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In this paper we compute the effective action at finite temperature and density for the dual fermion

condensate in curved space with the fermions described by an effective field theory with four-point

interactions. The approach we adopt refines a technique developed earlier to study chiral symmetry

breaking in curved space and it is generalized here to include the U(1)-valued boundary conditions

necessary to define the dual condensate. The method we present is general, includes the coupling between

the fermion condensate and the Polyakov loop, and applies to any ultrastatic background spacetime with a

nonsingular base. It also allows one to include inhomogeneous and anisotropic phases and therefore it is

suitable to study situations where the geometry is not homogeneous. We first illustrate a procedure, based

on heat kernels, useful to deal with situations where the dual and chiral condensates (as well as any

smooth background field eventually present) are slowly or rapidly varying functions in space. Then we

discuss a different approach based on the density of states method and on the use of Tauberian theorems to

handle the case of arbitrary chemical potentials. As a trial application, we consider the case of constant

curvature spacetimes and show how to compute numerically the dual fermion condensate in the case of

both homogeneous and inhomogeneous phases.
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I. INTRODUCTION

Understanding the relation between confinement and
chiral symmetry breaking in quantum chromodynamics
(QCD) remains as a challenging problem in theoretical
particle physics. The difficulty to relate the two phenomena
is partly due to their nonperturbative nature, partly because
they occur in different sectors of the theory. While chiral
symmetry resides in the quark sector, with the chiral con-
densate acting as an order parameter for chiral phase
transitions with vanishing quark masses, confinement is a
property linked with the gluon sector, with the Polyakov
loop being an order parameter, for infinitely large quark
masses, signaling the breaking of the center symmetry at
the deconfinement transition. For chiral symmetry the
situation is relatively clear, owing to the Banks-Casher
formula [1] that connects the chiral condensate with the
eigenvalue density of the Dirac operator suggesting a non-
perturbative mechanism inducing chiral symmetry break-
ing below a critical temperature [2,3]. For confinement an
analogously simple explanation is presently not known.

Lattice QCD simulations at finite temperature are not
yet conclusive [4]. If, on the one hand, they suggest the
existence of a specific mechanism relating the two phe-
nomena, on the other hand, predictions for the critical
temperatures at which the two transitions occur differ.
While some lattice results indicate a sizable difference in
the critical temperatures at which chiral symmetry break-
ing and deconfinement occur [5], others [6] point to the
same value for both transitions.

A step forward in trying to understand how chiral
symmetry and confinement may be related has been taken

by Gattringer and collaborators who started to explore
possible ways to connect quantities sensitive to confine-
ment with the spectral properties of the Dirac operator
[7,8]. By looking at how spectral sums for the Dirac
operator transform under center symmetry, they argued
that quark confinement is encoded in the low-lying spectral
modes, suggesting a direct way to connect chiral symmetry
with confinement. A possible way to construct an order
parameter for the center symmetry was given explicitly in
Ref. [8] by taking the Fourier transform of the quark
condensate with respect to a set of phase-dependent bound-
ary conditions for the fermions. By means of this trans-
formation the quark condensate turns into the expectation
value of an equivalence class of Polyakov loops with
winding number n 2 Z conjugate to the phase. This quan-
tity has been termed dual condensate or dressed Polyakov
loop. Details will be given in the next section.
This idea has attracted considerable attention for various

reasons. First of all, it is physically transparent, since
spectral quantities provide a natural decomposition into
IR and UV parts, therefore allowing for the possibility to
study how individual parts of the spectrum affect the
transition to deconfinement. Secondly, it provides a precise
and simple computational scheme relating chiral and cen-
ter symmetry: not only can the dual condensate be straight-
forwardly computed numerically on the lattice [8], but it
can also be studied by means of analytic and functional
methods [9]. A third important reason, relevant to the
present discussion, is that it naturally fits effective descrip-
tions of QCD allowing one to consider situations where a
lattice approach may be more challenging. In fact, the dual
quark condensate has been originally introduced in the

PHYSICAL REVIEW D 88, 085011 (2013)

1550-7998=2013=88(8)=085011(13) 085011-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.085011


context of lattice QCD, with the actual computation
performed in the quenched approximation [8]. Within
this scheme, the U(1)-valued condensate is averaged over
the gauge field configurations with the boundary condi-
tions imposed on the fermions only, while gauge degrees of
freedom respect the usual periodic boundary conditions.

On the other hand, within effective descriptions of QCD,
i.e., à la Nambu–Jona-Lasinio [10] (see Refs. [11–13] for
reviews), the gluon mediated interactions are encoded in
the effective interactions among quarks and in order to
have a way to model (an order parameter for) confinement,
it is necessary to introduce also the effects of the gauge
fields in some explicit way. A known extension of this sort
is the Polyakov extended Nambu–Jona-Lasinio model (see
[14]). In fact, within such construction, an order parameter
to model confinement, i.e., the Polyakov loop, would
already be available. However, extending the model of
[14] to curved space would encounter at least one serious
difficulty in relation to the fact that the purely gluonic part
of the potential is fitted from lattice data that are, to the best
of our knowledge, not available on curved backgrounds.
This limitation can be partially overcome by using the dual
quark condensate as order parameter as long as the cou-
pling of the chiral condensate with the Polyakov loop is
appropriately introduced. Although the Polyakov loop can
only be incorporated through some phenomenological
parametrization (fixing completely the Polyakov loop
would require some direct, numerical computation of the
purely gluonic potential in curved space at strong cou-
pling), still the dual condensate can be calculated as a
general function of the Polyakov loop.

The goal of this paper is to illustrate how to compute the
dual fermion condensate in the context of a four-fermion
effective theory with the Polyakov loop coupled to the
fermion condensate on a curved D-dimensional ultrastatic
Riemannian space that we assume to be nonsingular and
without boundaries. While analyses of the dual fermion
condensate within the Nambu–Jona-Lasinio model in flat
spacetime have appeared in the literature (see, for example,
Refs. [15–18]), analogous studies in curved space are very
limited. The only work we are aware of is that of Ref. [19],
where the interesting question of how geometrical effects
influence confinement is addressed in a precise and com-
putationally accessible framework. Specifically, Ref. [19]
presents a computation of the dual fermion condensate for
background geometries of the form R � S3 and R �H3

where the base spatial sections S3 and H3 define, respec-
tively, a three-dimensional sphere and a three-dimensional
hyperbolic space.

Our approach (and related computation) will differ from
the work of [19] in several ways. First of all, the class of
geometries considered in Ref. [19] was restricted to a
specific choice of the base as described above. Here, we
only make the assumption of ultrastaticity and smoothness
of the geometry, but otherwise keep ourselves general.

Secondly, the method adopted in [19] relies on a direct
computation of the partition function that requires explicit
knowledge of the eigenvalues (or eigenvalue density) of
the Dirac operator. This is possible for the two cases consid-
ered in Ref. [19], but not in general. On the other hand, the
approach we will follow here allows one to overcome this
limitation and can be used also in situations where the
spectrum is not explicitly known. Although we assume the
background geometry to be ultrastatic and boundaryless,
generalizations that include static spacetimes and boundaries
canbe straightforwardly performed starting from the analysis
we present here. (General considerations and related work
regarding chiral symmetry breaking in curved space can be
consulted, for instance, in Refs. [20–22]. Effects of bounda-
ries on chiral symmetry breaking have been considered,
for example, in Refs. [23–26].) Practically, we elaborate on
our previous work (see Ref. [27]), where the effective action
for the chiral condensate was calculated using heat-kernel
and zeta-regularization techniques, and extend it here to
include U(1)-valued boundary conditions. We shall show
that, while the general structure and factorization property
of the zeta function will not change, the dependence on the
boundary conditions modifies the thermodynamical kernel
introducing an explicit dependence on the phase.
Another important point where our approach departs

from the direct method of Ref. [19] is that it allows for a
direct inclusion of inhomogeneous phases. In flat space, for
small chemical potentials, this difference only becomes
relevant to characterize excited states, since the ground
state is expected to be homogeneous. The same is true
when the background spacetime has constant curvature and
no boundaries. However, for more general situations, as,
for instance, in the case of black holes, in the presence of
boundaries or for topologically nontrivial geometries, both
the dual and the chiral fermion condensates will not be
homogeneous. For these more general cases, a modifica-
tion like the one used here becomes necessary also to
characterize the features of the ground state.
Finally, unlike Ref. [19], we include in our treatment an

explicit coupling between the Polyakov loop and the chiral
condensate.
Details of the model and the basics of the method will

be described in the next section where we explicitly con-
struct the effective action for the dual fermion condensate on
a generic smooth curved background with compact spatial
section. The scheme adopted, analogously to what we have
done for chiral condensates, uses a quasi-non-perturbative
ansatz for the heat trace. This allows one to resum all powers
of the scalar curvature and of the dual fermion condensate
and implicitly assumes that spatial variations do not occur
‘‘rapidly’’ over space. If one wishes to consider cases in
which variations do occur rapidly, although the basics of the
method will not change, a different ansatz for the heat trace,
like the one described in [28], should be used after appro-
priate generalization to include a nonvanishing chemical
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potential. This will be briefly discussed in the Appendix, but
not implemented numerically. In Sec. III we will describe a
different approach to compute the effective action for the
dual condensate based on the density of states method and
on the use of Tauberian theorems.

Although the approach of this paper provides a tool to
study a setup similar to that of Ref. [19], our main goal is to
prepare the formal machinery to study more complex
situation of black holes and to test it in a relatively simple
case. Such an example will be described in Sec. IV, where
we will consider the case of a constant curvature geometry.
Concretely, we will apply the formal results described in
the previous sections and, by means of numerical analysis,
we will construct the dual fermion condensate for both
homogeneous and inhomogeneous phases. Our conclu-
sions will close the paper.

II. DUAL FERMION CONDENSATE
IN CURVED SPACE

We will begin this section describing the setup. The
basics are the same as in Ref. [27] that the reader is invited
to consult for additional details. Notation follows Ref. [27]
and Planck units are used everywhere.

The action for the model under consideration takes the
form

S ¼
Z

dDx
ffiffiffi
g

p �
�c i��r�c �m �c c þ �

2N
ð �c c Þ2

�
; (1)

with c being a Dirac spinor, N the number of fermion
degrees of freedom, g the determinant of the metric and �
the coupling constant. The background geometry is
assumed to be D ¼ dþ 1 dimensional and ultrastatic
with line element of the form

ds2 ¼ dt2 � gijdx
idxj; (2)

with gij being the metric on the d-dimensional spatial

section of the spacetime. The covariantization of the model
has been discussed in Ref. [27] (see also the review [20])
and we will not repeat it here. In the present treatment we
will keep things as simple as possible and, thus, neglect all
nonminimal couplings between matter and gravity as well
as terms of the form ð �c {�5�c Þ2 and higher order ones. We
remark, however, that dealing with these terms does not
require any formal changes with respect to those presented
here. The Nambu–Jona-Lasinio model reduces to (1) when
the pseudoscalar term is suppressed.

The goal of this section is to compute the effective action
for the dual quark condensate �n with winding number
n 2 Z. This is defined in terms of the fermion condensate,
as the scalar expectation value of the fermion bilinear with
U(1)-valued boundary conditions

�n ¼
Z 2�

0

d’

2�
e�i’nh �c c i’; (3)

where the expectation value h �c c i’ is calculated imposing

the following generalized boundary conditions along the
temporal direction:

c ðxi; �Þ ¼ e�i’c ðxi; 0Þ; (4)

with ’ 2 ½0; 2�Þ and � ¼ 1=T. For ’ ¼ �, h �c c i’¼�

returns the standard fermion condensate. The above quan-
tity (3) has been introduced in Ref. [8] where it was shown,
in the context of lattice QCD, that can be expanded as a
series of closed loops, with the winding number n repre-
senting the number of times the loop winds around the
compact time direction. For n ¼ 1, �1 is called the dual
quark condensate or dressed Polyakov loop and trans-
forms, under center symmetry, analogously to the
Polyakov loop [29–31], therefore offering a novel order
parameter for confinement (see Ref. [8] for details).
The procedure of Ref. [27] can be easily adapted to

compute the dual fermion condensate for the above bound-
ary conditions (4). The basic steps are similar to Ref. [27]
and we will be briefly repeat them here for the convenience
of the reader. As explained in the introduction, we need
here to couple the fermion condensate to the Polyakov loop
given by an SUðNcÞ matrix in color space,

LðxÞ ¼ T exp

�
�{

Z �

0
d�A0ð�; xÞ

�
; (5)

where T is a path-ordering operator and A0ð�; xÞ repre-
sents a background, homogeneous, static, temporal com-
ponent of the gluon field (with the gauge fields quantized
according to the usual periodic boundary conditions). The
coupling can be realized as in Ref. [14] where the Polyakov
loop is identified with a imaginary quark chemical poten-
tial. As in Ref. [14], we will neglect any dependence of the
coupling constant � on L. The effective action for �’ ¼
� �

N h �c c i’ can be expressed, at leading order in a deriva-

tive expansion of the Polyakov loop, as

Sð’Þ
eff ¼ �

Z
dDx

ffiffiffi
g

p �
�2

’

2�

�
þ 1

2

X
�¼�1

X1
n¼�1

Tr logDð’Þ
n ;

where the trace is over the Dirac, spatial and color indices,
and

Dð’Þ
n ¼ ��þ 1

4
Rþ X2

’ þ!2
nð’Þ � ð�� {$Þ2

� 2ið�� {$Þ!nð’Þ;
where X2

’ ¼ m2 þ �2
’ þ �j@�’j and the generalized

frequencies given by

!nð’Þ ¼ 2�

�

�
nþ ’

2�

�
: (6)

The Polyakov loop is related to the real-valued function$
by the relation {$ � lnLðxÞ. The operator � is the
Laplacian over the spatial section,� the chemical potential
(that can take both real and complex values), and � ¼ �1
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come from the summation over the eigenvalues of the
gamma matrices with the tetrad frame chosen as in [27].

Taking the Mellin transform of the heat trace, we can
define the following complex-valued, ’-dependent zeta
function:

	’ðsÞ ¼ 1

�ðsÞ
X
n;�

Z 1

0
dtts�1 Tre�tDð’Þ

n (7)

and write Seff as analytical continuation of 	’ðsÞ and its

derivative to s ¼ 0. An appropriate expansion of the propa-
gator may then be used to express the effective action in
terms of integrals over geometrical invariants.

Situations with spatially constant or slowly varying
condensates can be accommodated by using the following
expansion [32,33] (the different situation of rapidly vary-
ing condensates will be discussed in the Appendix):

Tre�tDð
Þ
n ¼ 1

ð4�tÞd2 Trce
�tQ

X
k

CðkÞ� tk; (8)

where Trc is the trace in color space and Q’ ¼
X2

’ þ R=12þ!2
nð’Þ � ð�� {$Þ2 � 2ið�� {$Þ!nð’Þ.

Simple steps allows us to obtain the following formula:

	’ðsÞ ¼ 1

�ðsÞ
X
k;�

Z 1

0
dt

ts�1þk

ð4�tÞd2 C
ðkÞ
� e�tM�ð’ÞF �;�ðtÞ; (9)

where M�ð’Þ ¼ R=12þ X2
’ and with the thermodynam-

ical kernel given by

F �;�;$ðt; ’Þ ¼
X1

n¼�1
e�tð!2

nð’Þ�2ið��{$Þ!nð’Þ�ð��{$Þ2Þ:

Notice that neither the functional form nor the factorization
property of the generalized zeta function change for the
above U(1)-valued boundary conditions with respect to
those used in Ref. [27]. Only the thermodynamical kernel
acquires an explicit dependence on the phase, while both
in the quantity M�ð’Þ and the heat-kernel coefficients

[Cð0Þ� ¼ 1, Cð1Þ� ¼ 0, Cð2Þ� ¼ Rþ 1
6 �ð�2

’ þ �j@�’jÞ with

R ¼ 1
180R����R

���� � 1
180R��R

�� � 1
120 �R], the depen-

dence is only implicit (through the dual condensate) and
for the latter disappears in the spatially constant case.
Already at this stage, we can anticipate that the same
scaling properties of the effective action noticed in
Ref. [27] will hold for the present case.

Using standard series representations for elliptic theta
functions allows us to rearrange the thermodynamical
kernel as follows:

F �;�;$ðt; ’Þ ¼ �

2
ffiffiffiffiffiffi
�t

p
�
1þ 2

X1
n¼1

e
��2n2

4t �ðnÞ
’ ð�;�;$Þ

�
;

where

�ðnÞ
’ ð�;�;$Þ ¼ ð1Þ

n ð’Þ cosh ð��nÞ
þ {ð2Þ

n ð’Þ sinh ð��nÞ;
where

ð1Þ
n ð’Þ � cos ðn’Þ cos ð�$nÞ þ sin ðn’Þ sin ð�$nÞ;

ð2Þ
n ð’Þ � cos ðn’Þ sin ð�$nÞ � sin ðn’Þ cos ð�$nÞ:

The boundary conditions (4) induce an imaginary part in
the effective action, and a straightforward computation
gives for the real (<) and imaginary (=) parts of the zeta
function the following expressions:

<	’ðsÞ ¼ �

ð4�ÞD2
X
k;�

�
CðkÞ� IðkÞ�;’ þ X1

n¼1

ð1Þ
n ð’Þ

� cosh ð��nÞCðkÞ� Jðk;nÞ�;’

�
;

=	’ðsÞ ¼ � �

ð4�ÞD2
X
k;�

X1
n¼1

ð2Þ
n ð’Þ sinh ð��nÞCðkÞ� Jðk;nÞ�;’ ;

with

IðkÞ�;’ ¼ �ðsþ k�D=2Þ
�ðsÞ MD=2�k�s

� ð’Þ;

Jðk;nÞ�;’ ¼ 2D=2þ1�k�s

�ðsÞ
�
M�ð’Þ
n2�2

�
D=4�ðkþsÞ=2

� Kkþs�D=2ðn�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�ð’Þ

q
Þ:

Proceeding with the analytical continuation to s ¼ 0 we
arrive at the following expression for the effective action:

Sð’Þ
eff ¼ �

Z
dDx

ffiffiffi
g

p �2
’

2�
þ 1

2

Trc

ð4�ÞD=2

X
�

Z
ddx

ffiffiffi
g

p

�
2
4 X½D=2�

k¼0

�kðDÞCðkÞ� MD=2�k
� ð’Þ ln ð‘2M�ð’ÞÞ

þ X1
k¼0

ðakðDÞCðkÞ� MD=2�k
� ð’Þ þ 2D=2þ1�kCðkÞ�

�MD=4�k=2
� ð’Þð�ðþÞ � {�ð�ÞÞ

3
5; (10)

where we have introduced the shorthand notation

�ðþÞ ¼ X1
n¼1

ð1Þ
n ð’Þ cosh ð��nÞ

ðn�ÞD=2�k
Kk�D=2

�
n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�ð’Þ

q �
;

�ð�Þ ¼ X1
n¼1

ð2Þ
n ð’Þ sinh ð��nÞ

ðn�ÞD=2�k
Kk�D=2

�
n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�ð’Þ

q �

and defined

�ðsþ k�D=2Þ
�ðsÞ :¼ �kðDÞ þ sakðDÞ þOðs2Þ:
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Expression (10) gives the effective action for the phase-
dependent fermion condensate from which the dual can be
computed using the definition (3) after minimization of the
effective action.

The above form for the effective action is not restricted
to the case of spatially constant condensates, but it is valid
also for the more general situation where spatial variations
(in the geometry or in the condensate) are included. We
note here that the heat-trace expansion (8) used to obtain
(10) still contains a gradientlike expansion and implicitly
assumes that variations of the condensate, of the geometry
(or of any external field one may wish to add) do not occur
rapidly over space. Physically, quantities may be large in
magnitude, but the derivatives should be small. The rapidly
varying case can be analyzed using a different form for the
heat trace and wewill show how to do this in the Appendix.
For the case of spacetimes with constant curvature and in
the approximation of spatially constant condensates, the
above formula considerably simplifies.

The reader may check that several of the expected
properties of the effective action are clearly encoded in
the above representation. Nicely enough, the same scaling
property of the effective action, discussed in Ref. [27] for
the chiral condensate, holds for the dual one. Basically,
once  ! �, where  is any quantity with mass dimen-

sions ( ¼ m,�, ��1=2,�’,�
�1,$,�, ‘�1), the effective

action rescales as Seff ! �4Seff allowing one to fix one of
the parameters arbitrarily. Also, the Roberge-Weiss peri-
odicity [34] (see also Ref. [35]) is evident once the chemi-
cal potential is transformed as � ! {�=T.

One other advantage of the present approach is that it
allows a direct computation of the imaginary part of the
effective action that appears due to the U(1)-valued bound-
ary conditions. In fact, within a zeroth order approximation
that treats the imaginary part as perturbation, it is usually
argued, for example in Refs. [16,17,19], that this quantity
is small, causing negligible changes in the dual condensate
(see Ref. [36] for a quantitative justification of this point).
Here, we will follow the above examples and verify, in the
numerical analysis of Sec. IV, that the imaginary part
remains negligibly small for the range of parameters
considered.

We should remark here that the full effective action
should include also the purely gluonic part, i.e.,

Stotð$;�’Þ ¼ Sglueð$Þ þ Sð’Þ
eff ð$;�’Þ: (11)

In flat space, an expression forSglueð$Þ can be obtained using
the leading order strong coupling result that depends on some
free parameter, finally fitted against the lattice data (see [14]).
In curved space an analogous procedure is currently not
possible both for the lack of any explicit expression for
Sglueð$Þ and of any numerical result. Despite this fact, the

dual fermion condensate can be computed as a function of the
Polyakov loop, for which one may use, in specific cases,
phenomenological parametrizations.

III. DENSITY OF STATES METHOD

In the present section we will discuss yet another ap-
proach to compute the effective action based on the density
of states method. This proves to be useful when the chemical
potential becomes large. In fact, for <� � 0, the condition
<ð��M�ð’ÞÞ< 0, met for large enough values of the
curvature R or of the bare mass m with respect to the
chemical potential, has to hold to ensure the convergence
of the sum over the modified frequencies and, in turn, of the
representation (10). As before, we may follow Ref. [27]
modifying the procedure described there to include the
U(1)-valued boundary conditions (4). We start from

	 0’ð0Þ ¼ 1

ð4�Þd=2
X
k;�

CðkÞ� ZðkÞ
� ; (12)

with

ZðkÞ
� ¼ lim

s!0

d

ds

1

�ðsÞ
Z 1

0
dtts�1þk�d=2�1=2e�tM�ð’Þ

� �ffiffiffiffi
�

p
�
1þ X1

n¼�1

0
e�{n’e

��2n2

4t e���n�{$n

�
: (13)

Defining the phase-dependent density of states

�ðkÞ
� ðE;’Þ as

e�tM�ð’Þ

td=2�k
:¼ 1

2

Z 1

0
dEE�ðkÞ

� ðE;’Þe�tE2
; (14)

expression (12) can be written as

ZðkÞ
� ¼ 2

Z 1

0
dEE�ðkÞ

� ðE;’ÞIðEÞ þZ0; (15)

where

IðEÞ ¼ �

2
ffiffiffiffi
�

p X1
n¼�1

0
e�{n’

Z 1

0

dtffiffi
t

p

�
Z 1

E
dxxe�tx2e

��2n2

4t e���n�{$n: (16)

The first term in the right hand side (rhs) of Eq. (15)
corresponds to the sum over n in (13) (the second term in
square brackets), while the second in the rhs of Eq. (15) term
comes from the n ¼ 0 contribution in (13) (the first term in
square brackets). Using the following identity:

�

2
ffiffiffiffi
�

p e�{n’ e
��2n2

4t ���n�{$nffiffi
t

p ¼
Z þ1

�1
dz

2�
e{nze�tð1�ðzþ’þ$Þ�{�Þ2 ;

we may write (16) as

IðEÞ ¼ 1

2�

X1
n¼�1

0 Z 1

0
dt

Z 1

E
dxxe�tx2

�
Z þ1

�1
dze{nze�tð1�ðzþ’þ$Þ�{�Þ2 :

Integrating, in turn, over t, z, summing over n, and finally
integrating over x leads us to the following expression:
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IðEÞ ¼ Ið0Þ’ ðEÞ � ln

�
1þ "’Le

��ðEþ�Þ

1þ "’Le
��E

�

� ln

�
1þ "�’L�e��ðE��Þ

1þ "�’L�e��E

�
; (17)

where "’ ¼ exp ð{ð’� �ÞÞ. The quantity Ið0Þ’ ðEÞ com-

bined with Z0 gives the contribution for vanishing � that
can be expressed as in (10) with � ¼ 0. The final form of
the effective action is then found to be

Sð’Þ
eff ¼ Sð’Þ

eff j�¼0 � 1

ð4�Þd=2
Z

ddx
ffiffiffi
g

p Z 1

0
dEE�ðEÞ

�
�
Trc ln

�
1þ "’Le

��ðEþ�Þ

1þ "’Le
��E

�

þ Trc ln

�
1þ "�’L�e��ðE��Þ

1þ "�’L�e��E

��
; (18)

where we have defined the function

�ðE;’Þ :¼ X
k

CðkÞ� �ðkÞ
� ðE;’Þ: (19)

The result of Ref. [27] for the chiral condensate is recov-
ered by setting ’ ¼ �.

The difficulty in using the approach presented in this
section lies in computing the density of states. There are
several ways to proceed and here we will describe two such
possibilities. A direct way is to follow the same strategy
outlined Ref. [27] that applies to the present case with no
modifications. Starting from the definition of the density of
states (14), it is easy to obtain the following recursive relation:

�ðkÞ
� ðE;’Þ ¼ @k

@ðE2Þk �
ð0Þ
� ðE;’Þ; (20)

that, used along with

�ð0Þ
� ðE;’Þ ¼ 4��d=2

Z
ddp�ðE2 �M"ð’Þ � p2Þ;

allows one to perform the integration over E in (18) leaving
the integration over p that can be done numerically.

Although the above method may be preferred in numeri-
cal evaluations, here we wish to describe another approach
based on the use of Tauberian theorems [37–40].1 Defining

1

4
KðkÞ

� ðtÞ :¼ e�tM�ð’Þ

td=2�k
; (21)

we may write

KðkÞ
� ðtÞ ¼ lim

h!0þ

Z 1

h
dE2�ðkÞ

� ðE;’Þe�tE2
; (22)

that is recognized as the Laplace transform of the density
of states. Assume that, for 0< t < q 2 R,

KðkÞ
� ðtÞ ¼ Ximax

i¼1

cit
�ri þOðt�rimax þ1Þ; (23)

with 0< ri < riþ1 and i 2 N=0. For KðkÞ
� ðtÞ defined in

(21) one finds

ri ¼ d

2
� k� i; (24)

ci ¼ ð�1Þi
i!

Mi
�ð’Þ: (25)

For ri > 0, it is enough to use the definition of the Gamma
function,

t�ri ¼ 1

�ðriÞ
Z 1

0
dE2ðE2Þri�1e�tE2

; (26)

along with relations (22) and (23) to arrive at

�ðkÞ
� ðEÞ ’ Ximax

i¼1

ci
�ðriÞ ðE

2Þri�1: (27)

Unfortunately, the condition ri > 0 is only met for kþ i <
d=2 (for d ¼ 3 and for any positive i and non-negative k it
never occurs). This limitation can be overcome by using
Tauberian theorems (see pp. 30–31 of Ref. [38] and refer-
ences given there). The basic result can be stated as fol-

lows. Consider (22) and assume that �ðkÞ
� ðE;’Þ is a smooth

function. Assume that for 0< t � t� relation (23) holds
with the exponents ri 2 R for any i. Under these assump-
tions (the reader can easily verify these to be satisfied in the
present case), then for E2 > h,

�ðkÞ
� ðE;’Þ ’ Ximax

i¼1

ci
~�ðriÞ

ðE2Þri�1 þOððE2Þrimax þ1 ln ððE2ÞÞÞ:

(28)

In the above formula ~�ðriÞ is defined to be zero for any

nonpositive integer, while ~�ðriÞ ¼ �ðriÞ for any other value
of the argument. Substituting (28) in (18) makes the E
dependence explicit, allowing straightforward integration.
The integration can be performed analytically in some
cases (even d) or, more generally, by numerical approxi-
mation. However, due to the condition E2 > h, some care
has to be used with the IR part of the integration range, i.e.,
with the limit h ! 0 in (22) for negative ri. In this case, the
integration can be performed by splitting the integration
range, ð0;1Þ ¼ ð0; �� [ ð�;1Þ with � small. Integrating
over ð�;1Þ poses no problem, while the integral over
ð0; �� can be performed by keeping the dimensionality
general and proceeding by analytical continuation.

1Reference [37] presents a thorough discussion of Tauberian
theorems; Ref. [38] gives a readable account and several physi-
cal applications; Ref. [39] gives some general discussion and an
application to the case of harmonic oscillator potentials in the
context of Bose-Einstein condensation; Ref. [40] uses Tauberian
theorems as a compatibility check in the context of zeta regu-
larization in noncompact domains.
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IV. CONSTANT CURVATURE CASE

In this section we will look in some detail, as a test of the
formal results discussed in the preceding sections, at the
case of constant curvature spacetimes. This will serve, first
of all, as a concrete application, similar to that discussed in
Ref. [19]. While in the case of spatially constant conden-
sates we can recover, using a different approach, the main
features discussed in Ref. [19], our main goal is to extend
the analysis and include an explicit coupling to the
Polyakov loop as well as inhomogeneous phases, since
such a procedure is essential to study what happens in
the vicinity of a black hole (we will discuss more about
this point in the concluding section). Compared to the case
discussed in Ref. [27], where chiral symmetry breaking in
curved space was studied, here the problem presents addi-
tional computational needs due to the explicit dependence
of the effective action on the phase ’.

Practically, we shall consider the most representative
geometry of the above type, that is the Einstein universe,
which is topologically R � S3. Explicitly, the metric takes
the form

ds2 ¼ dt2 � a2ðd#2 þ sin 2#ðd
2 þ sin 2
2d2ÞÞ; (29)

where 0 � # � �, 0 � 
 � �, 0 �  � 2�. The Ricci
scalar is related to the curvature radius of the sphere, a, by
R ¼ 6=a2. The numerical analysis of this section will be
specialized to this case. With respect to the analogous
computation for the chiral condensate, the numerical pro-
cedure requires some modification in the summations over
the modified frequencies due to the dependence on the
phase ’ caused by the U(1)-valued boundary conditions.
Contrary to the case of Ref. [27], for the inhomogeneous
case the explicit ’ dependence will make the problem
effectively two dimensional requiring some additional
computational effort. The Fourier transform (3) is per-
formed using standard numerical techniques. For
simplicity, we will perform the analysis of this section

for d ¼ 3 and limit ourselves to the case of small chemical
potentials for which we may use the formulation described
in Sec. II.
The analysis is performed first for the case of spatially

constant condensates for which we only need to minimize
the effective potential obtained from (10). We will do so by
discretizing the ’ direction, computing the minima for
fixed ’ and finally computing the Fourier transform
numerically. Before minimization, the thermodynamic
potential is normalized by subtracting its value for
�’ ¼ 0. Owing to the scaling properties discussed at the

end of Sec. II, we will fix the renormalization scale to ‘ as
indicated and measure all quantities accordingly.
The simplest way to fix the dependence on the Polyakov

loop is to use a simple parametrization, essentiallymodeling
its dependence from the temperature as a step function with
the position of the step taken as a free parameter.
In fact, what we do here is to take the quantity $ at fixed
temperature as a free parameter that we change within the
interval $ ¼ 0, �0=2, �0 (�0 indicates the value of the
chiral condensate at T ¼ 0) to have an idea of how much
the dual condensate can be affected by a proper inclusion of
gauge degrees of freedom and take the difference �" ¼
ð�’ð�0Þ � �’ð0ÞÞ=2 as an estimate for this error. This

is certainly an approximate way to proceed, that we accept
in exchange for being able to introduce effects of curved
space.
Our results are illustrated in Figs. 1–7. Figures 1 and 2

show the dependence of �’ on the phase ’ for a sample

set of parameters and for $ ¼ 0. Figure 3 shows how
the dual condensate depends on the Polyakov loop
also for some indicative values of the parameters.
The central value of each point represents the value
�’ð$ ¼ �0=2Þ while error bars are computed according

to �"¼ð�’ð$¼�0Þ��’ð$¼0ÞÞ=2. The lack of accu-

racy due to ignoring the Polyakov loop is of order
Oð10%–20%Þ. The dual and chiral condensates,
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FIG. 1 (color online). Left: Numerical solution for the quantity �’ vs ’ for � ¼ 0 and a ¼ 10, m ¼ 0 and $ ¼ 0. The dots are
computed numerically while the continuous curves are obtained by interpolation. Right: Numerical solution for the quantity �’ vs ’

for � ¼ 0:1 and a ¼ 20, m ¼ 0 and $ ¼ 0. The quantity � ¼ a� T.
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� � �� and � � �1, are plotted in Fig. 4 for the
same parameters used in Fig. 3 where we have
approximated the error due to the Polyakov loop to be
exactly 10%. Finally, Fig. 5 plots the peaks of the

susceptibilities for $ ¼ 0 [to be understood with an error
of Oð10%Þ].
The susceptibilities are defined, respectively for the

chiral and dual condensates, by

σ
ϕ

σ
ϕ

ϕϕ
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FIG. 2 (color online). Numerical solution for the quantity �’ vs ’ with the dependence on the Polyakov loop included.
This dependence has been fixed by parametrizing the Polyakov loop as a constant that we change within the interval $ ¼ 0,
�0=2, �0. The central value refers to �’ð$ ¼ �0=2Þ while the error is estimated by �" ¼ ð�’ð$ ¼ �0Þ � �’ð$ ¼ 0ÞÞ=2. The left-
hand (right-hand) panel refers to � ¼ 0, a ¼ 20 and m ¼ 0 (� ¼ 0:1, a ¼ 10 and m ¼ 0:1). The quantity � ¼ a� T.
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FIG. 3 (color online). For sample sets of parameter how the dual condensate depends on the Polyakov loop. The central value
indicates �’ð�0=2Þ and the error bars are computed according to �" ¼ ð�’ð�0Þ � �’ð0ÞÞ=2. The lack of accuracy due to ignoring the
Polyakov loop is Oð10%Þ.
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FIG. 4 (color online). Left: Chiral (dashed red line) and dual (continuous green line) condensates for � ¼ 0, m ¼ 0, a ¼ 20. The
critical temperatures are Tc ¼ 0:68 for the fermion condensate and Tc ¼ 0:72 for the dual. Right: Chiral (dashed red line) and dual
(continuous green line) condensates for� ¼ 0:1,m ¼ 0:1, a ¼ 10. The critical temperatures are Tc ¼ 0:60 for the fermion condensate
and Tc ¼ 0:66 for the dual.
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 ¼ @��

@T
; � ¼ @�1

@T
;

from which the critical temperatures can be computed.
Numerically we proceed by fitting the curves obtained
for the chiral and dual condensate and then use a numerical
maximization routine to find the value for the critical
temperatures. Figure 4 shows the susceptibilities around
the peaks for sample values of the parameters. Similarly to
Ref. [19], an increase in the distance between the peaks of
the susceptibilities  and � when curvature increases is
also observed here.
We will now extend the analysis to include the spatially

varying case. For this case, we will limit our analysis to the

case$ ¼ 0. Analogous situations for the chiral condensate
have been addressed in Refs. [27,41,42]. To keep the
computation as simple as possible, in the following we
will set both the mass and the chemical potential to zero
and assume the condensate to depend only on the angular
direction #. As for the case studied in Ref. [27], for
vanishing �, we expect inhomogeneous configurations to

be metastable (with larger free energy with respect to the
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FIG. 5 (color online). Susceptibilities around the peaks for smaller and larger values of the curvature. Left: � ¼ 0, m ¼ 0, a ¼ 20.
Right: � ¼ 0:1, m ¼ 0:1, a ¼ 10.
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FIG. 6 (color online). Full three-dimensional dual condensate
�’i

ð#jÞ. The parameters are set to � ¼ 10, ‘�1 ¼ 103,

T ¼ 0:47, a ¼ 10.
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FIG. 7 (color online). Left: Spatial dependence of the dual condensate for fixed phase ’. Right: Dual (� � �1) vs chiral (� � ��)
condensate. In both panels the parameters are fixed as in Fig. 5.
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homogeneous configuration obtained above), thus charac-
terizing excited states only. The analysis is obviously
complicated by the fact that we need to minimize the

effective action. The way we carry out the computation is
first to discretize the ’ direction and minimizing the
effective action at each point of the ’ grid. This gives
the solution �ið#Þ � �ð’i; #Þ, where ’i represents a ge-
neric point of the ’ grid. The sums over the modified
frequencies (6) are performed, as in [27], by taking advan-
tage of the exponential decay of the Bessel functions in

(10) for a large argument that allow a consistent truncation
of the series. Instead, when the argument is smaller than a
certain tolerance value, we perform the summation analyti-
cally after appropriately expanding the Bessel functions.
The full solution is then constructed by matching those
obtained in the two regions. We then proceed by discretiz-
ing the # direction for each ’i and compute the Fourier

transform numerically. Figures 5 and 6 show some sample
plots. The ’ dependence of the function ’’i

ð#Þ is illus-
trated in the left-hand panel of Fig. 5 for some values of the

angle ’ and of the parameters. The full function �’i
ð#jÞ is

shown in Fig. 6 for � � ’ � 2� [in the range 0 � ’ � �
the solution can be constructed using the reflection sym-

metry ’’ð#Þ ¼ ’2��’ð#Þ]. Finally, the right-hand panel

of Fig. 6 illustrates the spatially varying dual condensate �
plotted together with the chiral condensate �.

V. DISCUSSION

Strongly interacting fermion effective field theories are
valuable tools to study chiral symmetry breaking in QCD
under the influence of external conditions, may these be
due to external sources, finite density, or gravity. These,
in fact, greatly complicate the nonperturbative dynamics
of QCD and make lattice computations challenging, to
say the least. Among the various low energy approxima-
tions of QCD, the Nambu–Jona-Lasinio model and its
variants have been providing for a long time a concrete
framework allowing one to explore several aspects of
QCD, whose description was, otherwise, not feasible
(or, in some cases, not well understood) by lattice meth-
ods. Because of the ‘‘fermionic nature’’ of the
Nambu–Jona-Lasinio model, the one aspect that re-
mained outside of its realm was an effective way to
describe confinement. This problem can possibly be
amended in several ways, for instance extending the
model by including the Polyakov loop [14] or by intro-
ducing the dual fermion condensate (see, for example,
[15–18]). In the present paper we have adopted the latter
approach, as described in Refs. [7,8] where an order
parameter for confinement was engineered directly
from the fermion condensate by taking its dual, i.e.,
Fourier transforming the condensate computed with re-
spect to a set of U(1)-valued boundary conditions (with
gauge degrees of freedom respecting periodic boundary
conditions). This quantity, as explicitly shown in

Refs. [7,8], defines an equivalence class of Polyakov
loops with winding number n conjugate to the phase
[see the definition (3)]. Then the dual condensate trans-
forms like the Polyakov loop under center symmetry and
therefore can be used as an order parameter to describe
the transition to deconfinement.
In the present paper we have considered a system of

strongly interacting fermions in curved space with the
fermion condensate coupled to the Polyakov loop. The
main point of this work was to translate the formalism of
Ref. [27] (designed to describe chiral symmetry breaking
in curved space) to the case of the dual fermion condensate
and therefore offer a way to construct an order parameter
for confinement when the background manifold is curved.
Specifically, we have shown how to compute the effective
action for the dual fermion condensate as a function of the
Polyakov loop at finite temperature and density and ex-
tended the procedure of Ref. [27] to include U(1) boundary
conditions necessary to construct the dual condensate. We
have described two different approaches: one based on the
use of heat-kernel methods (specialized to situations in
which the geometry and the condensates are slowly or
rapidly varying functions in space) and one based on the
density of states method. We have then tested the formal
results for the case of a constant curvature geometry and
constructed, by means of numerical approximation, the
dual condensate for both spatially constant and inhomoge-
neous configurations.
There are a few points, left for future work, deserving a

more attentive analysis. A first technical one concerns a
deeper analysis of the ‘‘twisted’’ boundary conditions (4),
since these induce an imaginary part in the effective action.
For the case of a constant curvature space, studied numeri-
cally in Sec. IV, we have verified that the imaginary part
remains negligibly small, therefore providing an a posteriori
justification of the approximation (used here as well as in
Refs. [15–19]) that treats the imaginary part as a small
perturbation. It is certainly an interesting question to address
whether this is true for more general geometries especially
when singularities are present and what is the interplay
between curvature and, for example, an external electro-
magnetic field.
The second, most important, point concerns a full

inclusion of gauge degrees of freedom. What we have
done here is compute the effective action for the dual
condensate as a function of the Polyakov loop that is left
general. Minimization of the effective action with respect to
the dual condensate does not depend directly on the purely
gluonic part of the potential, but only indirectly through the
Polyakov loop. Clearly, this way of proceeding is imperfect
and a full computation of the Polyakov loop potential at
strong coupling in curved space is a necessary step to close
the story. Here, we have accepted this limitation (in exchange
for having a way to explicitly introduce background
gravitational effects) and compensated the lack of knowledge
of the full gauge field dynamics by supplementing a simple
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parametrization for the Polyakov loop. A possible alternative
way to compute the Polyakov loop potential may be the
method of Ref. [43] appropriately generalized to curved
space.

Generalizing the results of this paper to static geometries
should also be possible along the ways outlined in
Refs. [44–46]. This becomes particularly relevant if
one wishes to describe, within the framework of strongly
interacting fermion effective field theories, eventual
transitions to deconfinement in the vicinity of a black
hole. Providing the basis to address this problem is what
motivated us, in the first place, to construct the formalism
described in the present work and to test it in the simpler
case of a constant curvature geometry. Reasons to approach
this problem are various and essentially related to the
desire to understand how the radiation of composite de-
grees of freedom from a black hole occurs, i.e., whether
composite degrees of freedom are directly emitted, or
elementary ones are emitted and composite ones form
farther away from the horizon by nonperturbative pro-
cesses. The problem is clearly complicated, but generaliz-
ing the results of this paper to black holes may provide a
pathway to, at least, a partial answer. Technically, a way to
extend the computations presented here to a black hole
geometry can be carried out using the general technique of
Refs. [44–46] that consists in transforming the original
static (black hole) geometry into an ultrastatic one. Then
the effective action can be computed in this related space-
time by adapting the method described in the previous
sections. The result in the original spacetime can then be
obtained by adding a compensating term, called the
cocycle function. The whole should, of course, be done
for phase-dependent boundary conditions necessary to
construct the dual condensate. With respect to geometries
with constant curvature where the ground state (at least for
small chemical potentials and in the absence of bounda-
ries) will stay spatially constant, in the case of black holes
both the chiral and the dual condensate will be inhomoge-
neous, complicating also the numerical analysis involved.

ACKNOWLEDGMENTS

The support of the Fundação para a Ciência e a Tecnologia
of Portugal and of the Marie Curie Action COFUND of the
European Union Seventh Framework Program (Grant
Agreement No. PCOFUND-GA-2009-246542) is acknowl-
edged. Thanks are extended to T. Tanaka for discussions and
to Y. Gusev for correspondence. I would like to thank K.
Fukushima and an anonymous referee for pointing out the
importance of adding the Polyakov loop in the computation.

APPENDIX: RAPIDLY VARYING CASE

For completeness, in this Appendix we will describe how
to deal with situations where the condensate is a rapidly
varying function. This case can be dealt with by using a

different nonperturbative ansatz for the heat trace, and one
possibility is to use covariant perturbation theory developed
inRef. [47]. The similar problem for noninteracting fermions
at finite temperature and zero chemical potential has been
discussed inRef. [28] thatwewill follow closely. The present
calculation also generalizes the procedure of Ref. [28] to
include finite nonvanishing chemical potentials. Setting
’ ¼ � also provides a generalization of the procedure
discussed in Ref. [27] to the case rapidly varying chiral
condensates.
In the present case, the zeta function (per fermion degree

of freedom) takes the same factorized form as before:

	’ðsÞ ¼ 1

�ðsÞ
X

�¼�1

Z 1

0
dtts�1F �;�;$ðt; ’ÞZðtÞ (A1)

with the heat trace written as

ZðtÞ ¼ 1

ð4�tÞd=2 ð1þ tA� þ t2B� þ 	 	 	Þ; (A2)

where

A� ¼ 1

4
Rþ X’;

B� ¼ A�F 1ð�thÞRþA�F 2ð�thÞA� þ 	 	 	 :
In the above formulas, the dots represent higher order
terms in any of the background fields or curvatures as
well as terms that do not depend on the condensate and
that disappear upon derivation in the equation of motion.
The quantity R represents the Ricci scalar. Using the
following integral representations:

f1ð�thÞ ¼
Z 1

0
dueuð1�uÞth;

f2ð�thÞ ¼
Z 1

0
duuð1� uÞ

Z 1

0
dveuð1�uÞvth;

the form factors F iðxÞ can be expressed as (see Ref. [28]
for details)

F 1ð�thÞ ¼ 1

12
f1ð�thÞ � 1

2
f2ð�thÞ;

F 2ð�thÞ ¼ 1

12
f1ð�thÞ:

We should notice that the above expression (A2) is valid
when the background geometry is asymptotically flat
and when the background fields are small in magnitude,
but rapidly vary in space. Details can be consulted in
Refs. [28,47].
The computation of the effective action requires some

effort, but it is otherwise straightforward. For convenience,
we will write

	’ðsÞ ¼ 	 ð1Þ’ ðsÞ þ 	 ð2Þ’ ðsÞ þ 	 	 	 ; (A3)

where 	 ðkÞ’ ðsÞ corresponds to the kth term in (A2). The term
coming from k ¼ 0 has been discarded, since it does not
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depend on the condensate and can be removed by trivial
renormalization. The first nontrivial contribution comes
from the second term in (A2) and can be written, after
simple steps, as

	 ð1Þ’ ðsÞ ¼ 2�

ð4�ÞD=2

X
�¼�1

A�

�ðD=2� 1� sÞ
�ðsÞ OðsÞ;

where

<OðsÞ ¼ 22s�D�2s�Dþ2½Li�þ þ Liþþ þ Li�� þ Li���;
=OðsÞ ¼ 22s�D�2s�Dþ2½Li�þ � Liþþ � Li�� þ Liþ��;
with

Liþþ � Li�2þD�2sð�eþ�ð�þ{’ÞÞ;
Li�� � Li�2þD�2sð��e��ð��{’ÞÞ;

and defining Li�ðzÞ the polylogarithm function.

Computing the contribution 	 ð2Þ’ ðsÞ requires some more
work. Simple inspection of the form factors shows that

	 ð2Þ’ ðsÞ¼ �

ð4�ÞD=2

X
�¼�1

ðA�Y1ðsÞRþA�Y2ðsÞA�þ			Þ;

where

YiðsÞ ¼ 1

�ðsÞ
Z 1

0
dtts�D=2þ1F ið�thÞ

�
�
1þ 2

X1
n¼1

�ðnÞ
’ ð�;�;$Þe��2n2

4t

�
:

Direct integration over t can be carried out straightfor-
wardly and allows one to express the functions YiðsÞ as

Y1ðsÞ ¼ 1

12
IðsÞ � 1

2
J ðsÞ; Y2ðsÞ ¼ 1

12
IðsÞ;

in terms of

IðsÞ ¼ ð�hÞ�2�sþD=2 �
2ðD=2� 1� sÞ�ð2�D=2þ sÞ

�ð�2þD� 2sÞ�ðsÞ þ 4ð�1Þ�D=4þs=2þ1

�ðsÞ
� ð�hÞD=4�s=2�1

X1
n¼1

�ðnÞ
’ ð�;�;$Þ

�
n�

2

��D=2þsþ2
KðDÞ

n ðs;hÞ; (A4)

J ðsÞ ¼ � ð1þD� 2sÞ�3=2

2D�2s

csc ððD� 2sÞ�=2Þ
�ð3=2þD=2� sÞ�ðsÞ ð�hÞD=2�2�s � ð�1ÞD=4�s=2�1

�ðsÞ ð�hÞD=4�s=2�1

� X1
n¼1

�ðnÞ
’ ð�;�;$Þ

�
n�

2

�
2�D=2þs

RðDÞ
n ðs;hÞ; (A5)

where we have defined

KðDÞ
n ðs; zÞ :¼

Z 1

0
duðuðu� 1ÞÞD=4�s=2�1KD

2�s�2

�
n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu� 1Þ

p ffiffiffi
x

p �
;

RðDÞ
n ðs; zÞ :¼

Z 1

0
du

Z 1

0
dvðuðu� 1ÞÞD=4�s=2vD=4�s=2�1KD

2�s�2

�
n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vuðu� 1Þp ffiffiffi

z
p �

:

The above formulas allow one to obtain the effective action after analytical continuation of 	’ðsÞ and 	 0’ðsÞ to s ¼ 0.

Further manipulation of the form factors is possible following some of the procedures outlined in Ref. [28] and we leave
them up to the interested reader.
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