from a LW field to the free
energy is precisely the opposite of that from a SM field
with identical mass and spin. However, a third group
argued that the connection between symmetry restoration
and UV behavior suggests that a relative minus sign should
not appear [5]. In Sec. III we explore and extend the
previous work by first addressing whether it is more real-
istic to treat the LW fields as an ideal gas or as resonances,
and second by addressing the issue of the sign. On the
second point, we introduce an index � ¼ �1 in order to
consider both sign choices simultaneously and thereby
keep our analysis general. For the case � ¼ þ1ð�1Þ, the
LW fields contribute to the free energy density with the
same (opposite) sign as SM fields, and it is from this
perspective that we proceed to study the LWSM at finite
temperature. We find that the two cases lead to qualita-
tively different outcomes with regard to the temperature of
the electroweak phase transition, as well as the sign of
thermodynamic quantities in the ultrarelativistic limit.

This paper is organized as follows. For the reader who is
unfamiliar with Lee-Wick theories, we provide a more
detailed introduction to the subject in Sec. II. In Sec. III
we formulate the thermodynamics of Lee-Wick theories
and calculate the one-loop thermal effective potential for a
toy model. In Sec. IV we evaluate the thermal effective
potential for the LWSM and study the LWSM at finite
temperature, determine the nature of the electroweak phase
transition, and investigate the phenomenon of symmetry
restoration. In Sec. V we summarize and conclude.
Appendix A describes possible quantization conventions,
and Appendix B gives details of the LWSM spectrum.

II. INTRODUCTION TO LEE-WICK THEORIES

The Lee-Wick Standard Model [1] was developed by
Grinstein, O’Connell, and Wise as an alternative approach
to taming the gauge hierarchy problem of the Standard
Model. In the case of the much better-explored example of
low-scale supersymmetry (SUSY), each SM loop diagram
is joined by one in which the loop particle is replaced by its
opposite-statistics partner (but which carries the same
gauge and Yukawa couplings), thus introducing a relative
sign difference that induces the cancellation of the leading-
order (quadratic) divergence. In the LWSM, each loop

diagram is joined by one in which the loop particle is
replaced by its opposite-norm partner, again inducing the
desired cancellation.
The essence of the original Lee and Wick program [8,9]

is the promotion of Pauli-Villars regulators to the status of
full dynamical fields with negative quantum-mechanical
norm. Obviously, such unusual states introduce paradoxes
of physical interpretation that must be addressed. At the
classical level, such signs correspond to instabilities in the
form of runaway states of ever-increasing negative energy,
while at the quantum level a negative norm (which gen-
erates a Hilbert space of indefinite metric [12]) produces a
violation of unitarity. However, Lee and Wick showed that
these runaway solutions can be eliminated from the theory
by the imposition of future boundary conditions on Green’s
functions, which has the price of introducing violations of
causality. If the LW scale is sufficiently high, then the
realm of acausal effects is relegated to an unobservably
microscopic scale. Moreover, if the negative-norm states
are required to be unstable (decaying into conventional
particles), then they may be excluded from the set of
asymptotic states of the theory, thus restoring unitarity. In
order for the exclusion of on-shell negative-norm states to
make sense in Feynman loop diagrams, Lee and Wick
developed a variant of the Feynman integration contour
for such cases, a program that was greatly expanded
by Cutkosky et al. [10] (CLOP). While no problematic
exceptions to this program are known, it remains
unknown whether a nonperturbative formulation exists that
preserves unitarity [13].
In the same way that adding a Pauli-Villars regulator to a

scalar propagator softens its high-momentum behavior
from 1=p2 to 1=p4, the Lagrangian of a scalar theory
containing a particle and its LW partner is promoted
from one with a canonical @2 kinetic energy term to a
higher-derivative theory with a @4 term. To be explicit,

let �̂ be a real scalar field appearing in the Lagrangian

LHD ¼ � 1

2
�̂h�̂� 1

2�2
LW

�̂h2�̂� 1

2
m2�̂2 þLintð�̂Þ;

(1)

where the last term represents interactions. One may recast
Eq. (1) in an equivalent form without the HD term by

introducing an auxiliary field (AF) ~�:

LAF ¼ � 1

2
�̂h�̂� 1

2
m2�̂2 � ~�h�̂

þ 1

2
�2

LW
~�2 þLintð�̂Þ: (2)

The equation of motion for ~�,

~� ¼ 1

�2
LW

h�̂; (3)

is exact at the quantum level (meaning that the path inte-
gral over this degree of freedom can be performed exactly),
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and upon substitution into Eq. (2), reproduces Eq. (1).

Further defining the field � � �̂þ ~� diagonalizes the
kinetic energy terms:

L ¼ � 1

2
�h�þ 1

2
~�h ~�� 1

2
m2ð�� ~�Þ2

þ 1

2
�2

LW
~�2 þLintð�� ~�Þ: (4)

One diagonalizes the mixed mass terms without altering
the kinetic terms by a symplectic transformation:

�

~�

 !
¼ cosh� sinh �

sinh � cosh�

 !
�0

~�0

 !
; (5)

with mass eigenstates being indicated by subscript 0, and
the transformation parameter � satisfies

tanh 2� ¼ �2m2

�2
LW � 2m2

; (6)

which admits real solutions provided �2
LW > 4m2. If this

LW stability condition fails, then the kinetic and mass
terms cannot be simultaneously diagonalized with real
mass eigenvalues, and the Lagrangian equation (1) does
not represent a Lee-Wick theory. The Lagrangian then
assumes the form

LLW ¼ � 1

2
�0h�0 þ 1

2
~�0h ~�0 � 1

2
m2

0�
2
0

þ 1

2
M2

0
~�2
0 þLint½e��ð�0 � ~�0Þ�; (7)

for mass eigenvalues

m2
0; M2

0 �
�2

LW

2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�2
LW

s 1
A; (8)

and the factor of e�� can be absorbed into redefinitions of
the couplings. The quadratic terms in Eq. (7) clearly mani-

fest the promised opposite-norm �0 and ~�0 propagators
(see Appendix A). This fact, combined with the fixed

relationship between �0 and ~�0 couplings seen in Lint,
leads to the cancellation of quadratic divergences, as
shown explicitly in Ref. [1]. While we have presented
only the LW construction for a real scalar field, an analo-
gous AF construction holds for all SM fields [1]: complex
scalars (with or without spontaneous symmetry breaking),
Dirac fermions, and vector fields (including gauge fields).

We see that SM particles with LW partners can be
represented by HD fields appearing in a restricted class
of Lagrangians (so that the mass eigenvalues turn out real
and positive) whose propagators fall off as 1=p4 and have
two propagator poles, which represent one field of positive
and one of negative norm. But nothing in principle requires
the HD theory to truncate at just two extra derivatives. One
can define a LW theory of a given N as one in which the
full propagator has N poles, or equivalently, 2N extra
derivatives in the Lagrangian. The SM would therefore

be called an N ¼ 1 theory, the LWSM would be N ¼ 2,
and as shown in Ref. [14], one can buildN � 3 theories for
all fields appearing the SM, including a proper AF con-
struction. Furthermore, one finds that the additional field
degrees of freedom alternate in norm: Each N ¼ 3 field,
like its SM partner, has positive norm. Such a generalized
LW theory is quite unlike SUSYand rather more resembles
theories with Kaluza-Klein (KK) excitations, such as
extra-dimension models.
Nevertheless, LW theories are unlike both SUSYand KK

theories in important respects. Since no principle dictates
how many LW partners a given SM field possesses nor what
determines the LW scale, one can imagine a scenario in
which some SM fields have 2 partners, some have 1, and
some have none. In contrast, the closure of the SUSY
algebra requires every field to have precisely one opposite-
statistics partner, while KK theories have no predetermined
limit on the number of modes available to the field. This
generality of LW theories of course comes at a price. To
name just a few issues: In fits to data or in making predic-
tions, one must allow for the possibility that all field LW
mass scales are distinct; the equivalent HD theory may only
be an effective theory of an unknown UV completion (for
our purposes, we assume only that the effective theory is
good up to the 14 TeV reach of the Large Hadron Collider);
and while grand unification is possible [15,16], it is not as
straightforward to arrange as in, say, the MSSM. Even so,
LW theories are quite flexible and can be combined with
other beyond-SM (BSM) ideas like SUSY [17,18].
The LWSM was subjected to tests of its phenomeno-

logical viability as a potential BSM theory already starting
in Ref. [1], and subsequently compared to precision
electroweak constraints in a variety of interesting ways
[2,19–25]. The consensus view emerged that LW gauge
bosons must have masses at least 2 TeV and the LW
fermions at least several TeV, but the LW scalars can be
substantially lighter. When N ¼ 3 partners are permitted,
the allowed gauge boson partner masses must still be at
least 2 TeV or higher, and the fermions may be as low as
1.5 TeV, but viable scenarios in which the scalar partners
lie in the several hundred GeV range emerge [26].

III. THERMODYNAMICS OF
LEE-WICK THEORIES

In this section we address the question of how one
should calculate the thermodynamic properties (e.g., en-
tropy, energy density) of a LW theory. It is unclear to what
extent the standard formulation of this calculation is ap-
plicable due to the presence of unphysical degrees of free-
dom, namely, the negative-norm LW particles. At zero
temperature, one imposes boundary conditions to remove
the LW particles from the set of asymptotic states and
employs the LW/CLOP prescriptions to calculate elements
of the unitary S matrix between states containing only SM
particles. It is not obvious how to extend the boundary
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conditions and LW/CLOP prescriptions to a LW theory at
finite temperature. Thus, two pictures emerge: Either

(i) The thermal system can access states containing
explicit LW particles, or

(ii) The system can only explore states from which
these explicit LW particles are absent.

Both scenarios have been considered in the literature
([4,11], respectively). In fact, Ref. [11] obtains the same
result for the free energy as Ref. [4]. We argue, however,
that the pictures are not equivalent, but instead that the
second picture, in which LW particles only serve to modify
the scattering of SM particles, is more realistic. In the next
subsection we show that no self-consistent calculation
using ideal gas LW particles appears to agree with the
common result of Refs. [4,11]. Furthermore, Ref. [11]
uses a convention of negative-energy, positive-norm parti-
cles, while Ref. [4] uses negative-norm, positive-energy
particles. While we adopt the second convention, the first
one can be shown to be equivalent if properly implemented
(see Appendix A).

A. Ideal gas of LW particles

In this section, we consider the first of the two pictures
discussed above and calculate the thermodynamic proper-
ties of an ideal gas of LW particles. A LW theory contains
both SM and LW particles, but in the absence of interac-
tions, their ideal gas contributions can be evaluated
separately. We define the partition function Z by the re-
quirement that the density matrix,

	̂ ¼ 1

Z
exp ð��ĤÞ; (9)

is properly normalized (see below). With interactions

turned off, the spectrum of the Hamiltonian Ĥ consists of
the vacuum j0i, single-particle states jpi, and multiparticle
states jp1;p2; . . . ;pNi with the appropriate symmetrization
(antisymmetrization) for bosons (fermions). For example,

jp1p2i ¼ 1ffiffiffi
2

p ðjp1i � jp2i þ 
Sjp2i � jp1iÞ; (10)

where 
S ¼ þ1 (� 1) for bosons (fermions). The

single-particle states satisfy Ĥjpi ¼ Epjpi, where

Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. These expressions use the quantization

convention 
C ¼ þ1 of Eq. (A9).
As discussed in sec. II, states with an odd number of LW

particles have a negative norm due to the wrong-sign
commutation relation of the associated creation and anni-
hilation operators. We use the index 
N [see Eq. (A9)] to
keep track of this norm; for LW particles (SM particles) we
have 
N ¼ �1 (þ 1). For example,

h0j0i ¼ 1; hpjqi ¼ 
Nð2�Þ32Ep�ðp� qÞ;
hp1p2jq1q2i ¼ ð2�Þ62Ep1

2Ep2
½�ðp1 � q1Þ�ðp2 � q2Þ

þ 
S�ðp1 � q2Þ�ðp2 � q1Þ�; (11)

and so on. The negative norm implies that eigenvalues and
expectation values differ by a sign. For instance,

Z d3q

ð2�Þ3
1

2Eq

hpjĤjqi ¼ 
NEp; (12)

whereas the state jpi has eigenvalue Ep. This distinction is

particularly relevant for the calculation of the partition
function. If we normalize the density matrix by requiring

Tr	̂ ¼ 1; (13)

then the partition function Z ¼ Tre��Ĥ is given by a sum
of expectation values

Z¼ h0je��Ĥj0i þ
Z d3p

ð2�Þ3
1

2Ep

hpje��Ĥjpi

þ
Z d3p

ð2�Þ3
1

2Ep

Z d3q

ð2�Þ3
1

2Eq

hp;qje��Ĥjp;qi þ � � � :

(14)

In the case 
N ¼ �1, the terms alternate in sign. Since the
expectation values of 	̂ are not strictly positive, the possi-
bility may arise that the sum of the eigenvalues of 	̂
becomes greater than unity, while 	̂ itself remains normal-
ized in the sense of eq. (13). It is not clear how to interpret
such a density matrix. Alternatively, one can normalize the
density matrix by imposing

Tr0	̂ � X
eigs

	̂ ¼ 1; (15)

where Trace0 is obtained by simply summing the eigen-
value spectrum of the operator. In this case, the norm of the
states is irrelevant to the calculation, and its outcome is the
standard ideal gas partition function. It is not a priori clear
that this sum is finite; such an assertion is equivalent to
assuming that the conditionally convergent series implied
in Eq. (13) is absolutely convergent. We do not dwell on the
issue of which normalization condition is the ‘‘correct’’
one, and the following section makes this debate moot.
However, we pedagogically consider both cases in order to
illustrate the issues that arise when one treats the LW
particles as an ideal gas.
We first calculate the partition function using the nor-

malization condition equation (13). It is convenient to
perform the standard transformations and work in a differ-
ent basis (see, e.g., [27]): One discretizes the momentum
by imposing periodic boundary conditions, and writes the

Hamiltonian Ĥ ¼ P
pĥp as a sum over the single-particle

Hamiltonians ĥp ¼ EpN̂p. The number operator N̂p has a

spectrum

N̂pjnqi ¼ np�p;qjnpi; (16)

where jnpi is the state containing np particles, each of

momentum p. In this basis, the partition function is
given by
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Z ¼ Tre��Ĥ ¼ Tr
Y
p

e��EpN̂p ¼Y
p

Xnmax

np¼0

hnpje��EpN̂p jnpi;

(17)

where nmax ¼ 1ð1Þ for bosons (fermions). Noting that the
norms are hnpjnpi ¼ ð
NÞnp , one finds

Z ¼ Y
p

Xnmax

np¼0

ð
Ne
��EpÞnp : (18)

Taking the logarithm turns the product into a sum, which
becomes an integral in the continuum limit. Dividing by
the volume factor, one obtains the free energy density

F ¼ �ð�VÞ�1 lnZ

¼ ���1
Z d3p

ð2�Þ3 ln

� Xnmax

np¼0

ð
Ne
��EpÞnp

�
: (19)

The sum evaluated separately for bosons and fermions
gives

F ¼
8><
>:
��1

R d3p
ð2�Þ3 ln ð1� 
Ne

��EpÞ bosons;

���1
R d3p

ð2�Þ3 ln ð1þ 
Ne
��EpÞ fermions;

(20)

which can be combined as

F ¼ 
S�
�1
Z d3p

ð2�Þ3 ln ð1� 
S
Ne
��EpÞ; (21)

where 
S ¼ þ1 for bosons and 
S ¼ �1 for fermions.
Had we imposed the alternative normalization condition
equation (15), then the factor of ð
NÞnp would not have
arisen:

F 0 ¼ 
S�
�1
Z d3p

ð2�Þ3 ln ð1� 
Se
��EpÞ; (22)

which is the standard free energy of an ideal gas.
These results are summarized in Table I, where we

also exhibit the entropy density s ¼ �@F =@T, and
energy density 	 ¼ F þ Ts. We have expanded in the

high-temperature regime �2m2 	 1 in order to facilitate
comparison with more familiar expressions. When the
density matrix is normalized by summing the spectrum,
Tr0	̂ ¼ 1, one finds that the thermodynamics of a LW
ideal gas is identical to that of a SM ideal gas of the same
spin. This result is not surprising, since the negative-norm
property never enters. On the other hand, when the
density matrix is normalized by taking expectation values,
Tr	̂ ¼ 1, one finds that the LW boson has the same
thermodynamics as a SM fermion with an overall sign
flip, and vice versa. The negative entropy and energy
densities are a distinctly counterintuitive result, since
the LW 1-particle states have positive energy, and pre-
sumably should constitute an ideal gas with positive-
energy density. These results may be summarized
schematically as

Tr0	̂ ¼ 1: F ½LW boson=fermion of massm�
¼ þF ½SM boson=fermion of massm�; (23)

Tr	̂ ¼ 1: F ½LW boson=fermion of massm�
¼ �F ½SM fermion=boson of massm�: (24)

Both of these results differ from a previous calculation of
the thermodynamics of LW ideal gas [11], which finds
that the free energy, entropy, and energy densities of the
LW gas are precisely the opposite of these quantities for
the corresponding SM gas of the same spin, i.e.,

F ½LW boson=fermion of massm�
¼ �F ½SM boson=fermion of massm�: (25)

As noted above, this result agrees with that of Ref. [4]
derived in the LW resonance picture. However, in
Ref. [11] the authors assume that the positive-energy,
negative-norm LW particle states can be treated equiva-
lently as states of negative energy and positive norm. It is
not clear to us how a thermodynamic system can have a
spectrum of interacting particles which is unbounded both
above (positive-energy states) and below (negative-energy
states), nor can we justify the analytic continuation that is

TABLE I. The thermodynamic properties of an ideal gas of SM or LW bosons or fermions
in the high-temperature limit �2m2 � " 	 1. For the LW particles, the density matrix is
normalized using either Eq. (13) or Eq. (15), as indicated. Higher-order terms in " are dropped.
The coefficients are c0b � �Li4ðþ1Þ=�2 ¼ ��2=90, c1b � Li2ðþ1Þ=4�2 � 1=24, c0f �
Li4ð�1Þ=�2 ¼ �7�2=720 ¼ ð7=8Þc0b, and c1f � �Li2ð�1Þ=4�2 ¼ 1=48 ¼ ð1=2Þc1b.


S 
N �4F �3s �4	

SM boson þ1 þ1 þc0b þ c1b" �4c0b � 2c1b" �3c0b � c1b"
LW boson (Tr0	̂ ¼ 1) þ1 �1 þc0b þ c1b" �4c0b � 2c1b" �3c0b � c1b"
LW boson (Tr	̂ ¼ 1) þ1 �1 �c0f � c1f" þ4c0f þ 2c1f" þ3c0f þ c1f"
SM fermion �1 þ1 þc0f þ c1f" �4c0f � 2c1f" �3c0f � c1f"
LW fermion (Tr0	̂ ¼ 1) �1 �1 þc0f þ c1f" �4c0f � 2c1f" �3c0f � c1f"
LW fermion (Tr	̂ ¼ 1) �1 �1 �c0b � c1b" þ4c0b þ 2c1b" þ3c0b þ c1b"
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required to define the partition function. As stated at the
beginning of this section, the equivalent LW ideal gas
approach with positive-energy, negative-norm states must
also lead to instabilities; in this case, they arise through
states of opposite norm combining to form zero-norm
runaway modes [9,13]. Ultimately, we believe that the
formulation of LW theories, which forbids LW particles
from appearing as asymptotic states, is inconsistent with
the picture that LW particles form an ideal gas.

B. LW particles as resonances

We now turn to the second picture of LW theories at
finite temperature, in which LW particles are not treated
as fundamental constituents of the gas. By this we

mean that, in the calculation of expectation values hÔi ¼
TrðÔ 	̂Þ, the trace extends over only the subset of the
Hilbert space containing states in which no LW particles
are present (i.e., states annihilated by the LW particle
annihilation operators). Instead, the LW fields make their
presence known through their interactions with the SM
particles by modifying the spectrum of the SM multi-
particle states. Treating these interactions perturbatively,
one can write the free energy density of a LW theory
schematically as

F ½LW theory� ¼ F ½SM ideal gas� þ�F ; (26)

where the first term on the right-hand side represents the
free energy density of a ideal gas of SM particles, and the
second term represents perturbative corrections due to
interactions among the SM and LW fields. Since the
SM and LW fields interact through the SM gauge and
Yukawa couplings, the terms in �F are the same order as
the so-called ‘‘two-loop’’ corrections in thermal field
theory. Generically, these corrections can be dropped in
a leading-order analysis. However, as seen below, when
the SM particles are able to scatter through narrow-
resonance LW particles, the corrections must be re-
summed and become Oð1Þ.

Before proceeding, note that one cannot apply the stan-
dard thermal field-theory diagrammatic techniques to ob-
tain �F (see, e.g., [27]). In this formalism, one calculates
the partition function by summing connected graphs with
no external lines using modified Feynman rules, so that all
of the fields are put on the same footing. Here, however,
one needs to distinguish the SM particles, which can
appear as external states, and the LW particles, which are
restricted to internal lines.

Fornal, Grinstein, and Wise [4] (FGW) studied a scalar
LW toy model at finite temperature, and we review their
calculation of the free energy density here. In order to
calculate �F , FGW employed the formalism developed
by Dashen, Ma, and Bernstein [28] (DMB), by which
the partition function may be calculated from S-matrix
elements. DMB derived the relationship

�F ¼ �ð�VÞ�1
Z

dEe��E 1

4�i

�
TrAS�1ðEÞ @

$

@E
SðEÞ

�
c
;

(27)

where SðEÞ is the S-matrix element between two multi-
particle states of energy E, A symmetrizes (antisymmetr-
izes) for bosons (fermions), and c denotes that only
connected graphs are summed. As an example, FGW con-
sider the scalar LW theory specified by the Lagrangian

L ¼ 1

2
ð@��̂Þ2 � 1

2M2
ð@2�̂Þ2 � 1

2
m2�̂2 � g

3!
�̂3: (28)

The interaction term g�̂3 allows a LW particle to decay
into two SM particles with a width given by

� ¼ �g2

32�M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

M2

s
: (29)

Thewidth is negative because of the negative residue of the
LW propagator [1]. The same interaction allows two SM
particles to scatter through a LW particle resonance, with
matrix element

M ¼ 1

2
� �g2

E2 � P2 �M2 þ iM�
; (30)

where SðEÞ ¼ 1� iT ðEÞ and
hp1p2jT ðEÞjq1q2i ¼ ð2�Þ�ðE� E1 � E2Þð2�Þ3


 �ðp1 þ p2 � q1 � q2ÞMðEÞ:
(31)

Upon evaluating Eq. (27) and taking the narrow-width
approximation � 	 M, FGW find

�F ¼ ���1
Z d3p

ð2�Þ3 ln ð1� e��
ffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
Þ: (32)

This is precisely the form of the free energy density of an
ideal gas of bosons, but with an overall minus sign
[cf. Eq. (21) with 
S ¼ 
N ¼ þ1]. At least, the fact that
�F takes the form of an ideal gas term is reassuring; in the
narrow-width approximation the resonances are long lived,
and contribute to the free energy as if they were stable
constituents of the plasma [28,29]. On the other hand, the
minus sign is surprising. We have already seen that the
calculation of the free energy density of an ideal gas of
LW bosons produces one of the two results in Table I,
and neither of these correspond to Eq. (32). The minus
sign appears because �< 0, and the limit � ! 0� of
Eq. (30) at its pole differs from the limit � ! 0þ by a
sign. In other words, the free energy density is nonanalytic
at � / g2 ¼ 0. FGW generalize their result from the scalar
toy model to also consider the fermionic LW resonances,
and they find the same overall sign flip. We summarize this
result by setting a sign placeholder � ¼ �1 in
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�F ½LW boson=fermion narrow resonance of massM�
¼ �F ½SM boson=fermion ideal gas of massM�j�¼�1;

(33)

to which we refer as the ‘‘LW sign flip.’’
One may worry that the S-matrix formalism given by

Eq. (27) is inapplicable to the study of LW theories, for
instance because the negative-norm states were not prop-
erly taken into account in the derivation of DMB or FGW.
After a careful review of the calculations in those works,
we can find no obvious source of error. Nevertheless, it was
pointed out by Espinosa and Grinstein [5] that the result
Eq. (33) leads to unexpected breakdown of the well-known
connection between UV behavior and symmetry restora-
tion. This connection derives from the fact that the graphs
giving rise to quadratic divergences at T ¼ 0 are the same
graphs responsible for OðT2Þ self-energy corrections at
finite temperature [3]. For example, if a bosonic field has
a divergent self-energy correction�m2 ¼ ��2=16�2, then
it receives a thermal mass correction �m2 ¼ �T2=12, and
for fermions one has �m2 ¼ ���2=16�2 and �m2 ¼
��T2=24. In models that solve the hierarchy problem by
a cancellation of quadratic divergences between degrees of
freedom of the same spin, this connection implies that
there should also be a cancellation of the leading thermal
mass corrections. However, if the � ¼ �1 LW sign flip in
Eq. (33) is the correct result, then there is no such cancel-
lation (see Sec. III C). Instead, to obtain the cancellation,
the sign of the LW correction must be the same as that of
the corresponding SM partner, the � ¼ þ1 case of

�F ½LW boson=fermion narrow resonance of massM�
¼ �F ½SM boson=fermion ideal gas of massM�j�¼þ1:

(34)

In models with spontaneously broken symmetries, this
effect tends to retard symmetry restoration.

We present a simple, heuristic argument based on en-
ergetics that lends credence to the result Eq. (32). Recall

that the free energy density is given by F ¼ �ð�VÞ�1 

ln Tre��Ĥ, where the trace extends over the states con-
taining multiple SM particles and no LW particles. In the
absence of interactions, the SM particles are free, and one
obtains the ideal gas term in Eq. (26). The interactions
affectF by changing the energy of the multiparticle states.
For example, consider the theory Eq. (28) studied by FGW.
Two SM scalars may interact by the exchange of a SM
virtual particle. The scalar field mediates an attractive force
characterized by the Yukawa potential, which lowers the
energy of the two-particle state and yields �F < 0. On the
other hand, when the two SM scalars exchange a LW
virtual particle, the propagator equation (30) gives rise to
a repulsive force which, in turn, raises the energy of the
two-particle state and yields �F > 0 as in Eq. (32) (since

the logarithm is always negative). This argument does not
confirm the form of Eq. (32), but it does suggest that the
sign flip in Eq. (33) may be correct.
Let us now summarize. The question of which picture

provides the correct description of LW theories at finite
temperature remains unsettled. We have argued that treat-
ing the LW particles as resonances appears to be more
consistent with the boundary conditions that protect LW
theories from the pathologies that generally plague HD
theories. However, some uncertainty remains as to the
sign of �F , as contrasted in Eqs. (33) and (34). In order
to keep our analysis as general as possible, we consider
both possibilities by maintaining the index � ¼ �1 as a
prefactor to LW field contribution to the effective potential,
and study both cases simultaneously. Despite this effort to
remain completely agnostic, it should be noted that an
entirely different third possibility is not excluded.

C. Thermal effective potential of a LW toy model

Before proceeding to evaluate the thermal effective
potential for the LWSM, we begin by considering a pair
of LW toy theories. We do not reproduce here the deriva-
tion of the one-loop thermal effective potential since, apart
from the modifications to the thermal correction discussed
above, the derivation is standard (for a review see [30]). To
wit, one extends the Lagrangian by introducing a source
term (tadpole) for the scalar field, calculates the partition
function in the presence of this source, and performs a
Legendre transformation to express the source in terms of
the expectation value of the scalar field, �c. The thermal
effective potential is simply the �c-dependent free energy
density that can be obtained from the logarithm of the
partition function. This calculation may be performed us-
ing a number of techniques, such as a diagrammatic ap-
proach and the path integral formalism, and each admits a
perturbative expansion. At ‘‘one-loop’’ order, the effective
potential may be written as the sum

Vð1LÞ
eff ð�cÞ ¼ Uð�cÞ þ �Vð1LÞ

0 ð�cÞ þ �Vð1LÞ
T ð�c; TÞ; (35)

where �c is the scalar condensate and T the temperature.
These three terms correspond, respectively, to the classical
potential energy Uð�cÞ, the nonthermal correction

�Vð1LÞ
0 ð�cÞ

¼�Vc:t:ð�cÞþ
8><
>:

1
2

P
b

R d4pE

ð2�Þ4 ln½p2
Eþm2

bð�cÞ� bosons;

�P
f

R d4pE

ð2�Þ4 ln½p2
Eþm2

fð�cÞ� fermions;

(36)

arising from renormalized quantum vacuum fluctuations
of the various fields in the theory (the counterterms are
contained in �Vc:t:), and the thermal correction
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�Vð1LÞ
T ð�c; TÞ

¼
8><
>:
P

b T
R d3p

ð2�Þ3 ln ð1� e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

b
ð�cÞ

p
Þ bosons;

�P
f T

R d3p
ð2�Þ3 ln ð1þ e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

f
ð�cÞ

p
Þ fermions;

(37)

arising from the presence of a gas of free particles, in accord
with Eq. (22). The sums run over the various bosonic (b) and
fermionic (f) fields in the theory under consideration. The
functions m2

b;fð�cÞ represent the effective masses of the

various fields of the theory in the presence of the condensate
�c. At one-loop order, the effective potential only depends
upon these masses andUð�cÞ. One needmake onlyminimal
modifications to these expressions to account for the
negative-norm LW fields. As discussed above, the leading-
order thermal corrections arising from the LW fields are of
the same form as the ideal gas term Eq. (37), and only the
overall sign is under dispute. We remind the reader of the
index � ¼ �1 used to consider both cases [Eqs. (33) and
(34)] simultaneously. The nonthermal corrections to the
one-loop effective potential due to LW fields were calcu-
lated previously by [5]. Unsurprisingly, the result is identical
to Eq. (36). Since the quantum effective potential is merely a
sum of zero-point energies

P
p
1
2ℏ!p, there is no relative

sign difference between the SM and LW field contributions

to �Vð1LÞ
0 . We now use Eq. (35) with the �-factor modifi-

cations to evaluate the effective potential for two LW toy
theories.

1. A scalar example

First, consider the toy theory of an interacting, real

scalar field �̂ðxÞ described by the Lagrangian

L ¼ � 1

2�2
LW

ð@2�̂Þ2 þ 1

2
ð@��̂Þ2 �Uð�̂Þ;

Uð�̂Þ ¼ �þ 1

2
�2�̂2 þ 


4
�̂4:

(38)

Let �c ¼ h�̂i be the homogeneous condensate, and ex-

pand �̂ðxÞ ¼ �c þ ’̂ðxÞ. To obtain the effective mass of
the field ’̂, we expand the Lagrangian to quadratic order
and find

L � � 1

2
’̂

�
@4

�2
LW

þ @2 þm2
’̂ð�cÞ

�
’̂; (39)

where

m2
’̂ð�cÞ � U00ð�cÞ ¼ �2 þ 3
�2

c: (40)

As discussed in Sec. II, the higher-order derivative in
Eq. (39) implies that the field ’̂ carries 2 degrees of free-
dom. To disentangle them, and thereby identify the SM and
LW component fields, one may Fourier transform to obtain
the propagator,

D’̂ðpÞ ¼ i

�
� p4

�2
LW

þ p2 �m2
’ð�cÞ

��1

¼ �2
LW

m2
~’ �m2

’

�
i

p2 �m2
’

� i

p2 �m2
~’

�
; (41)

where

Positive-Norm Pole:

m2
’ð�cÞ � �2

lw

2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

’̂ð�cÞ
�2

lw

s 1
A;

Negative-Norm Pole:

m2
~’ð�cÞ � �2

lw

2

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

’̂ð�cÞ
�2

lw

s 1
A: (42)

Essential to this decomposition is a consistent pole pre-
scription and direction of Wick rotation, as discussed in
Appendix A. It is now straightforward to construct the
one-loop effective potential using Eq. (35). One finds

Vð1LÞ
eff ð�c;TÞ

¼Uð�cÞ þ
�
�Vc:t:ð�cÞ þ 1

2

Z d4pE

ð2�Þ4 ðln ½p
2
E þm2

’ð�cÞ�

þ ln ½p2
E þm2

~’ð�cÞ�Þ
�

þ T4

2�2
½JBðm2

’=T
2Þ þ�JBðm2

~’=T
2Þ�; (43)

where we have defined the bosonic thermal function

JBðyÞ �
Z 1

0
dxx2 ln ð1� e�

ffiffiffiffiffiffiffiffi
x2þy

p
Þ; (44)

and have introduced the index � ¼ �1 in front of
the thermal correction arising from the LW field. The
counterterms

�Vc:t:ð�cÞ ¼ ��þ 1

2
��2�2

c þ �


4
�4

c; (45)

are determined once a set of renormalization conditions are
specified.

2. A fermionic example

As a second example, consider the toy LW theory

L ¼ �̂c

�
i
6@3
�2

LW

þ i6@� 
�̂

�
ĉ þL�̂; (46)

in which the Dirac spinor ĉ acquires its mass through the

Yukawa coupling with the real scalar field �̂. The termL�̂

contains the kinetic term, mass term, and interactions for

�̂. The details of these interactions are not relevant, and
we merely suppose that they are such that a condensate

h�̂i ¼ �c forms. It is straightforward to analyze the propa-

gator for ĉ :
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Dĉ ðpÞ ¼ i

�
� 6p3

�2
LW

þ 6p�mĉ ð�cÞ
��1

¼ þ �2
LW

ðm ~c 1
�mc Þðmc �m ~c 2

Þ �
i

6p�mc

� �2
LW

ðm ~c 1
�mc Þðm ~c 1

�m ~c 2
Þ �

i

6p�m ~c 1

� �2
LW

ðmc �m ~c 2
Þðm ~c 1

�m ~c 2
Þ �

i

6p�m ~c 2

; (47)

where

Positive-Norm Pole: mc ð�cÞ � �LW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

�
1� cos

�

3

�s
;

Negative-Norm Pole:

m ~c 1
ð�cÞ � �LW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

�
1þ cos

�þ �

3

�s
;

Negative-Norm Pole:

m ~c 2
ð�cÞ � ��LW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

�
1þ cos

�� �

3

�s
; (48)

and

� � arctan
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þp
1� 2�

; 0 � � < �;

� � 27

4

m2
ĉ

�2
LW

; mĉ � 
�c:
(49)

As before, one can construct the one-loop effective poten-
tial using Eq. (35):

Vð1LÞ
eff ð�c;TÞ

¼Uð�cÞþ
�
�Vc:t:ð�cÞ�

Z d4pE

ð2�Þ4 ðln½p
2
Eþm2

c ð�cÞ�

þ ln½p2
Eþm2

~c 1
ð�cÞ�þ ln½p2

Eþm2
~c 2
ð�cÞ�Þ

�

� T4

2�2
½JFðm2

c =T
2Þþ�JFðm2

~c 1
=T2Þþ�JFðm2

~c 2
=T2Þ�;
(50)

where we have defined the fermionic thermal function

JFðyÞ �
Z 1

0
dxx2 ln ð1þ e�

ffiffiffiffiffiffiffiffi
x2þy

p
Þ: (51)

Once again, the counterterms in �Vc:t: are determined by
renormalization.

3. Comparison of bosonic and fermionic cases

Let us now pause to comment on the results Eq. (43) and
(50). First, note that the scalar masses Eq. (42) are only real
valued for �2

c < ð�2
LW � 4�2Þ=12
, and the fermion

masses Eq. (48) only for �2
c < 4�2

LW=27
2. In either
case, if the value of �c becomes too large, then the LW
stability condition discussed in Sec. II breaks down. Since
the thermal corrections tend to give rise to symmetry
restoration, then �c ! 0, and we do not concern ourselves
with the failure of the calculation at large �c. At small �c

the masses can be expanded as

m2
’ð�cÞ 
 m2

’̂ þ m4
’̂

�2
LW

þOðm6
’̂=�

4
LWÞ; (52a)

m2
~’ð�cÞ 
 �2

LW �m2
’̂ � m4

’̂

�2
LW

þOðm6
’̂=�

2
LWÞ; (52b)

m2
c ð�cÞ 
 m2

ĉ
þ 2

m4
ĉ

�2
LW

þOðm6
ĉ
=�4

LWÞ; (52c)

m2
~c 1;2

ð�cÞ 
 �2
LW �mĉ�LW � 1

2
m2

ĉ
� 5

8

m3
ĉ

�LW

�
m4

ĉ

�2
LW

þOðm6
ĉ
=�4

LWÞ: (52d)

For the LW field masses, Eqs. (52b) and (52d), the �c

dependence (carried bym2
’̂ andm2

ĉ
) is subdominant to the

LW scale �LW. Therefore, one expects that these fields
just give a constant (�c-independent) shift to the effective
potential except at field values at which m2

’̂, m
2
ĉ
��2

LW.

It is worth emphasizing that the issue here is not simply
that the LW fields are too heavy and decouple, but rather
that they acquire their mass through a constant mass
parameter instead of entirely through symmetry breaking.
In this way, their impact on the effective potential is
comparable to that of heavy squarks in supersymmetric
theories.
Since the LW stability condition requires�LW to remain

larger than the �c-dependent mass scales, one expects
that the LW fields provide negligible contributions to the

nonthermal effective potential �Vð1LÞ
0 . Similarly, at low

temperatures T2 	 �2
LW, the LW fields are heavy and

their contributions to the thermal effective potential are
Boltzmann suppressed since JBðyÞ � JFðyÞ � e�

ffiffi
y

p
for

y � 1. For theories with spontaneous symmetry breaking,
such as the scalar toy model equation (38) with �2 < 0,
one expects the LW fields to have a negligible impact on
symmetry restoration and the phase transition unless the
phase transition temperature Tc is comparable to �LW.
Naturally, Tc is set by the mass scale of the field experi-
encing the phase transition, so that Tc �m’̂ðvÞ, where
�c ¼ v is the zero-temperature scalar vacuum expectation
value. However, due to the LW stability condition �LW >

2m’̂ðvÞ, one sees that the limit Tc ! �LW cannot be

reached. We reach the general conclusion that, in natural
scenarios, the LW fields do not qualitatively affect the
phase transition.
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On the other hand, at high temperatures T2 * �2
LW, the

thermal corrections �Vð1LÞ
T can become significant. In the

high-temperature limit, the bosonic and fermionic thermal
functions admit the series expansions [27]

JBðyÞ!y	1 � �4

45
þ �2

12
y� �

6
y3=2 � 1

32
y2 ln

y

ab
þOðy3Þ;

(53)

JFðyÞ!y	1 þ 7�4

360
� �2

24
y� 1

32
y2 ln

y

af
þOðy3Þ; (54)

where ab ¼ 16af ¼ 16�2 exp ½3=2� 2�E�. The thermal

correction in Eqs. (43) and (50) can now be expanded
using Eqs. (53) and (54). First, for the scalar toy theory,
one finds

T4

2�2

�
JB

�
m2

’ð�cÞ
T2

�
þ �JB

�
m2

~’ð�cÞ
T2

��
!T

2��2
LW�m2

’̂ � �2

90
ð1þ �ÞT4 þ�2

LWT2

24
�þ ð1� �Þm

2
’̂T

2

24
� �

�3
LWT

12�

þ �
�LWTm2

’̂

8�
� T

12�
ðm2

’̂Þ3=2 þ � � � : (55)

The first term is the free energy density of a relativistic gas with (1þ �) degrees of freedom. If one takes� ¼ �1, then this
term vanishes due to a cancellation between the 2 degrees of freedom. In this case, the leading temperature dependence is
given by theOðT2Þ term, and consequently the thermodynamic quantities, such as the equation of state, are modified from
the familiar expressions for radiation domination [4]. The third term carries the field dependence and is responsible for
symmetry restoration. Since m2

’̂ ��2
c, this term is an effective temperature-dependent mass for the scalar ’. For the case

� ¼ þ1, there is a cancellation between the SM and LW fields, and this term vanishes. Then symmetry restoration is
accomplished by the Oð�LWTÞ term [relative size OðT=�LWÞ], which tends to increase the temperature of symmetry
restoration. For the fermionic toy theory, on the other hand, one finds

� T4

2�2

�
JF

�m2
c ð�cÞ
T2

�
þ�JF

�m2
~c 1
ð�cÞ
T2

�
þ�JF

�m2
~c 2
ð�cÞ
T2

��
!
T2��2

LW�m2
ĉ �7�2

720
ð1þ2�ÞT4þ2�

�2
LWT

2

48
þð1��Þ

m2
ĉ
T2

48

þð1��Þ
m4

ĉ
T2

24�2
LW

þ
m4

ĉ

64�2

�
ln

m2
ĉ

afT
2
��ln

�2
LW

afT
2

�

þ2�
�4

LW

64�2
ln
�2

LW

afT
2
þ���: (56)

In this case, the leading OðT4Þ term flips sign for � ¼ �1.
Since the free energy density and pressure carry opposite
signs, the system develops a negative pressure for T �
�LW. Once again, the Oðm2T2Þ term vanishes in the case
� ¼ þ1, but now the next [Oðm4

ĉ
T2Þ] term that could

restore symmetry vanishes as well, since the nonanalytic
y3=2 term of JB is absent from JF. Symmetry restoration
must be accomplished in the bosonic sector.

IV. THE LWSM AT FINITE TEMPERATURE

A. The LWSM thermal effective potential

In this section we construct the thermal effective poten-
tial for the LWSM using the results of Sec. III. As seen
there, to calculate the effective potential in the one-loop
approximation, one sums the separate contributions arising
from each of the SM fields and its LW partner. The fields
that couple more strongly to the Higgs give a larger con-
tribution to Veff . Thus, to a very good approximation, one
need only sum the contributions arising from the top quark,
the weak gauge bosons, the Higgs boson, and each of their
LW partners. To ensure a correct counting of the degrees of

freedom, we assume that the remaining SM-like degrees of
freedom are massless, that the remaining LW-like degrees
of freedom have mass �2

LW, and we include three ‘‘SM
gauge ghosts’’ that contribute negative degrees of freedom,
as per the discussion in Appendix B.

We parametrize the Higgs condensate as hĤi ¼
ð0; �c=

ffiffiffi
2

p ÞT , where �c ¼ v ¼ 246 GeV corresponds to
the tree-level vacuum expectation value, calculate the
field-dependent masses in Appendix B, and summarize
the results in Table II. For each species, we list the spin
s, the number of dynamical degrees of freedom g (arising
from color, spin, and isospin), and the field-dependent
squared mass m2ð�cÞ. In light of the discussion of the
preceding section, we allow for ambiguity in the sign of
the thermal corrections to the effective potential by intro-
ducing an index � that equals 1 for the SM-like fields and
either �1 for the LW-like fields. Finally, as discussed in
Sec. III, the field-dependent mass eigenvalues become
complex for large values of �c at which the LW stability
condition fails, and the system becomes unstable; since we
are primarily interested in the regime �c < v, we ignore
such cases.
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Using the results of Sec. III C, the one-loop effective potential for the LWSM reads2

Vð1LÞ
eff ð�c; TÞ ¼ Uð�cÞ þ �Vð1LÞ

0 ð�cÞ þ �Vð1LÞ
T ð�c; TÞ; Uð�cÞ ¼ 


4
ð�2

c � v2Þ2;

�Vð1LÞ
0 ð�cÞ ¼ �Vc:t: þ

X
i

ð�1Þ2sigi ½m
2
i ð�cÞ�2
64�2

�
lnm2

i ð�cÞ � Cuv � 3

2

�
; �Vc:t: ¼ ��þ �m2

2
�2

c þ �


4
�4

c;

�Vð1LÞ
T ð�c; TÞ ¼ T4

2�2

X
i

�igi

8><
>:
JB
�
mið�cÞ
T2

�
si ¼ 0; 1;

�JF
�
m2

i ð�cÞ
T2

�
si ¼ 1

2 ;
(57)

TABLE II. Tree-level, field-dependent pole masses used to construct the LWSM effective potential. s, g, and � indicate the spin,
effective number of degrees of freedom, and LW character of the fields; the fifth column gives the mass eigenvalues in terms of the
field-dependent Lagrangian mass parameters appearing in the last column.

Field s g � m2
i ð�cÞ

SM-like Higgs 0 1 1 m2
h ¼ 1

2 �
2
H

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

ĥ

�2
H

r �
m2

ĥ
¼ 
ð3�2

c � v2Þ

LW-like Higgs 0 1 � m2
~h
¼ 1

2 �
2
H

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

ĥ

�2
H

r �

SM-like pseudoscalar 0 1 1 m2
P ¼ 1

2�
2
H

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

P̂

�2
H

r �
m2

P̂
¼ 
ð�2

c � v2Þ

LW-like pseudoscalar 0 1 � m2
~P
¼ 1

2�
2
H

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

P̂

�2
H

r �

SM-like charged scalar 0 2 1 m2
h� ¼ 1

2 �
2
H

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

ĥ�
�2

H

r �
m2

ĥ� ¼ 
ð�2
c � v2Þ

LW-like charged scalar 0 2 � m2
~h� ¼ 1

2 �
2
H

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

ĥ�
�2

H

r �
SM gauge ghosts 0 �3 1 0

SM-like W 1 6 1 m2
~W� ¼ 1

2�
2
W

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Ŵ

�2
W

r �
m2

Ŵ� ¼ g2�2
c

4

LW-like W 1 6 � m2
~W� ¼ 1

2�
2
W

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Ŵ

�2
W

r �
SM-like A 1 2 1 m2

A ¼ 0

LW-like A 1 3 � m2
~A
¼ �2

EW

SM-like Z 1 3 1 m2
Z ¼ 1

2�
2
EW

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Ẑ

�2
EW

r �
m2

Ẑ
¼ ðg2þg02Þ�2

c

4

LW-like Z 1 3 � m2
~Z
¼ 1

2�
2
EW

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Ẑ

�2
EW

r �

SM-like top 1
2 12 1 m2

t ¼ 2�2
t

3

�
1� cos �t3

�
�t ¼ arctan

2
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
1�2�

LW-like top (1) 1
2 12 � m2

~t1
¼ 2�2

t

3

�
1þ cos �tþ�

3

�
� ¼ 27

4

m2
t̂

�2
t

LW-like top (2) 1
2 12 � m2

~t2
¼ 2�2

t

3

�
1þ cos �t��

3

�
m2

t̂
¼ h2t �

2
c

SM-like gluons 1 16 1 0

LW-like gluons 1 24 � �2
LW

Other SM-like fermions 1
2 78 1 0

Other LW-like fermions 1
2 156 � �2

LW

2Here we have neglected the higher-order corrections, particularly the so-called ‘‘daisy resummation’’ (see, e.g., [27,31]). Since, as
we discuss below, the phase transition is not first order, the daisy resummation does not play a central role, in contrast to the case of the
Standard Model.
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where the sums run over the species listed in Table II. One
calculates �Vð1LÞ

0 by evaluating the divergent momentum
integrals in Eq. (36) using dimensional regularization (d ¼
4� 2�) and defining the subtraction constant CUV �
��1 � �E þ ln 4�. The bosonic and fermionic thermal
functions JB;F are defined in Eqs. (44) and (51). We are
interested in the decoupling limit in which the LW mass
scale is much greater than the EW scale. Since decoupling
is not manifest in the MS renormalization scheme, we
instead renormalize by requiring that the tree-level rela-
tionships for the Higgs vacuum expectation value and mass
are maintained at one loop, and requiring the vanishing of
the cosmological constant. These conditions amount to
imposing

0¼�Vð1LÞ
0 j�c¼v¼d�Vð1LÞ

0

d�c

���������c¼v
¼d2�Vð1LÞ

0

d�2
c

���������c¼v

; (58)

which may be solved for the counterterms ��, �m2, and
�
. After fixing v ¼ 246 GeV, the free parameters are the
four SM couplings 
, g, g0, ht and the five LW mass scales
�H, �W , �t, �EW, and �LW. The SM couplings are
renormalized to satisfy the tree-level mass relationships
[32–34] ffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
hðvÞ

q
¼ MH ¼ 125 GeV;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
W�ðvÞ

q
¼ MW ¼ 80:4 GeV;ffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ZðvÞ

q
¼ MZ ¼ 91:2 GeV;ffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t ðvÞ

q
¼ Mt ¼ 172:6 GeV:

(59)

For simplicity, we assume a common Lee-Wick mass
scale �H ¼ �W ¼ �t ¼ �EW ¼ �LW, and take �LW as
the only free parameter of the theory. There is no
upper bound on �LW; the SM is regained in the limit
�LW � v. Later, we generalize and discuss phenome-
nological lower bounds on each of the LW scales.
While most of the LW particles now have masses
<1 TeV excluded, the scalars might be considerably
lighter, and therefore for illustration we allow �LW to
be as low as 350 GeV.

B. Finite-temperature behavior

The LWSM effective potential Vð1LÞ
eff ð�c; TÞ of Eq. (57)

is shown in Fig. 1 over a range of temperatures and
for different values of the LW scale. In the case

�LW ¼ 350 GeV, the curves are not drawn for �c �ffiffiffiffiffiffiffiffiffiffiffi
4=27

p
�t=ht 
 255 GeV, where the LW stability condi-

tion fails in the top sector. The absence of a barrier in the
effective potential near the critical temperature implies
that the electroweak phase transition is not first order.
This conclusion is also illustrated in Fig. 2, where we plot
the electroweak order parameter vðTÞ, i.e., the value of
�c that minimizes the effective potential, versus T. We
define the phase transition temperature Tc by the condi-
tion vðT � TcÞ ¼ 0. The absence of a discontinuity in
vðTÞ at T ¼ Tc indicates that the phase transition is not
first order. In this way, the LWSM electroweak phase
transition is similar to the SM phase transition, and in
particular implies that LW electroweak baryogenesis is
not a viable mechanism for the generation of the baryon
asymmetry of the Universe [35].

FIG. 1 (color online). Variation with respect to temperature T and LW scale �LW of the LWSM thermal effective potential Veffð�cÞ.
T increases from 0 GeV (blue, lowest curves) to 300 GeV (red, highest curves) in increments of �T ¼ 50 GeV.
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From Fig. 2 one sees that the limit�LW � v restores the
phase transition temperature to Tc 
 150 GeV, which cor-
responds to the SM one-loop result [36]. In the case � ¼
þ1 (� 1), the critical temperature is generally larger
(smaller). As discussed in Sec. III C, this result can be
understood to arise from cancellations between the

positive- and negative-norm fields. To make this cancella-

tion explicit in the LWSM, consider the thermal corrections

�Vð1LÞ
T ð�c; TÞ that appear in Eq. (57). For illustrative pur-

poses, one may take the limit�c 	 �LW 	 T, in which all

species are light compared to the temperature, and compute

�Vð1LÞ
T ð�c; TÞ 
 ��2

90
g�ð�ÞT4 þ T2 


8><
>:
þ 13

6 �
2
LW � ¼ þ1;

� 13
6 �

2
LW þ

�
3g2þg02

16 þ m2
t

2v2 þ 

2

�
�2

c þOð�4
c=�

2
LWÞ � ¼ �1;

þ T 

8><
>:
þ
�
9g2þ3g02þ3


32�2

�
�2

c�LW þOð�3
c=�LWÞ � ¼ þ1;

�
�
9g2þ3g02þ3


32�2

�
�2

c�LW þOð�3
c=�LWÞ � ¼ �1;

(60)

where g�ð�Þ ¼ 106:75þ 197:5� is a coefficient recogniz-
ing that the LW states contribute negatively to the energy
density; it should be interpreted as 106.75 regular and
197.5 LW degrees of freedom. Let us consider each term
order by order in powers of T.

The OðT4Þ term has the same form as the free energy
density of an ultrarelativistic gas in which all mass scales
are negligible and the effective number of degrees of free-
dom is g�. Here, the central point of Eqs. (33) and (34),
which propagates through Eqs. (55) and (56), enters: Each
LW degree of freedom contributes a factors � to the
potential. The term g� 3 106:75 arises from the SM fields,
and the larger term g� 3 197:5� arises from the LW fields,
which outnumber the SM fields because (i) each SM
fermion has two LW fermions [Eq. (48)] and (ii) the LW
gauge bosons have explicit masses. Thus, the sign of g�
follows the sign of �: g�ðþ1Þ ¼ 304:24 and g�ð�1Þ ¼
�90:75. For the case � ¼ �1, we find that the free energy

density is positive, which implies that the pressure, energy
density, and entropy densities are negative. This result has
been obtained previously in the context of toy LW theories
[4,11], and its interesting implications have been studied in
the context of early-universe cosmology [37,38].

In the SM, the term �Vð1LÞ
T 3 T2TrM2 � T2�2

c gives
rise to symmetry restoration. In the �¼þ1 case, this
term is absent due to the cancellation between positive-
and negative-norm fields, as already encountered in
Sec. III C. Then symmetry restoration only comes about
through the subdominant OðT�LW�

2
cÞ term, which results

in a higher phase transition temperature. Note that this term
only arises by virtue of the OðTÞ nonanalytic term in the
expansion of the bosonic thermal function [see Eq. (53)].
In this case, the fermions are irrelevant for symmetry
restoration.
Recently, it has been emphasized [39] that one must take

care in extracting gauge-invariant observables from the
manifestly gauge-dependent effective potential [40]. In the
conventional phase transition calculation, which we follow

here, one obtains vðTÞ by minimizing Vð1LÞ
eff . However this

definition of the order parameter endows vðTÞ with the
gauge dependence of the effective potential. In the case of
a first-order phase transition, this gauge dependence can
lead to anomalous results for observables such as the baryon
number preservation criterion and gravity wave spectrum
[39,41,42]. However, [43] have pointed out that the gauge
dependence is small as long as the perturbative expansion is
valid. Since the LWSM phase transition is not first order, the
only potentially gauge-dependent parameter is Tc. To check
our results, we have also calculated the critical temperature
using the technique of [39]. We find qualitative agreement
with the critical temperatures presented in Fig. 2, namely,
that Tc is generally increased (decreased) for the case � ¼
þ1 (�1) with respect to the SM value, but the gauge-
invariant Tc is typically Oð20%–35%Þ smaller, with the
discrepancy at the larger end of this range at lower �LW.
The preceding discussion of the unusual high-temperature
behavior of the LWSM is independent of this gauge-fixing
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FIG. 2 (color online). The electroweak symmetry-breaking
order parameter vðTÞ for the case of � ¼ þ1 (dashed) and � ¼
�1 (solid). Note that the pairs of lines for a given �LW move
inward monotonically with increasing �LW. The phase transition
temperature is generally higher in the former case due to the
cancellation of the leading OðT2Þ temperature dependence dis-
cussed in the text.
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ambiguity because the symmetric phase, �c ¼ 0, is a criti-
cal point of the effective potential.

For simplicity we have assumed a common LW mass
scale �LW � 350 GeV up to this point, but let us now
discuss a more phenomenologically motivated parameter
set. The strongest constraints on the mass of the LW partners
come from electroweak precision tests. The oblique parame-
ter T is sensitive to the LW top, and its constraints impose3

�t > 1:5 TeV at 95% C.L. [21]. The oblique parametersW
and Y are sensitive to the LW gauge bosons and impose
�W ¼ �B > 2:3 TeV at 95% C.L. [21]. Finally, the Z !
b �b branching fraction and forward-backward asymmetry
are sensitive to the new charged scalars and impose �H >
640 GeV at 95% C.L. [26] (see also [23]). Setting each of
these parameters to its lower bound, we calculate the elec-
troweak order parameter vðTÞ and find it to be indistinguish-
able from the solid red (i.e., innermost) curve of Fig. 2. The
phase transition temperature is Tc 
 150 GeV, which is
very close to the SM one-loop result (i.e., the �LW ! 1
limit). Note that this result is obtained despite the weaker
bound on the LWHiggs mass, which presumably could have
played a significant role; it suggests that the departures from
the SM phase transition seen in Fig. 2 are driven primarily
by the LW tops, which at 350 GeVare near the threshold of
their LW stability condition.

V. CONCLUSIONS

This paper has two goals: to explore the thermodynam-
ics of LW theories and to study the LWSM at temperatures
T * Oð100–1000 GeVÞ. In a LW theory, the negative-
norm degrees of freedom are forbidden from appearing
as external states in S-matrix elements by the LW/CLOP
prescription, but it is unclear how to implement these
constraints when the system is brought to finite tempera-
ture. If no special consideration is paid to the negative-
norm degrees of freedom, then at leading order in the
interactions these LW particles can be treated as a free
(ideal) gas, and the partition function is calculated in the
standard way. However, it seems that this picture is incom-
patible with the LW/CLOP prescription. Alternatively, the
negative-norm particles can be restricted to internal lines,
where they simply modify the energy of the states contain-
ing positive-norm SM particles. In the limit of small cou-
plings the LW particles become narrow resonances, but
since their decay width is negative (a consequence of the
negative-residue propagator), their contribution to the ther-
modynamic variables is just the opposite of what one
would expect for an ideal gas of SM particles. Since
some uncertainty remains as to the correct sign of the

LW particle contribution to the free energy compared to
that of its SM partner, we introduce the index � ¼ �1 to
consider both cases.
We find that the LWSM electroweak phase transition is

qualitatively very similar to the Standard Model crossover.
For phenomenologically viable values of the LW mass
scale �LW ¼ OðTeVÞ, the LW degrees of freedom are
heavy and decouple from the physics of the electroweak
phase transition that occurs at T ¼ Oð100 GeVÞ. However,
at temperatures comparable to �LW, the LW fields yield
significant modifications to the thermodynamics. One finds
in case � ¼ þ1 a cancellation of the leading OðT2Þ cor-
rection to the Higgs mass. Since this effective mass is
responsible for symmetry restoration, the cancellation
tends to retard symmetry restoration and increases the
phase transition temperature. In the ultrarelativistic limit,
the number of effective species is found to be g� ¼
ð106:75þ 197:5�Þ, where the first term is the standard
SM contribution and the second term arises from their
LW partners, which are greater in number because of the
doubling in the fermion sector and explicit gauge boson
partner masses. In the case � ¼ �1, the LW partners
overwhelm the SM degrees of freedom to give g� < 0,
implying a negative pressure and energy density.
Our results have immediate implications for early-

universe cosmology. Since the electroweak phase transition
is not first order, LW electroweak baryogenesis is not a
viable explanation for the baryon asymmetry of the
Universe, nor do we expect other cosmological relics, such
as gravitational waves, to be produced. References [37,38]
studied the effect of LW theories on very early-universe
cosmology using the case that we call � ¼ �1. They find
that the unusual thermodynamic properties of LW theories
can lead to novel features, such as bouncing cosmologies
and mini-reheating events when LW particles decouple.
Alternately, if LW thermodynamics is correctly described
by the case � ¼ þ1, then the early-universe cosmology
very much resembles the SM concordance model, but with
the addition of 197.5 relativistic degrees of freedom.
An interesting generalization of our work would be to

consider the N ¼ 3 LWSM [14]. In that extension, the
phenomenological bounds on the LW scale are weaker,
and the LW partners may have a more significant impact
on the nature of the phase transition. Moreover, many addi-
tional degrees of freedom contribute to g� and thereby
manifest themselves in the high-temperature thermodynam-
ics. Finally, if the narrow-resonance approximation is not
valid for some of the LW particles in the LWSM (for anyN),
then a more careful analysis than presented here is required.
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to the level of precision with which we have been working.

LEBED, LONG, AND TERBEEK PHYSICAL REVIEW D 88, 085014 (2013)

085014-14



APPENDIX A: QUANTIZATION CONVENTIONS

1. Classical to quantum theory

A first, essential step to performing calculations with
negative-norm states is the establishment of consistent
conventions for quantization, time ordering, and the
Feynman rules. Since so much potential confusion can
arise from improperly handled sign conventions, we begin
with the pedagogical exercise of presenting textbook
expressions, augmented with the relevant signs. Suppose
first that one is given the classical Lagrangian density

L ¼ 
H

�
1

2
_�2 � 1

2
m2�2

�
; (A1)

from which one sees that �� � @L=@ _� ¼ 
H
_�, and

therefore

H ¼ 
H

�
1

2
�2

� þ 1

2
m2�2

�
: (A2)

The sign 
H is therefore defined so that 
H ¼ �1 gives a
semipositive(negative)-definite Hamiltonian density. In or-
der to quantize this theory, one must impose quantization
conditions on the fields and their conjugate momenta;
however, the sign 
C of the fundamental commutation
relation may be allowed to vary while still allowing unitary
time evolution:

½�ðxÞ; ��ðyÞ� ¼ i
C�
ð3Þðx� yÞ: (A3)

How does this choice affect the time evolution of states
defined on a Hilbert space? For the fundamental field
operators �, ��,

½�;H� ¼ 
H

�
�ðxÞ; 1

2

Z
d3y�2

�ðyÞ
�

¼ i
H
C�� ¼ i
C
_�;

½��;H� ¼ 
H

�
��ðxÞ; 12m

2
Z

d3y�2ðyÞ
�

¼ �i
H
Cm
2� ¼ i
C _��; (A4)

which uses the definition of ��, the commutation relation

equation (A3), and the commutator identity ½A;BC�¼
½A;B�CþB½A;C�, while the final equality also uses
the Hamilton equation of motion, _��¼�@H =@�¼
�
Hm

2�. From the above relations, one may prove the
more general Heisenberg equation:

½O; H� ¼ i
C
_O; (A5)

for any function Oð�;��Þ. The proof is straightforward:

Both sides of Eq. (A5) are linear in O, so without loss of
generality O may be taken as a monomial in � and ��.

The commutator identity ½AB;H� ¼ A½B;H� þ ½A;H�B
shows that, if A and B separately satisfy Eq. (A5), then

the right-hand side is A _Bþ B _A ¼ _ðABÞ, which means that
AB also satisfies Eq. (A5). Since Eq. (A4) shows that� and

�� themselves satisfy Eq. (A5), then by induction so does

any arbitrarily complicated function O of them. These
results indicate that, once the phase space of the system
is partitioned into one set for which 
C ¼ 1 in Eq. (A3)
and another set for which 
C ¼ �1, the operators defined
in those partitions obey separate Heisenberg equations of
motion parametrized by 
C (and independent of 
H). We
do not consider operators that are functions of fields or
their conjugate momenta drawn from both partitions.
Now, how does one interpret the potentially ‘‘wrong-

sign’’ Heisenberg equations of motion in Eq. (A5)? They
may be exponentiated to obtain

ei
CHðt�t0ÞOðt0Þe�i
CHðt�t0Þ ¼ OðtÞ: (A6)

The fields are therefore evolved forward in time from
t0 to t by means of the unitary operator Uðt; t0Þ �
exp ½�i
CHðt� t0Þ�. For the 
C ¼ �1 partition, this
operator has the opposite phase compared to the conven-
tional time evolution operator encountered in quantum
field theory. We show next that the choice of 
C has crucial
implications for quantities such as the Feynman propagator
of the Lee-Wick field theories, as well as the allowed
direction of Wick rotation in the complex p0 plane.

2. Mode expansions and the Hamiltonian

We begin with the mode expansions for a Lee-Wick type
field �ðxÞ and its conjugate momentum ��ðxÞ:

�ðxÞ ¼
Z d3p

ð2�Þ3
1ffiffiffiffiffiffiffiffiffi
2!p

p ðapeip�x þ aype�ip�xÞ

¼
Z d3p

ð2�Þ3
1ffiffiffiffiffiffiffiffiffi
2!p

p ðap þ ay�pÞeip�x; (A7)

��ðxÞ ¼ 
H

Z d3p

ð2�Þ3 ð�iÞ
ffiffiffiffiffiffiffi
!p

2

r
ðapeip�x � aype�ip�xÞ

¼ 
H

Z d3p

ð2�Þ3 ð�iÞ
ffiffiffiffiffiffiffi
!p

2

r
ðap � ay�pÞeip�x; (A8)

where!p � þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is strictly positive, and the factor


H reflects the result �� ¼ 
H
_�. The canonical commu-

tation relation ½�ðxÞ; �ðyÞ� ¼ i
C�
ð3Þðx� yÞ constrains

the commutator ½ap; ayq� � 
Nð2�Þ3�ð3Þðp� qÞ:

½�ðxÞ; �ðyÞ� ¼ �
H

Z d3pd3q

ð2�Þ6
i

2

ffiffiffiffiffiffiffi
!q

!p

s
ð½ay�p; aq�

� ½ap; ay�q�Þeiðp�xþq�yÞ

¼ 
H

Z d3pd3q

ð2�Þ6
i

2

ffiffiffiffiffiffiffi
!q

!p

s
2ð2�Þ3


 
N�
ð3Þðpþ qÞeiðp�xþq�yÞ

¼ i
H
N�
ð3Þðx� yÞ; (A9)
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from which one identifies 
C ¼ 
H
N . The interpretation
of 
N becomes apparent once one calculates the spectrum
of the theory. The mode expansion of the Hamiltonian
reads

H ¼ 
H

Z
d3x

�
1

2
�2 þ 1

2
ðr�Þ2 þ 1

2
m2�2

�

¼ 
H

1

2

Z
d3x

Z d3pd3q

ð2�Þ6 eiðpþqÞ�x �
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
!p!q

p
2


 ðap � ay�pÞðaq � ay�qÞ þ �p � qþm2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!p!q

p


 ðap þ ay�pÞðaq þ ay�qÞ
�

¼ 
H

Z d3p

ð2�Þ3 !p

�
aypap þ 1

2
½ap; ayp�

�
: (A10)

From this expansion follows the commutators:

½H; ap� ¼ 
H

Z d3q

ð2�Þ3 !q½ayq ; ap�aq ¼ �
H
N!pap

¼ �
C!pap; (A11)

½H; ayp� ¼ 
H

Z d3q

ð2�Þ3 !qa
y
q½aq; ayp� ¼ þ
H
N!pa

y
p

¼ þ
C!pa
y
p : (A12)

These commutation relations immediately provide the time
dependence of the ladder operators. Rearranging Eq. (A11)
intoHap ¼ apðH � 
C!pÞ, one acts repeatedly withH on

the left to obtain Hnap ¼ apðH � 
C!pÞn, which may be

exponentiated [consistent with Eq. (A6)] to

apðtÞ ¼ Uyðt; 0Þapðt ¼ 0ÞUðt; 0Þ ¼ ei
CHtape
�i
CHt

¼ ape
�i!pt: (A13)

Hermitian conjugation of this result immediately gives

aypðtÞ ¼ ayp exp ði!ptÞ. In the case 
H ¼ �1, Eqs. (A11)

and (A12) show that the choice 
N ¼ �1 still leads to ayp
and ap acting as raising and lowering operators, respec-

tively. One may then define a lowest-energy state j0i such
that apj0i ¼ 0, with single-particle momentum eigenstates

jpi ¼ ffiffiffiffiffiffiffiffiffi
2!p

p
aypj0i whose norms are given by

hpjqi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!p!q

p h0japayqj0i ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!p!q

p h0j½ap; ayq�j0i
¼ 2
N!p�

ð3Þðp� qÞ; (A14)

from which one concludes that the 
N ¼ �1 convention
corresponds to states of negative norm. In short,

(i) 
H is defined by the Hamiltonian (or Lagrangian),
(A1) and (A2);

(ii) 
C is defined by the ½�;�� commutation relation
(A3);

(iii) 
N is defined by the ½a; ay� commutation relation
[above (A9)] and fixes the norm.

If instead, 
N ¼ 1, the spectrum is defined by raising and

lowering operators ap and ayp , respectively, and one must

then define the vacuum in a sensible way. It is possible to

choose aypj0i ¼ 0 and build successive n-particle states

with repeated action of ap, but this choice effectively

amounts just to exchanging the roles of ayp and ap. We

instead choose the prescription of defining a highest-
energy state such that apj0i ¼ 0, and create negative-

energy modes using jpi ¼ ffiffiffiffiffiffiffiffiffi
2!p

p
aypj0i. The Hamiltonian

spectrum (ignoring the zero-point energy) for either sign of

H then becomes

Hjpi ¼
�

H

Z d3q

ð2�Þ3 !qa
y
qaq

�
ayp

ffiffiffiffiffiffiffiffiffi
2!p

q
j0i

¼ 
H

Z d3q

ð2�Þ3 !qa
y
q½aq; ayp�

ffiffiffiffiffiffiffiffiffi
2!p

q
j0i

¼ 
H
N!pa
y
p

ffiffiffiffiffiffiffiffiffi
2!p

q
j0i ¼ 
H
N!pjpi;

∴Hjpi � Epjpi ¼ 
H
N!pjpi ¼ 
C!pjpi: (A15)

We see that, working in a convention in which there exists a
state j0i annihilated by the operators ap, the sign 
C

defined in Eq. (A3) uniquely determines the sign of the
energy eigenvalues. The choice 
H ¼ 
C ¼ 
N ¼ þ1 is
of course the conventional Klein-Gordon theory with posi-
tive energies and positive norms, whereas one-particle
states in Lee-Wick theories (
H ¼ �1) can have either
negative norms (
N ¼ �1) and positive energies (
C ¼
þ1) (the conventional formulation) or positive norms
(
N ¼ þ1) and negative energies (
C ¼ �1).

3. Calculating the propagator

For the zero-temperature quantum theory, it is important
to define the Feynman propagator so that calculations may
be performed in a straightforward manner; to do so relies
on how one performs contour integrals in the complex p0

plane. This discussion ultimately leads to a proper choice
of the �i� terms in the propagator, as well as singling out
the unique Wick rotation allowed in defining loop inte-
grals. To begin with, one writes down a mode expansion for
the fields generalizing Eq. (A7):

�ðxÞ ¼
Z d3p

ð2�Þ3
1ffiffiffiffiffiffiffiffiffi
2!p

p ða
Cpe
�ip�x þ ay
Cpe

ip�xÞj
C
;

(A16)

where the 
C evaluation is shorthand for p0 evaluation at
p0 ¼ 
C!p ¼ 
H
N!p. This bifurcation admits the pos-

sibility of defining the field on either the positive- or

negative-mass shell (i.e., p0¼� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
). The Lorentz

invariance of p � x in Eq. (A16) must be maintained in
either case, and so we generalize the ladder operators to
create and destroy states of momentum 
Cp.
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The first step in calculating the Feynman propagator is to obtain the two-point function, h0j�ðxÞ�ðyÞj0i. For arbitrary 
N ,
the single nonvanishing term of the transition amplitude is

h0j�ðxÞ�ðyÞj0i ¼
Z d3pd3q

ð2�Þ6
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!p!q

p h0ja
Cpa
y

Cqj0ie�iðp�x�q�yÞj
C

¼
Z d3pd3q

ð2�Þ3

N

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!p!q

p �ð3Þ½
Cðp� qÞ�e�iðp�x�q�yÞj
C

¼
Z d3p

ð2�Þ3

N

2!p

e�ip�ðx�yÞj
C
� D
ðx� yÞ: (A17)

The superscript 
 serves as a bookkeeping tool to remember which quantization scheme one is using. Now that the form of
the two-point function is determined, one constructs the time-ordered Feynman propagator:

D

Fðx� yÞ � �ðx0 � y0ÞD
ðx� yÞ þ �ðy0 � x0ÞD
ðy� xÞ

¼
Z d3p

ð2�Þ3

N

2!p

½�ðx0 � y0Þe�ip�ðx�yÞjp0¼
C!p
þ �ðy0 � x0Þeip�ðx�yÞjp0¼
C!p

�

¼
Z d3p

ð2�Þ3

N

2!p

½�ðx0 � y0Þe�ip�ðx�yÞjp0¼
C!p
þ �ðy0 � x0Þe�ip�ðx�yÞjp0¼�
C!p

�

¼
Z d4p

ð2�Þ3

N

2!p

½�ðx0 � y0Þ�ðp0 � 
C!pÞ þ �ðy0 � x0Þ�ðp0 þ 
C!pÞ�e�ip�ðx�yÞ: (A18)

To continue, we invoke the Lee-Wick prescription: The theory must be free of exponentially growing outgoing modes. This
condition determines how the poles are to be pushed above and below the real p0 axis as a function of the parameter 
C.
Equation (A18) may now be rewritten as

Z d4p

ð2�Þ

N

2!p

½�ðp0 � 
C!p þ i�Þ þ �ðp0 þ 
C!p � i�Þ�e�ip�ðx�yÞ

¼
Z d4p

ð2�Þ3

N

2!p

�
1

�2�i
� 1

p0 � ð
C � i�Þ þ
1

2�i
� 1

p0 þ ð
C!p � i�Þ
�
e�ip�ðx�yÞ

¼
Z d4p

ð2�Þ4
i
N

2!p

�
p0 þ 
C!p � i�� p0 þ 
C!p � i�

ðp0Þ2 � ð
C!p � i�Þ2
�
e�ip�ðx�yÞ

¼
Z d4p

ð2�Þ4
i
N
C

p2 �m2 þ i
C�
e�ip�ðx�yÞ; (A19)

from which one obtains the momentum-space Feynman
propagator

~D


FðpÞ ¼

i
H

p2 �m2 þ i
C�
: (A20)

Examining the structure of Eq. (A20), one sees that Lee-
Wick theories of either quantization possess the hallmark
wrong-sign propagator, since 
H ¼ 
C
N ¼ �1 for
them. The conventional Klein-Gordon propagator may
also be recovered upon setting 
H ¼ 
C ¼ 
N ¼ þ1.
However, one subtlety does exist for the case 
C ¼
�
N ¼ 1: The Feynman prescription for integrating
around the poles has the opposite sign with respect to the
usual case. This means that the shifted poles lie in the first
and third quadrants, rather than the fourth and second;
therefore, when one attempts a Wick rotation upon evalu-
ating a loop integral, the proper substitution is p0 ¼ �ip0

E,

corresponding to counterclockwise rotation in the complex
p0 plane.

APPENDIX B: THE LWSM SPECTRUM

For completeness, we present here the calculation of the
field-dependent masses that appear in Table II. We use the
metric convention g�� ¼ diagð1;�1;�1;�1Þ.

1. Higgs and electroweak gauge sector

In the higher-derivative formalism, we denote the Higgs

doublet as Ĥ, the SUð2ÞL gauge field as Ŵa
�, and the Uð1ÞY

gauge field as B̂�. We suppose that there is a nonzero

homogenous Higgs condensate hĤi ¼ ð0; �c=
ffiffiffi
2

p ÞT that
breaks the electroweak symmetry down to Uð1ÞEM. The
Higgs field may be expanded about the background as
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Ĥ ¼ ĥþ
�cþĥþiP̂ffiffi

2
p

0
@

1
A; (B1)

where ĥ and P̂ are real scalar fields and ĥþ is complex. After electroweak symmetry breaking, we denote the photon,
neutral weak boson, and charged weak boson fields as Â�, Ẑ�, and Ŵ�

� respectively. These are related to the original
electroweak gauge fields by the standard transformations

Ẑ� ¼ cos �WŴ
3
� � sin �WB̂�; Â� ¼ sin �WŴ

3
� þ cos�WB̂�; Ŵ�

� ¼ 1ffiffiffi
2

p ðŴ1
� � iŴ2

�Þ; (B2)

where cos �W ¼ g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
and sin�W ¼ g0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
. We work in the R� gauge formalism for generality and restrict

to the Landau gauge (� ¼ 0) at the end. We introduce eight anticommuting, scalar ghost fields cA, cZ, cWþ , cW� , �cA, �cZ,
�cWþ , and �cW� .
The gauge-fixed LWSM electroweak sector is specified by the Lagrangian

LðEWÞ
hd ¼ LðHÞ

hd þLðBÞ
hd þLðWÞ

hd þLðg:f:Þ
hd þLðgh:Þ

hd ; LðHÞ
hd ¼ jD̂�Ĥj2 � 1

�2
H

jD̂�D̂
�Ĥj2 �UhdðĤÞ;

LðBÞ
hd ¼ � 1

4
B̂��B̂

�� þ 1

2�2
B

ð@�B̂��Þ2; LðWÞ
hd ¼ � 1

4
Ŵa

��Ŵ
a�� þ 1

2�2
W

ðD�Ŵa
��Þ2;

Lðg:f:Þ
hd ¼ � 1

2�A

ð@�Â�Þ2 � 1

2�Z

�
@�Ẑ� � �Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
2

�cP̂

�
2 � 1

�W

j@�Ŵþ
� � i�W

g

2
�cĥ

þj2;

Lðgh:Þ
hd ¼ �cAð�@2ÞcA þ �cZ

�
�@2 � �Z

g2 þ g02

4
�2

c

�
cZ þ �cWþ

�
�@2 � �W

g2

4
�2

c

�
cWþ þ �cW�

�
�@2 � �W

g2

4
�2

c

�
cW�

þ interactions; (B3)

where

UhdðĤÞ ¼ 


�
ĤyĤ� v2

2

�
2
; (B4)

D̂�H ¼
�
@� � ig

�a

2
Ŵa

� � ig0
1

2
B̂�

�
H; (B5)

B̂�� ¼ @�B̂� � @�B̂�; (B6)

Ŵa
�� ¼ @�Ŵ

a
� � @�Ŵ

a
� þ g�abcŴb

�Ŵ
c
�; (B7)

ðD�Ŵ��Þa ¼ @�Ŵa
�� þ g�abcŴb�Ŵc��: (B8)

Since we are only interested in calculating the tree-level
masses, we drop the interactions (terms containing prod-
ucts of three or more fields). After expanding the Higgs
field with Eq. (B1) and performing the rotation Eq. (B2),
the Lagrangian becomes

Uhd ¼ 


4
ð�2

c �v2Þ2 þ
�cð�2
c � v2Þĥþ 1

2

ð3�2

c �v2Þĥ2

þ 1

2

ð�2

c �v2ÞP̂2 þ
ð�2
c �v2Þĥþĥ�; (B9)

LðHÞ
hd þLðg:f:Þ

hd ¼ 1

2

�
ð@�ĥÞ2 � 1

�2
H

ð@2ĥÞ2
�
þ 1

2

�
ð@�P̂Þ2 � 1

�2
H

ð@2P̂Þ2
�
þ
�
j@�ĥþj2 � 1

�2
H

j@2ĥþj2
�

þ 1

2

g2 þ g02

4
�2

cẐ�Ẑ
� þ g2

4
�2

cjŴ�
� j2 � 1

2

g2 þ g02

4
�Z�

2
cP̂

2 � �W

g2

4
�2

cjĥþj2 � 1

2�A

ð@�Â�Þ2

� 1

�W

j@�Ŵ��j2 � 1

2�Z

ð@�Ẑ�Þ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
2

�c@�ðP̂Ẑ�Þ þ g

2
�c@�ðiĥþŴ�� � iĥ�Ŵþ�Þ; (B10)

LðBÞ
hd þLðWÞ

hd ¼�1

4
ð@�Â��@�Â�Þ2�1

4
ð@�Ẑ��@�Ẑ�Þ2�1

2
j@�Ŵ�

� �@�Ŵ
�
� j2þ 1

�2
W

j@2Ŵ�
� �@�@

�Ŵ�
� j2

þ 1

2�2
Z

ð@2Ẑ��@�@
�Ẑ�Þ2þ 1

2�2
A

ð@2Â��@�@
�Â�Þ2� 1

2�2
AZ

ð@2Â��@�@
�Â�Þð@2Ẑ��@�@�Ẑ�Þ; (B11)

where we have defined
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�A �
�
cos 2�W
�2

B

þ sin 2�W
�2

W

��1=2
; �Z �

�
sin 2�W
�2

B

þ cos 2�W
�2

W

��1=2
; �AZ �

�
sin 2�W
�2

B

� sin 2�W
�2

W

��1=2
: (B12)

The final two terms in Eq. (B10) are total derivatives and can be dropped. After integrating by parts and dropping total
derivative terms, one obtains

LðEWÞ
hd ¼ �


4
ð�2

c � v2Þ2 � 
�cð�2
c � v2Þĥ (B13)

þ 1

2
ĥ

�
�@2 � 1

�2
H

@4 �m2
ĥ

�
ĥþ 1

2
P̂

�
�@2 � 1

�2
H

@4 �m2
P̂

�
P̂þ ĥþ

�
�@2 � 1

�2
H

@4 �m2
ĥ�

�
ĥ�

þ 1

2
Â�

�
�g��

�
�@2 � @4

�2
A

�m2
Â

�
þ
�
� @2

�2
A

� 1þ 1

�A

�
@�@��Â� þ 1

2
Ẑ�

�
�g��

�
�@2 � @4

�2
Z

�m2
Ẑ

�

þ
�
� @2

�2
Z

� 1þ 1

�Z

�
@�@�

�
Ẑ� þ 1

2
Â�

�
�ðg��@

2 � @�@�Þ @2

�2
AZ

�
Ẑ� þ Ŵþ�

�
�g��

�
�@2 � @4

�2
W

�m2
Ŵ�

�

þ
�
� @2

�2
W

� 1þ 1

�W

�
@�@�

�
Ŵ�� þ �cAð�@2ÞcA þ �cZð�@2 � �Zm

2
Ẑ
ÞcZ þ �cWþð�@2 � �Wm

2
Ŵ�ÞcWþ

þ �cW�ð�@2 � �Wm
2
Ŵ�ÞcW� ; (B14)

where

m2
ĥ
� 
ð3�2

c � v2Þ; m2
Ŵ� � g2

4
�2

c;

m2
P̂
� 
ð�2

c � v2Þ þ �Zm
2
Ẑ
; m2

Ẑ
� g2 þ g02

4
�2

c;

m2
ĥ�

� 
ð�2
c � v2Þ þ �Wm

2
Ẑ
; m2

Â
� 0:

(B15)

With the Lagrangian in this form, it is straightforward to read off the propagators. For the scalars one finds

DĥðpÞ ¼ i

�
p2 � p4

�2
H

�m2
ĥ

��1 ¼ �2
H

m2
~h
�m2

h

�
i

p2 �m2
h

� i

p2 �m2
~h

�
;

DP̂ðpÞ ¼ i

�
p2 � p4

�2
H

�m2
P̂

��1 ¼ �2
H

m2
~P
�m2

P

�
i

p2 �m2
P

� i

p2 �m2
~P

�
;

Dĥ�ðpÞ ¼ i

�
p2 � p4

�2
H

�m2
ĥ�

��1 ¼ �2
H

m2
~h� �m2

h�

�
i

p2 �m2
h�

� i

p2 �m2
~h�

�
;

(B16)

where

SM-like Pole

m2
h ¼ �2

H

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

ĥ

�2
H

r �
;

m2
P ¼ �2

H

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

P̂

�2
H

r �
;

m2
h� ¼ �2

H

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

ĥ�
�2

H

r �
;

LW-like Pole

m2
~h

¼ �2
H

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

ĥ

�2
H

r �
;

m2
~P

¼ �2
H

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

P̂

�2
H

r �
;

m2
~h� ¼ �2

H

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

ĥ�
�2

H

r �
:

(B17)

The poles are classified as ‘‘SM-like’’ or ‘‘LW-like,’’ depending on whether the residue of the pole is positive or negative.
In the gauge sector, the ghost propagators are immediately seen to be

DcAðpÞ ¼
i

p2
; DcZðpÞ ¼

i

p2 � �Zm
2
Ẑ

; DcWþ ðpÞ ¼
i

p2 � �Wm
2
Ŵ�

; DcW� ðpÞ ¼ i

p2 � �Wm
2
Ŵ�

: (B18)
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We define the transverse and longitudinal projection operators�
��
T � g�� � p�p�=p2 and�

��
L � p�p�=p2, and obtain

D
��

Ŵ�ðpÞ ¼ �i�
��
T ðpÞ

�
p2 � p4

�2
W

�m2
Ŵ�

��1 � i�
��
L ðpÞ

�
p2

�W

�m2
Ŵ�

��1

¼ �2
W

m2
~W� �m2

W�

��i�
��
T ðpÞ

p2 �m2
W�

� �i�
��
T ðpÞ

p2 �m2
~W�

�
þ�i�W�

��
L ðpÞ

p2 � �Wm
2
Ŵ�

; (B19)

where

SM-like Pole

m2
W� ¼ �2

W

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Ŵ�
�2

W

r �
;

LW-like Pole

m2
~W� ¼ �2

W

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Ŵ�
�2

W

r �
:

(B20)

We defer a discussion of the longitudinal polarization state until the end. The term in Eq. (B14) with one factor of each Â�

and Ẑ� corresponds to a mixing between transverse polarizations of Â� and Ẑ�, which gives rise to off-diagonal terms in
the inverse propagator:

ðD�1
Â Ẑ

Þ��ðpÞ ¼ i���
T

p2 � p4

�2
A

�m2
Â

p4

2�2
AZ

p4

2�2
AZ

p2 � p4

�2
Z

�m2
Ẑ

0
B@

1
CAþ i���

L

p2

�A
�m2

Â
0

0 p2

�Z
�m2

Ẑ

0
B@

1
CA: (B21)

For simplicity, we assume just one common LW scale in the EW gauge sector. Then one has �B ¼ �W ¼ �A ¼ �Z �
�EW and also ð�AZÞ�2 ¼ 0 using Eq. (B12). The mixing vanishes and the propagators become

D��

Â
ðpÞ ¼ �2

EW

m2
~A
�m2

A

��i�
��
T ðpÞ

p2 �m2
A

��i�
��
T ðpÞ

p2 �m2
~A

�
þ�i�A�

��
L ðpÞ

p2 � �Am
2
Â

; (B22)

D��

Ẑ
ðpÞ ¼ �2

EW

m2
~Z
�m2

Z

��i�
��
T ðpÞ

p2 �m2
Z

��i�
��
T ðpÞ

p2 �m2
~Z

�
þ�i�Z�

��
L ðpÞ

p2 � �Zm
2
Ẑ

; (B23)

where

SM-like Pole LW-like Pole

m2
A ¼ �2

EW

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Â

�2
EW

r �
¼ 0; m2

~A
¼ �2

EW

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Â

�2
EW

r �
¼ �2

EW;

m2
Z ¼ �2

EW

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Ẑ

�2
EW

r �
; m2

~Z
¼ �2

EW

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Ẑ

�2
EW

r �
:

(B24)

Note that the photon is massless, and that the mass of its
LW partner is independent of �c.

Having calculated the spectrum, let us discuss the count-
ing of degrees of freedom. The scalar propagators

Eq. (B16) reveal that each of the fields ĥ, P̂, ĥþ, and ĥ�
carries 2 degrees of freedom: a lighter SM-like resonance
and a heavier LW-like resonance. We might expect this
doubling to carry over to the gauge fields as well, but an
inspection of their propagators reveals that this is not the
case. In counting the gauge boson degrees of freedom, note
that Tr�T ¼ �T;��g

�� ¼ 3 and Tr�L ¼ 1. Examining

the propagator equation (B22), we see that the Â contains
7 degrees of freedom: three massless transverse polariza-
tions (m2

A ¼ 0), one massless longitudinal polarization
(m2

Â
¼ 0), and three massive transverse polarizations

(m2
~A
¼ �2

EW). The 4 massless degrees of freedom consti-

tute the SM photon, and after accounting for the 2 ‘‘nega-

tive degrees of freedom’’ of the ghosts cA and �cA, the count
of ‘‘physical’’ photon polarizations is reduced to two.

Here, the LWSM does not double the number of gauge

degrees of freedom, but instead adds three, which is

what one expects for an additional massive resonance.

For the Ẑ boson we count 3 degrees of freedom with

mass m2
Z, 3 degrees of freedom with mass m2

~Z
, 1 degree

of freedom with mass �Zm
2
Ẑ
, and 2 negative degrees of

freedom of mass �Zm
2
Ẑ
coming from the ghosts. The ghost

cancels the longitudinal polarization state, and 1 negative

degree of freedom remains. Once we restrict to the Landau

gauge (�A ¼ �Z ¼ �W ¼ 0), the ghosts and longitudinal
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polarizations become massless. Then these degrees of
freedom do not yield a field-dependent contribution to
the effective potential, but they do affect the number of
relativistic species at finite temperature. Thus, we have
counted them as massless particles in Table. II, which
also summarizes Eqs. (B17), (B20), and (B24).

2. Top sector

Let the SU(2) doublet Q̂L ¼ ðûL; d̂LÞT be a left-handed
Weyl spinor, and let the singlet ûR be a right-handed Weyl
spinor. Neglecting gauge interactions, the Lagrangian for
the top sector is written as

LðtopÞ
hd ¼ ðQ̂LÞyi �6@Q̂L þ 1

�2
Q

ðQ̂LÞyi �6@6@ �6@Q̂L þ ðûRÞyi6@ûR

þ 1

�2
u

ðûRÞyi6@ �6@6@ûR;�htððQ̂LÞy�Ĥ�ûR

� ðûRÞyĤ�Q̂LÞ; (B25)

where 6@ ¼ ��@� and �6@ ¼ ���@�. Contractions of the

SU(2) doublets is accomplished with the totally antisym-
metric 2-tensor �. After electroweak symmetry breaking,

one replaces Ĥ ! ð0; �c=
ffiffiffi
2

p ÞT , and obtains

LðtopÞ
hd ¼ ðûLÞy

�
i �6@þ i �6@6@ �6@

�2
Q

�
ûL þ ðûRÞy

�
i6@þ i6@ �6@6@

�2
u

�
ûR

� ht�cffiffiffi
2

p ½ðûLÞyûR þ ðûRÞyûL�: (B26)

One can now collect the Weyl spinors into the Dirac spinor
t̂ ¼ ðûL; ûRÞT . Using the standard definitions

�� ¼ 0 ��

��� 0

 !
; �̂t � t̂y�0; 6@t̂ ¼ ��@�t̂;

�5 ¼ i�0�1�2�3; PL;R ¼ 1� �5

2
;

the Lagrangian can be written as

LðtopÞ
hd ¼ �̂t

�
i6@þ i6@3

�2
Q

PL þ i6@3
�2

u

PR

�
t̂� �̂tmt̂t̂; (B27)

where mt̂ � ht�c=
ffiffiffi
2

p
. To simplify, we assume that �Q ¼

�u � �t. Then the Lagrangian reduces to Eq. (46), and the
propagator is

Dt̂ðpÞ ¼ i

�
� 6p3

�2
t

þ 6p�mt̂ð�cÞ
��1

¼ þ �2
t

ðm~t1 �mtÞðmt �m~t2Þ
i

6p�mt

� �2
t

ðm~t1 �mtÞðm~t1 �m~t2Þ
i

6p�m~t1

� �2
t

ðmt �m~t2Þðm~t1 �m~t2Þ
i

6p�m~t2

; (B28)

where

SM-like Pole: mtð�cÞ � �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

�
1� cos

�t
3

�s
;

LW-like Pole: m~t1ð�cÞ � �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

�
1þ cos

�t þ �

3

�s
;

LW-like Pole: m~t2ð�cÞ � ��t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

�
1þ cos

�t � �

3

�s
;

(B29)

where �t � arctan
2
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

p
1�2� and � � 27

4

m2
t̂

�2
t
. The angle

0 � �t � � is in the first or second quadrant, and the
LW stability condition imposes �< 1.
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