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We present a new perturbative formulation of nonequilibrium thermal field theory, based upon

nonhomogeneous free propagators and time-dependent vertices. Our approach to nonequilibrium dynam-

ics yields time-dependent diagrammatic perturbation series that are free of pinch singularities, without the

need to resort to quasiparticle approximation or effective resummations of finite widths. In our formalism,

the avoidance of pinch singularities is a consequence of the consistent inclusion of finite-time effects and

the proper consideration of the time of observation. After arriving at a physically meaningful definition of

particle number densities, we derive master time evolution equations for statistical distribution functions,

which are valid to all orders in perturbation theory. The resulting equations do not rely upon a gradient

expansion of Wigner transforms or involve any separation of time scales. To illustrate the key features of

our formalism, we study out-of-equilibrium decay dynamics of unstable particles in a simple scalar model.

In particular, we show how finite-time effects remove the pinch singularities and lead to violation of

energy conservation at early times, giving rise to otherwise kinematically forbidden processes. The non-

Markovian nature of the memory effects as predicted in our formalism is explicitly demonstrated.
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I. INTRODUCTION

As modern particle physics continues to advance at both
the energy and intensity frontiers, we are increasingly
concerned with transport phenomena in dense systems of
ultrarelativistic particles, the so-called density frontier.
One such system is the deconfined phase of quantum
chromodynamics, known as the quark-gluon plasma [1],
whose existence has been inferred from the observation of
jet quenching in Pb-Pb collisions by the ATLAS [2], CMS
[3] and ALICE [4] experiments at the CERN Large Hadron
Collider. In addition to laboratory experiments, an under-
standing of such ultrarelativistic many-body dynamics is of
interest in theoretical astroparticle physics and cosmology.
Predictions about the evolution of the early universe rely
upon our understanding of the dynamics of states at the end
and shortly after the phase of cosmological inflation.

The Wilkinson Microwave Anisotropy Probe [5,6] mea-
sured a baryon-to-photon ratio at the present epoch of
� ¼ nB=n� ¼ 6:116þ0:197

�0:249 � 10�10, where n� is the num-

ber density of photons andnB ¼ nb � n �b is the difference in
number densities of baryons and antibaryons. This observed
baryon asymmetry of the universe (BAU) is also consistent
with the predictions of big bang nucleosynthesis [7]. The
generation of the BAU requires the presence of out-of-
equilibrium processes and the violation of baryon number
(B), charge (C) and charge-parity (CP), according to the
Sakharov conditions [8]. One such set of processes is

prescribed by the scenarios of baryogenesis via leptogene-
sis [9–11], in which an initial excess in lepton number (L),
provided by the decay of heavy right-handed Majorana
neutrinos, is converted to a baryon number excess through
theBþ L-violating sphaleron interactions. The description
of such phenomena require a consistent approach to the
nonequilibrium dynamics of particle number densities.
Further examples to which nonequilibrium approaches are
relevant include, for instance, the phenomena of reheating
and preheating [12–15] and the generation of dark matter
relic densities [16].
The classical evolution of particle number densities in the

early universe is described by Boltzmann transport equa-
tions; see for instance [17–25]. A semiclassical improve-
ment to these equationsmay be achieved by substituting the
classical Boltzmann distributions with quantum-statistical
Bose-Einstein and Fermi-Dirac distribution functions for
bosons and fermions, respectively. However, such im-
proved approaches take into account finite-width and off-
shell effects by means of effective field-theoretic methods.
Hence, a complete and systematic field-theoretic descrip-
tion of quantum transport phenomena would be desirable.
The first framework for calculating ensemble expect-

ation values (EEVs) of field operators was provided by
Matsubara [26]. This so-called imaginary-time formalism
(ITF) of thermal field theory is derived by interpreting the
canonical density operator as an evolution operator in nega-
tive imaginary time. Real-time Green’s functions may then
be obtained by subtle analytic continuation. Nevertheless,
the applicability of the ITF remains limited to the descrip-
tion of processes occurring in thermodynamic equilibrium.
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The calculation of EEVs of operators in nonstatic sys-
tems is performed using the so-called real-time formalism
(RTF); see for example [27,28]. In particular, for nonequi-
librium systems, one uses the closed-time path (CTP)
formalism, or the in-in formalism, due to Schwinger
and Keldysh [29,30]. The correspondence of these results
with those obtained by the ITF in the equilibrium limit
are discussed extensively in the literature [31–37]. A non-
perturbative loopwise expansion of the CTP generating
functional is then provided by the Cornwall-Jackiw-
Tomboulis (CJT) effective action [38,39], which was sub-
sequently applied to the CTP formalism by Calzetta and
Hu [40,41]. The CJT effective action has been used
extensively in applications to 1=N expansions far from
equilibrium [42–46].

Recently, the computation of the out-of-equilibrium
evolution of particle number densities has received much
attention, where several authors put forward quantum-
corrected or quantum Boltzmann equations [1,47–77].
Existing approaches generally rely upon the Wigner trans-
formation and gradient expansion [78,79] of a system of
Kadanoff-Baym [80,81] equations, originally applied in
the nonrelativistic regime [79,82–84]. Often the truncation
of the gradient expansion is accompanied by quasiparticle
ansaetze for the forms of the propagators. Similar ap-
proaches have recently been applied to the glasma [85].
Dynamical equations have also been derived by expansion
of the Liouville-von Neumann equation [86,87] and using
functional renormalization techniques [88].

In this article, we present a new approach to nonequilib-
rium thermal field theory. Our approach is based upon
a diagrammatic perturbation series, constructed from
nonhomogeneous free propagators and time-dependent
vertices, which encode the absolute spacetime dependence
of the thermal background. In particular, we show how the
systematic inclusion of finite-time effects and the proper
consideration of the time of observation render our pertur-
bative expansion free of pinch singularities, thereby ena-
bling a consistent treatment of nonequilibrium dynamics.
Unlike othermethods, our approach does not require the use
of quasiparticle approximation or other effective resumma-
tions of finite-width effects.

A key element of our formalism has been to define
physically meaningful particle number densities in terms
of off-shell Green’s functions. This definition is unambig-
uous, as it can be closely linked to Noether’s charge, asso-
ciated with a partially conserved current. Subsequently, we
derive master time evolution equations for the statistical
distribution functions related to particle number densities.
These time evolution equations do not rely on the truncation
of a gradient expansion of the so-calledWigner transforms;
neither do they involve separation of various time scales.
Instead, they are built of nonhomogeneous free propagators,
with modified time-dependent Feynman rules, which ena-
ble us to analyze the pertinent kinematics fully. Our analysis

shows that the systematic inclusion of finite-time effects
leads to the microscopic violation of energy conservation at
early times. Aside from preventing the appearance of pinch
singularities, the effect of a finite time interval of evolution
leads to contributions from processes that would otherwise
be kinematically disallowed on grounds of energy conser-
vation. Applying this formalism to a simple scalar model
with unstable particles, we show that these evanescent
processes contribute significantly to the rapidly oscillating
transient evolution of these systems, inducing late-time
memory effects. We find that the spectral evolution of
two-point correlation functions exhibits an oscillating pat-
tern with time-varying frequencies. Such an oscillating
pattern signifies a non-Markovian evolution of memory
effects, which is a distinctive feature governing truly out-
of-thermal-equilibrium dynamical systems. A summary of
the main results detailed in this article can be found in [89].
The outline of the paper is as follows. In Sec. II, we

review the canonical quantization of a scalar field theory,
placing particular emphasis on the inclusion of a finite time
of coincidence for the three equivalent pictures of quantum
mechanics, namely the Schrödinger, Heisenberg and Dirac
(interaction) pictures. In Sec. III, we introduce the CTP
formalism, limiting ourselves initially to consider its ap-
plication to quantum field theory at zero temperature and
density. This is followed by a discussion of the constraints
upon the form of the CTP propagator. With these prereq-
uisites reviewed, we proceed in Sec. IV to discuss the
generalization of the CTP formalism to finite temperature
and density in the presence of both spatially and temporally
inhomogeneous backgrounds. In the same section, we
derive the most general form of the nonhomogeneous free
propagators for a scalar field theory. The thermodynamic
equilibrium limit is outlined in Sec. V. Subsequently, in
Sec. VI, we define the concept of particle number density
and relate this to a perturbative loopwise expansion of the
resummed CTP propagators. In Sec. VII, we derive new
master time evolution equations for statistical distribution
functions, which go over to classical Boltzmann equations
in the appropriate limits. In Sec. VIII, we demonstrate the
absence of pinch singularities in the perturbation series
arising in our approach at the one-loop level. Section IX
studies the thermalization of unstable particles in a simple
scalar model, where particular emphasis is laid on the early-
time behavior and the impact of the finite-time effects.
Finally, our conclusions and possible future directions are
presented in Sec. X.
For clarity, a glossary that might be useful to the reader to

clarify polysemous notation is given in Table I. Appendix A
provides a summary of all important propagator defini-
tions, along with their basic relations and properties. In
Appendix B, we describe the correspondence between the
RTF and ITF in the equilibrium limit at the one-loop level
for a real scalar field theory with a cubic self-interaction.
The generalization of our approach to complex scalar fields
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is outlined in Appendix C. Appendix D contains a series
expansion of the most general nonhomogeneous Gaussian-
like density operator. In Appendix E, we summarize the
derivation of the so-called Kadanoff-Baym equations and
their subsequent gradient expansion. Lastly, in Appendix F,
we describe key technical details involved in the calculation
of loop integrals with nonhomogeneous free propagators.

II. CANONICAL QUANTIZATION

In this section, we review the basic results obtained
within the canonical quantization formalism for a massive
scalar field theory. This discussion will serve as a precursor
for our generalization to finite temperature and density,
which follows in subsequent sections.

As a starting point, we consider a simple self-interacting
theory of a real scalar field �ðxÞ with mass M, which is
described by the Lagrangian

LðxÞ ¼ 1

2
@��ðxÞ@��ðxÞ � 1

2
M2�2ðxÞ � 1

3!
g�3ðxÞ

� 1

4!
��4ðxÞ; (2.1)

where g and � are dimensionful and dimensionless
couplings, respectively. Throughout this article, we
use the short-hand notation: x � x� ¼ ðx0;xÞ, for the
four-dimensional space-time arguments of field operators,
and adopt the signature ðþ;�;�;�Þ for the Minkowski
space-time metric ���.

It proves convenient to start our canonical quantization
approach in the Schrödinger picture, where the state vec-
tors are time dependent, whilst basis vectors and operators
are, in the absence of external sources, time independent.
Hence, the time-independent Schrödinger-picture field
operator, denoted by a subscript S, may be written in the
familiar plane-wave decomposition

�Sðx;~tiÞ¼
Z
d�pðaSðp;~tiÞeip�xþayS ðp;~tiÞe�ip�xÞ; (2.2)

where we have introduced the short-hand notation:Z
d�p �

Z d3p

ð2�Þ3
1

2EðpÞ¼
Z d4p

ð2�Þ4 2��ðp0Þ�ðp2�M2Þ;
(2.3)

for the Lorentz-invariant phase space (LIPS). In (2.3),

EðpÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
is the energy of the single-particle

mode with three-momentum p and �ðp0Þ is the generalized
unit-step function, defined by the Fourier representation

�ðp0Þ � i
Z þ1

�1
d	

2�

e�ip0	

	þ i

¼

8><
>:
1; p0 > 0
1
2 ; p0 ¼ 0

0; p0 < 0;

(2.4)

where 
 ¼ 0þ. It is essential to stress here that we define
the Schrödinger, Heisenberg and interaction (Dirac) pic-
tures to be coincident at the finite microscopic boundary
time ~ti, such that

�Sðx; ~tiÞ ¼ �Hð~ti;x; ~tiÞ ¼ �Ið~ti;x; ~tiÞ; (2.5)

where implicit dependence upon the boundary time ~ti is
marked by separation from explicit arguments by a
semicolon.
The time-independent Schrödinger-picture operators

ayS ðp; ~tiÞ and aSðp; ~tiÞ are the usual creation and annihila-

tion operators, which act on the stationary vacuum j0i,
respectively creating and destroying time-independent
single-particle momentum eigenstates. Their defining
properties are

ayS ðp; ~tiÞj0i ¼ jp; ~tii; (2.6a)

aSðp; ~tiÞjp0; ~tii ¼ ð2�Þ32EðpÞ�ð3Þðp� p0Þj0i; (2.6b)

aSðp; ~tiÞj0i ¼ 0: (2.6c)

Note that the momentum eigenstates jp; ~tii respect the
orthonormality condition

hp0; ~tijp; ~tii ¼ ð2�Þ32EðpÞ�ð3Þðp� p0Þ: (2.7)

We then define the time-dependent interaction-picture
field operator �Iðx; ~tiÞ via

�Iðx; ~tiÞ ¼ eiH
0
S
ðx0�~tiÞ�Sðx; ~tiÞe�iH0

S
ðx0�~tiÞ; (2.8)

where H0
S is the free part of the Hamiltonian in the

Schrödinger picture. Using the commutators

½H0
S; aSðp; ~tiÞ� ¼ �EðpÞaSðp; ~tiÞ; (2.9a)

½H0
S; a

y
S ðp; ~tiÞ� ¼ þEðpÞayS ðp; ~tiÞ; (2.9b)

the interaction-picture field operator may be written

�Iðx; ~tiÞ ¼
Z

d�pðaSðp; ~tiÞe�iEðpÞðx0�~tiÞeip�x

þ ayS ðp; ~tiÞeiEðpÞðx0�~tiÞe�ip�xÞ; (2.10)

or equivalently, in terms of interaction-picture operators
only,

TABLE I. Glossary for clarifying polysemous notation.

T Thermodynamic temperature

t Macroscopic time
~t Microscopic real time

� Microscopic negative imaginary time

t Complex time

Tð �TÞ Time-(anti-time-)ordering operator

TC Path-ordering operator

Z Wavefunction renormalization

Z Partition function/generating functional

f Statistical distribution function

f� Boltzmann distribution

fB Bose–Einstein distribution
~f Ensemble function


 Density operator/density matrix

n Number density

N Total particle number
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�Iðx; ~tiÞ ¼
Z

d�pðaIðp; 0; ~tiÞe�iEðpÞx0eip�x

þ ayI ðp; 0; ~tiÞeiEðpÞx0e�ip�xÞ: (2.11)

Notice that in (2.11) the time-dependent interaction-picture

creation and annihilation operators,ayI ðp;~t;~tiÞ andaIðp;~t; ~tiÞ,
are evaluated at the microscopic time ~t ¼ 0, after employ-
ing a relation analogous to (2.8). We may write the four-
dimensional Fourier transform of the interaction-picture
field operator as

�Iðp; ~tiÞ ¼
Z

d4xeip�x�Iðx; ~tiÞ
¼ 2��ðp2 �M2Þð�ðp0ÞaIðp; 0; ~tiÞ

þ �ð�p0ÞayI ð�p; 0; ~tiÞÞ: (2.12)

In the limit where the interactions are switched off
adiabatically as ~ti ! �1, one may define the asymptotic
in creation and annihilation operators via

aðyÞin ðpÞ ’ Z�1=2 lim
~ti!�1

aðyÞI ðp; 0; ~tiÞ

¼ Z�1=2 lim
~ti!�1

aðyÞS ðp; ~tiÞeþð�ÞiEðpÞ~ti ; (2.13)

where Z ¼ 1þOðℏÞ is the wave function renormalization.
Evidently, keeping track of the finite boundary time ~ti
plays an important role in ensuring that our forthcoming

generalization to perturbative thermal field theory remains
consistent with asymptotic field theory in the limit
~ti ! �1. Hereafter, we will omit the subscript I on
interaction-picture operators and suppress the implicit
dependence on the boundary time ~ti, except where it is
necessary to do otherwise for clarity.
We start our quantization procedure by defining the

commutator of interaction-picture fields

½�ðxÞ;�ðyÞ� � i�0ðx; y;M2Þ; (2.14)

where i�0ðx; y;M2Þ is the free Pauli-Jordan propagator.
Herein, we denote free propagators by a superscript 0. The
condition of microcausality requires that the interaction-
picture fields commute for spacelike separations ðx� yÞ2 <
0. This restricts i�0ðx; y;M2Þ to be invariant under spatial
translations, having the Poincaré-invariant form

i�0ðx; y;M2Þ ¼
Z

d�pðe�iEðpÞðx0�y0Þeip�ðx�yÞ � ðx $ yÞÞ:
(2.15)

Observe that i�0ðx; y;M2Þ represents the difference of two
counterpropagating packets of planewaves and vanishes for
ðx� yÞ2 < 0.
It proves useful for our forthcoming analysis to intro-

duce the double Fourier transform

i�0ðp;p0;M2Þ¼
ZZ

d4xd4yeip�xe�ip0�yi�0ðx;y;M2Þ (2.16a)

¼2�"ðp0Þ�ðp2�M2Þð2�Þ4�ð4Þðp�p0Þ; (2.16b)

where "ðp0Þ � �ðp0Þ � �ð�p0Þ is the generalized signum function. Note that we have defined the Fourier transforms such
that four-momentum p flows away from the point x and four-momentum p0 flows towards the point y.

From (2.14) and (2.15), we may derive the equal-time commutation relations

i�0ðx; y;M2Þjx0¼y0¼~t ¼ ½�ð~t;xÞ;�ð~t; yÞ� ¼ 0; (2.17a)

@x0i�
0ðx; y;M2Þjx0¼y0¼~t ¼ ½�ð~t;xÞ;�ð~t; yÞ� ¼ �i�ð3Þðx� yÞ; (2.17b)

@x0@y0i�
0ðx; y;M2Þjx0¼y0¼~t ¼ ½�ð~t;xÞ; �ð~t; yÞ� ¼ 0; (2.17c)

where �ðxÞ ¼ @x0�ðxÞ is the conjugate-momentum opera-
tor. In order to satisfy the canonical quantization relations
(2.17), the creation and annihilation operators must respect
the commutation relation

½aðp;~tÞ; ayðp0;~t0Þ� ¼ ð2�Þ32EðpÞ�ð3Þðp� p0Þe�iEðpÞð~t�~t0Þ;

(2.18)

with all other commutators vanishing. Here, we emphasize
the appearance of an overall phase e�iEðpÞð~t�~t0Þ in (2.18) for
~t � ~t0 [cf. Sec. IVA].

The vacuum expectation value of the commutator
of Heisenberg-picture field operators may be expressed

as a superposition of interaction-picture field commuta-
tors by means of the Källén-Lehmann spectral representa-
tion [90,91]:

h0j½�HðxÞ;�HðyÞ�j0i � i�ðx; yÞ ¼
Z 1

0
ds�ðsÞi�0ðx; y; sÞ;

(2.19)

where i�0ðx; y; sÞ is the free Pauli-Jordan propagator in
(2.15) with M2 replaced by s and i�ðx; yÞ is the dressed or
resummed propagator. The positive spectral density �ðsÞ
contains all information about the spectrum of single- and
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multiparticle states produced by the Heisenberg-picture
field operators �H. If �ðsÞ is normalized, such that

Z 1

0
ds�ðsÞ ¼ 1; (2.20)

the equal-time commutation relations of Heisenberg-
picture operators maintain exactly the form in (2.17).
Note that for a homogeneous and stationary vacuum j0i,
�ðsÞ is independent of the space-time coordinates and the
resummed Pauli-Jordan propagator maintains its transla-
tional invariance. In this case, the spectral function cannot
depend upon any fluctuations in the background. Clearly,
for nontrivial ‘‘vacua,’’ or thermal backgrounds, the spectral
density becomes ingeneral a function also of the coordinates.
The spectral representation of the resummed propagators
may then depend nontrivially on space-time coordinates,
i.e. � ¼ �ðs; x; yÞ; see for instance [57]. In this case, the
convenient factorization of the Källén-Lehmann representa-
tion breaks down.

The retarded and advanced causal propagators are
defined as

i�Rðx; yÞ � �ðx0 � y0Þi�ðx; yÞ;
i�Aðx; yÞ � ��ðy0 � x0Þi�ðx; yÞ:

(2.21)

Using the Fourier representation of the unit-step function
in (2.4), we introduce a convenient representation of these
causal propagators in terms of the convolution

i�RðAÞðp; p0Þ ¼ i
Z dk0

2�

i�ðp0 � k0; p
0
0 � k0;p;p

0Þ
k0 þ ð�Þi
 :

(2.22)

The absolutely ordered Wightman propagators are
defined as

i�>ðx; yÞ � h�ðxÞ�ðyÞi; i�<ðx; yÞ � h�ðyÞ�ðxÞi:
(2.23)

We note that the two-point correlation functions �ðx; yÞ,
�>;<ðx; yÞ and �R;Aðx; yÞ satisfy the causality relation:

�ðx; yÞ ¼ �>ðx; yÞ � �<ðx; yÞ ¼ �Rðx; yÞ � �Aðx; yÞ:
(2.24)

Our next step is to define the noncausal Hadamard
propagator, which is the vacuum expectation value of the
field anticommutator

i�1ðx; yÞ � hf�ðxÞ;�ðyÞgi: (2.25)

Correspondingly, the time-ordered Feynman and anti-time-
ordered Dyson propagators are given by

i�Fðx; yÞ � hT½�ðxÞ�ðyÞ�i;
i�Dðx; yÞ � h �T½�ðxÞ�ðyÞ�i; (2.26)

where T and �T are the time- and anti-time-ordering opera-
tors, respectively. Explicitly, �Fðx; yÞ and �Dðx; yÞ may be
written in terms of the absolutely ordered Wightman
propagators �>ðx; yÞ and �<ðx; yÞ as
�Fðx; yÞ ¼ �ðx0 � y0Þ�>ðx; yÞ þ �ðy0 � x0Þ�<ðx; yÞ;

(2.27a)

�Dðx; yÞ ¼ �ðx0 � y0Þ�<ðx; yÞ þ �ðy0 � x0Þ�>ðx; yÞ:
(2.27b)

The propagators �1ðx; yÞ, �>;<ðx; yÞ and �F;Dðx; yÞ obey
the unitarity relations:

�1ðx; yÞ ¼ �Fðx; yÞ þ �Dðx; yÞ ¼ �>ðx; yÞ þ �<ðx; yÞ
¼ 2iIm�Fðx; yÞ: (2.28)

Finally, for completeness, we define the principal-part
propagator

�P ðx; yÞ ¼ 1

2
ð�Rðx; yÞ þ�Aðx; yÞÞ ¼ Re�Fðx; yÞ: (2.29)

Here, we should bear in mind that

ReðImÞ�Fðx;yÞ

�
ZZ d4p

ð2�Þ4
d4p0

ð2�Þ4 e
�ip�xeip0�yReðImÞ�Fðp;p0Þ; (2.30)

implying that

�P ðp; p0Þ � Re�Fðp; p0Þ; (2.31)

unless �Fðp; p0Þ ¼ �Fð�p;�p0Þ, which is not generally
true in nonequilibrium thermal field theory [cf. (A4f)].
The definitions and the relations discussed above are valid

for both free and resummed propagators. In Appendix A,
we list the properties of these propagators in coordinate,
momentum and Wigner (see Sec. IVB) representations, as
well as a number of useful identities, which we will refer to
throughout this article. More detailed discussion related to
these propagators and their contour-integral representations
may be found in [92]. In Appendix C, these considerations
and the analysis of the following sections are generalized to
the complex scalar field.

III. THE CTP FORMALISM

In this section, we review the CTP formalism, or the
so-called in-in formalism, due to Schwinger and Keldysh
[29,30]. As an illuminating exercise, we consider the CTP
formalism in the context of zero-temperature quantum field
theory and derive the associated 2� 2 matrix propagator,
obeying basic field-theoretic constraints, such as CPT
invariance, Hermiticity, causality and unitarity. Finally,
we discuss the properties of the resummed propagator in
the CTP formalism.
In the calculation of scattering-matrix elements, we are

concerned with the transition amplitude between in and out
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asymptotic states, where single-particle states are defined
in the infinitely distant past and future. On the other hand,
in quantum-statistical mechanics, we are interested in the
calculation of EEVs of operators at a fixed given time t.
Specifically, the evaluation of EEVs of operators requires a
field-theoretic approach that allows us to determine the
transition amplitude between states evolved to the same
time. This approach is the Schwinger-Keldysh CTP for-
malism, which we describe in detail below.

For illustration, let us consider the following observable
O in the Schrödinger picture (suppressing the spatial
coordinates x and y):

OðSÞð~tf; ~tiÞ ¼
Z
½d�ðzÞ�Sh�ðzÞ;~tf; ~tij�Sðx; ~tiÞ�Sðy; ~tiÞ

� j�ðzÞ;~tf; ~tiiS; (3.1)

where ½d�� represents the functional integral over all field
configurations �ðzÞ. In (3.1), j�ðzÞ;~tf; ~tiiS is a time-

evolved eigenstate of the time-independent Schrödinger-
picture field operator �Sðx; ~tiÞ with eigenvalue �ðxÞ at
time ~tf ¼ ~ti, where the implicit dependence upon the

boundary time ~ti has been restored.
We should remark here that there are seven independent

space-time coordinates involved in the observable (3.1).
These are the six spatial coordinates, x and y, plus the
microscopic time ~tf. In addition, there is one implicit

coordinate: the boundary time ~ti. As we will see, exactly
seven independent coordinates are required to construct
physical observables that are compatible with Heisenberg’s
uncertainty principle. We choose the seven independent
coordinates to be

t ¼ ~tf � ~ti; X ¼ 1

2
ðxþ yÞ; p; (3.2)

where t and X are the macroscopic time and central space
coordinates and p is the Fourier-conjugate variable to the
relative spatial coordinate R ¼ x� y.

In the interaction picture, the same observableO in (3.1)
is given by

OðIÞð~tf;~tiÞ¼
Z
½d�ðzÞ�Ih�ðzÞ;~tf;~tij�Ið~tf;x;~tiÞ�Ið~tf;y;~tiÞ

� j�ðzÞ;~tf;~tiiI; (3.3)

and, in the Heisenberg picture, by

OðHÞð~tf;~tiÞ¼
Z
½d�ðzÞ�Hh�ðzÞ;~tij�Hð~tf;x;~tiÞ�Hð~tf;y;~tiÞ

� j�ðzÞ;~tiiH: (3.4)

Notice that the prediction for the observable O does not
depend on which picture we are using, i.e. OðSÞð~tf; ~tiÞ ¼
OðIÞð~tf; ~tiÞ ¼ OðHÞð~tf; ~tiÞ. This picture independence of O
is only possible because the time-dependent vectors and
operators in O are evaluated individually at equal times.
Otherwise, any potential observable, built out of time-
dependent vectors and operators that are evaluated at

different times, would be picture dependent and therefore
unphysical. Moreover, the prediction of the observable O
should be invariant under simultaneous time translations of
the boundary and observation times, ~ti and ~tf, i.e.

Oð~tf; ~tiÞ ¼ Oðt; 0Þ � OðtÞ; (3.5)

where t ¼ ~tf � ~ti is the macroscopic time, as we will see

below. Herein and throughout the remainder of this article,
the time arguments of quantities that are invariant under
such simultaneous translations of the boundary times are
written in terms of the macroscopic time t only.

A. The CTP contour

In order to evaluate equal-time observables of the form
in (3.4), we first introduce the in vacuum state j0in; ~tii,
which is at time ~ti a time-independent eigenstate of the
Heisenberg field operator �Hðx; ~tiÞ with zero eigenvalue;
see [40,41]. We then need a means of driving the amplitude
h0in; ~tij0in; ~tii, which can be achieved by the appropriate
introduction of external sources.
The procedure may be outlined with the aid of Fig. 1 as

follows. We imagine evolving our in state at time ~ti for-
wards in time under the influence of a source JþðxÞ to some
out state at time ~tf in the future, which will be a superpo-

sition over all possible future states. We then evolve this
superposition of states backwards again under the influ-
ence of a second source J�ðxÞ, returning to the same initial
time ~ti and the original in state. The sources J�ðxÞ are
assumed to vanish adiabatically at the boundaries of the
interval ½~ti;~tf�. We may interpret the path of this evolution

as defining a closed contour C ¼ Cþ [ C� in the complex-
time plane (t-plane, t 2 C), which is the union of two
antiparallel branches: Cþ, running from ~ti to ~tf � i
=2;

and C�, running from ~tf � i
=2 back to ~ti � i
. We refer to

Cþ and C� as the positive time-ordered and negative anti-
time-ordered branches, respectively. As depicted in Fig. 1,
the small imaginary part 
 ¼ 0þ has been added to allow
us to distinguish the two, essentially coincident, branches.

FIG. 1 (color online). The closed-time path, C ¼ Cþ [ C�,
running first along Cþ from ~ti to ~tf � i
=2 and then returning

along C� from ~tf � i
=2 to ~ti � i
. The relationship between the

complex microscopic time ~zðuÞ and the macroscopic time t is
indicated by a dashed black arrow.
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We parametrize the distance along the contour, starting
from ~ti, by the real variable u 2 ½0; 1�, which increases
monotonically along C. We may then define the contour by
a path ~zðuÞ ¼ ~tðuÞ � i~�ðuÞ 2 t, where ~tð0Þ ¼ ~tð1Þ ¼ ~ti and
~tð1=2Þ ¼ ~tf. Thus, the complex CTP contour ~zðuÞ may be

written down explicitly as

~zðuÞ ¼ �

�
1

2
� u

�
½~ti þ 2uð~tf � ~tiÞ�

þ �

�
u� 1

2

�
½~ti þ 2ð1� uÞð~tf � ~tiÞ� � i
u; (3.6)

with �ð0Þ ¼ 1=2, as given in (2.4).
To derive a path-integral representation of the generating

functional, we introduce the eigenstate j�ðxÞ;~t; ~tii of the
Heisenberg field operator �Hð~t;x; ~tiÞ, satisfying the eigen-
value equation

�Hð~t;x; ~tiÞj�ðxÞ;~t; ~tii ¼ �ðxÞj�ðxÞ;~t; ~tii: (3.7)

The basis vectors j�ðxÞ;~t; ~tii form a complete orthonormal
basis, respecting the orthonormality condition

Z
½d�ðxÞ�j�ðxÞ;~t; ~tiih�ðxÞ;~t; ~tij ¼ I: (3.8)

We may then write the CTP generating functional
Z½J�; t� as
Z½J�;t�
¼
Z
½d�ðxÞ�J�h0in;~ti;~tij�ðxÞ;~tf;~tiih�ðxÞ;~tf;~tij0in;~ti;~tiiJþ

¼
Z
½d�ðxÞ�h0in;~ti;~tij �Tðe�i

R~tf
~ti
d4xJ�ðxÞ�HðxÞÞ

�j�ðxÞ;~tf;~tiih�ðxÞ;~tf;~tijTðei
R~tf

~ti
d4xJþðxÞ�HðxÞÞj0in;~ti;~tii;

(3.9)

where the x0 integrations run from ~ti to ~tf and the ‘‘latest’’

time (with u ¼ 1) appears furthest to the left.
In order to preserve the correspondence with the ordi-

nary S-matrix theory in the asymptotic limit ~ti ! �1,
we take

~tf ¼ �~ti: (3.10)

With this identification, the CTP generating functional
Z½J�; t� becomes manifestly CPT invariant. This enables
one to easily verify that microscopic CPT invariance con-
tinues to hold, even when time translational invariance is
broken by thermal backgrounds, as we will see in Sec. IV.
Given that ~ti is the microscopic time at which the three
pictures of quantum mechanics coincide and the inter-
actions are switched on, it is also the point at which the
boundary conditions may be specified fully and instanta-
neously in terms of on-shell free particle states. The micro-
scopic time ~ti is therefore the natural origin for a
macroscopic time

t ¼ ~tf � ~ti ¼ 2~tf; (3.11)

where the last equality holds for the choice in (3.10). This
macroscopic time is also the total interval of microscopic
time over which the system has evolved. This fact is
illustrated graphically in Fig. 1.
We denote by ��ðxÞ � �ðx0 2 C�;xÞ fields with the

microscopic time variable x0 confined to the positive and
negative branches of the contour, respectively. Following
[40,41], we define the doublets

�aðxÞ ¼ ð�þðxÞ;��ðxÞÞ;
�aðxÞ ¼ �ab�

bðxÞ ¼ ð�þðxÞ;���ðxÞÞ;
(3.12)

where the CTP indices a, b ¼ 1, 2 and �ab ¼ diagð1;�1Þ
is an SOð1; 1Þ ‘‘metric.’’ Inserting into (3.9) complete sets
of eigenstates of the Heisenberg field operator at inter-
mediate times, we may derive a path-integral representa-
tion of the CTP generating functional:

Z½Ja; t�
¼N

Z
½d�a� exp

�
i

�
S½�a; t� þ

Z
�t

d4xJaðxÞ�aðxÞ
��

;

(3.13)

where N is some normalization and

�t ’ ½�t=2; t=2� � R3 (3.14)

is the Minkowski space-time volume bounded by the
hypersurfaces x0 ¼ �t=2. In (3.13), the action is

S½�a; t� ¼
Z
�t

d4x

�
1

2
�ab@��

aðxÞ@��bðxÞ

� 1

2
ðM2�ab � i
IabÞ�aðxÞ�bðxÞ

� 1

3!
g�abc�

aðxÞ�bðxÞ�cðxÞ

� 1

4!
��abcd�

aðxÞ�bðxÞ�cðxÞ�dðxÞ
�
; (3.15)

where �abc... ¼ þ1 for a ¼ b ¼ c ¼ � � � ¼ 1, �abc... ¼
�1 for a ¼ b ¼ c ¼ � � � ¼ 2, and �abc... ¼ 0 otherwise.
In (3.15), the 
 ¼ 0þ gives the usual Feynman prescrip-
tion, ensuring convergence of the CTP path integral. We
note that the damping term is proportional to the identity
matrix Iab and not to the metric �ab. This prescription
requires the addition of a contour-dependent damping
term, proportional to "ð12 � uÞ, which has the same sign

on both the positive and negative branches of the contour,
Cþ and C�, respectively.
In order to define properly a path-ordering operator TC,

we introduce the contour-dependent step function

�Cðx0 � y0Þ � �ðux � uyÞ; (3.16)

where x0 ¼ ~zðuxÞ and y0 ¼ ~zðuyÞ. By analogy, we intro-

duce a contour-dependent delta function
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�Cðx0 � y0Þ ¼ �ðux � uyÞ
j d~zdu j

¼ �ðux � uyÞ
2j~tf � ~tij ¼ �ðux � uyÞ

2t
:

(3.17)

As a consequence, a path-ordered propagator �Cðx; yÞ may
be defined as follows:

i�Cðx; yÞ � hTC½�ðxÞ�ðyÞ�i: (3.18)

For x0 and y0 on the positive branch Cþ, the path-ordering
TC is equivalent to the standard time-ordering T and we
obtain the time-ordered Feynman propagator i�Fðx; yÞ. On
the other hand, for x0 and y0 on the negative branch C�, the
path-ordering TC is equivalent to anti-time-ordering �T and
we obtain the anti-time-ordered Dyson propagator
i�Dðx; yÞ. For x0 on Cþ and y0 on C�, x0 is always ‘‘earlier’’’
than y0 and we obtain the absolutely ordered negative-
frequency Wightman propagator i�<ðx; yÞ. Conversely,
for y0 on Cþ and x0 on C�, we obtain the positive-frequency
Wightman propagator i�>ðx; yÞ. In the SOð1; 1Þ notation,
we write the CTP propagator as the 2� 2 matrix

i�abðx;yÞ� hTC½�aðxÞ�bðyÞ�i¼ i
�Fðx;yÞ �<ðx;yÞ
�>ðx;yÞ �Dðx;yÞ

" #
:

(3.19)

In this notation, the CTP indices a, b are raised and lowered
by contraction with the metric �ab, e.g.

i�abðx; yÞ ¼ �aci�
cdðx; yÞ�db

¼ i
�Fðx; yÞ ��<ðx; yÞ

��>ðx; yÞ �Dðx; yÞ

" #
: (3.20)

Notice the difference in sign of the off-diagonal elements in
(3.20) compared with (3.19). An alternative definition

i~�abðx; yÞ of the CTP propagator uses the so-called
Keldysh basis [36] and is obtained by means of an orthogo-
nal transformation:

~�abðx; yÞ � Oa
cO

b
d�

cdðx; yÞ ¼ 0 �Aðx; yÞ
�Rðx; yÞ �1ðx; yÞ

" #
;

Oab ¼ 1ffiffiffi
2

p 1 1

1 �1

" #
: (3.21)

In Sec. IV, we will generalize these results to macro-
scopic ensembles by incorporating background effects in
terms of physical sources. In this case, the surface integralH
@�t

ds��
aðxÞ@��bðxÞ may not in general vanish on the

boundary hypersurface @�t of the volume �t. However,
by requiring the ‘‘þ’’- and ‘‘�’’-type fields to satisfy

�þðxÞ@��þðxÞjx�2@�t
¼ ��ðxÞ@���ðxÞjx�2@�t

; (3.22)

we can ensure that surface terms cancel between the posi-
tive and negative branches, Cþ and C�, respectively. In this
case, the free part of the action may be rewritten as

S0½�a; t� ¼
ZZ

�t

d4xd4y
1

2
�aðxÞ�0;�1

ab ðx; yÞ�bðyÞ; (3.23)

where

�0;�1
ab ðx; yÞ ¼ �ð4Þðx� yÞ½�ðh2

x þM2Þ�ab þ i
Iab�
(3.24)

is the free inverse CTP propagator and h2
x � @

@x�
@

@x�
is the

d’Alembertian operator. Note that the variational principle
remains well defined irrespective of (3.22), since we are
always free to choose the variation of the field ��aðxÞ to
vanish for x� on @�t.
We may complete the square in the exponent of the CTP

generating functional Z½Ja; t� in (3.13) by making the
following shift in the field:

�aðxÞ � �0aðxÞ �
Z
�t

d4y�0;abðx; yÞJbðyÞ; (3.25)

where i�0;abðx; yÞ is the free CTP propagator. We may then
rewrite Z½Ja; t� in the form

Z½Ja; t� ¼ Z0½0; t� exp
�
i
Z
�t

d4xLint

�
1

i

�

�Ja

��

� exp

�
� i

2

ZZ
�t

d4xd4yJaðxÞ�0;abðx; yÞJbðyÞ
�
;

(3.26)

where Lint is the interaction part of the Lagrangian and
Z0½0; t� is the free part of the generating functional

Z 0½0; t� ¼ N
Z
½d�a�eiS0½�a;t�; (3.27)

with the free action S0½�a; t� given by (3.23). We may then
express the resummed CTP propagator i�abðx; y;~tf; ~tiÞ as
follows:

i�abðx; y;~tf; ~tiÞ ¼ 1

Z½0; t�
1

i

�

�JaðxÞ
1

i

�

�JbðyÞZ½Ja; t�jJa¼0;

(3.28)

where Z½0; t� is the generating functional with the external
sources Ja set to zero. The functional derivatives satisfy

�

�JaðxÞ
Z
�t

d4yJbðyÞ ¼ �ab�ð4Þðx� yÞ; (3.29)

with x�, y� 2 �t. We will see in Sec. IVC that the
resummed CTP propagator �abðx; y;~tf; ~tiÞ is not in general
time translationally invariant.
In the absence of interactions, eigenstates of the free

Hamiltonian will propagate uninterrupted from times infi-
nitely distant in the past to times infinitely far in the future.
As such, we may extend the limits of integration in the free
part of the action to positive and negative infinity, since

ðh2
x þM2Þ�aðxÞjx0=2½�t=2;t=2� ¼ 0; (3.30)
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i.e. the sources JaðxÞ vanish for x0 =2 ½�t=2; t=2�. The free
CTP propagator �0;abðx; yÞ is then obtained by inverting
(3.24) subject to the inverse relationZ

d4z�0;�1
ab ðx; zÞ�0;bcðz; yÞ ¼ �a

c�ð4Þðx� yÞ; (3.31)

where the domain of integration over z0 is extended to
infinity. We expect to recover the familiar propagators
of the in-out formalism of asymptotic field theory, which
occur in S-matrix elements and in the reduction formalism
due to Lehmann, Symanzik and Zimmermann [93].
The propagators will also satisfy unitarity cutting rules
[94–97], thereby maintaining perturbative unitarity of the
theory. Specifically, the free Feynman (Dyson) propagators
i�0

FðDÞðx; yÞ satisfy the inhomogeneous Klein–Gordon

equation

� ðh2
x þM2Þi�0

FðDÞðx; yÞ ¼ ð�Þi�ð4Þðx� yÞ; (3.32)

and the free Wightman propagators i�0
>ð<Þðx; yÞ satisfy the

homogeneous equation

� ðh2
x þM2Þi�0

>ð<Þðx; yÞ ¼ 0: (3.33)

In the double momentum representation, the free part of
the action (3.23) may be written as

S0½�a� ¼
ZZ d4p

ð2�Þ4
d4p0

ð2�Þ4
1

2
�aðpÞ�0;�1

ab ðp; p0Þ�bð�p0Þ;
(3.34)

where

�0;�1
ab ðp; p0Þ ¼ p2 �m2 þ i
 0

0 �ðp2 �m2 � i
Þ

" #

� ð2�Þ4�ð4Þðp� p0Þ (3.35)

is the double momentum representation of the free inverse
CTP propagator, satisfying the inverse relation

Z d4q

ð2�Þ4 �
0;�1
ab ðp; qÞ�0;bcðq; p0Þ ¼ �a

cð2�Þ4�ð4Þðp� p0Þ:
(3.36)

Given that the free inverse CTP propagator is proportional
to a four-dimensional delta function of the two momenta, it
may be written more conveniently in the single Fourier
representation as

�0;�1
ab ðpÞ¼ p2�m2þ i
 0

0 �ðp2�m2� i
Þ

" #
: (3.37)

Hence, for translationally invariant backgrounds, we may
recast (3.35) in the form

�0;�1
ab ðpÞ�0;bcðpÞ ¼ �a

c; (3.38)

where

�0;abðpÞ �
Z d4p0

ð2�Þ4 �
0;abðp; p0Þ (3.39)

is the single-momentum representation of the free CTP
propagator.

B. The free CTP propagator

We proceed now to make the following ansatz for the
most general translationally invariant form of the free CTP
propagator, without evaluating the correlation functions
directly:

�0;abðpÞ ¼ ðp2 �M2 þ i
Þ�1 þ ~c1ðpÞ�ðp2 �M2Þ ~c3ðpÞ�ðp2 �M2Þ
~c2ðpÞ�ðp2 �M2Þ �ðp2 �M2 � i
Þ�1 þ ~c4ðpÞ�ðp2 �M2Þ

" #
: (3.40)

The ~ciðpÞ � �ðp0ÞciðpÞ þ �ð�p0Þc0iðpÞ are as yet undeter-
mined analytic functions of the four-momentum p, which
may in general be complex. The diagonal elements are the
Fourier transforms of the most general translationally
invariant solutions to the inhomogeneous Klein-Gordon
equation (3.32), whilst the off-diagonal elements are the
most general translationally invariant solutions to the
homogeneous Klein-Gordon equation (3.33).

The remaining freedom in the matrix elements of
�0;abðpÞ is determined by the following field-theoretic
requirements:

(i) CPT invariance. Since the action should be invariant
under CPT, the real scalar field � should be even
under CPT. From the definitions of the propagators
in (A1), we obtain the CPT relations in (A3).

Consequently, the momentum representation of
these relations in (A4) imply that

~c1ð4ÞðpÞ ¼ ~c1ð4Þð�pÞ; ~c2ðpÞ ¼ ~c3ð�pÞ: (3.41)

(ii) Hermiticity. The Hermiticity properties of the cor-
relation functions defined in (A1) give rise to
the Hermiticity relations outlined in (A4). These
imply that

~c4ðpÞ ¼ �~c�1ðpÞ; ~c2ðpÞ ¼ �~c�3ð�pÞ: (3.42)

In conjunction with (3.41), we conclude that ~c2ðpÞ
and ~c3ðpÞ must be purely imaginary-valued func-
tions of the four-momentum p.
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(iii) Causality. The free Pauli-Jordan propagator
�0ðx; yÞ is proportional only to the real part of the
free Feynman propagator Re�0

Fðx; yÞ [cf. (A6a)].
The addition of an even-parity on-shell dispersive
part to the Fourier transform of the free Feynman
propagator �0

FðpÞ will contribute to the free Pauli-
Jordan propagator terms that are nonvanishing for
spacelike separations ðx� yÞ2 < 0, thus violating
the microcausality condition outlined in Sec. II. It
follows then that ~c1ðpÞ and ~c4ðpÞ are also purely
imaginary-valued functions. We shall therefore re-

place the ~ciðpÞ by the real-valued functions ~fiðpÞ
through ~ciðpÞ � �2�i~fiðpÞ, where the minus sign
and factor of 2� have been included for later

convenience. The explicit form of the free
Pauli-Jordan propagator in (2.16b), along with
the causality relation (2.24), give rise to the
constraint

~f2ðpÞ � ~f3ðpÞ ¼ "ðp0Þ: (3.43)

(iv) Unitarity. Finally, the unitarity relations in (2.28)
require that

~f2ðpÞ þ ~f3ðpÞ ¼ 1þ ~f1ðpÞ þ ~f4ðpÞ: (3.44)

Solving the system of the above four constraints for
~f1;2;3;4ðpÞ, we arrive at the following expression for the

most general translationally invariant free CTP propagator:

�0;abðpÞ ¼ ðp2 �M2 þ i
Þ�1 �2�i�ð�p0Þ�ðp2 �M2Þ
�2�i�ðp0Þ�ðp2 �M2Þ �ðp2 �M2 � i
Þ�1

� �
� 2�i~fðpÞ�ðp2 �M2Þ 1 1

1 1

� �
: (3.45)

All elements of �0;abðpÞ contain terms dependent upon the same function

~fðpÞ � ~f1ðpÞ ¼ �ðp0ÞfðpÞ þ �ð�p0Þfð�pÞ: (3.46)

These terms correspond to the vacuum expectation of the normal-ordered product of fields h:�ðxÞ�ðyÞ:i, which vanishes
for the trivial vacuum j0i. Therefore, we must conclude that ~fðpÞ also vanishes in this case. We then obtain the free vacuum
CTP propagator �̂0;abðpÞ, which contains the set of propagators familiar from the unitarity cutting rules of absorptive part
theory [94,97]:

�̂0;abðpÞ ¼ ðp2 �M2 þ i
Þ�1 �2�i�ð�p0Þ�ðp2 �M2Þ
�2�i�ðp0Þ�ðp2 �M2Þ �ðp2 �M2 � i
Þ�1

" #
: (3.47)

We may similarly arrive at (3.45) by considering the free CTP propagator in the Keldysh representation ~�0;abðpÞ from
(3.21). The constraints outlined above allow us to add to the free Hadamard propagator �0

1ðpÞ any purely imaginary even

function of p proportional to �ðp2 �M2Þ, that is

~�0;abðpÞ ¼ 0 ½ðp0 � i
Þ2 � p2 �M2��1

½ðp0 þ i
Þ2 � p2 �M2��1 �2�i�ðp2 �M2Þ

" #
� 2�i2~fðpÞ�ðp2 �M2Þ 0 0

0 1

" #
: (3.48)

We note that there is no such freedom to add terms to the free retarded and advanced propagators,�0
RðpÞ and�0

AðpÞ, which
is a consequence of the microcausality constraints on the form of the free Pauli-Jordan propagator �0ðpÞ. Employing the
fact that

OT
0 0

0 1

" #
O ¼ 1

2

1 1

1 1

" #
; O ¼ fOa

bg ¼
1 �1

1 1

" #
(3.49)

we recover (3.45), which serves as a self-consistency check for the correctness of our ansatz for the free CTP propagator.

C. The resummed CTP propagator

In order to obtain the resummed CTP propagator, we must invert the inverse resummed CTP propagator on the restricted
domain ½�t=2; t=2� subject to the inverse relation

Z
�t

d4z��1
ab ðx; z;~tf; ~tiÞ�bcðz; y;~tf; ~tiÞ ¼ �a

c�ð4Þðx� yÞ; (3.50)

for x�, y� 2 �t. We shall see in Sec. IVA that this restriction of the time domain implies that a closed analytic form for the
resummed CTP propagator �abðx; y;~tf; ~tiÞ is in general not possible, for systems out of thermal equilibrium (see also our
discussion in Sec. V).
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The double momentum representation of the inverse
relation (3.50) takes on the form

ZZ d4q

ð2�Þ4
d4q0

ð2�Þ4�
�1
ab ðp;q;~tf;~tiÞð2�Þ4�ð4Þ

t ðq�q0Þ

��bcðq0;p0;~tf;~tiÞ¼�a
cð2�Þ4�ð4Þ

t ðp�p0Þ; (3.51)

where we have defined

�ð4Þ
t ðp� p0Þ � �tðp0 � p0

0Þ�ð3Þðp� p0Þ
¼ 1

ð2�Þ4
ZZ

�t

d4xd4yeip�xe�ip0�y�ð4Þðx� yÞ:

(3.52)

The restriction of the domain of time integration has led to
the introduction of the analytic weight function

�tðp0�p0
0Þ¼

t

2�
sinc

��
p0�p0

0

2

�
t

�
¼ 1

�

sin½ðp0�p0
0Þ t2�

p0�p0
0

;

(3.53)

which has replaced the ordinary energy-conserving delta
function. As expected, we have

lim
t!1�tðp0 � p0

0Þ ¼ �ðp0 � p0
0Þ; (3.54)

so that the standard description of asymptotic quantum
field theory is recovered in the limit ~ti ¼ �t=2 ! �1.
Moreover, the weight function �t satisfies the convolutionZ þ1

�1
dq0�tðp0�q0Þ�tðq0�p0

0Þ¼�tðp0�p0
0Þ: (3.55)

The emergence of the function�t is a consequence of our
requirement that the time evolution and the mapping be-
tween quantum-mechanical pictures (see Sec. II) are gov-
erned by the standard interaction-picture evolution operator

Uð~tf;~tiÞ ¼ T exp

�
�i

Z ~tf

~ti

d~tHintð~t; ~tiÞ
�
: (3.56)

This evolution is defined for times greater than the boundary
time ~ti, at which point the three pictures are coincident. We
stress here that the weight function �t in (3.53) is neither a
prescription, nor is it an a priori regularization of the Dirac
delta function.

As we will see later, the oscillatory behavior of the sinc
function in �t is fundamentally important to the dynamical
behavior of the system. Let us therefore convince ourselves
that these oscillations persist, even if we smear the switch-
ing on of the interactions, or equivalently, if we impose an
adiabatic switching off of the interaction Hamiltonian for
microscopic times outside the interval ½�t=2; t=2�. To this
end, we introduce to the interaction Hamiltonian Hint in
(3.56) the Gaussian function

Atð~tÞ ¼ exp

�
� ~t2

2t2

�
; (3.57)

such that the evolution operator takes the form

Uð~tf;~tiÞ ¼ T exp

�
�i

Z ~tf

~ti

d~tAtð~tÞHintð~t; ~tiÞ
�
: (3.58)

Clearly, for ~t � t, Atð~tÞ ! 0, whereas for ~t 	 t, Atð~tÞ ! 1.
To account for the effect of Atð~tÞ in the action, the follow-
ing replacement needs to be made:

�tðp0 � p0
0Þ ! �Aðp0 � p0

0Þ
� 1

2�

Z þt=2

�t=2
d~te�iðp0�p0

0
Þ~tAtð~tÞ

¼ t

2
ffiffiffiffiffiffiffi
2�

p e�1
2ðp0�p0

0
Þ2t2

�
Erf

�
1� 2iðp0 � p0

0Þt
2

ffiffiffi
2

p
�

þ Erf

�
1þ 2iðp0 � p0

0Þt
2

ffiffiffi
2

p
��

: (3.59)

Due to the error functions of complex arguments in (3.59),
the oscillatory behavior remains. The analytic behavior of
both the functions �tðp0 � p0

0Þ and �Aðp0 � p0
0Þ is shown

in Fig. 2 in which we see that the smooth smearing by the
Gaussian function Atð~tÞ has little effect on the central
region of the sinc function, as one would expect.

IV. NONHOMOGENEOUS BACKGROUNDS

Until now, we have considered the vacuum to be an
‘‘empty’’ state with all quantum numbers zero. In this
section, we replace that empty vacuum state with some
macroscopic background, whichmay in general be inhomo-
geneous and incoherent. This nontrivial vacuum is described
by the density operator
. Following a derivation of the CTP
Schwinger–Dyson equation, we show that it is not possible

FIG. 2 (color online). Comparison of �tðp0 � p0
0Þ (black

dotted) and �Aðp0 � p0
0Þ (blue dashed). The arbitrary mass M

is included so that axes are dimensionless.
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to obtain a closed analytic form for the resummed CTP
propagators in the presence of time-dependent backgrounds.
Finally, we generalize the discussions in Sec. III B to obtain
nonhomogeneous free propagators in which space-time
translational invariance is explicitly broken.

The density operator 
 is necessarily Hermitian and,
for an isolated system, evolves in the interaction
picture according to the von Neumann or quantum
Liouville equation

d
ð~t; ~tiÞ
dð~t� ~tiÞ

¼ �i½Hintð~t; ~tiÞ; 
ð~t; ~tiÞ�; (4.1)

where Hintð~t; ~tiÞ is the interaction part of the Hamiltonian
in the interaction picture, which is time dependent. Notice
that the time derivative appearing on the lhs of (4.1) is
taken with respect to the time translationally invariant
quantity ~t� ~ti. Developing the usual Neumann series, we
find that


ð~t; ~tiÞ ¼ Uð~t;~tiÞ
ð~ti; ~tiÞU�1ð~t;~tiÞ; (4.2)

where U is the evolution operator in (3.56). Hence, in the
absence of external sources and given the unitarity of the
evolution operator, the partition function Z ¼ Tr
 is time
independent. On the other hand, the partition function of an
open or closed subsystem is in general time dependent due
to the presence of external sources.

We are interested in evaluating time-dependent EEVs
of field operators h
it at the macroscopic time t, which
corresponds to the microscopic time ~tf ¼ t=2, where the

bra-ket now denotes the weighted expectation

h
it ¼
Trð
ð~tf; ~tiÞ
Þ
Tr
ð~tf; ~tiÞ : (4.3)

In this case, EEVs of two-point products of field operators
begin with a total of nine independent coordinates: the
microscopic time of the density operator and the two
four-dimensional space-time coordinates of the field op-
erators. As discussed in the beginning of Sec. III [cf. (3.2)],
this number is reduced to the required seven coordinates,
i.e. one temporal and six spatial, after setting all micro-
scopic times equal to ~tf ¼ t=2. Hence, physical observ-

ables in the interaction picture are, for instance, of the form

h�ð~tf;x;~tiÞ�ð~tf;y;~tiÞit ¼
Trð
ð~tf;~tiÞ�ð~tf;x;~tiÞ�ð~tf;y;~tiÞÞ

Tr
ð~tf;~tiÞ :

(4.4)

In the presence of a nontrivial background, the out state
of Sec. III is replaced by the density operator 
 at the time
of observation ~tf ¼ t=2. Consequently, the starting point

for the CTP generating functional of EEVs is

Z½
; J�; t� ¼ Tr½ð �Te�i
R

�t
d4xJ�ðxÞ�HðxÞÞ
Hð~tf; ~tiÞ

� ðTei
R

�t
d4xJþðxÞ�HðxÞÞ�: (4.5)

Within the generating functionalZ in (4.5), the Heisenberg-
picture density operator
H has explicit time dependence, as
it is built out of state vectors that depend on time due to the
presence of the external sources J�. In the absence of
such sources, however, the state vectors do not evolve in
time, so 
H and the partition function Z½
; J� ¼ 0; t� ¼
Tr
 in (4.5) become time-independent quantities.
It is important to emphasize that the explicit microscopic

time ~tf ¼ t=2 of the density operator 
Hð~tf; ~tiÞ appearing
in the CTP generating functional (4.5) is the time of ob-
servation. This is in contrast to existing interpretations of
the CTP formalism, see for instance [61], in which the
density operator replaces the in state and is therefore fixed
at the initial time ~ti ¼ �t=2, encoding only the boundary
conditions. As we shall see in Sec. VIII, this new inter-
pretation of the CTP formalism will lead to the absence of
pinch singularities in the resulting perturbation series.

A. The Schwinger-Dyson equation
in the CTP formalism

In order to generate a perturbation series of correlation
functions in the presence of nonhomogeneous backgrounds,
we must derive the Schwinger-Dyson equation in the CTP
formalism. Of particular interest is the explicit form of the
Feynman-Dyson series for the expansion of the resummed
CTP propagator. We will show that, in the time-dependent
case, this series does not collapse to the resummation
known from zero-temperature field theory. In particular,
we find that a closed analytic form for the resummed CTP
propagator is not attainable in general.
We proceed by inserting into the generating functionalZ

in (4.5) complete sets of eigenstates of the Heisenberg field
operator�H at intermediate times via (3.8). In this way, we
obtain the path-integral representation

Z½
;Ja;t�¼
Z
½d�aðxÞ�h��ðxÞ;~tf;~tij
Hð~tf;~tiÞj�þðxÞ;~tf;~tii

�exp

�
i

�
S½�a;t�þ

Z
�t

d4xJaðxÞ�aðxÞ
��

:

(4.6)

As before, we may extend the limits of integration to
infinity in the free part of the action and the J-dependent
term, due to the fact that the external sources vanish out-
side the time interval ½�t=2; t=2�. It is only in the interac-
tion part of the action that the finite domain of integration
must remain.
Following [41], we write the kernel h��ðxÞ;~tf; ~tij�


Hð~tf; ~tiÞj�þðxÞ;~tf; ~tii as an infinite series of poly-local

sources:

h��ðxÞ;~tf; ~tij
Hð~tf; ~tiÞj�þðxÞ;~tf; ~tii ¼ exp ðiK½�a; t�Þ;
(4.7)

where
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K½�a; t� ¼ K þ
Z
�t

d4xKaðx;~tf; ~tiÞ�aðxÞ

þ 1

2

ZZ
�t

d4xd4x0Kabðx; x0;~tf; ~tiÞ�aðxÞ�bðx0Þ

þ � � � (4.8)

is a time translationally invariant quantity and only depends
on t ¼ ~tf � ~ti. The poly-local sourcesKab... encode the state

of the system at the microscopic time of observation ~tf ¼
t=2, i.e. the time at which the EEVis evaluated, according to
Fig. 1. It follows that these sources must contribute only for
x0 ¼ x00 ¼ � � � ¼ ~tf and therefore be proportional to delta

functions of the form �ðx0�~tfÞ�ðx00�~tfÞ . . . . For instance,
the bilocal sourceKab in the double momentum representa-
tion must have the form

Kabðx; x0;~tf; ~tiÞ

¼
ZZ d4p

ð2�Þ4
d4p0

ð2�Þ4 e
�ip�xeip0�x0eiðp0�p0

0Þ~tfKabðp;p0; tÞ;
(4.9)

so that the p0 and p0
0 integrations yield the required delta

functions. Here, it is understood that the bilocalKab sources
occurring on the lhs and rhs of (4.9) are distinguished by the
form of their arguments. We emphasize thatKabðx; x0;~tf; ~tiÞ
is not a time translationally invariant quantity due to the
explicit dependence upon ~tf on the rhs of (4.9). In contrast,

Kabðp;p0; tÞ is time translationally invariant.
Notice that we could extend the limits of integration to

infinity for the time integrals in the expansion of the kernel
given in (4.8) also. Nevertheless, for the following deriva-
tion, all space-time integrals are taken to run over the
hypervolume �t in (3.14) for consistency. We should
reiterate here that the limits of time integration can be
extended to an infinite domain�1 in all but the interaction
part of the action. We will also suppress the time depen-
dencies of the action S and sources Kab... for notational
convenience.
We now absorb the constant K in (4.8) into the overall

normalization of the CTP generating functional Z and the
local sourceKa into a redefinition of the external source Ja.
Then, Z may be written down as

Z½Ja; Kab; . . .� ¼
Z
½d�aðxÞ� exp

�
i

�
S½�a� þ

Z
d4xJaðxÞ�aðxÞ þ 1

2

ZZ
d4xd4yKabðx; x0Þ�aðxÞ�bðx0Þ

þ 1

6

ZZZ
d4xd4x0d4x00Kabcðx; x0; x00Þ�aðxÞ�bðx0Þ�cðx00Þ þ � � �

��
: (4.10)

The CJT effective action [38] is given by the following Legendre transform:

�½�̂a;Gab;Gabc; . . .� ¼ W ½Ja; Kab; Kabc� �
Z

d4xJaðxÞ�̂aðxÞ � 1

2

ZZ
d4xd4x0Kabðx; x0Þð�̂aðxÞ�̂bðx0Þ þ iℏGabðx; x0ÞÞ

� 1

6

ZZZ
d4xd4x0d4x00Kabcðx; x0; x00Þð�̂aðxÞ�̂bðx0Þ�̂cðx00Þ þ 3iℏGðabðx; x0Þ�̂cÞðx00Þ

� ℏ2Gabcðx; x0; x00ÞÞ þ � � � ; (4.11)

where W ½Ja; Kab; Kabc; . . .� ¼ �iℏ lnZ½Ja; Kab; Kabc; . . .� is the generating functional of connected ensemble Green’s
functions. We obtain an infinite system of equations:

�̂aðxÞ¼ �W
�JaðxÞ¼h�aðxÞi; (4.12a)

iℏGabðx;x0Þ¼2
�W

�Kabðx;x0Þ��̂aðxÞ�̂bðx0Þ¼�iℏ
�2W

�JaðxÞ�Jbðx0Þ¼hTC½�aðxÞ�bðx0Þ�i�h�aðxÞih�bðx0Þi; (4.12b)

�ℏ2Gabcðx;x0;x00Þ¼6
�W

�Kabcðx;x0;x00Þ�3iℏGðabðx;x0Þ�̂cÞðx00Þ��̂aðxÞ�̂bðx0Þ�̂cðx00Þ¼�ℏ2 �3W
�JaðxÞ�Jbðx0Þ�Jcðx00Þ; (4.12c)

and

��

��̂aðxÞ ¼�JaðxÞ�
Z

d4x0Kabðx;x0Þ�̂bðx0Þ � 1

2

ZZ
d4x0d4x00Kabcðx;x0; x00Þð�̂bðx0Þ�̂cðx00Þ þ iℏGbcðx0; x00ÞÞ� � � � ;

(4.13a)

��

�Gabðx;x0Þ ¼ � iℏ
2
Kabðx;x0Þ � iℏ

2

Z
d4x00Kabcðx;x0; x00Þ�̂cðx00Þ � � � � ; (4.13b)

��

�Gabcðx;x0; x00Þ ¼
ℏ2

6
Kabcðx;x0; x00Þþ � � � ; (4.13c)
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where the parentheses ðabcÞ on the rhs of (4.12c) denote
cyclic permutation with respect to the indices a, b, c.

The above infinite system of equations (4.12) and (4.13)
may be simplified by assuming that the density operator 

is Gaussian, as we will do later in Sec. IVC. In this case,
the trilocal and higher kernels ðKabc; Kabcd; . . .Þ can be set
to zero in (4.13), neglecting contributions from thermally
corrected vertices [see (4.66)], which would otherwise be
present for non-Gaussian density operators. Within the
Gaussian approximation, the three- and higher-point con-
nected Green’s functions ðGabc;Gabcd; . . .Þ may be elimi-
nated as dynamical variables by performing a second
Legendre transform

�½�̂a;Gab� � �½�̂a;Gab; ~Gabc; . . .�; (4.14)

where the ~G’s are functionals of �̂a and Gab given by

��

�Gabc...
½�̂a;Gab; ~Gabc; . . .� ¼ 0: (4.15)

The effective action is evaluated by expanding around

the constant background field �a
0ðxÞ¼�aðxÞ�ℏ1=2�aðxÞ,

defined at the saddle point

�S½�a�
��aðxÞ

���������¼�0

þJaðxÞ þ
Z

d4x0Kabðx; x0Þ�b
0ðx0Þ ¼ 0:

(4.16)

The result of this expansion is well known [38,39] and,
truncating to order ℏ2, we obtain the two-particle-
irreducible (2PI) CJT effective action

�½�̂a;Gab� ¼ S½�̂a� þ iℏ
2

Trx½LnxDetabG�1
ab þ ðG�1

ab � KabÞ � Gab � � a
a � þ ℏ2�2½�̂a;Gab�; (4.17)

where a subscript x and the �’s indicate that the trace, logarithm and products should be understood as functional
operations. The operator G�1

ab is defined by

G�1
ab ð�̂a; x; x0Þ ¼ �2S½�̂a�

��̂aðxÞ��̂bðx0Þ þ Kabðx; x0Þ ¼ �0;�1
ab ðx; x0Þ þ �2Sint½�̂a�

��̂aðxÞ��̂bðx0Þ þ Kabðx; x0Þ; (4.18)

where �0;�1
ab ðx; x0Þ is the free inverse CTP propagator in (3.24) and Sint½�̂a� is the interaction part of the action. Obviously,

all Green’s functions depend upon the state of the system at the macroscopic time t through the bilocal source Kab. For the
Lagrangian in (2.1), we have

G�1
ab ð�̂a; x; x0Þ ¼ �ð4Þðx� x0Þ

�
�ðh2

x þM2Þ�ab þ i
Iab � g�abc�̂
cðxÞ � 1

2
��abcd�̂

cðxÞ�̂dðxÞ
�
þ Kabðx; x0Þ; (4.19)

where �abc... ¼ þ1 for all indices a ¼ b ¼ � � � ¼ 1, �abc... ¼ �1 for all indices a ¼ b ¼ � � � ¼ 2 and �abc... ¼ 0
otherwise.

The overall normalization (�a
a) of (4.17) has been chosen so that whenKabðx; x0Þ ¼ 0, we may recover the conventional

effective action [98] by making a further Legendre transform to eliminate Gab as a dynamical variable:

�½�̂a� � �½�̂a; ~Gab� ¼ S½�̂a� þ iℏ
2

TrxLnxDetabG
�1
ab þOðℏ2Þ: (4.20)

Here, G�1
ab has been replaced by G�1

ab and ~Gab is a functional of �̂a.

In the CJT effective action (4.17), �2½�̂a;Gab� is the sum of all 2PI vacuum graphs:

where combinatorial factors have been written explicitly and we associate with each n-point vertex a factor of

iSðnÞa ð�̂a; xÞ ¼ i
�nS½�̂a�
�ð�̂aðxÞÞn ; (4.22)

and each line a factor of iGabð�̂a; x; yÞ. The three- and four-point vertices are

iSð3Þa ð�̂a; xÞ ¼ �ig�aaa � i��aaaa�̂
aðxÞ; iSð4Þa ð�̂a; xÞ ¼ �i��aaaa: (4.23)

Upon functional differentiation of the CJTeffective action (4.17) with respect toGabðx; yÞ, we obtain by virtue of (4.13b)
the Schwinger-Dyson equation

G �1
ab ð�̂a; x; yÞ ¼ G�1

ab ð�̂a; x; yÞ þ�abð�̂a;Gab; x; yÞ; (4.24)
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where

is the one-loop truncated CTP self-energy. A combinatorial
factor of 1

2 has been absorbed into the diagrammatics.

Suppressing the �̂a and Gab arguments for notational
convenience, the CTP self-energy�abðx; yÞmay bewritten
in matrix form as

�abðx; yÞ ¼
�ðx; yÞ ��<ðx; yÞ

��>ðx; yÞ ���ðx; yÞ

" #
; (4.26)

where �ðx; yÞ and ���ðx; yÞ are the time- and anti-time-

ordered self-energies; and �>ðx; yÞ and �<ðx; yÞ are the

positive- and negative-frequency absolutely ordered self-

energies, respectively. In analogy to the propagator defini-

tions discussed in Sec. II and Appendix A, we also define

the self-energy functions

�1ðx; yÞ ¼ �>ðx; yÞ þ�<ðx; yÞ ¼ �ðx; yÞ ���ðx; yÞ ¼ 2iIm�ðx; yÞ; (4.27a)

�P ðx; yÞ ¼ 1

2
ð�Rðx; yÞ þ�Aðx; yÞÞ ¼ Re�ðx; yÞ; (4.27b)

2iM�ðx; yÞ ¼ �>ðx; yÞ ��<ðx; yÞ ¼ �Rðx; yÞ ��Aðx; yÞ ¼ 2iIm�Rðx; yÞ (4.27c)

which satisfy relations analogous to those described in
Appendix A. �ðx; yÞ in (4.27c) is related to the usual
Breit-Wigner width in the equilibrium and zero-
temperature limits. The Keldysh representation [see
(3.21)] ~�abðx; yÞ of the CTP self-energy reads

~�abðx; yÞ ¼
�1ðx; yÞ �Rðx; yÞ
�Aðx; yÞ 0

" #
: (4.28)

In the limit �̂aðxÞ ! 0, the Schwinger-Dyson
equation (4.24) reduces to

��1
ab ðx; y;~tf; ~tiÞ ¼ �0;�1

ab ðx; yÞ þ Kabðx; y;~tf; ~tiÞ
þ�abðx; y;~tf; ~tiÞ; (4.29)

in which ��1
ab ðx; y;~tf; ~tiÞ � G�1

ab ð�̂a ¼ 0; x; y;~tf; ~tiÞ and

�0;�1
ab ðx; yÞ is the free inverse CTP propagator defined in

(3.24). We have reintroduced the dependence upon ~tf and ~ti
for clarity. Notice that due to the explicit ~tf dependence of

the bilocal source Kabðx; y;~tf; ~tiÞ in (4.9), the inverse

resummed CTP propagator ��1
ab ðx; y;~tf; ~tiÞ and the CTP

self-energy �abðx; y;~tf; ~tiÞ are not time translationally

invariant quantities.
In order to develop a self-consistent inversion of the

Schwinger-Dyson equation in (4.29), the bilocal source
Kabðx; y;~tf; ~tiÞ is absorbed into an inverse nonhomogene-

ous CTP propagator

D0;�1
ab ðx; y;~tf; ~tiÞ ¼ �0;�1

ab ðx; yÞ þ Kabðx; y;~tf; ~tiÞ; (4.30)

whose inverse, to leading order in Kab, is the free CTP
propagator �0;abðx; y;~tf; ~tiÞ, i.e.

D0;abðx; y;~tf; ~tiÞ � �0;abðx; y;~tf; ~tiÞ þOðK2Þ; (4.31)

as we will illustrate in Secs. IVC and V. The contribution
of the bilocal sourceKab is now absorbed into the free CTP
propagator �0;abðx; y;~tf; ~tiÞ, whose time translational

invariance is broken as a result. The Schwinger-Dyson
equation (4.29) may then be written in the double momen-
tum representation as

��1
ab ðp;p0;~tf;~tiÞ¼�0;�1

ab ðp;p0Þþ�abðp;p0;~tf;~tiÞ: (4.32)

Since the stationary vacuum j0i has been replaced by the
density operator 
 at the microscopic time ~tf ¼ t=2, we

must consider the following field-particle duality relation
in the Wick contraction of interaction-picture fields:

h0j�ðx; ~tiÞayðk;~tf; ~tiÞj0i ¼ e�ik�xeiEðkÞ~tf : (4.33)

Here, the extra phase eiEðkÞ~tf arises from the fact that the
creation and annihilation operators of the interaction-
picture field �ðx; ~tiÞ are evaluated at the microscopic
time ~t ¼ 0 [cf. (2.14) and (2.20)], whereas the operator
ayðk;~tf; ~tiÞ, resulting from the expansion of the density

operator 
 (see Sec. IVC), is evaluated at the microscopic
time ~tf ¼ t=2. Analytically continuing this extra phase to

off-shell energies and in consistency with (4.9), we asso-
ciate with each external vertex of the self-energy
�abðp; p0;~tf; ~tiÞ in (4.32) a phase:

eip0~tf ; (4.34)

where p0 is the energy flowing into the vertex. This
amounts to the absorption of an overall phase

eiðp0�p0
0
Þ~tf (4.35)

into the definition of the self-energy �abðp; p0;~tf; ~tiÞ.
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Convoluting from left and right on both sides of (4.32)

first with theweight function ð2�Þ4�ð4Þ
t ðp� p0Þ from (3.53)

and then with �0;abðp; p0;~tf; ~tiÞ and �abðp; p0;~tf; ~tiÞ,
respectively, we obtain the Feynman-Dyson series

�abðp; p0;~tf; ~tiÞ ¼ �0;abðp; p0;~tf; ~tiÞ �
Z

� � �
Z d4q

ð2�Þ4

� d4q0

ð2�Þ4
d4q00

ð2�Þ4
d4q000

ð2�Þ4
��0;acðp; q;~tf; ~tiÞð2�Þ4
� �ð4Þ

t ðq� q0Þ�cdðq0; q00;~tf; ~tiÞð2�Þ4
� �ð4Þ

t ðq00 � q000Þ�dbðq000; p0;~tf; ~tiÞ;
(4.36)

where �ð4Þ
t ðp� p0Þ is defined in (3.52). Because of the form

of �tðp0 � p0
0Þ in (3.53), we see that this series does not

collapse to an algebraic equation of resummation, as known
from zero-temperature field theory. As we will see in
Sec. IVB, one cannot write down a closed analytic form
for the resummed CTP propagator �abðp; p0;~tf; ~tiÞ, except
in the thermodynamic equilibrium limit, see Sec. V.

Given that �t satisfies the convolution in (3.55), the
weight functions may be absorbed into the external vertices
of the self-energy �abðp; p0;~tf; ~tiÞ; see Sec. IX. The

Feynman-Dyson series may then be written in the more
concise form

�abðp; p0;~tf; ~tiÞ ¼ �0;abðp; p0;~tf; ~tiÞ �
ZZ d4q

ð2�Þ4
d4q0

ð2�Þ4
��0;acðp; q;~tf; ~tiÞ�cdðq; q0;~tf; ~tiÞ
��dbðq0; p0;~tf; ~tiÞ: (4.37)

Note that for finite t, �tðp0 � p0
0Þ is analytic for all p0,

including p0 ¼ p0
0. As we shall see in Sec. VIII, the

systematic incorporation of these finite-time effects en-
sures that the perturbation expansion is free of pinch
singularities.

B. Applicability of the gradient expansion

Here, we will look more closely at the inverse relation
(3.50) that determines the resummed CTP propagator. We
will show that a full matrix inversion may only be per-
formed in the thermodynamic equilibrium limit. Hence,
the application of truncated gradient expansions and the
use of partially resummed quasiparticle propagators, par-
ticularly for early times, become questionable in out-of-
equilibrium systems.

We define the relative and central coordinates

R
�
xy ¼ x� � y�; X

�
xy ¼ x� þ y�

2
; (4.38)

such that

x� ¼ X�
xy þ 1

2
R�
xy; y� ¼ X�

xy � 1

2
R�
xy: (4.39)

We then introduce the Wigner transform (see [78]), namely
the Fourier transform with respect to the relative coordi-
nate R

�
xy only. Explicitly, the Wigner transform of a func-

tion FðR; XÞ is
Fðp; XÞ ¼

Z
d4Reip�RFðR; XÞ: (4.40)

The resummed CTP propagator �abðx; yÞ respects the
inverse relation in (3.50). Here, we suppress the ~tf and ~ti
dependence of the propagators for notational convenience.
Inserting into (3.50), the Wigner transforms of the
resummed and inverse resummed CTP propagators, the
inverse relation takes the formZ

�t

d4z
ZZ d4p

ð2�Þ4
d4p0

ð2�Þ4 e
�ip�Rxze�ip0�Rzy��1

ab ðp; XxzÞ

� �bcðp0; XzyÞ

¼
ZZ d4p

ð2�Þ4
d4p0

ð2�Þ4 e
�ip�xeip0�y�c

að2�Þ4�ð4Þ
t ðp� p0Þ;

(4.41)

where the z0 domain of integration is restricted to be in the
range ½�t=2; t=2�.
In the case where deviations from homogeneity are

small, i.e. when the characteristic scale of macroscopic
variations in the background is large in comparison to
that of the microscopic single-particle excitations, we
may perform a gradient expansion of the inverse relation
in terms of the soft derivative @�Xxy

� @=@Xxy;�. Writing

Xxz ¼ Xxy þ Rzy=2 and Xzy ¼ Xxy � Rxz=2 and after inte-

grating by parts, we obtain

ZZ d4p

ð2�Þ4
d4p0

ð2�Þ4 e
�ip�xeip0�yð2�Þ4�ð4Þ

t ðp�p0Þ

�
�
��1

ab ðp;XÞexp � i

2
@Qp � ~@X�@QX � ~@p0
� 	� �

�bcðp0;XÞ



¼
ZZ d4p

ð2�Þ4
d4p0

ð2�Þ4 e
�ip�xeip0�y�a

cð2�Þ4�ð4Þ
t ðp�p0Þ;

(4.42)

where X � Xxy and the derivatives act only within the

curly brackets.
We now define the central and relative momenta

q� ¼ p� þ p0�

2
; Q� ¼ p� � p0�; (4.43)

which are the Fourier conjugates to the relative and central
coordinates, R� and X�, respectively. It follows that

p� ¼ q� þ 1

2
Q�; p0� ¼ q� � 1

2
Q�: (4.44)

We may then Fourier transform (4.42) with respect to Rxy

to obtain
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Z d4Q

ð2�Þ4 e
�iQ�Xð2�Þ4�ð4Þ

t ðQÞ exp ½�ið}�
q;X þ 2}þ

Q;XÞ�

�
�
��1

ab

�
qþQ

2
; X

�
�
�bc

�
q�Q

2
; X

�


¼
Z d4Q

ð2�Þ4 e
�iQ�X�c

að2�Þ4�ð4Þ
t ðQÞ; (4.45)

where, following [52,59,60], we have introduced the dia-
mond operator

}�
p;XfAgfBg ¼

1

2
fA; Bg�p;X (4.46)

and fA; Bg�p;X denote the symmetric and antisymmetric

Poisson brackets

fA; Bg�p;X � @A

@p�

@B

@X�

� @A

@X�

@B

@p�

: (4.47)

For t > 0, we may perform the integral on the rhs of (4.45),
yielding

Z d4Q

ð2�Þ4 e
�iQ�Xð2�Þ4�ð4Þ

t ðQÞ exp ½�ið}�
q;X þ 2}þ

Q;XÞ�

�
�
��1

ab

�
qþQ

2
; X

�
�
�bc

�
q�Q

2
; X

�

¼ �c

a�ðt� 2jX0jÞ; (4.48)

In the above expressions, of particular concern is the
}þ

Q;X operator, where the relative momentum Q and the

central coordinate X are conjugate to one another. Thus, if
the derivatives with respect to X are assumed to be small,
then the derivatives with respect to Qmust be large. In this
case, all orders of the gradient expansion may be signifi-
cant, so it is inappropriate to truncate to a given order in the
soft derivative @

�
X .

As t ! 1, we have the transition �ð4Þ
t ðQÞ ! �ð4ÞðQÞ and

(4.48) reduces to

e�i}�
q;X f��1

ab ðq; XÞgf�bcðq; XÞg ¼ �a
c: (4.49)

Even for these late times, we can perform the matrix inver-
sion exactly only if we truncate the gradient expansion in
(4.49) to zeroth order. However, such a truncation appears
valid only for time-independent and spatially homogeneous
systems. Employing a suitable quasiparticle approximation

to the Wigner representation of the propagators, it can be
shown [79] that this inversionmaybe performedat first order
in the gradient expansion. However, off-shell contributions
are not fully accounted for in such an approximation.
In conclusion, a closed analytic form for the resummed

CTP propagator may only be obtained in the time-
independent thermodynamic equilibrium limit. The trunca-
tion of the gradient expansion may be justifiable only to the
late-time evolution of systems very close to equilibrium,
even for spatially homogeneous thermal backgrounds. A
similar conclusion is drawn from different arguments in [99].

C. Nonhomogeneous free propagators

Unlike the resummed CTP propagator, the free CTP
propagator can be derived analytically, even in the pres-
ence of a time-dependent and spatially inhomogeneous
background. The nonhomogeneous free propagator will
account explicitly for the violation of space-time transla-
tional invariance. Our derivation relies on the algebra of the
canonical quantization commutators of creation and anni-
hilation operators described in Sec. II. Subsequently, we
make connection of our results with the path-integral rep-
resentation of the CTP generating functional in (4.10).
Finally, we introduce a diagrammatic representation for
the nonhomogeneous free CTP propagator.
We note that the derived propagators are ‘‘free’’ in the

sense that their spectral structure is that of single-particle
states, corresponding to the free part of the action (see
Sec. III). Their statistical structure, on the other hand, will
turn out to contain a summation over contributions from all
possible multiparticle states. The time-dependent statisti-
cal distribution function appearing in these propagators is
therefore a statistically-dressed object. This subtle point is
significant for the consistent definition of the number
density in Sec. VI, the derivation of the master time evo-
lution equations in Sec. VII and the absence of pinch
singularities, described in Sec. VIII.
The starting point of our canonical derivation is the

explicit form of the density operator 
. We relax any
assumptions about the form of the density operator and
take it to be in general nondiagonal but Hermitian within
the general Fock space. We may write the most general
interaction-picture density operator at the microscopic
time ~tf ¼ t=2 as


ð~tf;~tiÞ¼Cexp

�
�
Z
d�k1

W10ðk1:0Þayðk1;~tfÞ�
Z
d�k0

1
W01ð0:k0

1Þaðk0
1;~tfÞ�

ZZ
d�k1

d�k0
1
W11ðk1:k

0
1Þayðk1;~tfÞaðk0

1;~tfÞ

����� 1

n!

1

m!

Z
���

Z �Yn
i¼1

d�ki

��Ym
j¼1

d�k0
j

�
Wnmðfkig:fk0

jgÞ
Yn
i¼1

ayðki;~tfÞ
Ym
j¼1

aðk0
j;~tfÞ

�
; (4.50)

where the constant C can be set to unity without loss of generality. The complex-valued weightsWnmðfkgn; fk0gmÞ depend
on the state of the system at time ~tf ¼ t=2 and satisfy the Hermiticity constraint:

Wnmðfkgn:fk0gmÞ ¼ W�
mnðfk0gm:fkgnÞ: (4.51)
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The density operator 
 may be written in the basis of
momentum eigenstates by multiplying the exponential
form in (4.50) by the completeness relation of the basis
of Fock states at time ~tf ¼ t=2:

I¼j0ih0jþX1
‘¼1

1

‘!

�Y‘
k¼1

Z
d�pk

�
jfpg‘;~tfihfpg‘;~tfj; (4.52)

where jfpg‘; ~tfi is the multimode Fock state jp1;~tfi �
jp2;~tfi � � � � � jp‘; ~tfi. This usually gives an intractable
infinite series of n-to-m-particle correlations. Taking all
weights Wnmðfkgn:fkgmÞ to be zero if nþm> 2, i.e. tak-
ing a Gaussian-like density operator, it is still possible
to generate all possible n-to-m-particle correlations. In
Appendix D, we give the expansion of the general
Gaussian-like density operator, where only sufficient terms
are included to help us visualize its analytic form.

We may account for our ignorance of the series expan-
sion of the density operator by defining the following
bilinear EEVs of interaction-picture creation and annihila-
tion operators as

hayðp0;~tf; ~tiÞaðp;~tf; ~tiÞit ¼ 2Eðp;p0Þf0ðp;p0; tÞ; (4.53a)

haðp0;~tf; ~tiÞaðp;~tf; ~tiÞit ¼ 2Eðp;p0Þg0ðp;p0; tÞ; (4.53b)

consistent with the commutation relations in (2.18). The
energy factor 2Eðp;p0Þ, having dimensions E1, arises from
the fact that the ‘‘number operator’’ ayðp;~t; ~tiÞaðp;~t; ~tiÞ of
quantum field theory has dimensions E�2, i.e. it does not
have the dimensions of a number. Bearing in mind that the
density operator is constructed from on-shell Fock states, a
natural ansatz for this energy factor is

E ðp;p0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðpÞEðp0Þ

q
: (4.54)

The complex-valued distributions f0 and g0 have dimen-
sions E�3 and satisfy the identities:

f0ðp;p0; tÞ ¼ f0�ðp0;p; tÞ; (4.55a)

g0ðp;p0; tÞ ¼ g0ðp0;p; tÞ: (4.55b)

We refer to f and g as statistical distribution functions. In
particular, we interpret the Wigner transform

n0ðq;X; tÞ ¼
Z d3Q

ð2�Þ3 e
iQ�Xf0

�
qþQ

2
;q�Q

2
; t

�
(4.56)

as the number density of spectrally free particles at macro-
scopic time t in the phase-space hypervolume between q
and qþ dq and X and Xþ dX. Notice that n0ðq;X; tÞ is
real thanks to the Hermiticity constraint (4.55a). Hereafter,
except where it is necessary to make the distinction, we
will omit the superscript 0 on the spectrally free statistical
distribution functions for notational convenience.
The EEV of the two-point product haðp;~tf;~tiÞ�

ayðp0;~tf;~tiÞit follows from the definition (4.53a) and the

canonical commutation relation in (2.18), giving

haðp;~tf;~tiÞayðp0;~tf;~tiÞit
¼ð2�Þ32EðpÞ�ð3Þðp�p0Þþ2Eðp;p0Þfðp;p0; tÞ: (4.57)

Hermitian conjugation of (4.53b) yields

hayðp;~tf; ~tiÞayðp0;~tf; ~tiÞit ¼ 2Eðp;p0Þg�ðp;p0; tÞ: (4.58)

Note that (4.53), (4.57), and (4.58) are consistent with the
canonical quantization rules in (2.14) and (2.17).
When the linear terms in the exponent of the density

operator 
 in (4.50) are nonzero, we may consider the
EEVs of single creation or annihilation operators

haðp;~tf; ~tiÞit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðpÞ

q
wðp; tÞ: (4.59)

In this case, we may define the connected distribution
functions

fconðp;p0; tÞ � fðp;p0; tÞ � wðp; tÞwðp0; tÞ; (4.60a)

gconðp;p0; tÞ � gðp;p0; tÞ � wðp; tÞwðp0; tÞ; (4.60b)

which obey the same symmetry properties given in (4.55).
We are now in a position to derive the most general form

of the double momentum representation of the nonhomoge-
neous free CTP propagator, satisfying the inverse relation
(3.36). Proceeding as in Sec. III B, we make the following
ansatz for the most general solution of the Klein-Gordon
equation in the double momentum representation:

�0;abðp; p0;~tf; ~tiÞ ¼
ðp2 �M2 þ i
Þ�1 �i2��ð�p0Þ�ðp2 �M2Þ

�i2��ðp0Þ�ðp2 �M2Þ �ðp2 �M2 � i
Þ�1

" #
ð2�Þ4�ð4Þðp� p0Þ

� i2�j2p0j1=2�ðp2 �M2Þ~fðp; p0; tÞeiðp0�p0
0Þ~tf2�j2p0

0j1=2�ðp02 �M2Þ 1 1

1 1

" #
; (4.61)

which we confirm by evaluating the EEVs directly, using

the algebra of (4.53).

In (4.61) the phase factor eiðp0�p0
0
Þ~tf arises from the fact

that the creation and annihilation operators appearing in
the Fourier transform of the field operator given in (2.14)
are evaluated at the time ~t ¼ 0. The density operator, on

the other hand, is evaluated at the time ~tf. As a conse-

quence, in the evaluation of the EEV, we have, for instance,

hayðp0; 0; ~tiÞaðp; 0; ~tiÞit ¼ 2Eðp;p0Þfðp;p0; tÞei½EðpÞ�Eðp0Þ�~tf ;
(4.62)

which directly results from (4.53a).

PETER MILLINGTON AND APOSTOLOS PILAFTSIS PHYSICAL REVIEW D 88, 085009 (2013)

085009-18



The form of the function ~fðp; p0; tÞ is
~fðp; p0; tÞ ¼ �ðp0Þ�ðp0

0Þfðp;p0; tÞ
þ �ð�p0Þ�ð�p0

0Þf�ð�p;�p0; tÞ
þ �ðp0Þ�ð�p0

0Þgðp;�p0; tÞ
þ �ð�p0Þ�ðp0

0Þg�ð�p;p0; tÞ: (4.63)

The function ~f satisfies the relations: ~fðp; p0; tÞ ¼
~fð�p0;�p; tÞ ¼ ~f�ð�p;�p0; tÞ, consistent with the prop-
erties in (A4). It also contains all information about the
state of the ensemble at the macroscopic time t. For this

reason, we refer to ~f as the ensemble function.
In the double momentum representation, the retarded

and advanced propagators are

�0
RðAÞðp;p0Þ¼ 1

ðp0þð�Þi
Þ2�p2�M2
ð2�Þ4�ð4Þðp�p0Þ:

(4.64)

The Pauli-Jordan �0ðp; p0Þ, Hadamard �0
1ðp; p0;~tf; ~tiÞ and

principal-part �0
P ðp; p0Þ propagators become

�0ðp;p0Þ¼�i2�"ðp0Þ�ðp2�M2Þð2�Þ4�ð4Þðp�p0Þ;
(4.65a)

�0
1ðp;p0;~tf;~tiÞ¼�i2��ðp2�M2Þð2�Þ4�ð4Þðp�p0Þ

� i2�j2p0j1=2�ðp2�M2Þ2~fðp;p0; tÞ
�eiðp0�p0

0
Þ~tf2�j2p0

0j1=2�ðp02�M2Þ;
(4.65b)

�0
P ðp;p0Þ¼P

1

p2�M2
ð2�Þ4�ð4Þðp�p0Þ: (4.65c)

Thus, at the tree level, only the Hadamard correlation
function �0

1ðp; p0;~tf; ~tiÞ depends explicitly on the back-

ground and macroscopic time t, through the ensemble

function ~fðp; p0; tÞ in (4.63). This is a consequence of the

causality of the theory, as we would expect from the
spectral decomposition (2.22) of the retarded and advanced
propagators �0

RðAÞðx; yÞ in terms of the canonical commu-

tation relation (2.14). Notice that the complex phase factor

eiðp0�p0
0Þ~tf has only appeared in the Hadamard propagator

(4.65b) and so it does not spoil causality. Beyond the tree
level, the background contributions are expected to modify
the structure of the Pauli-Jordan and causal propagators,
according to our discussion of the Källén-Lehmann spec-
tral representation in Sec. II. The full complement of non-
homogeneous free propagators is listed in Table II.
For the most general non-Gaussian density operator, we

must account for all n-linear EEVs of creation and anni-
hilation operators. We will then obtain n-point thermally
corrected vertex functions, given by

�nðp1;p2; . . . ;pn;~tf;~tiÞ� h�ðp1;~tiÞ�ðp2;~tiÞ . . .�ðpn;~tiÞit
¼
�Yn
i¼1

2�j2p0
i j1=2�ðp2

i �M2Þeip0
i
~tf

�

� ~fnðp1;p2; . . . ;pn;tÞ; (4.66)

where the interaction-picture field operator �ðp; ~tiÞ is
defined in (2.12). The n-point ensemble function
~fnðp1; p2; . . . ; pn; tÞ generalizes (4.63). In the remainder
of this article, we will work only with Gaussian density
operators, as discussed in Sec. IVA, for which all but
W11ðk:k0Þ in (4.50) are zero.
It would be interesting to establish a connection between

these canonically derived nonhomogeneous free propaga-
tors and those derived by the path-integral representation
of the CTP generating functional Z. This will be achieved
through the bilocal source Kab via the tree-level
Schwinger-Dyson equation in (4.30). The role of the bilo-
cal source Kab will be illustrated further, when discussing
the thermodynamic equilibrium limit in Sec. V.

TABLE II. The full complement of nonhomogeneous free propagators, where ~fðp; p0; tÞ is the ensemble function defined in (4.63)
and P denotes the Cauchy principal value.

Propagator Double momentum representation

Feynman (Dyson) i�0
FðDÞðp; p0;~tf; ~tiÞ ¼ ð�Þi

p2�M2þð�Þi
 ð2�Þ4�ð4Þðp� p0Þ þ 2�j2p0j1=2�ðp2 �M2Þ~fðp; p0; tÞeiðp0�p0
0
Þ~tf

�2�j2p0
0j1=2�ðp02 �M2Þ

þð�Þve-freq. Wightman i�0
>ð<Þðp; p0;~tf; ~tiÞ ¼ 2��ðþð�Þp0Þ�ðp2 �M2Þð2�Þ4�ð4Þðp� p0Þ

þ2�j2p0j1=2�ðp2 �M2Þ~fðp; p0; tÞeiðp0�p0
0
Þ~tf2�j2p0

0j1=2�ðp02 �M2Þ
Retarded (advanced) i�0

RðAÞðp; p0Þ ¼ i
ðp0þð�Þi
Þ2�p2�M2 ð2�Þ4�ð4Þðp� p0Þ

Pauli-Jordan i�0ðp; p0Þ ¼ 2�"ðp0Þ�ðp2 �M2Þð2�Þ4�ð4Þðp� p0Þ
Hadamard i�0

1ðp; p0;~tf; ~tiÞ ¼ 2��ðp2 �M2Þð2�Þ4�ð4Þðp� p0Þ þ 2�j2p0j1=2�ðp2 �M2Þ2~fðp; p0; tÞeiðp0�p0
0
Þ~tf

�2�j2p0
0j1=2�ðp02 �M2Þ

Principal-part i�0
P ðp; p0Þ ¼ P i

p2�M2 ð2�Þ4�ð4Þðp� p0Þ
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We proceed by replacing the exponent of the CTP
generating functional Z in (4.10) by its double momentum
representation. Subsequently, we may complete the

square in this exponent by making the following shift in
the field:

�aðpÞ ¼ �0aðpÞ � �̂0;a
bðpÞJbð�pÞ; (4.67)

where �̂0;abðpÞ is the free vacuum CTP propagator in

(3.47) in which the ensemble function ~f of (4.61) is set
to zero. Notice that the normal-ordered contribution does

not appear in �̂0;abðpÞ, as it is sourced from the bilocal
term Kab. Upon substitution of (4.67) into the momentum
representation of (4.10), the CTP generating functional Z
takes on the form

Z½J; K; t� ¼ Z0½0; K; t� exp
�
iSint

�
1

i

�

�Ja
; t

�
Z
½d�0a� exp

�
� i

2

ZZ d4p

ð2�Þ4
d4p0

ð2�Þ4 ½J
aðpÞ�̂0;

a
cðpÞKcbðp; p0; tÞ�0bð�p0Þ

þ�0aðpÞKacðp; p0; tÞ�̂0;c
bðp0ÞJbð�p0Þ þ JaðpÞð�̂0

abðpÞð2�Þ4�ð4Þðp� p0Þ
� �̂0;

a
cðpÞKcdðp; p0; tÞ�̂0;d

bðp0ÞÞJbð�p0Þ�


: (4.68)

For the Lagrangian in (2.1), the cubic self-interaction part (�g�3) of the action may be written down explicitly as

�ig

3!

ZZZ d4p1

ð2�Þ4
d4p2

ð2�Þ4
d4p3

ð2�Þ4 �abcð2�Þ4�ð4Þ
t ðp1 þ p2 þ p3Þ 1i

�

�Jaðp1Þ
1

i

�

�Jbðp2Þ
1

i

�

�Jcðp3Þ � iSint
�
1

i

�

�Ja
; t

�
:

(4.69)

Hence, in the three-point vertex, the usual energy-
conserving delta function has been replaced by �t, defined
in (3.53), as a result of the systematic inclusion of finite-
time effects. This time-dependent modification of the
Feynman rules is fundamental to our perturbative approach
to nonequilibrium thermal field theory andwill be discussed
further in Sec. IX in the context of a simple scalar model.

In (4.68), the remaining terms linear in the external
source J yield contributions to the free propagator propor-
tional to K2 upon double functional differentiation with
respect to J. As we shall see in Sec. V, these contributions
may be neglected. Employing (3.28), we find that the non-
homogeneous free CTP propagator �0;abðp; p0;~tf; ~tiÞ may

be expressed in terms of the free vacuum CTP propagator

�̂0;abðpÞ and the bilocal source Kabðp; p0;~tf; ~tiÞ as follows:

i�0;abðp;p0;~tf;~tiÞ¼ i�̂0;abðpÞð2�Þ4�ð4Þðp�p0Þ
þ i�̂0;acðpÞiKcdðp;p0;~tf;~tiÞi�̂0;dbðp0Þ;

(4.70)

where

Kabðp; p0;~tf; ~tiÞ ¼ eiðp0�p0
0Þ~tfKabðp;p0; tÞ: (4.71)

The form of the free CTP propagator �0;abðp; p0;~tf; ~tiÞ
in (4.70) is consistent with a perturbative inversion

of (4.30) to leading order in the bilocal source Kab.
It is also consistent with the canonically derived form of
the nonhomogeneous free propagators in (4.61).

The result in (4.70) may be interpreted diagrammati-

cally, where the nonhomogeneous free CTP propagator

i�0;abðp; p0;~tf; ~tiÞ for the real scalar � is associated with

the Feynman diagram displayed in Fig. 3. The bilocal source

Kabðp;p0;~tf;~tiÞ plays the role of a three-momentum-

violating vertex that gives rise to the violation of transla-

tional invariance, thus encoding the spatial inhomogeneity

of the background.

V. THE THERMODYNAMIC
EQUILIBRIUM LIMIT

In this section, we derive the analytical forms of the free
and resummed CTP propagators in the limit of thermal
equilibrium. The results of this section are of particular
importance for the discussion of pinch singularities in
Sec. VIII. We also show the connection between the equi-
librium Bose-Einstein distribution function and the bilocal
source Kab introduced in Sec. IVC.
In the limit of thermal equilibrium, the density opera-

tor 
 is diagonal in particle number, so all amplitudes
except W11 vanish in (4.50). In this limit, the general
density operator 
, given explicitly in (D1), reduces to
the series

FIG. 3. The Feynman-diagrammatic interpretation of the
nonhomogeneous free CTP propagator i�0;abðp; p0;~tf; ~tiÞ
for the real scalar �, where the double line represents
momentum-violating coupling to the thermal background
through the bilocal source Kabðp; p0;~tf; ~tiÞ.
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d�q1
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1Þþ���
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jk1ihk0

1j

þ1

2

Z
� � �

Z
d�k1

d�k2
d�k0

1
d�k0

2

�
ð2�Þ32Eðk1Þ�ð3Þðk1�k0

1Þ�W11ðk1:k
0
1Þ

þ1

2

Z
d�q1

W11ðk1:q1ÞW11ðq1:k
0
1Þþ���

��
ð2�Þ32Eðk2Þ�ð3Þðk2�k0

2Þ�W11ðk2:k
0
2Þ

þ1

2

Z
d�q2

W11ðk2:q2ÞW11ðq2:k
0
2Þþ���

�
jk1;k2ihk0

1;k
0
2jþ��� ; (5.1)

where the time arguments in the multimode Fock states have been omitted for notational convenience. In the equilibrium
limit, the statistical distribution function gðp;p0; tÞ is trivially zero. Instead, fðp;p0; tÞ is calculated from (4.53) and takes
the form of the series

2Eðp;p0Þfðp;p0; tÞ ¼ ð2�Þ32EðpÞ�ð3Þðp� p0Þ �W11ðp:p0Þ þ 1

2

Z
d�qW11ðp:qÞW11ðq:p0Þ þ � � �

þ
Z

d�qðð2�Þ32EðpÞ�ð3Þðp� qÞ �W11ðp:qÞ þ � � �Þðð2�Þ32EðqÞ�ð3Þðq� p0Þ �W11ðq:p0Þ þ � � �Þ
þ � � � ; (5.2)

where disconnected parts have been canceled order-by-
order in the expansion by the normalization Tr
 in (4.3).
The factor Eðp;p0Þ is defined in (4.54).

The equilibrium density operator 
eq must also be

diagonal in the momenta and is thus obtained by making
the replacement:

W11ðk:k0Þ ! �EðkÞð2�Þ32EðkÞ�ð3Þðk� k0Þ (5.3)

in (5.1), where � ¼ 1=T is the inverse thermodynamic
temperature. In detail, we find


eq ¼ j0ih0j þ X1
n¼1

1

n!

Z
� � �

Z Yn
i¼1

ðd�ki
f�ðkiÞÞ

On
i¼1

jkii

�On
i¼1

hkij; (5.4)

where the amplitudes are the Boltzmann distributions

f�ðkÞ ¼ e��EðkÞ [cf. (5.7)]. This last expression of 
eq

can be shown to be fully equivalent to the Gaussian form


eq ¼ exp

�
��

Z
d�kEðkÞayðkÞaðkÞ

�
; (5.5)

which corresponds to the standard Boltzmann density
operator


eq ¼ e��H0
; (5.6)

where H0 is the free part of the interaction-picture
Hamiltonian. Note that our convention for the normalization
of the density operator 
, including 
eq, is chosen so that

the canonical partition function Zð�Þ ¼ Tre��H0
appears

explicitly in the definition of the EEV in (4.3).

We may now substitute the limit (5.3) into the series
expansion of the statistical distribution function f in (5.2).
Using the identities of summation

X1
n¼0

ð�xÞn
n!

¼ e�x;
X1
n¼1

xn ¼ x

1� x
; (5.7)

we find the following correspondence in the equilibrium
limit:

fðp;p0;tÞ!
eq
feqðp;p0Þ¼ ð2�Þ3�ð3Þðp�p0ÞfBðEðpÞÞ; (5.8a)

gðp;p0;tÞ!
eq
geqðp;p0Þ¼0; (5.8b)

where

fBðp0Þ ¼ 1

e�p0 � 1
(5.9)

is the Bose-Einstein distribution function. The equilibrium
statistical distribution functions in (5.8) depend only on the
magnitude of the three-momentump via the on-shell energy
EðpÞ. This is a consequence of the homogeneity and isotropy
implied by thermodynamic equilibrium.Moreover, the mul-

tiplying factor �ð3Þðp� p0Þ on the rhs of (5.8) necessarily
restores translational and rotational invariance.
It is well known that the pinch singularities present in

perturbative expansions cancel in the equilibrium limit [28]
(see Sec. VIII) and we can safely take the limit t ! 1
throughout the CTP generating functional, as we should
expect for a system with static macroscopic properties.
Working then in the single-momentum representation, we
obtain from (3.45) and (3.46) the free equilibrium CTP
propagators
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i�0
FðpÞ ¼ ði�0

DðpÞÞ� ¼ iðp2 �M2 þ i"Þ�1 þ 2�fBðjp0jÞ�ðp2 �M2Þ; (5.10a)

i�0
>ðpÞ ¼ 2�ð�ðp0Þ þ fBðjp0jÞÞ�ðp2 �M2Þ � 2�"ðp0Þð1þ fBðp0ÞÞ�ðp2 �M2Þ; (5.10b)

i�0
<ðpÞ ¼ 2�ð�ð�p0Þ þ fBðjp0jÞÞ�ðp2 �M2Þ � 2�"ðp0ÞfBðp0Þ�ðp2 �M2Þ: (5.10c)

The form of the Wightman propagators written in terms of
the signum function "ðp0Þ prove very useful in the calcu-
lation of loop diagrams, as detailed in Appendix B.

Returning to the free CTP generating functional Z in
(4.68), it follows from the results above that in equilibrium
the bilocal source Kabðp; p0;~tf; ~tiÞ must be proportional to

a four-dimensional delta function of the momenta, i.e.

Kabðp; p0;~tf; ~tiÞ!
eq
Keq

abðp; p0Þ ¼ ð2�Þ4�ð4Þðp� p0ÞKeq
abðpÞ:
(5.11)

In addition, K
eq
abðpÞ must satisfy

�̂0;acðpÞKeq
cdðpÞ�̂0;dbðpÞ

¼ 2�i�ðp2 �M2ÞfBðEðpÞÞ
1 1

1 1

" #
: (5.12)

Solving the resulting system of equations, keeping terms to
leading order in 
, and noting thatK

eq
abðpÞ should be written

in terms of the three-momentum only, we find

Keq
abðpÞ ¼ 2i
fBðEðpÞÞ 1 �1

�1 1

� �
: (5.13)

By virtue of the limit representation of the delta function

�ðxÞ ¼ lim

!0

1

�




x2 þ 
2
; (5.14)

we can verify that we do indeed recover (5.12) and the
correct free CTP propagator by means of (4.70). We also
confirm that the terms linear in J remaining in (4.68) may
safely be ignored, since they yield contributions to the free
propagator proportional toK2 
 
2 upon double functional
differentiation with respect to J.

Alternatively, interpreting the Boltzmann density opera-
tor in (5.6) as an evolution operator in negative imaginary
time and using the cyclicity of the trace in the EEV, we
derive the Kubo-Martin-Schwinger (KMS) relation (see for
instance [100])

�>ðx0 � y0;x� yÞ ¼ �<ðx0 � y0 þ i�;x� yÞ: (5.15)

In the momentum representation, the KMS relation reads

�>ðpÞ ¼ e�p0�<ðpÞ; (5.16)

which offers the final constraint on ~fðpÞ in (3.46):

~fðpÞ¼�ðp0ÞfBðp0Þþ�ð�p0ÞfBð�p0Þ¼fBðjp0jÞ: (5.17)

Furthermore, the KMS relation also leads to the
fluctuation-dissipation theorem

�1ðpÞ ¼ ð1þ 2fBðp0ÞÞ�ðpÞ; (5.18)

relating the causality and unitarity relations in (2.24) and
(2.28). Subsequently, by means of the KMS relation, we
may write all propagators in terms of the retarded propa-
gator �RðpÞ:
Re�FðpÞ¼Re�RðpÞ; (5.19a)

Im�FðpÞ¼"ðp0Þð1þ2fBðjp0jÞÞIm�RðpÞ; (5.19b)

�>ðpÞ¼2i"ðp0Þð�ðp0ÞþfBðjp0jÞÞIm�RðpÞ; (5.19c)

�<ðpÞ¼2i"ðp0Þð�ð�p0ÞþfBðjp0jÞÞIm�RðpÞ: (5.19d)

In the homogeneous equilibrium limit of the Schwinger-
Dyson equation in (4.29), the inverse resummed CTP
propagator is given by

��1
ab ðpÞ ¼ �0;�1

ab ðpÞ þ�abðpÞ: (5.20)

In the absence of self-energy effects, the free equilibrium
CTP propagator is obtained by inverting the equilibrium
limit of (4.30):

D0;�1
ab ðpÞ ¼ �0;�1

ab ðpÞ þ Keq
abðpÞ: (5.21)

Knowing that K
eq
ab 
 
 from (5.13), the inversion of (5.21)

can be done perturbatively to leading order in K
eq
abðpÞ, in

which case the expression (4.70) gets reproduced. Beyond
the tree level, however, the contribution from the bilocal
source K

eq
abðpÞ may be neglected next to the self-energy

term �abðpÞ and the inverse resummed CTP propagator is
explicitly given by

��1
ab ðpÞ ¼

p2 �M2 þ�ðpÞ ��<ðpÞ
��>ðpÞ �p2 þM2 ���ðpÞ

" #
:

(5.22)

In this equilibrium limit, (5.22) may be inverted exactly,
yielding the equilibrium resummed CTP propagator

�abðpÞ ¼ ½ðp2 �M2 þ Re�RðpÞÞ2 þ ðIm�RðpÞÞ2��1

� p2 �M2 þ��ðpÞ ��<ðpÞ
��>ðpÞ �p2 þM2 ��ðpÞ

" #
:

(5.23)

The results obtained above in (5.23) may only be compared
with existing resummations, see for instance [101,102], in
the thermodynamic equilibrium limit, as we have discussed
in Secs. IVA and IVB.
In this single-momentum representation, the self-

energies satisfy the unitarity and causality relations
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�1ðpÞ ¼ �>ðpÞ þ�<ðpÞ ¼ �ðpÞ ���ðpÞ
¼ 2iIm�ðpÞ; (5.24a)

2iM�ðpÞ ¼ �>ðpÞ ��<ðpÞ ¼ �RðpÞ ��AðpÞ
¼ 2iIm�RðpÞ; (5.24b)

where �ðpÞ is the Breit-Wigner width, relating the absorp-
tive part of the retarded self-energy �RðpÞ to physical
reaction rates [103,104]. Notice that the KMS relation
(5.15) leads also to the detailed balance condition

�>ðpÞ ¼ e�p0�<ðpÞ: (5.25)

Given the relations in (5.24), we find, in compliance with
(5.19), an analogous set of relations for the elements of the
CTP self-energy:

Re�ðpÞ¼Re�RðpÞ; (5.26a)

Im�ðpÞ¼ "ðp0Þð1þ2fBðjp0jÞÞIm�RðpÞ; (5.26b)

�>ðpÞ¼ 2i"ðp0Þð�ðp0ÞþfBðjp0jÞÞIm�RðpÞ; (5.26c)

�<ðpÞ¼ 2i"ðp0Þð�ð�p0ÞþfBðjp0jÞÞIm�RðpÞ: (5.26d)

Ignoring the dispersive parts of the self-energy, we ex-
pect to recover the free CTP propagators given in (5.10) in
the limit Im�ðpÞ ! 
 ¼ 0þ. This limit is equivalent to

Im�RðpÞ ! 
R � "ðp0Þ
: (5.27)

Expressing the equilibrium resummed CTP propagator in
(5.23) in terms of the retarded absorptive self-energy
Im�RðpÞ, we can convince ourselves that we do indeed
reproduce the free equilibrium CTP propagators (5.10) in
the limit (5.27).

In Appendix B, we discuss the correspondence of
the results of this section with the ITF, clarifying the
analytic continuation of the imaginary-time propagator
and self-energy.

VI. THE PARTICLE NUMBER DENSITY

It is important to establish a direct connection between
off-shell Green’s functions and physical observables. Such
observables include the particle number density for which
various interpretations have been reported in the literature
[57–61,65,67,68,70–73]. In this section, we derive a physi-
cally meaningful definition of the particle number density
in terms of the resummed CTP propagators.

In order to count off-shell contributions systematically,
we suggest to ‘‘measure’’ the particle number density in
terms of charges, rather than by quanta of energy. The latter
approach would necessitate the use of a quasiparticle
approximation to identify ‘‘single-particle’’ energies,
which we do not follow here. Instead, we analytically
continue the real scalar field to a pair of complex scalar
fields (�, �y). We may then introduce the Noether charge
Qðx0; ~tiÞ of the global Uð1Þ symmetry for the Heisenberg-
picture field �Hðx; ~tiÞ operator:

Qðx0;~tiÞ¼ i
Z
d3xð�y

Hðx;~tiÞ�y
Hðx;~tiÞ��Hðx;~tiÞ�Hðx;~tiÞÞ:

(6.1)

Here, �Hðx; ~tiÞ ¼ @x0�
y
Hðx; ~tiÞ is the conjugate-momentum

operator and we include all time dependencies explicitly
for clarity. In the absence of derivative interactions, the
Noether charge depends only on the quadratic form of the
kinetic term in the Lagrangian. Hence, this analytic con-
tinuation may be employed even for real scalar theories
with interaction terms that break the Z2 symmetry. Up to
the infinite T ¼ 0 vacuum contribution, the EEV of the
operator Qðx0; ~tiÞ in (6.1) is zero on analytically continu-
ing back to the original real scalar field �, since the
identical particle and antiparticle contributions cancel.
Therefore, we need to devise a method by which to sepa-
rate the particle from the antiparticle degrees of freedom in
the EEVof (6.1).
We note that the Noether charge of the local Uð1Þ

symmetry of the complex scalar theory is gauge dependent
and therefore unphysical. The physical conserved matter
charge remains that of the global Uð1Þ symmetry and is
recovered in the temporal gauge A0 ¼ 0. In this case, the
conserved charge in (6.1) would be written in terms of the
fields and their time derivatives and not the conjugate
momenta of the full Lagrangian.
For the general case of a spatially and temporally

inhomogeneous background, we need to generalize the
Noether charge operator Qðx0; ~tiÞ by writing it in terms
of a charge density operator Qðp;X; X0; ~tiÞ as

QðX0; ~tiÞ ¼
Z

d3X
Z d3p

ð2�Þ3 Qðp;X; X0; ~tiÞ: (6.2)

In the above, the three-momentum p is conjugate to the
spatial part of the relative space-time coordinate R� ¼
x� � y� and X� ¼ ðX0;XÞ ¼ ðx� þ y�Þ=2 is the central
space-time coordinate [cf. (3.2)]. To this end, we proceed
by inserting into (6.1) unity in the following form:

1 ¼
Z

d4y�ð4Þðx� yÞ

¼
Z

d4y
Z d3p

ð2�Þ3 e
�ip�ðx�yÞ�ðx0 � y0Þ: (6.3)

Observe that in what follows, x0 ¼ y0 ¼ X0 thanks to
�ðx0 � y0Þ. Subsequently, symmetrizing the integrand in
x and y, we may write the charge operator as

QðX0; ~tiÞ ¼ i

2

Z
d3x

Z
d4y

Z d3p

ð2�Þ3 e
�ip�ðx�yÞ�ðx0 � y0Þ

� ð�y
Hðy; ~tiÞ�y

Hðx; ~tiÞ � �Hðy; ~tiÞ�Hðx; ~tiÞ
þ ðx $ yÞÞ: (6.4)

In terms of the central and relative coordinates, X� and R�,
the charge density operator Qðp;X; X0; ~tiÞ may be
appropriately identified from (6.4) as

PERTURBATIVE NONEQUILIBRIUM THERMAL FIELD THEORY PHYSICAL REVIEW D 88, 085009 (2013)

085009-23



Qðp;X;X0;~tiÞ
¼ i

2

Z
d4Re�ip�R�ðR0Þ

�
�y

H

�
X�R

2
;~ti

�
�y

H

�
XþR

2
;~ti

�

��H

�
X�R

2
;~ti

�
�H

�
XþR

2
;~ti

�
þðR$�RÞ

�
:

(6.5)

Substituting for the definitions of the conjugate-momentum

operators�H and�y
H, we may rewriteQðp;X; X0; ~tiÞ in the

following form:

Qðp;X;X0;~tiÞ
¼ i

Z
d4Re�ip�R�ðR0Þ@R0

�
�y

H

�
X�R

2
;~ti

�
�H

�
XþR

2
;~ti

�

��y
H

�
XþR

2
;~ti

�
�H

�
X�R

2
;~ti

��
: (6.6)

The EEVof Qðp;X; X0; ~tiÞ at the macroscopic time t is
then obtained by taking the trace with the density operator

 as given in (4.3) in the equal-time limit X0 ¼ ~tf. We have

seen in Sec. III that the equal-time limit is necessary to
ensure that the observable charge density is picture inde-
pendent and that the number of independent coordinates is
reduced to seven as required. Thus, we have

hQðp;X;~tf; ~tiÞit
¼ lim

X0!~tf
i
Z

d4Re�ip�R�ðR0Þ@R0
ði�<ðR; X;~tf; ~tiÞ

� i�<ð�R; X;~tf; ~tiÞÞ; (6.7)

where we use the notation

i�<ðR; X;~tf; ~tiÞ ¼
�
�y

H

�
X � R

2
; ~ti

�
�H

�
X þ R

2
; ~ti

��
t

(6.8)

for the resummed CTP Wightman propagator.
Let us comment on the two terms i�<ðR; X;~tf; ~tiÞ and

i�<ð�R;X;~tf; ~tiÞ that occur on the rhs of (6.7). The first

term i�<ðR; X;~tf; ~tiÞ comprises ensemble positive-

frequency particle modes and ensemble plus vacuum
negative-frequency antiparticle modes. The second
one i�<ð�R; X;~tf; ~tiÞ comprises ensemble plus vacuum

positive-frequency antiparticle modes and ensemble
negative-frequency particle modes. Hence, we may
extract the number density of particles by taking the
sum of the positive-frequency contribution from
i�<ðR; X;~tf; ~tiÞ and the negative-frequency contribution

from i�<ð�R; X;~tf; ~tiÞ.
We separate the positive- and negative-frequency parts

of (6.7) by decomposing the equal-time delta function
�ðR0Þ via the limit representation

�ðR0Þ ¼ i

2�

�
1

R0 þ i

� 1

R0 � i


�
; (6.9)

with 
 ¼ 0þ. Thus, a physically meaningful definition of
the number density of particles at the macroscopic time t is
given by

nðp;X;~tf;~tiÞ
¼� lim

X0!~tf

Z
d3Re�ip�RZ dR0

2�

�
1

R0þ i

@R0

i�<ðR;X;~tf;~tiÞ

þ 1

R0� i

@R0

i�<ð�R;X;~tf;~tiÞ
�
: (6.10)

Using time translational invariance of the CTP contour,
this observable may be recast in terms of the Wigner
transform of the Wightman propagators as

nðp;X; tÞ � nðp;X; t; 0Þ

¼ lim
X0!t

Z dp0

2�
p0ð�ðp0Þi�<ðp; X; t; 0Þ

� �ð�p0Þi�<ð�p; X; t; 0ÞÞ: (6.11)

Note that the number density of antiparticles nCðp;X; tÞ is
obtained by C conjugating the two negative-frequency
Wightman propagators in (6.11). Useful relations between
correlation functions and their C-conjugated counterparts
are given in Appendixes A and C.
We reiterate from (4.56) that the nðp;X; tÞd3pd3X is

interpreted as the number of particles at macroscopic
time t in the volume of phase space between p and
pþ dp and X and Xþ dX. The particle number per unit
volume is obtained by integrating over all momentum
modes, i.e.

nðX; tÞ ¼
Z d3p

ð2�Þ3 nðp;X; tÞ; (6.12)

and finally the total particle number, by integrating over all
space, i.e.

NðtÞ ¼
Z

d3XnðX; tÞ: (6.13)

By inserting the inverse Wigner transform

i�<ðp;X;t;0Þ¼
Z d4P

ð2�Þ4 e
�iP�Xi�<

�
pþP

2
;p�P

2
; t;0

�
;

(6.14)

into (6.11), the particle number per unit volume nðX; tÞ
may be expressed in terms of the double momentum rep-
resentation of the Wightman propagators via (6.12). After
making the coordinate transformation p ! �p in the
negative-frequency contribution, we then obtain

nðX;tÞ¼ lim
X0!t

2
ZZ d4p

ð2�Þ4
d4P

ð2�Þ4

�e�iP�X�ðp0Þp0i�<

�
pþP

2
;p�P

2
; t;0

�
; (6.15)
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The particle number per unit volume nðX; tÞ in (6.15) is
related to the statistical distribution function f, through

nðX; tÞ ¼
Z d3p

ð2�Þ3
Z d3P

ð2�Þ3 e
iP�Xf

�
pþ P

2
;p� P

2
; t

�
;

(6.16)

cf. (4.56). Here, we must emphasize that (6.16) is under-
stood in the Heisenberg picture. Working instead in the
interaction picture, (6.15) and (6.16) define the statistical
distribution function at a given order in perturbation theory.
Explicitly, the n-loop statistical distribution function is
defined in terms of the n-loop negative-frequency
Wightman propagator via

fðnÞ
�
pþ P

2
;p� P

2
; t
	

¼ lim
X0!t

2
ZZ dp0

2�

dP0

2�

� e�iP0X0�ðp0Þp0i�
ðnÞ
<

�
pþ P

2
; p� P

2
; t; 0

�
: (6.17)

It is instructive to check that our definitions for the
number density lead to the expected results for the free
and quasiparticle equilibrium cases. Substituting the free
equilibriumWightman propagator (5.10c) of the real scalar
field into (6.11), we obtain

n0eqðp;X; tÞ ¼ fBðEðpÞÞ; (6.18)

exactly as we would expect for the number density of
spectrally free particles in thermodynamic equilibrium.
Inserting instead the resummed equilibrium Wightman
propagator given in (5.23) in the narrow width limit, we get

nqpðp;X; tÞ ¼ fBðEðpÞÞ; (6.19)

where EðpÞ is the solution to the gap equation,

E 2ðpÞ ¼ p2 þM2 � Re�RðEðpÞ þ i
;pÞ; (6.20)

and nqpðp;X; tÞ then represents the number density of

quasiparticles.

VII. MASTER TIME EVOLUTION EQUATIONS
FOR PARTICLE NUMBER DENSITIES

Having established a direct relationship between the
nonhomogeneous CTP propagators and the particle num-
ber density in Sec. VI, we are now in a position to derive in
this section master time evolution equations for the particle
number density nðX; tÞ and the statistical distribution func-
tion fðp;p0; tÞ. This is achieved in analogy to the derivation
of the well-known Kadanoff-Baym equations [80,81] by
partially inverting the CTP Schwinger-Dyson equation
obtained in Sec. IVA. Our approach, however, differs
significantly from other methods in that we do not rely
on a truncation of a gradient expansion of the resulting
expressions. More details of the gradient expansion can be
found in Sec. IVB and Appendix E. In the next section,
we will employ a loopwise truncation of the time evolu-
tion equations in terms of nonhomogeneous free CTP
propagators. As we will see, these dynamical equations
are nonetheless resummed to all orders in a gradient
expansion.
We begin our derivation of the time evolution equations

with the doublemomentum representation of the Schwinger-
Dyson equation in (4.32).We convolute (4.32) consecutively

from the right with the weight function ð2�Þ4�ð4Þ
t ðq1�q2Þ

defined in (3.52) and then with the resummed CTP propa-
gator �abðq2; p2;~tf; ~tiÞ. By making use of the inverse rela-

tion (3.51), we obtain the following expression:

ZZ d4q1
ð2�Þ4

d4q2
ð2�Þ4 �

0;�1
ac ðp1; q1Þð2�Þ4�ð4Þ

t ðq1 � q2Þ�c
bðq2; p2;~tf; ~tiÞ

¼ �abð2�Þ4�ð4Þ
t ðp1 � p2Þ �

ZZ d4q1
ð2�Þ4

d4q2
ð2�Þ4 �acðp1; q1;~tf; ~tiÞð2�Þ4�ð4Þ

t ðq1 � q2Þ�c
bðq2; p2;~tf; ~tiÞ; (7.1)

where the contribution of the bilocal sourceKab is neglected next to the self-energies. It is essential to remark that the lhs of
(7.1) has the following coordinate-space representation:

Z
�t

d4z�0;�1
ab ðx; zÞ�b

cðz; y;~tf; ~tiÞ: (7.2)

Substituting for the free inverse CTP propagator �0;�1
ab ðx; yÞ given in (3.24), we may then confirm via (7.2) that evaluating

the q1 and q2 integrals on the lhs of (7.1) yields

ZZ d4q1
ð2�Þ4

d4q2
ð2�Þ4 �

0;�1
ac ðp1; q1Þð2�Þ4�ð4Þ

t ðq1 � q2Þ�c
bðq2; p2;~tf; ~tiÞ ¼ ðp2

1 �M2Þ�abðp1; p2;~tf; ~tiÞ: (7.3)

Recalling that the self-energy �abðp; p0;~tf; ~tiÞ contains �ð4Þ
t ðp� p0Þ functions in the vertices, we may perform the q1

integral on the rhs of (7.1) by making use of (3.55). Consequently, (7.1) may be written down in the following concise form:
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ðp2
1 �M2Þ�abðp1; p2;~tf; ~tiÞ ¼ �abð2�Þ4�ð4Þ

t ðp1 � p2Þ �
Z d4q

ð2�Þ4 �acðp1; q;~tf; ~tiÞ�c
bðq; p2;~tf; ~tiÞ: (7.4)

At this point, it is essential to remark that, in any loopwise truncation of (7.4), the external propagator �abðp; p0;~tf; ~tiÞ,
appearing on both the left- and right-hand sides, must be evaluated at the same order. This constraint ensures that the
delta function on the rhs of (7.4) is present order-by-order in such an expansion and that the convolution in (7.1) remains
self-consistent.

With the definition of the particle number per unit volume nðX; tÞ from (6.12) in mind, we equate the element ða; bÞ ¼
ð1; 2Þ of each side of (7.4) to extract the interacting Klein-Gordon equation of the negative-frequency resummedWightman
propagator:

ðp2
1 �M2Þ�<ðp1; p2;~tf; ~tiÞ ¼ �

Z d4q

ð2�Þ4 ð�ðp1; q;~tf; ~tiÞ�<ðq; p2;~tf; ~tiÞ ��<ðp1; q;~tf; ~tiÞ�Dðq; p2;~tf; ~tiÞÞ: (7.5)

Using the decomposition of �Dðp; p0;~tf; ~tiÞ from (A6d) and an analogous identity for �ðp; p0;~tf; ~tiÞ, we may rewrite
(7.5) as

ðp2
1 �M2Þ�<ðp1; p2;~tf; ~tiÞ þ

Z d4q

ð2�Þ4 �P ðp1; q;~tf; ~tiÞ�<ðq; p2;~tf; ~tiÞ

¼ � 1

2

Z d4q

ð2�Þ4 ½�>ðp1; q;~tf; ~tiÞ�<ðq; p2;~tf; ~tiÞ ��<ðp1; q;~tf; ~tiÞð�>ðq; p2;~tf; ~tiÞ � 2�P ðq; p2;~tf; ~tiÞÞ�; (7.6)

where the subscript P denotes principal-part evaluation of the functions given in (2.29) and (4.27b).
Introducing the central and relative momenta, p ¼ ðp1 þ p2Þ=2 and P ¼ p1 � p2, respectively, we write (7.6) in the

following form:

��
p0 þ P0

2

�
2 � E2

�
pþ P

2

��
�<

�
pþ P

2
; p� P

2
;~tf; ~ti

�
þF

�
pþ P

2
; p� P

2
;~tf; ~ti

�
¼ C

�
pþ P

2
; p� P

2
;~tf; ~ti

�
; (7.7)

where we have defined

F
�
pþ P

2
; p� P

2
;~tf; ~ti

�
� �

Z d4q

ð2�Þ4 i�P

�
pþ P

2
; q;~tf; ~ti

�
i�<

�
q; p� P

2
;~tf; ~ti

�
; (7.8a)

C
�
pþ P

2
; p� P

2
;~tf; ~ti

�
� 1

2

Z d4q

ð2�Þ4
�
i�>

�
pþ P

2
; q;~tf; ~ti

�
i�<

�
q; p� P

2
;~tf; ~ti

�
� i�<

�
pþ P

2
; q;~tf; ~ti

�

�
�
i�>

�
q; p� P

2
;~tf; ~ti

�
� 2i�P

�
q; p� P

2
;~tf; ~ti

���
: (7.8b)

With the aim of finding a master time evolution equation for the particle number density nðX; tÞ in (6.12), we integrate
both sides of (7.7) with the measure

ZZ d4p

ð2�Þ4
d4P

ð2�Þ4 e
�iP�X�ðp0Þ: (7.9)

Explicitly, this gives

ZZ d4p

ð2�Þ4
d4P

ð2�Þ4 e
�iP�X�ðp0Þ

��
p0 þ P0

2

�
2 � E2

�
pþ P

2

��
�<

�
pþ P

2
; p� P

2
;~tf; ~ti

�

þ
ZZ d4p

ð2�Þ4
d4P

ð2�Þ4 e
�iP�X�ðp0ÞF

�
pþ P

2
; p� P

2
;~tf; ~ti

�
¼

ZZ d4p

ð2�Þ4
d4P

ð2�Þ4 e
�iP�X�ðp0ÞC

�
pþ P

2
; p� P

2
;~tf; ~ti

�
:

(7.10)

Adding to (7.10) the complex conjugate of the same expression with P ! �P and using the identities in (A4), we may
extract the terms proportional to p � P on the lhs of (7.10). In this way, we obtain
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2
ZZ d4p

ð2�Þ4
d4P

ð2�Þ4 e
�iP�X�ðp0Þp � P�<

�
pþ P

2
; p� P

2
;~tf; ~ti

�
þ

ZZ d4p

ð2�Þ4
d4P

ð2�Þ4 e
�iP�X�ðp0Þ

�
F
�
pþ P

2
; p� P

2
;~tf; ~ti

�

þF �
�
p� P

2
; pþ P

2
;~tf; ~ti

��
¼

ZZ d4p

ð2�Þ4
d4P

ð2�Þ4 e
�iP�X�ðp0Þ

�
C
�
pþ P

2
; p� P

2
;~tf; ~ti

�
þ C�

�
p� P

2
; pþ P

2
;~tf; ~ti

��
:

(7.11)

The first term on the lhs of (7.11) may be rewritten as

2
ZZ d4p

ð2�Þ4
d4P

ð2�Þ4 �ðp0Þðip0@X0
� p � PÞe�iP�X�<

�
pþ P

2
; p� P

2
; ~tf; ~ti

�
: (7.12)

Using time translational invariance of the CTP contour and taking the limit X0 ! t in (7.12), we recognize that the
derivative term with respect to t is precisely the time derivative of the particle number density nðX; tÞ in (6.12). Hence,
from (7.11) and (7.12), we arrive at our master time evolution equation for nðX; tÞ:

@tnðX;tÞ�2
ZZ d4p

ð2�Þ4
d4P

ð2�Þ4e
�iP�Xp �P�ðp0Þ�<

�
pþP

2
;p�P

2
;t;0

�
þ
ZZ d4p

ð2�Þ4
d4P

ð2�Þ4e
�iP�X�ðp0Þ

�
F
�
pþP

2
;p�P

2
; t;0

�

þF �
�
p�P

2
;pþP

2
;t;0

��
¼
ZZ d4p

ð2�Þ4
d4P

ð2�Þ4e
�iP�X�ðp0Þ

�
C
�
pþP

2
;p�P

2
; t;0

�
þC�

�
p�P

2
;pþP

2
; t;0

��
; (7.13)

with X0 ¼ t, where F and C are defined in (7.8a) and (7.8b). Comparing with the full nontruncated form of the Kadanoff-
Baym kinetic equation in (E4b), the series of nested Poisson brackets in (E4b) has been replaced by a single convolution
integral over the central momentum P in (7.13).

In addition to the master time evolution equation for the particle number density nðX; tÞ in (7.13), we may respectively
find a time evolution equation for the statistical distribution function fðpþ P

2 ;p� P
2 ; tÞ. Specifically, given the relation

(6.16) and the differential equation (7.13), the following time evolution equation may be derived for the resummed
statistical distribution function f:

@tf

�
pþ P

2
;p� P

2
; t

�
� 2

ZZ dp0

2�

dP0

2�
e�iP0tp � P�ðp0Þ�<

�
pþ P

2
; p� P

2
; t; 0

�

þ
ZZ dp0

2�

dP0

2�
e�iP0t�ðp0Þ

�
F
�
pþ P

2
; p� P

2
; t; 0

�
þF �

�
p� P

2
; pþ P

2
; t; 0

��

¼
ZZ dp0

2�

dP0

2�
e�iP0t�ðp0Þ

�
C
�
pþ P

2
; p� P

2
; t; 0

�
þ C�

�
p� P

2
; pþ P

2
; t; 0

��
: (7.14)

It is important to stress here that (7.14) provides a self-
consistent time evolution equation for f valid to all orders
in perturbation theory and to all orders in gradient expansion.

We note that a physical interpretation may be attributed
to the different terms contributing to (7.14). Specifically,
all terms on the lhs of (7.14) may be associated with the
total derivative in the phase space ðX;pÞ, appearing in the
classical Boltzmann transport equation [105]:

Dt ¼ @t þ v � rX þ F � rp; (7.15)

where v is the average nonrelativistic velocity of the par-
ticle distribution and F is the force acting on this distribu-
tion. In particular, the F terms on the lhs of (7.14) are the
force terms, generated by the potential due to the dispersive
part of the self-energy. On the rhs of (7.14), the C terms
represent the collision terms.

It would be interesting to discuss the spatially homoge-
neous limit of (7.14) at late times. In this case, energy
conservation holds to a good approximation, so the time-
dependent weight functions �t may be replaced by the

standard Dirac delta functions, even in the vertices of the
self-energies contained in the force F and collision C
terms of (7.14). Moreover, as a consequence of the
assumed spatial homogeneity, all propagators and self-
energies, which in general depend on two momenta p1

and p2, will now be proportional to the four-dimensional

delta function ð2�Þ4�ð4Þðp1 � p2Þ. Likewise, the statistical
distribution function f takes on the form

f

�
pþ P

2
;p� P

2
; t

�
¼ ð2�Þ3�ð3ÞðPÞfðjpj; tÞ: (7.16)

Because of the above simplifications, one can then work in
the single-momentum representation, by integrating over
the three-momentum P. Thus, we find the following time
evolution equation for fðjpj; tÞ:

@tfðjpj; tÞ ¼
Z dp0

2�
�ðp0Þði�>ðp; tÞi�<ðp; tÞ

� i�<ðp; tÞi�>ðp; tÞÞ; (7.17)
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where the purely imaginary force term F and off-shell
effects from �P have vanished for P� ¼ ð0; 0Þ. This result
corresponds to the semiclassical Boltzmann transport
equation or, equivalently, to the zeroth-order truncation
of the gradient-expanded Kadanoff-Baym kinetic equation
in (E5b) with X0 ¼ t.

It is a formidable task to provide an evaluation of
(7.14) to all orders in perturbation theory. For this reason,
let us now consider the perturbative loopwise truncation of
(7.14). Notice however that this truncation will remain
valid to all orders in a gradient expansion.

As identified immediately below (7.4), in any perturba-
tive loopwise truncation, the external propagators must be
evaluated at the same order. At lowest order, we insert the
free propagators of Sec. IVC for the external legs in (7.14).
By (6.17), the lhs of (7.14) must depend on the tree-level
statistical distribution function f0, where we have written
the superscript 0 explicitly for clarity. For the homogene-
ous limit in (7.17), we would then obtain

@tf
0ðjpj; tÞ ¼

Z dp0

2�
�ðp0Þði�>ðp; tÞi�0

<ðp; tÞ
� i�<ðp; tÞi�0

>ðp; tÞÞ: (7.18)

Hereafter, the choice of order of the external legs i�_;P in
(7.14) is referred to as spectral truncation.

Notice that the external self-energies i�_;P may be
truncated independently at a different order to the external
legs i�_;P . Inserting a given loop order of external self-
energy in (7.14), we restrict the set of processes contributing
to the statistical evolution. The choice of external self-
energy is therefore referred to as statistical truncation. As
was the case for the external legs, the set of external self-
energies must be truncated to the same order amongst
themselves. This ensures that the master time evolution
equations vanish in the equilibrium limit by virtue of the
KMS relation (5.16) and detailed balance condition (5.25).

The origin of these two independent perturbative trun-
cations can be understood by recalling that, in the interac-
tion picture, the relevant objects of quantum-statistical
mechanics are EEVs of operators of the form

Tr
ð~tf; ~tiÞOð~tf; ~tiÞ: (7.19)

In (7.19), there are two distinct objects: the density operator

, describing the background ensemble, and the operatorO,
corresponding to our chosen observable. The time evolution
of 
 is determined by the quantum Liouville equation (4.1)
andO, by the interaction-picture analogue of theHeisenberg
equation of motion. In the context of the master time evolu-
tion equations, the perturbative truncation of the former
corresponds to the statistical truncation, restricting the set
of processes driving the background evolution. The trunca-
tion of the latter corresponds to the spectral truncation,
determining what we have chosen to observe through O.
Thus, with the external insertion of free propagators, (7.14)
describes the statistical evolution of the number density of
spectrally free particles, due to a given set of processes.

Inserting instead one-loop propagators in the external
legs, the lhs of (7.14) depends on the one-loop statistical

distribution function fð1Þ by (6.17). In the homogeneous
limit, we then obtain

@tf
ð1Þðjpj; tÞ ¼

Z dp0

2�
�ðp0Þði�>ðp; tÞi�ð1Þ

< ðp; tÞ

� i�<ðp; tÞi�ð1Þ
> ðp; tÞÞ: (7.20)

The evolution equation now describes the statistical evo-
lution of one-loop spectrally dressed particles. Again, we
are free to insert any order of self-energy.
In summary, there are two independent perturbative

loopwise truncations of (7.14): (i) the spectral truncation
of the external leg determines what we have chosen to
count as a ‘‘particle’’ and (ii) the statistical truncation of
the external self-energy restricts the set of processes con-
tributing to the statistical evolution. In the next section, we
describe this perturbative loopwise expansion explicitly at
the one-loop spectral and n-loop statistical level, with
reference to the absence of pinch singularities and the
approach to equilibrium at late times.

VIII. PERTURBATIVE ONE-LOOP SPECTRAL
EXPANSION WITHOUT PINCH SINGULARITIES

Pinch singularities, or so-called secular terms, normally
spoil the perturbative expansion of nonequilibrium Green’s
functions [101,106–108]. These mathematical pathologies
arise from ill-defined products of delta functions with
identical arguments. In this section, we demonstrate ex-
plicitly, in contrast to [61,109], that such pinch singular-
ities do not occur in our perturbative approach.
The absence of pinch singularities is ensured by (a) the

systematic inclusion of finite-time effects, as shown in
Fig. 1, and (b) the proper consideration of the dependence
upon the time of observation t. The finite-time effects in (a)
result in finite upper and lower bounds on interaction-
dependent time integrals, leading to the microscopic vio-
lation of energy conservation. We emphasize that these
finite-time effects are not included a priori and that the
removal of pinch singularities is achieved without any
ad hoc regularization or obscure resummation. In addition,
we note that our treatment differs from the semi-infinite
time domains employed in the existing literature [53,110].
As a result of (b), the statistical distribution functions
appearing in the nonhomogeneous free propagators are
evaluated at the macroscopic time t, as noted in Sec. IVC.
In this case, the role of the Feynman-Dyson series is to dress
the spectral structure of the propagators only. The evolution
of the statistical distribution functions is determined by the
master time evolution equations, derived in Sec. VII.
For early times, the microscopic violation of energy

conservation prevents the appearance of pinch singular-
ities. On the other hand, at infinitely late times, the system
thermalizes and the time-dependent statistical distribution
functions are replaced by the equilibrium Bose-Einstein
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distributions. In this equilibrium limit, pinch singularities
are known to cancel by virtue of the KMS relation (5.15)
[28]. In this section, we demonstrate the absence of pinch
singularities explicitly at the one-loop level. In addition,
we illustrate how the perturbative loopwise truncation,
used in our approach, successfully captures the dynamics
on all time scales. To this end, we calculate the one-loop
nonequilibrium CTP propagator in the late-time limit.

Proceeding perturbatively, we truncate the Feynman-
Dyson series in (4.37) to leading order in the couplings
and set the bilocal source Kab to zero. This corresponds to
keeping free CTP propagators �0;abðp; p0;~tf; ~tiÞ and one-

loop CTP self-energies �ð1Þ
abðp; p0;~tf; ~tiÞ, containing free

propagators, on the rhs of (4.37). We then have the one-
loop-inserted CTP propagator

�ð1Þ;abðp; p0;~tf; ~tiÞ ¼ �0;abðp; p0; ~tf; ~tiÞ �
ZZ d4q

ð2�Þ4
d4q0

ð2�Þ4 �
0;acðp; q;~tf; ~tiÞ�ð1Þ

cd ðq; q0;~tf; ~tiÞ�0;dbðq0; p0;~tf; ~tiÞ: (8.1)

It will prove convenient to work in a mixed CTP-Keldysh basis by inserting the transformation outlined in (3.21) between
the external legs and self-energies on the rhs of (8.1). In this mixed CTP-Keldysh basis, we have

�ð1Þ;abðp; p0;~tf; ~tiÞ ¼ �0;abðp; p0;~tf; ~tiÞ � 1

2

ZZ d4q

ð2�Þ4
d4q0

ð2�Þ4 �
0;ac
ret ðp; q;~tf; ~tiÞ ~�ð1Þ

cd ðq; q0;~tf; ~tiÞ�0;db
adv ðq0; p0;~tf; ~tiÞ; (8.2)

where, making use of the relations in (A6),

�ac
retðp; q;~tf; ~tiÞ ¼

�Fðp; q;~tf; ~tiÞ �<ðp; q;~tf; ~tiÞ
�>ðp; q;~tf; ~tiÞ ���

Fðp; q;~tf; ~tiÞ

" #
1 1

�1 1

" #

¼ �Rðp; q;~tf; ~tiÞ �Rðp; q;~tf; ~tiÞ þ 2�<ðp; q;~tf; ~tiÞ
�Rðp; q;~tf; ~tiÞ ��Rðp; q;~tf; ~tiÞ þ 2�>ðp; q;~tf; ~tiÞ

" #
; (8.3)

and

�ac
advðp; q;~tf; ~tiÞ ¼

1 �1

1 1

" #
�Fðp; q;~tf; ~tiÞ �<ðp; q;~tf; ~tiÞ
�>ðp; q;~tf; ~tiÞ ���

Fðp; q;~tf; ~tiÞ

" #

¼ �Aðp; q;~tf; ~tiÞ �Aðp; q;~tf; ~tiÞ
�Aðp; q;~tf; ~tiÞ þ 2�>ðp; q;~tf; ~tiÞ ��Aðp; q;~tf; ~tiÞ þ 2�<ðp; q;~tf; ~tiÞ

" #
: (8.4)

In the same mixed CTP-Keldysh basis, the one-loop-inserted Feynman �ð1Þ
F ðp; p0;~tf; ~tiÞ and Wightman �ð1Þ

_ ðp; p0;~tf; ~tiÞ
propagators may be written in the following forms:

�ð1Þ
F ðp; p0;~tf; ~tiÞ ¼ �0

Fðp; p0;~tf; ~tiÞ �
ZZ d4q

ð2�Þ4
d4q0

ð2�Þ4 ð�
0
Rðp; qÞ�ð1Þðq; q0;~tf; ~tiÞ�0

Aðq0; p0Þ

þ �0
Rðp; qÞ�ð1Þ

R ðq; q0;~tf; ~tiÞ�0
>ðq0; p0;~tf; ~tiÞ þ�0

<ðp; q;~tf; ~tiÞ�ð1Þ
A ðq; q0;~tf; ~tiÞ�0

Aðq0; p0ÞÞ; (8.5a)

�ð1Þ
_ ðp; p0;~tf; ~tiÞ ¼ �0

_ðp; p0;~tf; ~tiÞ �
ZZ d4q

ð2�Þ4
d4q0

ð2�Þ4 ð�
0
Rðp; qÞ�ð1Þ

_ ðq; q0;~tf; ~tiÞ�0
Aðq0; p0Þ

þ �0
Rðp; qÞ�ð1Þ

R ðq; q0;~tf; ~tiÞ�0
_ðq0; p0;~tf; ~tiÞ þ�0

_ðp; q;~tf; ~tiÞ�ð1Þ
A ðq; q0;~tf; ~tiÞ�0

Aðq0; p0ÞÞ; (8.5b)

where we have used the identities

�1ðp; p0;~tf; ~tiÞ þ�Rðp; p0;~tf; ~tiÞ þ�Aðp; p0;~tf; ~tiÞ ¼ 2�ðp; p0; ~tf; ~tiÞ; (8.6a)

�1ðp; p0;~tf; ~tiÞ ��Rðp; p0;~tf; ~tiÞ ��Aðp; p0;~tf; ~tiÞ ¼ 2�_ðp; p0;~tf; ~tiÞ; (8.6b)

which can be derived from relations between the self-energies analogous to those in (A6).
At late times or, equivalently, infinitesimal departures from equilibrium, the free CTP propagator is spatially homoge-

neous and may be written as

�0;abðp; p0;~tf; ~tiÞ ’ �0;abðp; tÞð2�Þ4�ð4Þðp� p0Þ: (8.7)

In addition, the one-loop self-energy may be written as

�ð1Þ
abðp; p0;~tf; ~tiÞ ’ �ð1Þ

abðp; tÞð2�Þ4�ð4Þ
t ðp� p0Þeiðp0�p0

0
Þ~tf : (8.8)
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We note that the one-loop CTP self-energy i�ð1Þ
abðp; p0;~tf; ~tiÞ is manifestly free of pinch singularities for all times

(see Appendixes B and F). Using (8.7) and (8.8), the one-loop expansions in (8.5a) and (8.5b) become

�ð1Þ
F ðp; p0;~tf; ~tiÞ ¼ eiðp0�p0

0Þ~tf ½�0
Fðp; tÞð2�Þ4�ð4Þðp� p0Þ � ð�0

RðpÞ�ð1Þðp; tÞ�0
Aðp0Þ þ�0

RðpÞ�ð1Þ
R ðp; tÞ�0

>ðp0; tÞ
þ�0

<ðp; tÞ�ð1Þ
A ðp; tÞ�0

Aðp0ÞÞð2�Þ4�ð4Þ
t ðp� p0Þ�; (8.9a)

�ð1Þ
_ ðp; p0;~tf; ~tiÞ ¼ eiðp0�p0

0
Þ~tf ½�0

_ðp; tÞð2�Þ4�ð4Þðp� p0Þ � ð�0
RðpÞ�ð1Þ

_ ðp; tÞ�0
Aðp0Þ þ�0

RðpÞ�ð1Þ
R ðp; tÞ�0

_ðp0; tÞ
þ�0

_ðp; tÞ�ð1Þ
A ðp; tÞ�0

Aðp0ÞÞð2�Þ4�ð4Þðp� p0Þ�: (8.9b)

We note the appearance of the overall phase eiðp0�p0
0
Þ~tf in (8.9a) and (8.9b). This free phase ensures that the inverse

Fourier transform of �ð1Þ;abðp; p0;~tf; ~tiÞ with respect to p0 and p
0
0 depends only on the macroscopic time t ¼ ~tf � ~ti in the

equal-time limit, i.e.

�ð1Þ;abðx; y; tÞ � �ð1Þ;abðx; y;~tf; ~tiÞjx0¼y0¼~tf ¼ lim
x0;y0!~tf

ZZ d4p

ð2�Þ4
d4p0

ð2�Þ4 e
�ip�xeip0�y�ð1Þ;abðp; p0;~tf; ~tiÞ: (8.10)

Expanding around the equilibrium Bose-Einstein distribution fB, we write the spectrally free statistical distribution
function

f0ðjpj; tÞ ¼ fBðEðpÞÞ þ �f0ðjpj; tÞ: (8.11)

Using the expansion in (8.11), the single-momentum representation of the spatially homogeneous free CTP propagator
i�0;abðp; tÞ in (8.7) may be decomposed as

i�0;abðp; tÞ ¼ i�0;ab
eq ðpÞ þ 2��ðp2 �M2Þ�f0ðjpj; tÞ 1 1

1 1

" #
; (8.12)

where i�0;ab
eq ðpÞ is the free equilibrium CTP propagator discussed in Sec. V. Analogously, we may introduce the following

decomposition of the homogeneous one-loop self-energy �ð1Þ
abðp; tÞ:

i�ð1Þ
abðp; tÞ ¼ i�ð1Þ

eq;abðpÞ þ i��ð1Þ
abðp; tÞ; (8.13)

where ��ð1Þ
abðp; tÞ contains terms of order �f0 and higher. Substituting the expansions (8.12) and (8.13) into (8.9a), we

obtain, for the one-loop Feynman propagator,

i�ð1Þ
F ðp;p0;~tf;~tiÞ ¼ ði�ð1Þ

F;eqðpÞþ 2��ðp2 �M2Þ�f0ðjpj; tÞÞð2�Þ4�ð4Þðp�p0Þ
þ eiðp0�p0

0
Þ~tf ði�0

RðpÞi�ð1Þ
R ðp; tÞ2��ðp02 �M2Þ�f0ðjp0j; tÞþ 2��ðp2 �M2Þ�f0ðjpj; tÞi�ð1Þ

A ðp; tÞi�0
Aðp0Þ

þ i�0
RðpÞi��ð1Þðp; tÞi�0

Aðp0Þ þ i�0
RðpÞi��ð1Þ

R ðp; tÞi�0
>;eqðp0Þ

þ i�0
<;eqðpÞi��ð1Þ

A ðp; tÞi�0
Aðp0ÞÞð2�Þ4�ð4Þ

t ðp�p0Þ: (8.14)

Potential pinch singularities arise only from the �f0 and �� dependent terms in (8.14), since pinch singularities cancel in
the equilibrium contribution i�ð1Þ

F;eqðpÞ, as we will see below.
Let us first consider the terms

i�0
RðpÞi�ð1Þ

R ðp;tÞð2�Þ4�ð4Þ
t ðp�p0Þ2��f0ðjp0j; tÞ�ðp02�M2Þþ2��f0ðjpj; tÞ�ðp2�M2Þi�ð1Þ

A ðp;tÞð2�Þ4�ð4Þ
t ðp�p0Þi�0

Aðp0Þ:
(8.15)

The real and imaginary parts of the free retarded propa-
gator �0

RðpÞ are given by

Re�0
RðpÞ ¼ P

1

p2 �M2
; (8.16)

where P denotes the principal value integral, and

Im�0
RðpÞ ¼ ��"ðp0Þ�ðp2 �M2Þ: (8.17)

By considering the limit representation of the Cauchy
principal value

P
1

x
¼ lim


!0

x

x2 þ 
2
(8.18)
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and the limit representation of the delta function in (5.14),
we may then show that the product

Re�0
RðpÞIm�0

RðpÞ ¼
�

2
"ðp0Þ�0ðp2 �M2Þ; (8.19)

where �0ðxÞ is the derivative of the delta function,
satisfying Z þ1

�1
dx�0ðxÞyðxÞ ¼ �y0ð0Þ; (8.20)

provided the function yðxÞ is analytically well behaved at
x ¼ 0. Hence, for late times, in which only the potential
pinching regimep0 ¼ p0

0 survives, the terms in (8.15) yield

2�

�
Re�ð1Þ

R ðp; tÞ�0ðp2 �M2Þ

� t

EðpÞ"ðp0ÞIm�ð1Þ
R ðp; tÞ�ðp2 �M2Þ

�
� �f0ðjpj; tÞð2�Þ4�ð4Þðp� p0Þ; (8.21)

where we have used the fact that

2��tðp0 � p0
0Þjp0¼p0

0
¼ t; (8.22)

by l’Hôpital’s rule.
Proceeding similarly for the �� dependent terms in

(8.14), we obtain the contribution

�
�ð�̂0ðpÞÞ2i��ð1Þðp;tÞþ2�fBðjp0jÞ�0ðp2�M2Þ��̂�ð1Þðp;tÞ

þ�

�
t

EðpÞ�ðp
2�M2Þ� i�0ðp2�M2Þ

�
ðIm�ð1Þðp;tÞ�"ðp0Þð1þ2fBðjp0jÞÞIm�ð1Þ

R ðp;tÞÞ
�
ð2�Þ4�ð4Þðp�p0Þ: (8.23)

Putting everything back together, we obtain the one-loop Feynman propagator

i�ð1Þ
F ðp; tÞ ¼ iðp2 �M2 þ i
��ð1Þðp; tÞÞ

ðp2 �M2 þ i
Þ2

þ 2��ðp2 �M2Þ
�
f0ðjpj; tÞ � t

2EðpÞ ð"ðp0Þð1þ 2f0ðjpj; tÞÞIm�ð1Þ
R ðp; tÞ � Im�ð1Þðp; tÞÞ

�

þ 2��0ðp2 �M2Þ
�
f0ðjpj; tÞ�̂�ð1Þðp; tÞ þ i

2
ð"ðp0Þð1þ 2f0ðjpj; tÞÞIm�ð1Þ

R ðp; tÞ � Im�ð1Þðp; tÞÞ
�
; (8.24)

where

�̂ðpÞ ¼ Re�RðpÞ þ i"ðp0ÞIm�RðpÞ (8.25)

is a self-energy-like function, bearing by itself no direct physical meaning. In the thermodynamic equilibrium limit, the
fluctuation-dissipation theorem in (5.18) is restored and the term linear in t in (8.24) vanishes by virtue of (5.26). We then
obtain the equilibrium one-loop Feynman propagator, which is free of pinch singularities. Notice that in the zero-
temperature limit, only the first term in (8.24) survives, as we would expect.

For the one-loop Wightman propagators, we obtain

i�ð1Þ
_ ðp;tÞ¼ �i�ð1Þ

_ ðp;tÞ
ðp2�M2þi
Þ2

þ2��ðp2�M2Þ
�
ð�ð�p0Þþf0ðjpj;tÞÞ� t

2EðpÞð2"ðp0Þð�ð�p0Þþf0ðjpj;tÞÞIm�ð1Þ
R ðp;tÞþi�ð1Þ

_ ðp;tÞÞ
�

þ2��0ðp2�M2Þ
�
ð�ð�p0Þþf0ðjpj;tÞÞ�̂�ð1Þðp;tÞþ i

2
ð2"ðp0Þð�ð�p0Þþf0ðjpj;tÞÞIm�ð1Þ

R ðp;tÞþi�ð1Þ
_ ðp;tÞÞ

�
;

(8.26)

in which the potential pinch singularity again cancels in the
equilibrium limit by virtue of (5.26). The one-loop propa-
gators in (8.24) and (8.26) are consistent with the properties
and relations in Appendix A.

From (8.21), we see that these potential pinch singular-
ities are controlled by t�f0ðjpj; tÞ. In addition, the potential
pinch singularities are proportional to the Breit-Wigner

width �ð1Þðp; tÞ ¼ Im�ð1Þ
R ðp; tÞ=M, illustrating that the

origin of these dangerous terms lies in the resummation

of absorptive effects. This is consistent with conclusions in
existing approaches that pinch singularities arise as a result
of Fermi’s Golden Rule [109].
In order to show that pinch singularities do not appear in

this one-loop spectral expansion for late, but nonetheless
finite times, we must show that f0 approaches equilibrium
more rapidly than a power law in t. Moreover, in order to
demonstrate that we capture the late-time dynamics cor-
rectly, the approach to equilibrium of f0 must be such that
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the appearance of terms linear in t does not lead to time
sensitivity in the perturbative truncation. For instance, one

might be concerned that if �f0ðjpj;tÞ
e��ðpÞt, the nth order
truncation would contain terms controlled by tne��ðpÞt, de-
laying the thermalization of the system to later and later
times. In order to show that this is not the case, we will

now consider the master time evolution equation of the
one-loop spectrally dressed statistical distribution function

fð1Þ for late times.
By inserting the one-loop negative frequency Wightman

propagator from (8.26) into (6.17), we obtain the one-loop

spectrally dressed statistical distribution fð1Þ:

fð1Þðjpj; tÞ ¼ f0ðjpj; tÞ
�
1� 1

2EðpÞ
@

@p0

p0

EðpÞ Re�
ð1Þ
R ðp; tÞ � t

EðpÞ Im�ð1Þ
R ðp; tÞ

���������p0¼EðpÞ
� t

2EðpÞ i�
ð1Þ
< ðp; tÞ

��������p0¼EðpÞ

þ 1

4EðpÞ
@

@p0

p0

EðpÞ�
ð1Þ
< ðp; tÞ �

Z dp0

2�
2�ðp0Þp0

i�ð1Þ
< ðp; tÞ

ðp2 �M2 þ i
Þ2 ; (8.27)

where we reiterate that the one-loop self-energy �ð1Þ contains free propagators. Using the fact that

1

ðp2 �M2 þ i
Þ2 ¼ P
1

ðp2 �M2Þ2 þ i��0ðp2 �M2Þ; (8.28)

the imaginary parts of the last two terms on the rhs of (8.27) cancel and we obtain

fð1Þðjpj; tÞ ¼ f0ðjpj; tÞ
�
1� 1

2EðpÞ
@

@p0

p0

EðpÞ Re�
ð1Þ
R ðp; tÞ � t

EðpÞ Im�ð1Þ
R ðp; tÞ

���������p0¼EðpÞ

� t

2EðpÞ i�
ð1Þ
< ðp; tÞ

��������p0¼EðpÞ
�

Z þ1

0

dp2
0

2�
�ðp0ÞP i�ð1Þ

< ðp; tÞ
ðp2 �M2Þ2 : (8.29)

In (8.29), the final term on the rhs counts all off-shell
contributions with p0 � EðpÞ> 0. Notice that the terms
linear in t in fð1Þ cancel in equilibrium by virtue of (5.26).

We truncate the Markovian approximation of the master
time evolution equation in (7.20) spectrally and statisti-
cally at the one- and n-loop levels, respectively. Hereafter,
we neglect the off-shell and dispersive contributions in
(8.29). With this simplification, we have

dfð1Þðjpj; tÞ
dt

’ � M

EðpÞ�
ðnÞ
> ðp; tÞfð1Þðjpj; tÞ

þ M

EðpÞ�
ðnÞ
< ðp; tÞð1þ fð1Þðjpj; tÞÞ; (8.30)

where thepartialwidths�ðnÞ
_ ðp; tÞ ¼ �i�ðnÞ

_ ðp; tÞ=2M relate

to the absorptive part of the respectiven-loop self-energies. In
(8.30), the four-momentum p is understood to be on shell
with p0 ¼ EðpÞ. Substituting (8.29) into (8.30) and approx-
imating the partial widths by their equilibrium values, we
obtain the following evolution equation for f0ðjpj; tÞ:
df0ðjpj; tÞ

dt
’ � M

EðpÞ ð�
ðnÞ
eq ðpÞf0ðjpj; tÞ � �ðnÞ

<;eqðpÞÞ

� 1

1� M
EðpÞ t�

ð1Þ
eq ðpÞ

þ M

EðpÞ ð�
ð1Þ
eq ðpÞf0ðjpj; tÞ

� �ð1Þ
<;eqðpÞÞ

1þ M
EðpÞ t�

ðnÞ
eq ðpÞ

1� M
EðpÞ t�

ð1Þ
eq ðpÞ

: (8.31)

Using the expansion in (8.11), the terms proportional to
fBðEðpÞÞ cancel by virtue of the identities in (5.26) and we
find that the deviation from equilibrium is

�f0ðjpj; tÞ ¼ e�
M
EðpÞ�

ðnÞ
eq ðpÞt

1� M
EðpÞ�

ð1Þ
eq ðpÞt

�f0ðjpj; t0Þ; (8.32)

valid for

t > t0 � 1
M
EðpÞ�

ð1Þ
eq ðpÞ

: (8.33)

Note that the factor ð1� M
EðpÞ�

ð1Þ
eq ðpÞtÞ�1 in (8.32) originates

from threshold effects, see e.g. [111], becoming singular at

t ¼ ð M
EðpÞ�

ð1Þ
eq ðpÞÞ�1. However, this singularity is canceled in

the one-loop spectrally-corrected distribution function fð1Þ.
Returning then to (8.21), we see that, for t > t0, the potential
pinch singularity goes like

� 2�
t

EðpÞ"ðp0Þ Im�ð1Þ
R ðp; tÞ�ðp2 �M2Þ�f0ðjpj; tÞ

! 2�"ðp0Þ�ðp2 �M2Þ�
ð1Þðp; tÞ
�ð1Þ
eq ðpÞ

e�
M
EðpÞ�

ðnÞ
eq ðpÞt�f0ðjpj; t0Þ:

(8.34)

We conclude therefore that the terms linear in t appearing in
(8.24) and (8.26) do not lead to time sensitivity in the pertur-
bative loopwise truncation of the master time evolution equa-
tions and that the late-time dynamics is correctly captured.
In summary, for early times, the analytic t-dependent

vertices lead to microscopic violation of energy conserva-
tion. This energynonconservation regularizes potential pinch
singularities. For intermediate times, the free time-dependent
statistical distribution functions evolve towards equilibrium.
For times t * 1=�, the approach to equilibrium occurs faster
than energy conservation is restored and such that the
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perturbative truncation does not induce time sensitivity. In
the limit t ! 1, the time-dependent statistical distribution
functions appearing in the nonhomogeneous free propaga-
tors are replaced by their equilibrium forms via the corre-
spondence in (5.8). We then obtain the well-known
equilibrium thermal field theory in which energy conserva-
tion is fully restored and pinch singularities cancel exactly by
virtue of the KMS relation. In conclusion, we have demon-
strated explicitly at the one-loop level howpinch singularities
do not arise in our perturbative approach.

IX. THERMALIZATION IN A SCALAR MODEL

We now apply the formalism developed in the proceed-
ing sections to a simple scalar model. In particular, we
introduce the modified Feynman rules that result from the
systematic inclusion of finite-time effects and the violation
of both energy conservation and space-time translational
invariance. As a playground for studying the kinematics in
the early-time energy-non-conserving regime, we calculate
the time-dependent thermal width of a heavy scalar�. We
show that processes, which would normally be kinemati-
cally disallowed, contribute significantly to the prompt
shock regime of the initial evolution. We also show that
the subsequent dynamics exhibit non-Markovian behavior,
acquiring oscillations with time-dependent frequencies.
This evolution signifies the occurrence of memory effects,
as are expected in truly out-of-equilibrium systems.
Finally, we look in more detail at the time evolution
equations of this simple model and demonstrate the

importance of the violation of energy conservation to the
statistical dynamics.
We consider a simple scalar theory, which comprises

one heavy real scalar field� and one light pair of complex
scalar fields ð�y; �Þ, described by the Lagrangian

LðxÞ ¼ 1

2
@��ðxÞ@��ðxÞ � 1

2
M2�2ðxÞ

þ @��
yðxÞ@��ðxÞ �m2�yðxÞ�ðxÞ

� g�ðxÞ�yðxÞ�ðxÞ � 1

4
�½�yðxÞ�ðxÞ�2; (9.1)

whereM � m. Appendix C describes the generalization of
our approach to the complex scalar field �.
We formulate a perturbative approach based upon the

following modified Feynman rules:
(i) Sum over all topologically distinct diagrams at a

given order in perturbation theory.
(ii) Assign to each �-propagator line a factor of

(iii) Assign to each �-propagator line a factor of

(iv) Assign to each three-point � vertex a factor of

where �t is defined in (3.53) and the prefactors �abc... are given after (3.15).
(v) Assign to each four-point � vertex a factor of

(vi) Associate with each external vertex a phase

eip0~tf ;

where p0 is the energy flowing into the vertex.
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(vii) Contract all internal CTP indices.
(viii) Integrate with the measureZ d4p

ð2�Þ4
over the four-momentum associated with each
contracted pair of CTP indices.

(ix) Consider the combinatorial symmetry factors,
where appropriate.

Notice that there are a number of modifications with
respect to the standard Feynman rules. In particular, the
familiar energy-conserving delta function has been re-
placed by �t in the vertices. This is indicated diagrammati-
cally by the dotted line terminated in a cross, representing
the violation of energy conservation. This loss of energy
conservation is a consequence of Heisenberg’s uncertainty
principle, due to the finite macroscopic time of observation
t, over which the interactions have been switched on. The
time-dependent vertices vanish in the limit t ! 0, as we
should expect. The loss of space-time translational invari-
ance leads to a doubling of the number of integrations with
respect to the zero-temperature and equilibrium cases.

At the one-loop level, we have three diagrams. The local
� self-energy shown in Fig. 4:

i�locð1Þ
�;ab ðq;q0;~tf;~tiÞ

¼�i�

2!
ð2��Þ2
eiðq0�q0

0
Þ~tf
ZZ ddk

ð2�Þd
d4k0

ð2�Þ4 ð2�Þ
4

��ð4Þ
t ðq�q0 �kþk0Þ�abcdi�

0;cd
� ðk;k0;~tf;~tiÞ; (9.2)

and the two nonlocal diagrams for the � and � self-
energies shown in Fig. 5:

i�ð1Þ
�;abðq;q0;~tf;~tiÞ

¼ð�igÞ2
2!

ð2��Þ2
eiðq0�q00Þ~tf

�
Z
���

Z ddk1
ð2�Þd

d4k01
ð2�Þ4

d4k2
ð2�Þ4

d4k02
ð2�Þ4 ð2�Þ

4

��ð4Þ
t ðq�k1�k2Þð2�Þ4�ð4Þ

t ðq0 �k01�k02Þ�acd

� i�0;ce
� ðk1;k01;~tf;~tiÞi�C;0;df

� ðk2;k02;~tf;~tiÞ�efb; (9.3a)

i�ð1Þ
�;abðq;q0;~tf;~tiÞ

¼ð�igÞ2
2!

ð2��Þ2
eiðq0�q0
0
Þ~tf

�
Z
���

Z ddk1
ð2�Þd

d4k01
ð2�Þ4

d4k2
ð2�Þ4

d4k02
ð2�Þ4 ð2�Þ

4

��ð4Þ
t ðq�k1�k2Þð2�Þ4�ð4Þ

t ðq0 �k01�k02Þ�acd

� i�0;ce
� ðk1;k01;~tf;~tiÞi�0;df

� ðk2;k02;~tf;~tiÞ�efb: (9.3b)

A detailed description of the techniques required to per-
form these loop integrals is provided in Appendix F.

A. Time-dependent width

In this section, we study the time-dependent width of the
heavy scalar �. In particular, we investigate the spectral
evolution that results from the restoration of energy con-
servation, without solving explicitly the system of evolu-
tion equations for the statistical dynamics.
We consider the following situation. We prepare two

isolated but coincident subsystems S� and S�, both sepa-

rately in thermodynamic equilibrium and at the same
temperature T, with all interactions turned off. The sub-
system S� contains only the real scalar field �, whilst S�

contains only the complex scalar �. At macroscopic time
t ¼ 0, we turn on the interactions and allow the system
S ¼ S� [ S� to rethermalize. For our numerical analysis,

we take for definiteness the thermodynamic temperature to
be T ¼ 10 GeV, the mass of the heavy � scalar M ¼
1 GeV, the mass of the complex � scalar m ¼ 0:01 GeV,
and their trilinear coupling g ¼ 0:1 GeV.
The free propagators of the fields � and � at time t ¼ 0

are the equilibrium propagators in (5.10) and (C25),

FIG. 5. Nonlocal one-loop � (a) and � (b) self-energies.

FIG. 4. One-loop local � self-energy: i�locð1Þ
�;ab ðq;q0;~tf;~tiÞ/�ab.
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containing the Bose-Einstein distributions at temperature T.
We take the chemical potential of the complex scalar to be
vanishingly small in comparison to the temperature, i.e.
�=T 	 1, such that f�ðjpj; 0Þ ¼ fC�ðjpj; 0Þ ¼ fBðE�ðpÞÞ.
Without solving the system of time evolution equations, the
form of the statistical distribution functions of the � and �
scalars is unknown for t � 0. We assume that the heat bath
of�’s is sufficiently large so as to remain unperturbed by the
addition of the real scalar�. Specifically, we may consider
the number density of �’s to remain unchanged and the free
equilibrium � propagators in (C25) to persist for all times.

By the optical theorem, the width �� of the scalar � is
defined in terms of the absorptive part of the retarded �
self-energy Im��;R via

��ðq1; q2;~tf; ~tiÞ ¼ 1

M
Im��;Rðq1; q2;~tf; ~tiÞ; (9.4)

where

Im��;Rðq1; q2;~tf; ~tiÞ
¼ 1

2i
ð��;>ðq1; q2;~tf; ~tiÞ ���;<ðq1; q2;~tf; ~tiÞÞ: (9.5)

At the one-loop level, the self-energies �ð1Þ
�;_ðq1; q2;~tf; ~tiÞ

are given by (9.3a).
Employing the relative and central momenta, Q ¼

q1 � q2 and q ¼ ðq1 þ q2Þ=2, and using the results of
Appendix F, the Laplace transform with respect to the
macroscopic time t of the one-loop � width is

�ð1Þ
� ðqþQ=2; q�Q=2; sÞ

¼ ð2�Þ4 1
�

s

Q2
0 þ 4s2

eiQ0~tf�ð3ÞðQÞ g2

32�2M

�X
f�g

Z
d3k

1

�

�1�2

E1E2

1þ fBð�1E1Þ þ fBð�2E2Þ
ðq20 � �1E1 � �2E2Þ2 þ s2

;

(9.6)

where we use the short-hand notation f�g for the summa-
tion over �1, �2 ¼ �1. For the sake of generality, we
distinguish the �þ and �� decay products by assigning
them different masses m1 and m2, respectively, so that

E1 �E1ðkÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2þm2

1

q
; (9.7a)

E2 �E2ðq�kÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2�2jkjjqjcos�þjqj2þm2

2

q
:

(9.7b)

In our numerical analysis, however, we take m1 ¼
m2 ¼ m.
Performing the inverse Wigner transform with respect to

Q of (9.6) in the equal-time limit X0 ¼ ~tf and subsequently

the inverse Laplace transform with respect to s, we obtain
the time-dependent � width

�ð1Þ
� ðq; tÞ ¼ g2

64�2M

X
f�g

Z
d3k

�1�2

E1E2

t

�
sinc½ðq0 � �1E1

� �2E2Þt�ð1þ fBð�1E1Þ þ fBð�2E2ÞÞ: (9.8)

In the limit t ! 1, the sinc function on the rhs of (9.8)
yields the standard energy-conserving delta function:

lim
t!1

t

�
sinc½ðq0��1E1��2E2Þt�¼�ðq0��1E1��2E2Þ;

(9.9)

thereby recovering the known equilibrium result.
Figure 6 contains a series of contour plots of the differen-

tial one-loop � width d2�ð1Þ
� evaluated over the dominant

region of the jkj-� phase space, where the four-momentum
q� of the � scalar is on shell, i.e. q2 ¼ M2. For late times,
the integrand is highly oscillatory and we expect the domi-
nant peak of the sinc function to approach the region of phase
space permitted in the limit t ! 1 [cf. (9.9)], for which

jkj ¼ M2jqj cos�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjqj2 þM2Þ½M4 � 4m2ðM2 þ jqj2sin 2�Þ�p
2ðM2 þ jqj2sin 2�Þ : (9.10)

For early times, the admissible phase space is greatly
expanded. For later times, the frequency of oscillation
increases and the width of the central peak of the sinc
function narrows, lying along a curve in the phase space.
To proceed further, we need to develop a method for dealing
with the kinematics in the absence of exact energy
conservation.

B. Generalized two-body decay kinematics

At zero temperature and density, it is convenient to
analyze the two-body decay kinematics by performing a
Lorentz boost to the rest frame of the decaying particle.

However, at finite temperature, the dependence on the
thermodynamic temperature of the heat bath breaks the
Lorentz covariance of the integral. As such, we cannot
eliminate dependence upon the the three-momentum of
the decaying particle by any such Lorentz boost; the de-
pendence will reappear in the ‘‘boosted’’ temperature:

T0 ¼ �T; (9.11)

where

� ¼
�
1þ jqj2

M2

�
1=2

(9.12)
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is the usual Lorentz boost factor for the heavy scalar field
�. As a result, we are compelled to analyze the kinematics
of the two-body decay in the rest frame of the heat bath,
which we define to be the frame in which the EEV of the

three-momentum operator hP̂i is minimized. For an iso-

tropic heat bath, this is the frame in which hP̂i ¼ 0, that is
the comoving frame. In this section, we look more closely
at the kinematics in the absence of energy conservation.

For this purpose, let us introduce the variable

u � ðq0 � �1E1 � �2E2Þt; (9.13)

which may be interpreted in terms of energy borrowed
from or lent to the heat bath. We shall hereafter refer to
the variable u as the evanescent action of the process, since
it has the correct dimensions and quantifies the extended
kinematically allowed phase-space configurations. We also
define the evanescent energy

quðtÞ � q0 � u

t
; (9.14)

which satisfies

lim
u=t!0

quðtÞ ¼ q0: (9.15)

With this substitution, we obtain the kinematic constraint

quðtÞ � �1E1 � �2E2 ¼ 0: (9.16)

Since u can take large positive values, quðtÞ is not neces-
sarily restricted to positive values for early times, even

when q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijqj2 þM2

p
> 0 is on shell. Processes with

u=t � 0 are referred to as evanescent.
In order to make the coordinate transformation jkj ! u

in (9.8), we must solve (9.16) for the magnitude of the
three-momentum jkðtÞj, which becomes implicitly time
dependent. Specifically, we find

jkðbÞðtÞj ¼ 1

2ðq2uðtÞ � jqj2cos 2�Þ ½ðq
2
uðtÞ � jqj2 þm2

1 �m2
2Þjqj cos �þ bquðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðq2uðtÞ � jqj2; m2

1; m
2
2Þ � 4m2

1jqj2sin 2�
q

�;

(9.17)

with b ¼ �1 and

�ðx; y; zÞ ¼ ðx� y� zÞ2 � 4yz: (9.18)

After a little algebra, we obtain the energies

EðbÞ
1 ðtÞ¼�1

1

2ðq2uðtÞ� jqj2cos2�Þ ½ðq
2
uðtÞ� jqj2þm2

1�m2
2ÞquðtÞþbjqjcos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðq2uðtÞ� jqj2;m2

1;m
2
2Þ�4m2

1jqj2sin2�
q

�;

(9.19)

FIG. 6 (color online). Contour plots of jkj versus � for d2�ð1Þ
� for discrete values ofMt, with q2 ¼ M2 and jqj ¼ 10 GeV. The region

of phase space permitted in the t ! 1 limit is shown by the blue dashed line, corresponding to the delta function in (9.9).
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EðbÞ
2 ðtÞ¼�2

1

2ðq2uðtÞ�jqj2cos2�Þ½ðq
2
uðtÞ�jqj2 cos2��m2

1þm2
2ÞquðtÞ�bjqjcos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðq2uðtÞ�jqj2;m2

1;m
2
2Þ�4m2

1jqj2sin2�
q

�;

(9.20)

where the overall factors of �1 and �2 are necessary to satisfy the initial constraint (9.16). It is clear that these results
collapse to the kinematics of equilibrium field theory in the limit u=t ! 0.

Keeping m1 and m2 distinct, the � width for t > 0 is given by

�ð1Þ
� ðq; tÞ ¼ g2

64�2M

X
f�g;b¼�1

Z �

0
d�

Z uþðtÞ

u�ðtÞ
du sincðuÞ sin �

ðq2uðtÞ � jqj2cos 2�Þ2 ½�ðq
2
uðtÞ � jqj2; m2

1; m
2
2Þ � 4m2

1jqj2sin 2���1=2

� ½ðq2uðtÞ � jqj2 þm2
1 �m2

2Þjqj cos �þ bquðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðq2uðtÞ � jqj2; m2

1; m
2
2Þ � 4m2

1jqj2sin 2�
q

�2

� �1�2ð1þ fBð�1E
ðbÞ
1 ðtÞÞ þ fBð�2E

ðbÞ
2 ðtÞÞÞ: (9.21)

The reality of the loop momentum jkðtÞj in (9.17) requires
that the discriminant

�ðq2uðtÞ � jqj2; m2
1; m

2
2Þ � 4m2

1jqj2sin 2� � 0; (9.22)

which is now a time-dependent kinematic constraint.
Furthermore, we require jkðbÞðtÞj � 0, EðbÞ

1 ðtÞ � m1 and
EðbÞ
2 ðtÞ � m2. For t > 0, the limits of integration u�ðtÞ

are given in Table III, where we have defined

!0ðq;�1;�2Þ�q0�ð�1m1þ�2m2Þ
�
1þ jqj2

ðm1þm2Þ2
�
1=2

;

(9.23)

which is the angular frequency of the sine-integral-like
oscillations of the integral. For t ¼ 0, u�ðtÞ ¼ 0 and the
domain of integration over u collapses to zero. Given
the analytic behavior of the integrand in the limit t ! 0,
the integral vanishes, as we expect.

For on-shell decay modes with q2 ¼ M2, the angular
frequency !0ðq; 1; 1Þ in (9.23) becomes

!0ðjqj;1;1Þ�!0ðq;1;1Þjq2¼M2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2þM2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2þðm1þm2Þ2

q
: (9.24)

Thus, the evolution of the phase space for on-threshold
decays with M2 ¼ ðm1 þm2Þ2 is critically damped. We
note that in the large momentum limit jqj � M,

!0ðjqj; 1; 1Þjjqj�M ’ M2 � ðm1 þm2Þ2
2jqj ; (9.25)

such that the evolution of the phase space for high-
momentum modes is similarly damped. The momentum
dependence of !0ðjqj; �1; �2Þ is shown in Fig. 7.
The summation over �1 and �2 yields four distinct con-

tributions to the decay width [45,61]. For �1 ¼ �2 ¼ þ1,
we obtain the contribution from the familiar 1 ! 2 decay
process presented in Fig. 8(a). For �1 ¼ ��2 ¼ �1, we
obtain the two 2 ! 1 Landau-damping contributions dis-
played in Fig. 8(b). For �1 ¼ �2 ¼ �1, we obtain the
3 ! 0 total annihilation process shown in Fig. 8(c). In the
latter, the decay ‘‘products’’ appear in the initial state along
with the decaying particle. For late times, the Landau
damping and total annihilation processes are kinematically

FIG. 7 (color online). The dependence of!0ðjqj; �1; �2Þ=M on
jqj=M for processes related to 1 ! 2 decay (solid black), Landau
damping (blue dotted) and 3 ! 0 total annihilation (red dashed),
where q2 ¼ M2 and m1 ¼ m2 ¼ m ¼ 0:01 GeV. The latter two
of these processes become highly oscillatory for large jqj=M.

TABLE III. Limits of integration of the evanescent action u for
each of the four processes contributing to the nonequilibrium
thermal � width of our specific model for t > 0, where the
angular frequency !0ðq;�1; �2Þ is defined in (9.23).

�1 ¼ �2 ¼ þ1 �1 ¼ ��2 �1 ¼ �2 ¼ �1

uþðtÞ !0ðq; �1; �2Þt !0ðq;�1; �2Þt þ1
u�ðtÞ �1 0 !0ðq; �1; �2Þt
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disallowed, as we would expect. They are only permitted in
the evanescent regime at early times.

Figures 9–11 contain contour plots of u versus � for the

four contributions to the on-shell differential width d2�ð1Þ
� .

The equilibrium kinematics are obtained in the large-time
limit t ! 1 as follows. As can be seen from the ðu; �Þ

contour plots in Fig. 9, for the 1 ! 2 decay process, the

limits of integration grow to encompass the full range of

the sinc function. At the same time, the u dependence

of the phase-space prefactors vanishes, since quðtÞ ! q0
as t ! 1. For the 3 ! 0 total annihilation process, the

domain of integration vanishes in the large-time limit

t ! 1. Given that the integrand is finite in the same limit,

the contribution therefore vanishes as expected, which is

confirmed by our ðu; �Þ contour plots in Fig. 10. For the two
Landau-damping contributions, the large-time behavior be-

comes more subtle. As t ! 1, the domain of integration

covers approximately all positive u. However, the kinemati-

cally allowed phase space cannot be attained with any

values of u and �, so that the two Landau-damping contri-
butions also vanish in the large-time limit. This behavior is
reflected in our ðu; �Þ contour plots of Fig. 11. Thus, only the

FIG. 10 (color online). Contour plots of u versus � for the 3 ! 0 total annihilation contribution to d2�ð1Þ
� for discrete values of Mt,

where q2 ¼ M2 and jqj ¼ 10 GeV. The regions to the left of the red dotted line are exterior to the domain of integration over u.

FIG. 8. Processes contributing to the time-dependent � width:
(a) the familiar 1 ! 2 decay, (b) 2 ! 1 Landau damping, and
(c) 3 ! 0 total annihilation.

FIG. 9 (color online). Contour plots of u versus � for the 1 ! 2 decay contribution to d2�ð1Þ
� for discrete values ofMt, with q2 ¼ M2

and jqj ¼ 10 GeV. The solid excluded regions to the right of the red dotted line lie exterior to the limits of integration over u.
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usual 1 ! 2 energy-conserving decay remains for late
times.

In order to reduce the statistical error in our Monte Carlo
integration over the ðu; �Þ phase space, we use a Gaussian
sampling bias to ensure that the majority of sampling
points fall over the dominant region of the sinc function
of u in (9.21). We define the weight function

$ðuÞ ¼ du

dr
� exp

�
�ðu� u0Þ2

2�2
u

�
; (9.26)

where

rðuÞ �
Erfð 1ffiffi

2
p u�u0

�u
Þ � Erfð 1ffiffi

2
p u��u0

�u
Þ

Erfð 1ffiffi
2

p uþ�u0
�u

Þ � Erfð 1ffiffi
2

p u��u0
�u

Þ 2 ½0; 1�: (9.27)

After performing the change of the variable u ! r in (9.21)
for u0 ¼ 0, the limits of integration become time-
independent and are identical for the decay, total annihila-
tion and Landau-damping contributions. The dependence
upon the limits uþðtÞ and u�ðtÞ appears instead within the
transformed integrand of (9.21) in the new variables ðr; �Þ.
The width of the dominant region of the u phase space is

taken to be the distance between the central maximum and
the maximum at which the amplitude of the sinc function
has fallen to 0.1% with respect to the central maximum.
Hence, we require for the distant maximum to be at the
location where sincun 
 0:001. The extrema un of the sinc
function satisfy the transcendental equation

un ¼ tanun; (9.28)

whose solutions for n � 1 may be expressed as [112]

FIG. 11 (color online). Contour plots of u versus � for the two Landau-damping contributions (a) �1 ¼ ��2 ¼ þ1 and

(b) �1 ¼ ��2 ¼ �1 to d2�ð1Þ
� for discrete values of Mt, assuming q2 ¼ M2 and jqj ¼ 10 GeV. The regions to the right of the red

dotted line are exterior to the domain of integration overu. The contour plots differ between the two contributions due to the asymmetry of
the integrands in the � three-momentum.
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un ¼�n�exp

�
1

�

Z 1

0
d	

1

	
arg

��
1þ1

2
	 ln

1�	

1þ	
�1

2
�i	

�
2

þn2�2	2

�

: (9.29)

The required extremum is then given by n ¼ 318, the
159th maximum of the sinc function, with u318 ¼ 1000.
The Gaussian weight function $ðuÞ in (9.26) is then taken
to have a variance of �2

u ¼ ðu318=2Þ2, such that 95% of the
sampling points fall within this dominant region.

Our interest is in the deviation of the one-loop �

width �ð1Þ
� from the known equilibrium result. It is there-

fore convenient to define the ratio ��ð1Þ
� ðjqj; tÞ of the

time-dependent width to its late-time equilibrium value
for q2 ¼ M2:

��ð1Þ
� ðjqj; tÞ ¼ �ð1Þ

� ðjqj; tÞ
�ð1Þ
� ðjqj; t ! 1Þ

¼ �ð1Þ1!2
� ðjqj; tÞ þ 2�ð1ÞLandau

� ðjqj; tÞ þ �ð1Þ3!0
� ðjqj; tÞ

�ð1Þ
� ðjqj; t ! 1Þ :

(9.30)

In Fig. 12, we plot separately the four contributions from
Fig. 8 to this ratio as a function ofMt for a series of discrete
momenta. The evanescent Landau-damping processes
yield a prompt contribution, which can be as high as
10%–20% at early times. The evanescent total annihilation
process contributes similarly at the level of about 5%.

In Fig. 13, we plot the total ratio ��ð1Þ
� ðjqj; tÞ as a function

of Mt. The total � width �ð1Þ
� ðjqj; tÞ is vanishing for

Mt ¼ 0, as we would expect. This is followed promptly
by a sharp rise, which is particularly pronounced in the
infra-red modes, resulting from the sudden switching on of
the interactions. This so-called shock regime is followed
by the superposition of transient oscillations of angular
frequency !0 with short time scales and non-Markovian
oscillations of longer time scales. The latter of these oscil-
lations exhibit time-dependent frequencies, the origin of
which will be discussed in the next section.

C. Non-Markovian oscillations

As we have seen in Figs. 12 and 13, the time-dependent
� width contains a superposition of damped oscillatory
contributions. The longer lived of these oscillations ex-
hibit time-dependent frequencies. These non-Markovian
oscillations are illustrated more clearly in Fig. 14 for the

FIG. 12 (color online). The four separate contributions to the ratio ��ð1Þ
� in (9.30) versusMt, for on-shell decays with jqj ¼ 1 GeV, 10

and 100 GeV. The two Landau-damping contributions are identical up to numerical errors.
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jqj ¼ 1 GeV mode in which a moving time average is
carried out to eliminate the higher-frequency Markovian
oscillations. In this section, we describe the origin of the
time-dependent oscillations and show that they are not a
numerical artefact, but are instead an intrinsic feature
inherent to the dynamics of truly out-of-equilibrium sys-
tems. To this end, we consider the high-temperature limit
T � M of the time-dependent � width.

In this high-temperature limit T � M, the Bose-
Einstein distribution may be approximated as follows:

fBðEÞ � T

E
: (9.31)

Returning to the � width �ð1Þ
� in (9.8) and substituting for

(9.31), we may perform the angular integration by making
the following change of variables:

cos � ¼ jkj2 þ jqj2 þm2
2

2jkjjqj ð1� x2Þ: (9.32)

Then, the high-temperature limit T � M of the time-
dependent width of the heavy scalar � becomes

�ð1Þ;T�M
� ðq; tÞ ¼ g2

32�2M

X
f�g

�1��

Z 1

0
djkj jkjjqj

1

E1

��
1þ T

�1E1

þ T

q0 � �1E1

�
Si½ðq0 � �1E1 � �2E2Þt�

� T

q0 � �1E1

ðsin ½ðq0 � �1E1Þt�Cið�2E2tÞ � cos ½ðq0 � �1E1Þt�Sið�2E2tÞÞ
�
; (9.33)

where SiðxÞ and CiðxÞ are respectively the sine integral and cosine integral functions. We have introduced the short-hand
notations: f�g for the summation over �1, �2, �� ¼ �1; and

E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

1

q
; (9.34)

E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 � 2��jkjjqj þ jqj2 þm2

2

q
: (9.35)

In terms of the evanescent action u given in (9.13), the high-temperature limit of the one-loop � width reads

FIG. 14. Non-Markovian oscillations of the 1 ! 2 decay con-

tribution to the ratio ��ð1Þ
� in (9.30) against Mt, by performing a

moving average over bins of 150 in Mt.

FIG. 13 (color online). The ratio ��ð1Þ
� in (9.30) versus Mt, for

on-shell decays with jqj ¼ 1 GeV (solid black), 10 GeV (blue
dotted) and 100 GeV (red dashed).
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�ð1Þ;T�M
� ðq; tÞ ¼ g2

32�2Mt

X
f�g;b¼�1

�1�2

Z uþðtÞ

u�ðtÞ
du

�
quðtÞ

�1=2ðq2uðtÞ � jqj2; m2
1; m

2
2Þ
�

m2
1 þm2

2

q2uðtÞ � jqj2 �
�

m2
1 �m2

2

q2uðtÞ � jqj2
�
2
�

þ b��

2jqj
�
1� ðq2uðtÞ þ jqj2Þðm2

1 �m2
2Þ

ðq2uðtÞ � jqj2Þ2
�
��

1þ T

!ðbÞ
1 ðq; u; tÞ þ

T

quðtÞ �!ðbÞ
2 ðq; u; tÞ

�
SiðuÞ

� T

!ðbÞ
1 ðq; u; tÞ ðsin ð!

ðbÞ
1 ðq; u; tÞtÞCið!ðbÞ

2 ðq; u; tÞtÞ � cos ð!ðbÞ
1 ðq; u; tÞtÞSið!ðbÞ

2 ðq; u; tÞtÞÞ
�
; (9.36)

where !ðbÞ
1 ðq; u; tÞ and !ðbÞ

2 ðq; u; tÞ are time-dependent non-Markovian frequencies defined as

!ðbÞ
1 ðq; u; tÞ ¼ q0 � ðq2uðtÞ � jqj2 þm2

1 �m2
2ÞquðtÞ þ b��jqj�1=2ðq2uðtÞ � jqj2; m2

1; m
2
2Þ

2ðq2uðtÞ � jqj2Þ ; (9.37a)

!ðbÞ
2 ðq; u; tÞ ¼ ðq2uðtÞ � jqj2 �m2

1 þm2
2ÞquðtÞ � b��jqj�1=2ðq2uðtÞ � jqj2; m2

1; m
2
2Þ

2ðq2uðtÞ � jqj2Þ : (9.37b)

The time dependence of the frequency!ðbÞ
1 ðq; u; tÞ is shown

in Fig. 15 for �� ¼ þ1, with the on-shell constraint q2 ¼
M2. The b ¼ 1 contribution persists for late times, at which
point the frequency of themodulations have decayed to zero.
The b ¼ �1 contribution is disallowed for late times, such
that the amplitude of this constant-frequency modulation is
damped to zero. For �� ¼ �1, the b ¼ þ1 and b ¼ �1
contributions are interchanged, such that the frequency of
theb ¼ �1 contribution reduces to zero for late times. Thus,
we obtain the expected kinematics and equilibrium behavior
in the late-time limit. We have not plotted !ðbÞ

2 , as its
behavior is indistinguishable from!ðbÞ

1 , form1 ¼ m2 ¼ m.

Looking again at (9.36), we observe that these non-
Markovian oscillations occur only for T � 0. We conclude
therefore that this behavior signifies a genuine nonequilib-
rium statistical effect.

D. Perturbative time evolution equations

In this section, we carry out a loopwise expansion of the
time evolution equations derived in Sec. VII to leading
order in the coupling g, evaluating their one-loop structure
for our simple scalar model. For perturbatively small cou-
plings, such a loopwise expansion is expected to accurately
capture the early-time dynamics of nonequilibrium sys-
tems. This is a regime, in which the applicability of trun-
cated gradient expansions becomes questionable, according
to our discussion in Sec. IVB. Given the closed analytic
form of the free CTP propagators, both the amplitudes of
contributing processes and the resulting phase-space inte-
grals describing the kinematics can be analytically deter-
mined. The systematic treatment of these kinematic effects
is essential to understand the consequences on the early-
time dynamics. In particular, we illustrate the significance
of contributions from the energy-non-conserving evanes-
cent regime to the dynamics of the system.
Let us first return to the Boltzmann-like equation in

(7.17), in which we artificially imposed energy conserva-
tion. The collision terms for the real scalar � are

��;>ðp; tÞ��;<ðp; tÞ ���;<ðp; tÞ��;>ðp; tÞ: (9.38)

Since we have assumed that the two subsystems S� and S�

are separately in thermodynamic equilibrium at the same
temperature T at the initial time t ¼ 0, the � propagators
and self-energies will initially satisfy the KMS relation, i.e.

��;>ðp; 0Þ ¼ e�p0��;<ðp; 0Þ;
��;>ðp; 0Þ ¼ e�p0��;<ðp; 0Þ:

(9.39)

As a consequence of the KMS relation, the collision terms
in (9.38) are identical to zero. This is true also in the
collision terms of the truncated gradient expansion of the

FIG. 15 (color online). !ðbÞ
1 ðq; u; tÞ=M versus Mt for the first

three extrema of sincðuÞ: u1 ¼ 4:49 (leftmost black lines), u2 ¼
7:73 (central blue lines) and u3 ¼ 10:90 (rightmost red lines),
obtained by (9.29), for q2 ¼ M2, jqj ¼ 10 GeV and �� ¼ þ1.
Solid lines correspond to b ¼ 1 and dashed lines, b ¼ �1 in
(9.37a). The dotted lines mark the upper limit of the kinemati-
cally disallowed region.
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Kadanoff-Baym kinetic equation in (E5b). With no
external sources present to perturb the combined system
S from this noninteracting equilibrium, we are faced with
the problem that the statistical distribution functions
will not evolve from their initial forms. In reality, after
the quantum quench, we anticipate that the system
should evolve to some new interacting thermodynamic
equilibrium for late times. We conclude therefore that the

energy-non-conserving evanescent regime described by
our approach is entirely necessary to account correctly
for the evolution of this system.
We now turn our attention to the master time evolution

equation (7.14). Truncating to leading order in the coupling
g, the rhs of this time evolution equation contains free
propagators and one-loop self-energies. For instance, the
one-loop collision terms in (7.14) are obtained from

Cð1Þ
�
pþ P

2
; p� P

2
; t; 0

�
� 1

2

Z d4q

ð2�Þ4
�
i�ð1Þ

>

�
pþ P

2
; q; t; 0

�
i�0

<

�
q; p� P

2
; t; 0

�

� i�ð1Þ
<

�
pþ P

2
; q; t

��
i�0

>

�
q; p� P

2
; t; 0

�
� 2i�0

P

�
q; p� P

2
; t; 0

���
: (9.40)

We insert the one-loop integrals (9.3a) and (9.3b), containing the homogeneous and spectrally free � and � distribution

functions, f�ðjpj; tÞ and fðCÞ� ðjpj; tÞ, into the full time evolution equation (7.14) for the � and � fields. Note that the f
distribution functions are real in this spatially homogeneous limit. We tacitly assume that a system initially prepared in a
spatially homogeneous state remains spatially homogeneous throughout its evolution. This assumption is reasonable if the
system has infinite spatial extent.

We may perform the loop and convolution integrals using the techniques and results of Appendix F. After carrying out
the p0 and P0 integrals in (7.14), we obtain the following one-loop time evolution equation for the spatially homogeneous
statistical distribution function f�ðjpj; tÞ of the real scalar field:

@tf�ðjpj; tÞ ¼ �g2

2

X
f�g

Z d3k

ð2�Þ3
1

2E�ðpÞ
1

2E�ðkÞ
1

2E�ðp� kÞ
t

2�
sinc½ð�E�ðpÞ � �1E�ðkÞ � �2E�ðp� kÞÞt=2�

� f�þ 2Si½ð�E�ðpÞ þ �1E�ðkÞ þ �2E�ðp� kÞÞt=2�gfð�ð��Þ þ f�ðjpj; tÞÞ
� ½�ð�1Þð1þ f�ðjkj; tÞÞ þ �ð��1ÞfC�ðjkj; tÞ�½�ð�2Þð1þ fC�ðjp� kj; tÞÞ
þ �ð��2Þf�ðjp� kj; tÞ� � ð�ð�Þ þ f�ðjpj; tÞÞ½�ð�1Þf�ðjkj; tÞ
þ �ð��1Þð1þ fC�ðjkj; tÞÞ�½�ð�2ÞfC�ðjp� kj; tÞ þ �ð��2Þð1þ f�ðjp� kj; tÞÞ�g: (9.41)

where SiðxÞ is the sine integral function and f�g is the short-hand notation for the summation over �, �1, �2 ¼ �1. With
the summation over f�g, the statistical factors in the braces of the last four lines of (9.41) contain the difference of
contributions from the four processes shown in Fig. 8 and their inverse processes. For early times, all of these evanescent
processes and inverse processes contribute, as can be seen from Fig. 12. The presence of SiðxÞ ensures that the correct late-
time limit and kinematics are obtained on restoration of energy conservation. This factor is missing in the existing
descriptions, see e.g. [50,67]. The dispersive force term and off-shell collision term vanish in the spatially homogeneous
case, thanks to the symmetry of the self-energy under P ! �P.

In the large-time limit t ! 1, we have

t

2�
sinc½ð�E�ðpÞ � �1E�ðkÞ � �2E�ðp� kÞÞt=2�f�þ 2Si½ð�E�ðpÞ þ �1E�ðkÞ þ �2E�ðp� kÞÞt=2�g
!
t!12��ð�Þ�ðE�ðpÞ � �1E�ðkÞ � �2E�ðp� kÞÞ: (9.42)

The kinematic constraints then force � ¼ �1 ¼ �2 ¼ þ1 and we obtain

@tf�ðjpj; tÞ ¼ �g2

2

Z d3k

ð2�Þ3
1

2E�ðpÞ
1

2E�ðkÞ
1

2E�ðp� kÞ 2��ðE�ðpÞ � E�ðkÞ � E�ðp� kÞÞ

� ½f�ðjpj; tÞð1þ f�ðjkj; tÞÞð1þ fC�ðjp� kj; tÞÞ � ð1þ f�ðjpj; tÞÞf�ðjkj; tÞfC�ðjp� kj; tÞ�: (9.43)

Equation (9.43) corresponds to the semiclassical Boltzmann equation [cf. (7.17)].
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By analogy, the one-loop time evolution equation for the spatially homogeneous statistical distribution function
f�ðjpj; tÞ of the complex scalar field � is given by

@tf�ðjpj; tÞ¼�g2

2

X
f�g

Z d3k

ð2�Þ3
1

2E�ðpÞ
1

2E�ðkÞ
1

2E�ðp�kÞ
t

2�
sinc½ð�E�ðpÞ��1E�ðkÞ��2E�ðp�kÞÞt=2�

�f�þ2Si½ð�E�ðpÞþ�1E�ðkÞþ�2E�ðp�kÞÞt=2�gf½�ð�Þf�ðjpj; tÞþ�ð��Þð1þfC�ðjpj; tÞÞ�
�ð�ð�1Þþf�ðjkj; tÞÞ½�ð�2Þð1þf�ðjp�kj;tÞÞþ�ð��2ÞfC�ðjp�kj;tÞ�
�½�ð�Þð1þf�ðjpj;tÞÞþ�ð��ÞfC�ðjpj;tÞ�ð�ð��1Þþf�ðjpj; tÞÞ
�½�ð�2Þf�ðjp�kj; tÞþ�ð��2Þð1þfC�ðjp�kj; tÞÞ�g: (9.44)

In the large-time limit t ! 1, the kinematics restrict � ¼ �1 ¼ ��2 ¼ þ1, giving

@tf�ðjpj; tÞ ¼ �g2

2

Z d3k

ð2�Þ3
1

2E�ðpÞ
1

2E�ðkÞ
1

2E�ðp� kÞ 2��ðE�ðkÞ � E�ðpÞ � E�ðp� kÞÞ

� ½ð1þ f�ðjkj; tÞÞf�ðjpj; tÞfC�ðjp� kj; tÞ � f�ðjkj; tÞð1þ f�ðjpj; tÞÞð1þ fC�ðjp� kj; tÞÞ�: (9.45)

This result is consistent with (9.43), differing by an overall sign, as one should expect.
At t ¼ 0, the semiclassical Boltzmann transport equation in (9.43) becomes

@tf�ðjpj; tÞjt¼0 ¼ �g2

2

Z d3k

ð2�Þ3
1

2E�ðpÞ
1

2E�ðkÞ
1

2E�ðp� kÞ 2��ðE�ðpÞ � E�ðkÞ � E�ðp� kÞÞ

� ½fBðE�ðpÞÞð1þ fBðE�ðkÞÞ þ fCBðE�ðp� kÞÞÞ � fBðE�ðkÞÞfCBðE�ðp� kÞÞ�; (9.46)

where we remind the reader that energy conservation is arti-
ficially imposed.Byvirtueof this energyconservation, thefirst
product of statistical factors in (9.46) satisfies the identity

fBðE�ðpÞÞð1þ fBðE�ðkÞÞ þ fCBðE�ðp� kÞÞÞ
¼ fBðE�ðkÞÞfCBðE�ðp� kÞÞ: (9.47)

As a result, the rhs of (9.43) is exactly zero at t ¼ 0.
Consequently, the energy-non-conserving evanescent regime
plays a fundamental role in the description of the evolution of
the system S.

We now wish to show that the master time evolution
equations (9.41) and (9.44) of our perturbative approach
describe a nontrivial evolution of the system S. For
this purpose, we consider the time evolution equation
of the heavy scalar � in (9.41) and assume that the �

statistical distribution functions fðCÞ� ðjpj; tÞ of the rhs
remain in their initial equilibrium forms for all

times, i.e. fðCÞ� ðjpj; tÞ ¼ fBðE�ðpÞÞ ð�=T 	 1Þ. With this

assumption, we see from Fig. 16 that the rhs of (9.41) is
nonzero for early times. Thus, the system S is indeed
perturbed from its noninteracting equilibrium by the
evanescent processes described by our perturbative time
evolution equations (9.41) and (9.44).
Let us finally have a closer look at the early-time be-

havior that immediately follows after the switching on of
the interactions. We expect that this prompt behavior is
dominated by the ultraviolet contribution to the phase-
space integral on the rhs of (9.41) due to the Heisenberg
uncertainty principle. From Fig. 13, we see that this shock
regime contributes dominantly to the prompt evolution of
the infrared modes of f�ðjpj; tÞ. In this regime, we take
jpj ¼ 0 and m ¼ 0 in (9.41) and introduce the ultraviolet
cutoff � in the limits of the phase-space integrals of the
rhs. Assuming that the � distribution functions are tem-
pered, vanishing faster than a power law for large mo-
menta, we may ignore their contribution in the ultraviolet
limit. Hence, @tf�ðjpj ¼ 0; tÞ can be approximated by

@tf�ðjpj ¼ 0; tÞ 
 � g2

32�3M
ð1þ 2f�ðjpj ¼ 0; tÞÞ lim

�!1
Si2ð�tÞ: (9.48)

Clearly, @tf�ðjpj ¼ 0; tÞ vanishes in the limit t 	 1=� ! 0, as we expect. Expanding Sið�tÞ about �t ¼ 0, i.e. for times
infinitesimally close to zero, we obtain

@tf�ðjpj ¼ 0; tÞ 
 � g2

32�3M
ð1þ 2f�ðjpj ¼ 0; 0ÞÞ lim

�!1
ð�tÞ2: (9.49)
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For small but finite times, ultraviolet contributions are
rapidly varying. It is apparent from this discussion and
Figs. 13 and 16 that the effect of the transient behavior
of the system upon its subsequent dynamics is signifi-
cant, since the quantum memories persist on long time
scales Mt � 1. We may therefore conclude that as op-
posed to other methods relying on a truncated gradient
expansion, our approach consistently describes this
highly oscillatory and rapidly evolving early-time be-
havior of the system.

E. Inclusion of thermal masses

In this section, we describe how local thermal-mass
corrections may be incorporated consistently into our
approach.

The local part of the one-loop � self-energy shown in
Fig. 4 has the explicit form

�locð1Þ
� ðp; p0;~tf; ~tiÞ
¼ ��

2
ð2�Þ4�ð4Þ

t ðp� p0Þð2��Þ2
eiðp0�p0
0
Þ~tf

�
ZZ ddk

ð2�Þd
d4k0

ð2�Þ4
�

i

k2 �m2 þ i

ð2�Þ4�ð4Þðk� k0Þ

þ 2��ðk2 �m2Þj2k0j1=2 ~f�ðk; k0; tÞ
� eiðk0�k0

0
Þ~tf j2k00j1=22��ðk02 �m2Þ

�
; (9.50)

with d ¼ 4� 2
 (cf. Appendix F). The first term yields the
standard zero-temperature UV divergence, which is usu-
ally removed by mass renormalization. The second term
yields

�locð1Þ
� ðp; p0;~tf; ~tiÞ
¼ �ð2�Þ4�ð4Þ

t ðp� p0Þeiðp0�p0
0
Þ~tfm2

thð~tf; ~tiÞ; (9.51)

where the time-dependent thermal mass mthð~tf; ~tiÞ,
given by

m2
thð~tf; ~tiÞ ¼

�

2

Z d3k

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E�ðkÞ
q Z d3k0

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E�ðk0Þ
q

� ðf�ðk;k0; tÞei½EðkÞ�Eðk0Þ�~tf

þ fC�� ð�k;�k0; tÞe�i½EðkÞ�Eðk0Þ�~tf Þ; (9.52)

is UV finite. Notice that a unique thermal mass may not be
defined in the spatially inhomogeneous case due to the
explicit dependence on ~tf.

From the Schwinger-Dyson equation in (4.32), the in-
verse quasiparticle CTP propagator ��1

�;abðp; p0;~tf; ~tiÞ of

the complex scalar field � takes the form

��1
�;abðp; p0;~tf; ~tiÞ ¼ ð2�Þ4�ð4Þ

t ðp� p0Þeiðp0�p0
0Þ~tf

� ½ðp02 �m2
thð~tf; ~tiÞÞ�ab þ i
Iab�;

(9.53)

in which we have assumed mthðtÞ � m. If the quartic �
self-interaction is switched on sufficiently long before
t ¼ 0, then for t � 0, we may replace the �t function in
the inverse quasiparticle propagator (9.53) by an exact
energy-conserving delta function. This imposition of en-
ergy conservation constitutes a quasiparticle approxima-
tion, allowing us to invert (9.53) exactly, using the
arguments of Secs. III B and IVC, to obtain the following
quasiparticle � propagators:

FIG. 16. Numerical estimates of @tf�ðjpj; tÞ, as a function
of Mt, assuming that the � statistical distribution func-

tions fðCÞ� ðjpj; tÞ on the rhs of the time evolution equation

(9.41) maintain their equilibrium Bose-Einstein form for all
times.
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�0;ab
� ðp;p0;~tf;~tiÞ¼

ðp2�m2
thð~tf;~tiÞþ i
Þ�1 �i2��ð�p0Þ�ðp2�m2

thð~tf;~tiÞÞ
�i2��ðp0Þ�ðp2�m2

thð~tf;~tiÞÞ �ðp2�m2
thð~tf;~tiÞ� i
Þ�1

" #
ð2�Þ4�ð4Þðp�p0Þ

� i2�j2p0j1=2�ðp2�m2
thð~tf;~tiÞÞ~f�ðp;p0; tÞeiðp0�p0

0
Þ~tf2�j2p0

0j1=2�ðp02�m2
thð~tf;~tiÞÞ

1 1

1 1

" #
: (9.54)

If the subsystem S� is in a state of thermodynamic

equilibrium at the initial time t ¼ 0, the thermal mass
reduces to the known result

m2
thðt ¼ 0Þ ¼ �T2

24
; (9.55)

for m ¼ 0 and � 	 T. In order to describe completely the
dynamics of the combined systemS ¼ S� [ S�, we couple

the evolution of the thermal mass mthðtÞ to the perturbative
time evolution equations (9.41) and (9.44) for the � and �
statistical distribution functions. This is achieved by differ-
entiating (9.52) with respect to t, such that

@tmthðtÞ¼ �

2mthðtÞ
Z d3k

ð2�Þ3
1

2E�ðkÞ
1

2
ð@tf�ðjkj;tÞ

þ@tf
C
�ðjkj; tÞÞ: (9.56)

Here, @tf�ðjkj; tÞ and @tf
C
�ðjkj; tÞ depend implicitly

upon mthðtÞ via the coupled first-order differential
equations (9.41) and (9.44), derived using the quasiparticle
� propagators in (9.54). On dimensional grounds, we may
estimate that the leading contribution to @tmthðtÞ is of order
�1=2gT. The latter estimate provides firm support that our
time evolution equations may consistently incorporate ther-
mal masses and so describe the main nonperturbative
dynamics of the system.

X. CONCLUSIONS

We have developed a new perturbative approach to non-
equilibrium thermal quantum field theory. Our perturbative
approach is based upon nonhomogeneous free propagators
and time-dependent vertices, which explicitly break space-
time translational invariance and properly encode the de-
pendence of the system on the time of observation. The
forms of these propagators are constrained by fundamental
field-theoretic requirements, such as CPT invariance of the
action, Hermiticity properties of correlation functions, cau-
sality and unitarity. We have shown that our perturbative
approach gives rise to time-dependent diagrammatic per-
turbation series, which are free of pinch singularities. The
absence of these pinch singularities results from the system-
atic inclusion of finite-time effects and the proper consid-
eration of the time of observation.We emphasize that this is
achieved without invoking ad hoc prescriptions or effective
resummations of finite widths. In our formalism, we have
derived the newmaster time evolution equations (7.13) and
(7.14) for particle number densities and statistical distribu-
tion functions, which are valid to all orders in perturbation
theory and to all orders in gradient expansion. Furthermore,
the master time evolution equations (7.13) and (7.14)

respect CPT invariance and are also invariant under time
translations of the CTP contour. As opposed to other meth-
ods, in our perturbative approach, we do not need to employ
quasiparticle approximation and no assumption is neces-
sary about the separation of time scales.
Wehave shownhow the effect of a finite time interval since

the start of evolution of the system leads toviolation of energy
conservation, as dictated by the Heisenberg uncertainty prin-
ciple. Our approach permits the systematic treatment of the
pertinent generalized kinematics in this evanescent regime.
Wehave found that the availablephase space of1 ! 2 decays
increases and would-be kinematically disallowed processes
can still take place at early times, contributing significantly to
our time evolution equations. Within a simple scalar model,
we have illustrated that these kinematically forbidden eva-
nescent processes are the 2 !1 processes of Landau damp-
ing, as well as 3 ! 0 processes of total annihilation into the
thermal bath. The processes of Landau damping and total
annihilation have been shown to contribute promptly to the
particle width, to a level as high as 20%. The switching on of
the interactions leads to a quantum quench in the system,
which manifests itself as a rapid change in both the particle
width and the collision terms of the time evolution
equations. These early-time effects give rise to an oscillat-
ing pattern, which persists even at later times. We have
demonstrated that these late-time memory effects exhibit a
non-Markovian evolution characterized by oscillations with
time-dependent frequencies. The latter constitutes a distinc-
tive feature of proper nonequilibrium dynamics, which is
consistently predicted by our perturbative approach.
We note that the rapid transient behavior of the system

makes the method of gradient expansion unsuitable for
early times. We emphasize that in our approach no as-
sumption was made as to the relative rate of thermalization
of either the statistical or spectral behavior of the system.
For the considered initial conditions of thermal equilib-
rium, we have found that the spectral evolution resulting
from evanescent contributions is critical to the early-time
statistical dynamics of the system. Consequently, it would
have been inappropriate to assume a separation of time
scales at early times. A more accurate numerical solution
to our time evolution equations turns out to be computa-
tionally intensive and may be presented elsewhere.
Finite-time effects, which are systematically incorporated

in our perturbative approach, are also relevant tomany-body
systems whenever a natural characteristic time scale for
perturbations arises in such systems. Thus, in addition to
possible applications to reheating and preheating, of par-
ticular interest are first-order phase transitions. For instance,
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such characteristic time scales result from the bubble wall
velocity of nucleation in the electroweak phase transition,
e.g. see [113,114]. In the vicinity of the bubble wall, eva-
nescent contributions may weaken the constraints of decay
and inverse decay thresholds and so affect the washout
phenomena and the generation of relic densities. This eva-
nescent regime is particularly relevant to prethermalization
[115] and isotropization [63] time scales, which are known
to be shorter than the time scale of thermalization.

It is straightforward to generalize our perturbative ap-
proach to theories that include fermions and gauge fields.
Thus, it would be very interesting to extend the classical
approaches [86,116] to kinetic equations of particle mixing
to nonhomogeneous backgrounds, by including finite-time
evanescent effects in line with the nonequilibrium formal-
ism presented in this paper.
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APPENDIX A: PROPAGATOR PROPERTIES
AND IDENTITIES

In this appendix, we give a detailed summary of the
transformation properties and identities that relate the vari-
ous propagators defined in Sec. II. In detail, the pertinent
two-point correlation functions for the complex scalar field
� are given by

i�ðx; yÞ � h½�ðxÞ; �yðyÞ�i; (A1a)

i�1ðx; yÞ � hf�ðxÞ; �yðyÞgi; (A1b)

i�Rðx; yÞ � �ðx0 � y0Þi�ðx; yÞ; (A1c)

i�Aðx; yÞ � ��ðy0 � x0Þi�ðx; yÞ; (A1d)

i�P ðx; yÞ � 1

2
"ðx0 � y0Þh½�ðxÞ; �yðyÞ�i; (A1e)

i�>ðx; yÞ � h�ðxÞ�yðyÞi; (A1f)

i�<ðx; yÞ � h�yðyÞ�ðxÞi; (A1g)

i�Fðx; yÞ � hT½�ðxÞ�yðyÞ�i; (A1h)

i�Dðx; yÞ � h �T½�ðxÞ�yðyÞ�i: (A1i)

The definitions of the charge-conjugate propagators follow
from the unitary transformation

Uy
C�ðxÞUC ¼ �CðxÞ ¼ ��yðxÞ; (A2a)

Uy
C�

yðxÞUC ¼ �CyðxÞ ¼ ���ðxÞ; (A2b)

where the complex phase � satisfies j�j2 ¼ 1.
It follows from the definitions that the propagators sat-

isfy the transformations listed below under charge and
Hermitian conjugation:

�ðx; yÞ ¼ ���ðy; xÞ ¼ ��Cðy; xÞ; (A3a)

�1ðx; yÞ ¼ ���
1ðy; xÞ ¼ �C

1 ðy; xÞ; (A3b)

�P ðx; yÞ ¼ ��
P ðy; xÞ ¼ �C

P ðy; xÞ; (A3c)

�Rðx; yÞ ¼ �C�
R ðx; yÞ ¼ ��

Aðy; xÞ ¼ �C
Aðy; xÞ; (A3d)

�>ðx; yÞ ¼ ���
>ðy; xÞ ¼ �C

<ðy; xÞ ¼ ��C�
< ðx; yÞ; (A3e)

�Fðx; yÞ ¼ �C
F ðy; xÞ ¼ ���

Dðy; xÞ ¼ ��C�
D ðx; yÞ; (A3f)

where the action of charge conjugation is trivial in the case
of a real scalar field. In the double momentum representa-
tion, these identities take the form:

�ðp;p0Þ¼���ðp0;pÞ¼��Cð�p0;�pÞ; (A4a)

�1ðp;p0Þ¼���
1ðp0;pÞ¼�C

1 ð�p0;�pÞ; (A4b)

�P ðp;p0Þ¼��
P ðp0;pÞ¼�C

P ð�p0;�pÞ; (A4c)

�Rðp;p0Þ¼�C�
R ð�p;�p0Þ¼��

Aðp0;pÞ¼�C
Að�p0;�pÞ;

(A4d)

�>ðp;p0Þ¼���
>ðp0;pÞ¼�C

<ð�p0;�pÞ
¼��C�

< ð�p;�p0Þ; (A4e)

�Fðp;p0Þ¼�C
F ð�p0;�pÞ¼���

Dðp0;pÞ
¼��C�

D ð�p;�p0Þ: (A4f)

Finally, in the Wigner representation, the propagators sat-
isfy the following properties:

�ðq;XÞ¼���ðq;XÞ¼��Cð�q;XÞ; (A5a)

�1ðq;XÞ¼���
1ðq;XÞ¼�C

1 ð�q;XÞ; (A5b)

�P ðq;XÞ¼��
P ðq;XÞ¼�C

P ð�q;XÞ; (A5c)

�Rðq;XÞ¼�C�
R ð�q;XÞ¼��

Aðq;XÞ¼�C
Að�q;XÞ; (A5d)

�>ðq;XÞ¼���
>ðq;XÞ¼�C

<ð�q;XÞ¼��C�
< ð�q;XÞ;

(A5e)

�Fðq;XÞ¼�C
F ð�q;XÞ¼���

Dðq;XÞ¼��C�
D ð�q;XÞ:

(A5f)

We also list the following set of useful identities:

�ðx;yÞ¼�>ðx;yÞ��<ðx;yÞ
¼�Rðx;yÞ��Aðx;yÞ;
¼"ðx0�y0Þð�Fðx;yÞ��Dðx;yÞÞ; (A6a)

�1ðx;yÞ¼�>ðx;yÞþ�<ðx;yÞ¼�Fðx;yÞþ�Dðx;yÞ;
(A6b)

�RðAÞðx;yÞ¼�Fðx;yÞ��<ð>Þðx;yÞ
¼��Dðx;yÞþ�>ð<Þðx;yÞ; (A6c)

�FðDÞðx;yÞ¼1

2
ðð�Þ2�P ðx;yÞþ�>ðx;yÞþ�<ðx;yÞÞ;

(A6d)

�P ðx;yÞ¼1

2
ð�Rðx;yÞþ�Aðx;yÞÞ

¼1

2
ð�Fðx;yÞ��Dðx;yÞÞ: (A6e)
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We note that analogous relations hold for the correspond-
ing self-energies and that these identities and relations are
true for free and resummed propagators.

APPENDIX B: CORRESPONDENCE BETWEEN
IMAGINARYAND REAL-TIME FORMALISMS

In this appendix, we briefly outline a number of relevant
details of the ITF of thermal field theory. These details are
discussed in the context of the real scalar field theory
introduced in Sec. II. Subsequently, we identify the corre-
spondence of the ITF�-scalar propagator and its one-loop
nonlocal self-energy with results calculated explicitly in
real time, using the CTP formalism of Sec. III in the
equilibrium limit discussed in Sec. V.

The equilibrium density operator 
eq in (5.6) permits a

path-integral representation in negative imaginary time.
The ITF generating functional is

Z½J� ¼
Z
½d�� exp

�
� �S½�� þ

Z �

0
d�x

Z
d3xJð �xÞ�ð �xÞ

�
;

(B1)

with action

�S½�� ¼
Z �

0
d�x

Z
d3x

�
1

2
@��ð �xÞ@��ð �xÞ þ 1

2
M2�2ð �xÞ

þ 1

3!
g�3ð �xÞ þ 1

4!
��4ð �xÞ

�
: (B2)

We emphasize the restricted domain of integration over the
imaginary time �x 2 ½0; ��. Four-dimensional Euclidean
space-time coordinates are denoted by a horizontal bar, i.e.
�x� � ð�x;xÞ. In the limit � ! 1, (B1) is precisely the

Wick rotation to Euclidean space-time of the Minkowski-
space generating functional via the analytic continuation
x0 ! �i�x.

The free imaginary-time propagator ��0 may be written
as follows:

��0ð �x� �yÞ

¼ 1

�

Xþ1

‘¼�1

Z d3p

ð2�Þ3e
i½!‘ð�x��yÞþp�ðx�yÞ� ��0ði!‘;pÞ; (B3)

where

��0ði!‘;pÞ ¼ 1

!2
‘ þ p2 þM2

(B4)

is the so-called Matsubara propagator. The discrete
Matsubara frequencies !‘ ¼ 2�‘=�, ‘ 2 Z, arise from
the periodicity of the imaginary-time direction in order to
satisfy the KMS relation [cf. (5.15)]

��0ð �x� �yÞ ¼ ��0ð �x� �yþ �Þ: (B5)

The resummed Matsubara propagator is given by the
imaginary-time Schwinger-Dyson equation

���1ði!‘;pÞ ¼ ��0;�1ði!‘;pÞ þ ��ði!‘;pÞ; (B6)

where ��ð!‘;pÞ is the imaginary-time self-energy.
Equation (B6) may be inverted directly to obtain

��ði!‘;pÞ ¼ 1

!2
‘ þ p2 þM2 þ ��ði!‘;pÞ

: (B7)

The free Matsubara propagator in (B4) may also be
written in the following spectral representation:

��0ði!‘;pÞ ¼ �i
Z dk0

2�

�0ðk0;pÞ
i!‘ � k0

; (B8)

where

i�0ðk0;pÞ ¼ 2�"ðk0Þ�ðk20 � p2 �M2Þ (B9)

is the single-momentum representation of the free Pauli-
Jordan propagator, consistent with (2.16a). Making the
analytic continuation i!‘ ! p0 þ i
 to real frequencies
and comparing with the spectral representation of the
retarded propagator �R in (2.22), we may establish the
correspondence

��0ði!‘ ! p0 þ i
;pÞ ¼ ��0
RðpÞ: (B10)

This correspondence must also hold for the resummed

Matsubara propagator �� via (B6). As such, the analytic

continuation of the ITF self-energy ��,

��ði!‘ ! p0 þ i
;pÞ ¼ ��RðpÞ; (B11)

yields the equilibrium retarded self-energy �R.
Thus, in thermodynamic equilibrium, an exact correspon-

dence can be established between the ITF and the real-time
approach of the CTP formalism, by means of retarded
propagators and self-energies. The full complement of
propagators exhibited in Table II and the corresponding
self-energies may be obtained using the constraints of cau-
sality (2.24) and unitarity (2.28) in combination with the
KMS relation (5.16) and the condition of detailed balance
(5.25). The relationships between the retarded and CTP
propagators and self-energies are listed explicitly in (5.19)
and (5.26).
To illustrate the correspondence in (B11), we consider

the one-loop bubble diagram of the real scalar theory in
(2.1). The real and imaginary parts of the retarded self-
energy �R may be calculated in the CTP formalism from
the time-ordered� and positive-frequency Wightman�>

self-energies, respectively, using the relations in (5.26).

The real part of the one-loop retarded self-energy�ð1Þ
R is

given by

Re�ð1Þ
R ðpÞ¼Re

�
�i

ð�igÞ2
2

Z d4k

ð2�Þ4 i�
0
FðkÞi�0

Fðp�kÞ
�
;

(B12)

where i�0
FðkÞ is the equilibrium CTP Feynman propagator

in (5.10a). Explicitly, we have
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Re�ð1Þ
R ðpÞ ¼ �g2

2

Z d3k

ð2�Þ3
1

4E1E2

� X
�1¼�1

Z
ðp�kÞ2�M2

dk0
2E2

ðp� kÞ2 �M2
�ðk0 � �1E1Þ

�
1

2
þ fBðk0Þ

�

þ X
�2¼�1

Z
k2�M2

dk0
2E1

k2 �M2
�ðp0 � k0 � �2E2Þ

�
1

2
þ fBðp0 � k0Þ

��
; (B13)

where E1 � EðkÞ and E2 � Eðp� kÞ. The integral sub-
scripts remind us that the integration around the on-shell
poles is understood in the Cauchy principal value sense.
Integration over k0 yields the result

Re�ð1Þ
R ðpÞ ¼ �g2

2

X
f�g

Z d3k

ð2�Þ3
�1�2

4E1E2

� 1þ fBð�1E1Þ þ fBð�2E2Þ
p0 � �1E1 � �2E2

; (B14)

where we have used the short-hand notation f�g to denote
summation over �1, �2 ¼ �1.

The one-loop positive-frequency Wightman self-energy
is given by

i�ð1Þ
> ðpÞ ¼ ð�igÞ2

2

Z d4k

ð2�Þ4 i�
0
>ðkÞi�0

>ðp� kÞ: (B15)

Using the signum form of the equilibrium positive-
frequency Wightman propagator i�0

>ðkÞ in (5.10b), we
obtain

�ð1Þ
> ðpÞ¼ i�g2

X
f�g

Z d3k

ð2�Þ3
Z
dk0

�1�2

4E1E2

��ðk0��1E1Þ�ðp0�k0��2E2Þð1þfBðk0ÞÞ
�ð1þfBðp0�k0ÞÞ: (B16)

The product of Bose-Einstein distributions in (B16) satis-
fies the following relation:

fBðk0ÞfBðp0 � k0Þ ¼ fBðp0Þð1þ fBðk0Þ þ fBðp0 � k0ÞÞ:
(B17)

Thus, upon integration over k0, we find

�ð1Þ
> ðpÞ¼ i�g2ð1þfBðp0ÞÞ

X
f�g

Z d3k

ð2�Þ3
�1�2

4E1E2

��ðp0��1E1��2E2Þ
�ð1þfBð�1E1ÞþfBð�2E2ÞÞ: (B18)

Using the relation in (5.26c), the imaginary part of the one-
loop retarded self-energy may then be written down as

Im�ð1Þ
R ðpÞ¼�g2

2

X
f�g

Z d3k

ð2�Þ3
�1�2

4E1E2

��ðp0��1E1��2E2Þ
�ð1þfBð�1E1ÞþfBð�2E2ÞÞ: (B19)

In the ITF, the one-loop self-energy is given by

� ��ð1Þði!‘;pÞ

¼ ð�gÞ2
2�

Xþ1

n¼�1

Z d3k

ð2�Þ3
��ði!n;kÞ ��ðið!‘�!nÞ;p�kÞ:

(B20)

After performing the summation over n (see for instance
[100]), we obtain

��ð1Þði!‘;pÞ ¼ g2

2

X
f�g

Z d3k

ð2�Þ3
�1�2

4E1E2

� 1þ fBð�1E1Þ þ fBð�2E2Þ
i!‘ � �1E1 � �2E2

: (B21)

Making the analytic continuation i!‘ ! p0 þ i
 and sub-
sequently extracting the real and imaginary parts, the result
in (B21) agrees with (B14) and (B19) via the correspon-
dence in (B11).

APPENDIX C: THE COMPLEX SCALAR FIELD

This appendix describes the generalization of the results
in Secs. IVC and V to the case of a complex scalar field �.
In particular, we derive the full complement of nonhomo-
geneous free propagators and expand upon the ITF corre-
spondence identified in Appendix B.
Our starting point is the complex scalar Lagrangian

LðxÞ ¼ @��
yðxÞ@��ðxÞ �m2�yðxÞ�ðxÞ

� 1
4�½�yðxÞ�ðxÞ�2: (C1)

In analogy to (2.11), the complex scalar field �ðxÞ may be
written in the interaction picture as

�ðx; ~tiÞ ¼
Z

d�pðaðp; 0; ~tiÞe�iEðpÞx0eip�x

þ byðp; 0; ~tiÞeiEðpÞx0e�ip�xÞ; (C2)

where ayðp; 0; ~tiÞ and aðp; 0; ~tiÞ (byðp; 0; ~tiÞ and bðp; 0; ~tiÞ)
are the interaction-picture particle (antiparticle) creation
and annihilation operators, respectively. Under C conjuga-
tion [cf. (A2a)] these creation and annihilation operators
satisfy the transformations

Uy
Caðp;~t; ~tiÞUC ¼ �bðp;~t; ~tiÞ;

Uy
Cb

yðp;~t; ~tiÞUC ¼ �ayðp; ~t; ~tiÞ:
(C3)

Introducing the four-dimensional LIPS measure from
(2.3), the field operator (C2) and its Hermitian conjugate
may be recast in the form
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�ðx; ~tiÞ ¼
Z d4p

ð2�Þ4 e
�ip�x�ðp; ~tiÞ; (C4a)

�yðx; ~tiÞ ¼
Z d4p

ð2�Þ4 e
�ip�x�yð�p; ~tiÞ; (C4b)

where the Fourier amplitudes are given by

�ðp; ~tiÞ ¼ 2��ðp2 �m2Þð�ðp0Þaðp; 0; ~tiÞ
þ �ð�p0Þbyð�p; 0; ~tiÞÞ: (C5)

For the real scalar field, the quantization schemewas only
dependent on the restriction placed upon the form of the
field commutator. In the case of the complex scalar field, we
have 2 degrees of freedom to fix. Thus, we begin with the
following two commutators of interaction-picture fields:

½�ðxÞ;�ðyÞ�¼0; ½�ðxÞ;�yðyÞ�¼ i�0ðx;y;m2Þ; (C6)

where the Pauli-Jordan propagator has precisely the form in
(2.15). In analogy to the real scalar field, we may derive
from (C6) the equal-time commutation relations

i�0ðx; y;m2Þjx0¼y0¼~t ¼ ½�ð~t;xÞ; �yð~t; yÞ� ¼ 0; (C7a)

@x0i�
0ðx; y;m2Þjx0¼y0¼~t ¼ ½�yð~t;xÞ; �yð~t; yÞ�

¼ �i�ð3Þðx� yÞ; (C7b)

@y0i�
0ðx; y;m2Þjx0¼y0¼~t ¼ ½�ð~t;xÞ; �ð~t; yÞ�

¼ i�ð3Þðx� yÞ; (C7c)

@x0@y0i�
0ðx; y;m2Þjx0¼y0¼~t ¼ ½�yð~t;xÞ; �ð~t; yÞ� ¼ 0;

(C7d)

where�ðxÞ ¼ @x0�
yðxÞ is the conjugate-momentum opera-

tor. The particle and antiparticle creation and annihilation
operators necessarily satisfy the algebra

½aðp;~tÞ; ayðp0;~t0Þ� ¼ ½bðp;~tÞ; byðp0;~t0Þ�
¼ ð2�Þ32EðpÞ�ð3Þðp� p0Þe�iEðpÞð~t�~t0Þ;

(C8)

with all other commutators vanishing. We stress again that

the phase factor e�iEðpÞð~t�~t0Þ on the rhs of (C8) has appeared
due to the difference inmicroscopic times of the interaction-
picture creation and annihilation operators.
In addition to the C-conserving propagators listed in

Appendix A, we may also define C-violating propagators.
As an example, the C-violating Hadamard propagator
�1 6Cðx; yÞ would read

i�1 6Cðx; yÞ ¼ hf�ðxÞ; �ðyÞgi; (C9)

which satisfies

�1 6Cðx; yÞ ¼ �1 6Cðy; xÞ ¼ ��2�C�
1 6Cðx; yÞ: (C10)

This Hadamard correlation functionmay, in general, be non-
zero for early times, thus permitting extra C-violating eva-
nescent processes in addition to those described in Sec. IX.
In analogy to (4.53), we write the following set of EEVs

of two-point products of particle and antiparticle creation
and annihilation operators:

hayðp0;~tf; ~tiÞaðp;~tf; ~tiÞit ¼ 2Eðp;p0Þfðp;p0; tÞ; (C11a)

hbðp0;~tf; ~tiÞaðp;~tf; ~tiÞit ¼ 2Eðp;p0Þgðp;p0; tÞ; (C11b)

haðp0;~tf; ~tiÞaðp;~tf; ~tiÞit ¼ 2Eðp;p0Þhðp;p0; tÞ; (C11c)

hbyðp0;~tf; ~tiÞaðp;~tf; ~tiÞit ¼ 2Eðp;p0Þdðp;p0; tÞ; (C11d)

where the remaining EEVs are obtained by Hermitian
and charge conjugation. The four statistical distribution
functions f, g, h, d satisfy the following identities:

fðp;p0; tÞ ¼ f�ðp0;p; tÞ; (C12a)

gðp;p0; tÞ ¼ gCðp0;p; tÞ; (C12b)

hðp;p0; tÞ ¼ hðp0;p; tÞ; (C12c)

dðp;p0; tÞ ¼ �2dC�ðp0;p; tÞ: (C12d)

The nonhomogeneous free propagators of the complex
scalar field � may be written as listed in Table II with the
substitution of the following ensemble function:

~fðp; p0; tÞ ¼ �ðp0Þ�ðp0
0Þfðp;p0; tÞ þ �ð�p0Þ�ð�p0

0ÞfC�ð�p;�p0; tÞ þ �ðp0Þ�ð�p0
0Þgðp;�p0; tÞ

þ �ð�p0Þ�ðp0
0ÞgC�ð�p;p0; tÞ; (C13)

satisfying the relations: ~fðp; p0; tÞ ¼ ~fCð�p0;�p; tÞ ¼ ~fC�ð�p;�p0; tÞ in accordance with (A4). The free C-violating
Hadamard propagator �0

1 6Cðp; p0;~tf; ~tiÞ, defined in (C9), may be written down as

�1 6Cðp; p0;~tf; ~tiÞ ¼ �i2��ðp2 �m2Þj2p0j1=22~dðp; p0; tÞeiðp0�p0
0Þ~tf j2p0

0j1=22��ðp02 �m2Þ; (C14)

where we have defined the C-violating ensemble function ~dðp; p0; tÞ. Evaluating the EEVs directly, we find

~dðp; p0; tÞ ¼ �ðp0Þ�ðp0
0Þdðp;p0; tÞ þ �ð�p0Þ�ð�p0

0Þ�2dC�ð�p;�p0; tÞ þ �ðp0Þ�ð�p0
0Þhðp;�p0; tÞ

þ �ð�p0Þ�ðp0
0Þ�2hC�ð�p;p0; tÞ; (C15)

satisfying the relations: ~dðp; p0; tÞ ¼ ~dCð�p0;�p; tÞ ¼ �2 ~dC�ð�p;�p0; tÞ.
The inclusion of the C-violating distribution functions requires the addition of the C-violating source lab to the

expansion of the kernel of the density operator in the CTP generating functional, according to our discussion in
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Sec. IVA. Omitting the t dependence of the sources for notational convenience, the CTP generating functional for the
complex scalar field � takes the form

W ½ja; kab; lab� ¼ �iℏ ln
ZZ

½dð�ay; �aÞ� exp
�
i

ℏ

�
S½�ay; �a� þ

Z
�t

d4xðjya ðxÞ�aðxÞ þ �y
a ðxÞjaðxÞÞ

þ
ZZ

�t

d4xd4x0ð�ayðxÞkabðx; x0Þ�bðx0Þ þ 1

2
�aðxÞlyabðx; x0Þ�bðx0Þ þ 1

2
�ayðxÞlabðx; x0Þ�byðx0ÞÞ þ � � �

�

:

(C16)

The bilocal sources kab and lab necessarily satisfy the
identities

kabðx; x0Þ ¼ kybaðx0; xÞ; labðx; x0Þ ¼ lbaðx0; xÞ; (C17)

to ensure that the exponent of the generating functional is
CPT invariant. The subsequent derivation of the effective
action then follows analogously to Sec. IV.

The Lagrangian in (C1) is invariant under the global
Uð1Þ transformation

�ðxÞ!�0ðxÞ¼e�i��ðxÞ; �yðxÞ!�0yðxÞ¼ei��yðxÞ;
(C18)

entailing the conserved Noether current

j�ðxÞ ¼ ið�yðxÞ@��ðxÞ � ð@��yðxÞÞ�ðxÞÞ; (C19)

with corresponding conserved charge

:Qðx0Þ: ¼
Z

d3x:j0ðxÞ:

¼
Z

d�pðayðp; 0Þaðp; 0Þ � byðp; 0Þbðp; 0ÞÞ;
(C20)

where :: denotes normal ordering. The existence of this
conserved charge necessitates the introduction of a chemi-
cal potential � and, as such, the equilibrium density op-
erator is of the grand-canonical form


ð�;�Þ ¼ e��ðH��QÞ: (C21)

In the presence of this chemical potential, the KMS rela-
tion in (5.15) generalizes to

�>ðx0 � y0;x� yÞ ¼ e����<ðx0 � y0 þ i�;x� yÞ
(C22)

or, in the momentum representation,

�>ðpÞ ¼ e�ðp0��Þ�<ðpÞ: (C23)

Proceeding as in Sec. III, we find that the final constraint on
~fðpÞ, generalizing (5.17), is

~fðpÞ ¼ �ðp0ÞfBðp0Þ þ �ð�p0ÞfCBð�p0Þ; (C24)

where fðCÞB ðp0Þ ¼ ðe�½p0�ðþÞ�� � 1Þ�1 is the particle (anti-
particle) Bose-Einstein distribution function. In equilib-
rium, translational invariance is restored and the elements
of the free CTP propagator may be written in the single-
momentum representations

i�0
FðpÞ ¼ iðp2 �m2 þ i
Þ�1 þ 2�ð�ðp0ÞfBðp0Þ þ �ð�p0ÞfCBð�p0ÞÞ�ðp2 �m2Þ; (C25a)

i�0
>ðpÞ ¼ 2�½�ðp0Þð1þ fBðp0ÞÞ þ �ð�p0ÞfCBð�p0Þ��ðp2 �m2Þ; (C25b)

i�0
<ðpÞ ¼ 2�½�ðp0ÞfBðp0Þ þ �ð�p0Þð1þ fCBð�p0ÞÞ��ðp2 �m2Þ: (C25c)

In order to define the ITF generating functional for the grand-canonical partition function in (C21), one may consider the
Hamiltonian form of the path integral directly (see for instance [100]). We may write

Z ½j� ¼
ZZ

½dð�y; �Þ�½dð�y; �Þ� exp
�
�

Z �

0
d�x

Z
d3x½H ð�ðyÞ; �ðyÞÞ � ið�ð �xÞ@�x�ð �xÞ þ �yð �xÞ@�x�yð �xÞÞ

� i�ð�yð �xÞ�yð �xÞ � �ð �xÞ�ð �xÞÞ � jyð �xÞ�ð �xÞ � �yð �xÞjð �xÞ�


; (C26)

where
H ð�ðyÞ; �ðyÞÞ ¼ �yð �xÞ�ð �xÞ þ r�yð �xÞ � r�ð �xÞ þm2�yð �xÞ�ð �xÞ þH intð�y; �Þ (C27)

is the Hamiltonian density andH int is the interaction part. Expanding the fields and conjugate momenta in terms of 2 real
degrees of freedom �1;2ð �xÞ and �1;2ð �xÞ as

�ð �xÞ ¼ 1ffiffiffi
2

p ð�1ð �xÞ þ i�2ð �xÞÞ; �ð �xÞ ¼ 1ffiffiffi
2

p ð�1ð �xÞ � i�2ð �xÞÞ; (C28)

we may analytically calculate the Gaussian integrals over �1;2ð �xÞ, yielding
Z½j� ¼

Z
½dð�y; �Þ� exp

�
�

Z �

0
d�x

Z
d3xðð@�x þ�Þ�yð �xÞð@�x ��Þ�ð �xÞ þ r�yð �xÞ � r�ð �xÞ þm2�yð �xÞ�ð �xÞ

þH intð�y; �Þ � jyð �xÞ�ð �xÞ � �yð �xÞjð �xÞÞ
�
: (C29)
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In order to derive the form of the ITF � propagator, we
insert into (C29) the Fourier transform

�ð �xÞ ¼ 1

�

Xþ1

‘¼�1

Z d3p

ð2�Þ3 e
i½!‘�xþp�x��ði!‘;pÞ; (C30)

where!‘ are the discrete Matsubara frequencies described
in Appendix B. The effect of the chemical potential is to
shift the poles of theMatsubara propagator, which becomes

�� 0ði!‘ ��;pÞ ¼ 1

ð!‘ þ i�Þ2 þ p2 þm2
: (C31)

In generalization of the correspondence in (B10), the equi-
librium retarded propagator �R is obtained by the analytic
continuation i!‘ �� ! p0 þ i
 via

�� 0ði!‘ �� ! p0 þ i
;pÞ ¼ ��0
RðpÞ: (C32)

Correspondingly, the equilibrium retarded self-energy �R

is given by

��ði!‘ �� ! p0 þ i
Þ ¼ ��RðpÞ; (C33)

thereby generalizing (B11).

APPENDIX D: NONHOMOGENEOUS
DENSITY OPERATOR

In (D1), we highlight the full form of the series expansion
of the general Gaussian-like density operator described in
Sec. IVC. Symmetric and asymmetric multiparticle states
are built up by summing over all possible convolutions of
the W amplitudes. To facilitate our presentation task, the
time dependence and phase-space integrals have been omit-
ted. In fact, all momenta are integrated with the LIPS
measure given in (2.3).
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: (D1)
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APPENDIX E: GRADIENT EXPANSION OF
KADANOFF-BAYM EQUATIONS

In this appendix, we outline the derivation and gradient
expansion of the Kadanoff-Baym equations [80,81]. The
resulting time evolution equations are included here for
comparison with the new results described in Secs. VII
and IX. The Kadanoff-Baym equations are obtained by

the partial inversion of the Schwinger-Dyson equation
derived in Sec. IVA. Herein, we omit the ~tf and ~ti depen-

dence of all propagators and self-energies for notational
convenience.
Inverse Fourier transforming (7.5), we obtain the

coordinate-space representation of the partially inverted
Schwinger-Dyson equation

� ðh2
x þM2Þ�_ðx; yÞ þ

Z
�t

d4zð�_ðx; zÞ�P ðz; yÞ þ�P ðx; zÞ�_ðz; yÞÞ

¼ 1

2

Z
�t

d4zð�<ðx; zÞ�>ðz; yÞ ��>ðx; zÞ�<ðz; yÞÞ; (E1)

where we have also included the positive-frequency contribution for completeness. Introducing the relative and central
coordinates R� and X� via (4.38), we may show that the d’Alembertian operator may be rewritten as

h2
x ¼ h2

R þ @R;�@
�
X þ 1

4
h2

X: (E2)

Performing a gradient expansion of the Wigner transform of (E1), as described in Sec. IVB, we obtain�
q2 �M2 þ iq � @X � 1

4
h2

X

�
�_ðq; XÞ þ

Z d4Q

ð2�Þ4 ð2�Þ
4�ð4Þ

t ðQÞ exp ½�iðQ � Xþ}�
q;X þ 2}þ

Q;XÞ���
�_

�
qþQ

2
; X

�
�
�P

�
q�Q

2
; X

�

þ

�
�P

�
qþQ

2
; X

�
�
�_

�
q�Q

2
; X

�
�

¼ 1

2

Z d4Q

ð2�Þ4 ð2�Þ
4�ð4Þ

t ðQÞ exp ½�iðQ � X þ}�
q;X þ 2}þ

Q;XÞ�
��
�<

�
qþQ

2
; X

�
�
�>

�
q�Q

2
; X

�


�
�
�>

�
qþQ

2
; X

�
�
�<

�
q�Q

2
; X

�
�
: (E3)

The diamond operators}�f
gf
g are defined in (4.46) and (4.47) of Sec. IVB. Subsequently separating the Hermitian and
anti-Hermitian parts of (E3), we find the so-called constraint and kinetic equations

�
q2 �M2 � 1

4
h2

X

�
�_ðq; XÞ þ
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; (E4a)
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; (E4b)

respectively.
In the late-time limit t ! 1, the Q dependence is removed and the microscopic violation of energy conservation

resulting from the uncertainty principle is neglected. As was established in Sec. IX, this microscopic violation of energy
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conservation is significant to the early-time dynamics of the system. Subsequently, keeping terms to zeroth order in the
gradient expansion, the above expressions reduce to the following differential equations [1,59,60,80,81]:

ðq2 �M2Þ�_ðq; XÞ ¼ �ð�_ðq; XÞ�P ðq; XÞ þ�P ðq; XÞ�_ðq; XÞÞ; (E5a)

q � @X�_ðq; XÞ ¼ i

2
ð�>ðq; XÞ�<ðq; XÞ ��<ðq; XÞ�>ðq; XÞÞ: (E5b)

The kinetic equation (E5b) is to be compared with the
semiclassical Boltzmann transport equation and the
energy-conserving limit of our time evolution
equations in (7.17).

APPENDIX F: NONHOMOGENEOUS LOOP
INTEGRALS

In this final appendix, we outline the techniques we have
been using to perform the loop integrals that occur with the
modified time-dependent Feynman rules of this new per-
turbative approach. In particular, we develop a method
for dealing with the energy-non-conserving vertices that
utilizes the Laplace transform. Lastly, we summarize the
time-independent equilibrium and time-dependent spa-
tially homogeneous limits of these integrals.

We begin by defining a generalization of the zero-
temperature B0 function [117]

BT¼0
0 ðq;m1;m2Þ

¼ ð2��Þ4�d
Z ddk

i�2

1

k2�m2
1þ i


1

ðk�qÞ2�m2
1þ i


:

(F1)

To this end, we define the nonhomogeneous CTP B0 func-
tion shown in Fig. 17, which may be written in the 2� 2
matrix form as

Bab
0 ¼ B0 B<

0

B>
0 �B�

0

" #
; (F2)

consistent with the propagators and self-energies of the
CTP formalism in Secs. III and IV. The elements of Bab

0 are

given by the following integral:

Bab
0 ðq1; q2; m1; m2; ~tf; ~tiÞ � ð2��Þ4�deiðq01�q0

2
Þ~tf
Z

� � �
Z ddk1

i�2

d4k01
ð2�Þ4

d4k2
ð2�Þ4

d4k02
ð2�Þ4 ð2�Þ

4�ð4Þ
t ðq1 � k1 � k2Þð2�Þ4

� �ð4Þ
t ðq2 � k01 � k02Þ�acd�0

ceðk1; k01; m1;~tf; ~tiÞ�C;0
df ðk2; k02; m2;~tf; ~tiÞ�efb; (F3)

where �ð4Þ
t is defined in (3.52) and (3.53), �0;abðp; p0; tÞ is

the free CTP propagator derived in Sec. IVC and the upper-
case romanC denotes the charge-conjugate freeCTPpropa-
gator. We reiterate that lower-case roman CTP indices are
raised and lowered by contraction with theSOð1; 1Þmetric
�ab ¼ diagð1;�1Þ and that�abc ¼ þ1 is for a ¼ b ¼ c ¼
1, �abc ¼ �1 for a ¼ b ¼ c ¼ 2 and �abc ¼ 0 otherwise.

In the definition (F3), we have assumed that the statis-
tical distribution functions are cut off in the ultraviolet.
Thus, any ultraviolet divergences anticipated from the
superficial degree of divergence of the integral will be
those that result from the homogeneous zero-temperature
contribution. As a result, the dimensional regularization of
the integral has been restricted to the k1 dependence only.

In order to deal with the product of time-dependent
energy-non-conserving vertices, we make the following
replacement:

�tðxÞ�tðyÞ¼
Z �þi1

��i1
ds

2�i
est

2

�2

4s

ðx�yÞ2þ4s2
1

ðxþyÞ2þ4s2
;

(F4)

where the rhs is the inverse Laplace transform and s 2 C is
a complex variable. The Bromwich contour is chosen so
that � 2 R is larger than the real part of the rightmost pole
in the integrand, in order to ensure convergence. We then
introduce the representation Bab

0 ðq1; q2; m1; m2; sÞ of the

nonhomogeneous CTP B0 function through

Babðq1; q2; m1; m2;~tf; ~tiÞ
¼

Z �þi1

��i1
ds

2�i
estBab

0 ðq1; q2; m1; m2; sÞ: (F5)

Note that Bab
0 ðq1; q2; m1; m2; sÞ is not the exact Laplace

transform of Bab
0 ðq1; q2; m1; m2; tÞ, since we have not trans-

formed the t dependence of the distribution functions. We
suppress the dependence of Bab

0 ðq1; q2; m1; m2; sÞ on ~tf and
~ti for notational convenience.

After making the replacement (F4) in (F3), we obtain the
integralFIG. 17. The nonhomogeneous Bab

0 function.
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Bab
0 ðq1;q2;m1;m2;sÞ¼ 8ð2��Þ4�deiðq01�q0

2
Þ~tf
Z
� � �

Z ddk1
i�2

d4k01
ð2�Þ4

d4k2
ð2�Þ4

d4k02
ð2�Þ4 ð2�Þ

3�ð3Þðq1�k1�k2Þð2�Þ3

��ð3Þðq2�k0
1�k0

2Þ4s½ðq01�q02�k01þk001 �k02þk002 Þ2þ4s2��1½ðq01þq02�k01�k001 �k02�k002 Þ2
þ4s2��1�acd�0

ceðk1;k01;m1;~tf;~tiÞ�0;C
df ðk2;k02;m2;~tf;~tiÞ�efb; (F6)

in which the analytic structure of the product of formerly
t-dependent vertex functions is now manifest.

For conciseness, throughout this appendix we use the
short-hand notation: X

f�g
(F7)

for summation over only the �i ¼ �1 and �0
i ¼ �1 that

appear explicitly in an expression. On-shell energies are
denoted by

Ei � EiðkiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
i þm2

i

q
;

E0
i � E0

iðk0
iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02
i þm2

i

q
;

(F8)

and on-shell four-momenta by

k̂i � k̂
�
i ¼ ð�iEiðkiÞ;kiÞ;

k̂0i � k̂0�i ¼ ð�0
iE

0
iðk0

iÞ;k0
iÞ:

(F9)

For the energy factor in (4.54), we use the notation

E i � Eiðki;k
0
iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EiðkiÞEiðk0

iÞ
q

: (F10)

Products of unit-step functions are denoted by

�ðx; y; . . . ; zÞ � �ðxÞ�ðyÞ . . . �ðzÞ: (F11)

1. Time-ordered functions

The ða; bÞ ¼ ð1; 1Þ element of (F3) coincides with the
time-ordered function B0, which we may separate into four
contributions (suppressing all arguments):

B0 ¼ IðiÞ þ IðiiÞ þ IðiiiaÞ þ IðiiibÞ: (F12)

These four contributions are the zero-temperature limit

[IðiÞ], the purely thermal term [IðiiÞ] and the cross terms

[IðiiiaÞ and IðiiibÞ].
(i) The zero-temperature part may be extracted from the

product of terms that remain in the limit of vanishing
statistical distribution functions. This part is

IðiÞðq1;q2;m1;m2;sÞ¼ 8ð2��Þ4�deiðq01�q0
2
Þ~tf
Z
� ��

Z ddk1
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ð2�Þ4 ð2�Þ

3�ð3Þðq1�k1�k2Þð2�Þ3
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þ4s2��1 1
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1þ i


ð2�Þ4�ð4Þðk1�k01Þ
1

k22�m2
2þ i


ð2�Þ4�ð4Þðk2�k02Þ: (F13)

The k001 and k002 integrations are performed by means of the delta functions, giving

IðiÞðq1; q2; m1; m2; sÞ ¼ ð2��Þ4�deiðq01�q0
2
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Z

� � �
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1
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2
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1dk

0
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1 � k0

2Þ
4s

�
½ðq01 � q02Þ2 þ 4s2��1

��
q0
1
þq0

2

2 � k01 � k02

�
2 þ s2

��1

� 1

ðk01Þ2 � E2
1 þ i


1

ðk02Þ2 � E2
2 þ i


ð2�Þ3�ð3Þðk1 � k0
1Þð2�Þ3�ð3Þðk2 � k0

2Þ: (F14)

By virtue of the residue theorem, we may perform the k01 and k
0
2 integrations by closing contours in the lower halves of the

k01 and k02 complex planes. After collecting together the resulting terms, we find

IðiÞðq1; q2; m1; m2; sÞ ¼ �2ð2�Þ3�4�deiðq01�q0
2
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X
f�g

Z
� � �
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d3k0
1

ð2�Þ3
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ð2�Þ3
d3k0

2

ð2�Þ3
1

E1E2

ð2�Þ3�ð3Þðq1 � k1 � k2Þ

� ð2�Þ3�ð3Þðq2 � k0
1 � k0

2Þ
1

�
½ðq01 � q02Þ2 þ 4s2��1�1

�
q0
1
þq0

2

2 � �1ðE1 þ E2 � isÞ
��1

� ð2�Þ3�ð3Þðk1 � k0
1Þð2�Þ3�ð3Þðk2 � k0

2Þ; (F15)

or, in terms of the Lorentz-invariant phase-space measures in (2.3),
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IðiÞðq1; q2; m1; m2; sÞ ¼ �8ð2�Þ3�4�deiðq01�q0
2
Þ~tf
X
f�g

Z
� � �

Z
d�d�1

k1
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1
d�k2

d�k0
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1 � k0

2Þ
1

�
½ðq01 � q02Þ2 þ 4s2��1�1

�
q0
1
þq0

2

2 � �1ðE1 þ E2 � isÞ
��1

� ð2�Þ32E0
1�

ð3Þðk1 � k0
1Þð2�Þ32E0

2�
ð3Þðk2 � k0

2Þ; (F16)

where the superscript d� 1 indicates that the k1 integration is to be taken over a (d� 1)-dimensional phase space.
The Laplace transform F ðsÞ of a complex-valued function FðtÞ has the following properties:

Lt½ReF�ðsÞ ¼ 1

2
½F ðsÞ þ ðF ðs�ÞÞ��; (F17a)

Lt½ImF�ðsÞ ¼ 1

2i
½F ðsÞ � ðF ðs�ÞÞ��: (F17b)

We may then identify the dispersive and absorptive parts of the t-dependent B0 function with the parts symmetric and
antisymmetric in s, respectively. With this separation, (F16) becomes

IðiÞðq1; q2; m1; m2; sÞ ¼ 8ð2�Þ3�4�deiðq01�q0
2
Þ~tf
X
f�g

Z
� � �

Z
d�d�1
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d�k0

1
d�k2

d�k0
2
ð2�Þ3�ð3Þðq1 � k1 � k2Þð2�Þ3

� �ð3Þðq2 � k0
1 � k0

2Þ
1

�
½ðq01 � q02Þ2 þ 4s2��1

��
q0
1
þq0

2

2 � �1ðE1 þ E2Þ
�
2 þ s2


�1

�
�
��1

�
q0
1
þq0

2

2 � �1ðE1 þ E2Þ
�
þ is



ð2�Þ32E0

1�
ð3Þðk1 � k0

1Þð2�Þ32E0
2�

ð3Þðk2 � k0
2Þ; (F18)

where the delineation between dispersive and absorptive parts is identified within the second set of curly brackets.
Isolating the dispersive part of this result and performing all but one of the remaining phase-space integrals, we find

DispIðiÞðq1; q2; m1; m2; sÞ ¼ ð2�Þ4 1
�

1

ðq01 � q02Þ2 þ 4s2
�ð3Þðq1 � q2Þeiðq01�q0

2
Þ~tf
X
f�g

�
�ð2��Þ4�d

Z
dd�1k1

E1 þ E2

E1E2

1

�

�
��

q0
1
þq0

2

2 � i�s

�
2 � ðE1 þ E2Þ2

��1


; (F19)

where Disp stands for the dispersive part. We compare this result to the form of the zero-temperature B0 function (F1) after
the k0 integration has been performed:

BT¼0
0 ðq;m1; m2Þ ¼ �ð2��Þ4�d

Z
dd�1k1

E1 þ E2

E1E2

1

�
½q20 � ðE1 þ E2Þ2��1: (F20)

Hence, we may write

DispIðiÞðq1;q2;m1;m2;sÞ¼ ð2�Þ4 1
�

1

ðq01�q02Þ2þ4s2
�ð3Þðq1�q2Þeiðq01�q0

2
Þ~tf
X
f�g

BT¼0
0

�
q0
1
þq0

2

2 � i�s;q1þq2

2 ;m1;m2

�
; (F21)

where, for d ¼ 4� 2
 dimensions,

BT¼0
0 ðq0 � i�s;q; m1; m2Þ ¼ 1



� �E þ ln

4��2

m1m2

þ 1

ðq0 � i�sÞ2 � q2

�
ðm2

2 �m2
1Þ ln

m2
1

m2
2

þ �1=2ððq0 � i�sÞ2 � q2; m2
1; m

2
2Þcosh�1

�
m2

1 þm2
2 � ðq0 � i�sÞ2 þ q2

2m1m2

��
; (F22)

containing the zero-temperature UV divergence [117]. In (F22), �E is the Euler constant and � is the ’t Hooft mass scale.
(ii) The purely thermal part is more straightforward to analyze:
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IðiiÞðq1; q2; m1; m2; sÞ ¼ �8ð2��Þ4�deiðq01�q0
2
Þ~tf
Z

� � �
Z ddk1

i�2

d4k01
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d4k02
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1Þj2k01j1=2
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1
Þ~tf j2k001 j1=22��ðk021 �m2

1Þ2��ðk22 �m2
2Þj2k02j1=2

� ~fC2 ðk2; k02; tÞeiðk02�k00
2
Þ~tf j2k002 j1=22��ðk022 �m2

2Þ: (F23)

Performing the four zeroth-component momentum integrations by virtue of the on-shell delta functions �ðk2i �m2
i Þ and

�ðk02i �m2
i Þ in (F23), we find

IðiiÞðq1; q2; m1; m2; sÞ ¼ 8ð2�Þ3�4�deiðq01�q0
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1E

0
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2E
0
2Þ2 þ 4s2��1

�
��

q0
1
þq0

2

2 � �1E1þ�0
1E

0
1

2 � �2E2þ�0
2E

0
2

2
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2 þ s2
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2is2E1

~f1ðk̂1; k̂01; tÞeið�1E1��0
1
E0
1
Þ~tf

� 2E2
~fC2 ðk̂2; k̂02; tÞeið�2E2��0

2
E0
2
Þ~tf : (F24)

Note that the purely thermal part in (F24) contains only absorptive contributions.
(iii) The cross terms yield both dispersive and absorptive contributions. The first of the cross terms yields

IðiiiaÞðq1;q2;m1;m2;sÞ¼�8ið2��Þ4�deiðq01�q0
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Þ~tf j2k002 j1=22��ðk022 �m2

2Þ: (F25)

After evaluating the k001 , k
0
2 and k

00
2 integrals by virtue of the delta functions, we perform the k01 integral by closing a contour

in the lower half of the k01 complex plane. Equation (F25) may then be written in the more compact form

IðiiiaÞðq1; q2; m1; m2; sÞ ¼ �8ð2�Þ3�4�deiðq01�q0
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� � �
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2
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2
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(F26)

Separating again into dispersive and absorptive parts as in (F18), IðiiiaÞ may be written as

IðiiiaÞðq1;q2;m1;m2;sÞ¼8ð2�Þ3�4�deiðq01�q0
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2
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(F27)

Similarly, for the second cross term IðiiibÞ in (F12), we obtain
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IðiiibÞðq1;q2;m1;m2;sÞ¼8ð2�Þ3�4�deiðq01�q0
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(F28)

Collecting the four contributions from (F18), (F24), (F27), and (F28) together, we find the full time-ordered function
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; (F29)

where fk̂g � fk̂1; k̂01; k̂2; k̂02g is the set of on-shell four-momenta. The statistical structure is contained within the distribu-
tions FRðfk̂g; tÞ and F1ðfk̂g; tÞ defined as follows:

FRðfk̂g; tÞ ¼ ð2�Þ3�ð3Þðk1 � k0
1Þð2�Þ3�ð3Þðk2 � k0

2Þð�ð�1; �
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1; �2; �
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1;��2;��0
2ÞÞ
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1Þð�ð�1; �
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1Þ � �ð��1;��0
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F1ðfk̂g; tÞ ¼ ð2�Þ3�ð3Þðk1 � k0
1Þð2�Þ3�ð3Þðk2 � k0
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For completeness, the anti-time-ordered function, obtained from the rhs of (F29) by taking s ! �s and multiplying by
an overall minus sign, is given by
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: (F31)

Finally, from (4.27a), the ‘‘Hadamard’’ function B1
0 is given by
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which depends only on F1ðfk̂g; tÞ, as one should expect.
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2. Absolutely ordered functions

We turn our attention now to the ða; bÞ ¼ ð2; 1Þ and ða; bÞ ¼ ð1; 2Þ elements of (F2). These are the positive- and
negative-frequency absolutely ordered functions, respectively:
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where �ðx; yÞ is defined in (F11).
After carrying out the zeroth-component momentum integrals, we obtain

B>ð<Þ
0 ðq1; q2; m1; m2; sÞ ¼ 16ð2�Þ3�4�deiðq01�q0

2
Þ~tf
X
f�g

Z
� � �

Z
d�d�1

k1
d�k0

1
d�k2

d�k0
2
ð2�Þ3�ð3Þðq1 � k1 � k2Þð2�Þ3

� �ð3Þðq2 � k0
1 � k0

2Þ2E1e
ið�1E1��0

1
E0
1
Þ~tf2E2e

ið�2E2��0
2
E0
2
Þ~tf 1
�
½ðq01 � q02 � �1E1 þ �0

1E
0
1

� �2E2 þ �0
2E

0
2Þ2 þ 4s2��1

��
q0
1
þq0

2

2 � �1E1þ�0
1
E0
1

2 � �2E2þ�0
2
E0
2

2

�
2 þ s2

��1
isF>ð<Þðfk̂g; tÞ; (F34)

where

F>ð<Þðfk̂g; tÞ¼ ð�ðð�Þ�1;ð�Þ�0
1Þð2�Þ3�ð3Þðk1�k0

1Þþ ~f1ðk̂1; k̂01; tÞÞð�ðð�Þ�2;ð�Þ�0
2Þð2�Þ3�ð3Þðk2�k0

2Þþ ~fC2 ðk̂2; k̂02; tÞÞ:
(F35)

We may confirm the following relations between the F’s:

FRðfk̂g; tÞ ¼ F>ðfk̂g; tÞ � F<ðfk̂g; tÞ; (F36a)

F1ðfk̂g; tÞ ¼ F>ðfk̂g; tÞ þ F<ðfk̂g; tÞ; (F36b)

which are in line with our notation for the propagators and the self-energies.

3. Causal functions

We are now in a position to obtain the causal counterparts. Given the relations in (A6c), the retarded and advanced

functions BRðAÞ
0 are given by

BRðAÞ
0 ðq1; q2; m1; m2; sÞ ¼ �8ð2�Þ3�4�deiðq01�q0

2
Þ~tf
X
f�g

Z
� � �

Z
d�d�1

k1
d�k0

1
d�k2

d�k0
2
ð2�Þ3�ð3Þðq1 � k1 � k2Þð2�Þ3

� �ð3Þðq2 � k0
1 � k0

2Þ2E1e
ið�1E1��0

1
E0
1
Þ~tf2E2e

ið�2E2��0
2
E0
2
Þ~tf 1
�
½ðq01 � q02 � �1E1 þ �0

1E
0
1

� �2E2 þ �0
2E

0
2Þ2 þ 4s2��1

�
q0
1
þq0

2

2 � �1E1þ�0
1
E0
1

2 � �2E2þ�0
2
E0
2

2 þ ð�Þis
��1

FRðAÞðfk̂g; tÞ; (F37)

where FRðfk̂g; tÞ ¼ FAðfk̂g; tÞ.

4. The thermodynamic equilibrium limit

In the thermodynamic equilibrium limit, we expect to be able to recover the results from the discussions of Sec. V, using
the correspondence identified in (5.8). It follows that the various distribution functions satisfy the following factorization:
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Fðfk̂g; tÞ ! ð2�Þ3�ð3Þðk1 � k0
1Þð�ð�1; �

0
1Þ þ �ð��1;��0

1ÞÞð2�Þ3�ð3Þðk2 � k0
2Þð�ð�2; �

0
2Þ

þ �ð��2;��0
2ÞÞ�1�2Feqð�1E1; �2E2Þ; (F38)

where

F>
eqð�1E1; �2E2Þ ¼ ð1þ fBð�1E1ÞÞð1þ fCBð�2E2ÞÞ; (F39a)

F<
eqð�1E1; �2E2Þ ¼ fBð�1E1ÞfCBð�2E2Þ: (F39b)

Using the above expressions, we may perform all but one of the three-dimensional phase-space integrations and both of the
‘‘primed’’ summations in the various B0 functions. We then obtain the following set of ‘‘equilibrium’’’ results:

B0ð�B�
0Þðq1;q2;m1;m2;sÞ¼ ð2�Þ4 1

�

1

ðq01�q02Þ2þ4s2
eiðq01�q0

2
Þ~tf�ð3Þðq1�q2Þð2��Þ4�d

�X
f�g

Z
dd�1k1

1

�

�1�2

E1E2

��
q0
1
þq0

2

2 ��1E1��2E2

�
2þ s2

��1

�
�
�ðþÞ

�
q0
1
þq0

2

2 ��1E1��2E2

�
FR
eqð�1E1;�2E2Þþ isF1

eqð�1E1;�2E2Þ
�
; (F40a)

B>;<;1
0 ðq1;q2;m1;m2;sÞ¼ ð2�Þ4 1

�

1

ðq01�q02Þ2þ4s2
eiðq01�q0

2
Þ~tf�ð3Þðq1�q2Þð2��Þ4�d

�X
f�g

Z
dd�1k1

1

�

�1�2

E1E2

��
q0
1
þq0

2

2 ��1E1��2E2

�
2þ s2

��1
2isF>;<;1

eq ð�1E1;�2E2Þ; (F40b)

BRðAÞ
0 ðq1;q2;m1;m2;sÞ¼�ð2�Þ4 1

�

1

ðq01�q02Þ2þ4s2
eiðq01�q0

2
Þ~tf�ð3Þðq1�q2Þð2��Þ4�d

�X
f�g

Z
dd�1k1

1

�

�1�2

E1E2

�
q0
1
þq0

2

2 ��1E1��2E2þð�Þis
��1

FRðAÞ
eq ð�1E1;�2E2Þ; (F40c)

with FR
eqð�1E1; �2E2Þ ¼ FA

eqð�1E1; �2E2Þ.
At this point, we caution the reader that (F40a)–(F40c) are not the exact equilibriumB0 functions. For late times, we may

use the final value theorem

lim
t!1FðtÞ ¼ lim

s!0
sLt½F�ðsÞ (F41)

to obtain the true time-invariant equilibrium functions:

B0ð�B�
0Þðq1;q2;m1;m2Þ¼ ð2�Þ4�ð4Þðq1�q2Þð2��Þ4�d

X
f�g

Z
dd�1k1

�1�2

E1E2

�
�ðþÞ 1

2�

1

q01��1E1��2E2

FR
eqð�1E1;�2E2Þ

þ i

2
�ðq01��1E1��2E2ÞF1

eqð�1E1;�2E2Þ
�
; (F42a)

B>;<;1
0 ðq1;q2;m1;m2Þ¼ ið2�Þ4�ð4Þðq1�q2Þð2��Þ4�d

X
f�g

Z
dd�1k1

�1�2

E1E2

��ðq01��1E1��2E2ÞF>;<;1
eq ð�1E1;�2E2Þ; (F42b)

BRðAÞ
0 ðq1;q2;m1;m2Þ¼�ð2�Þ4�ð4Þðq1�q2Þð2��Þ4�d

X
f�g

Z
dd�1k1

�1�2

E1E2

1

2�

1

q01��1E1��2E2þð�Þi

�FR

eqð�1E1;�2E2Þ: (F42c)

The above expressions are consistent with known results calculated in the ITF or equilibrium CTP formalism (see
Appendix B).

5. The homogeneous limit

Lastly, we summarize the time-dependent homogeneous limit of the B0 functions. In the spatially homogeneous case,
the F’s satisfy the following factorization:
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Fðfk̂g; tÞ ! ð2�Þ3�ð3Þðk1 � k0
1Þð�ð�1; �

0
1Þ þ �ð��1;��0

1ÞÞð2�Þ3�ð3Þðk2 � k0
2Þð�ð�2; �

0
2Þ

þ �ð��2;��0
2ÞÞFhomð�1; �2;k1;k2Þ: (F43)

The set of homogeneous distributions Fhom can be obtained from

F>ð<Þ
hom ð�1; �2;k1;k2; tÞ ¼ ð�ðð�Þ�1Þ þ �ð�1Þfðjk1j; tÞ þ �ð��1ÞfCðjk1j; tÞÞð�ðð�Þ�2Þ þ �ð�2ÞfCðjk2j; tÞ

þ �ð��2Þfðjk2j; tÞÞ; (F44)

using the relations in (F36). Substituting these distributions into the nonhomogeneous B0 functions, we perform all but one
of the three-dimensional phase-space integrals and both primed summations. Subsequently, with the aid of an inverse
Laplace transformation with respect to s, the following set of t-dependent homogeneous B0 functions are obtained:

B0ð�B�
0Þðq1; q2; m1; m2;~tf; ~tiÞ

¼ ð2�Þ4�ð3Þðq1 � q2Þð2��Þ4�deiðq01�q0
2
Þ~tf
X
f�g
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2�
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1
þq0
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� ð�tðq01 � q02Þ � �tðq01 þ q02 � 2�1E1 � 2�2E2ÞÞFR
homð�1; �2;k1;q1 � k1; tÞ þ i

2
�tðq01 � �1E1 � �2E2Þ

� �tðq02 � �1E1 � �2E2ÞF1
homð�1; �2;k1;q1 � k1; tÞ

�
; (F45a)

B>;<;1
0 ðq1; q2; m1; m2;~tf; ~tiÞ
¼ ið2�Þ4�ð3Þðq1 � q2Þð2��Þ4�deiðq01�q0

2
Þ~tf
X
f�g

Z
dd�1k1

1

E1E2

�tðq01 � �1E1 � �2E2Þ

� �tðq02 � �1E1 � �2E2ÞF>;<;1
hom ð�1; �2;k1;q1 � k1; tÞ; (F45b)

BRðAÞ
0 ðq1; q2; m1; m2;~tf; ~tiÞ

¼ ð2�Þ4�ð3Þðq1 � q2Þð2��Þ4�deiðq01�q0
2
Þ~tf
X
f�g

Z
dd�1k1

1

E1E2

�
� 1

2�

q0
1
þq0

2

2 � �1E1 � �2E2

ðq01 � �1E1 � �2E2Þðq02 � �1E1 � �2E2Þ

� ð�tðq01 � q02Þ � �tðq01 þ q02 � 2�1E1 � 2�2E2ÞÞ þ ð�Þ i
2
�tðq01 � �1E1 � �2E2Þ�tðq02 � �1E1 � �2E2Þ

�
� FRðAÞ

hom ð�1; �2;k1;q1 � k1; tÞ: (F45c)

In the limit t ! 1, using (3.54) and making the replacement

Fhomð�1; �2;k1;q1 � k1; tÞ ! �1�2Feqð�1; �2;k1;q1 � k1Þ; (F46)

we recover the time-independent equilibrium results in (F42).
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