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Mass corrections to flavor-changing fermion-graviton vertices in the standard model
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In a previous study, the flavor-changing fermion-graviton interactions have been analyzed in the
framework of the standard model, where analytical results for the relevant form factors were obtained at
the leading order in the external fermion masses. These interactions arise at one-loop level by the charged
electroweak corrections to the fermion-graviton vertex, when the off-diagonal flavor transitions in the
corresponding charged weak currents are taken into account. Because of the conservation of the energy-
momentum tensor, the corresponding form factors turn out to be finite and gauge invariant when external
fermions are on shell. Here we extend this previous analysis by including the exact dependence on the
external fermion masses. Complete analytical results are provided for all the relevant form factors to the

flavor-changing fermion-graviton transitions.
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L. INTRODUCTION

In a previous analysis [1], following the study of
Ref. [2], we have discussed the structure of the perturbative
corrections to the graviton-fermion-antifermion (T ff) ver-
tex in the standard model (SM), focusing our attention on
the flavor diagonal sector. On the other hand, in Ref. [2] the
one-loop electroweak corrections which generate the off-
diagonal graviton-fermion-antifermion vertex were com-
puted at the leading order in the external fermion masses.
These studies address the structure of the interactions
between the fermions of the standard model and gravity,
beyond leading order in the weak coupling, which have
never been presented before in their exact expressions.
The choice of an external (classical) gravitational back-
ground allows one to simplify the treatment of such inter-
actions where the coupling is obtained by the insertion
of the symmetric and improved energy-momentum tensor
(EMT) into ordinary correlators of the standard model.

We have addressed some of the main features of the
perturbative structure of these corrections, presenting their
explicit form, parameterized in terms of a certain set of
form factors. We have also discussed some of their radia-
tive properties with regard to their infrared finiteness and
renormalizability, the latter being inherited directly from
the standard model, when the coupling of the Higgs to the
gravitational background is conformal.
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In general, one expects that such corrections are small,
although they could become more sizable in theories with a
low gravity scale [3-8]. In particular, one can consider
the possibility of including, in these constructions, back-
grounds which are of dilaton type, with dilaton fields
produced by metric compactifications. The same vertices
characterize the interaction of a dilaton of a spontaneously
broken dilatation symmetry with the ordinary fields of the
standard model [9-12]. This second possibility is particu-
larly interesting, in view of the recent discovery of a Higgs-
like scalar at the LHC.

Perturbative studies of these vertices have their specific
difficulties due to the proliferation of form factors, and the
results have to be secured by consistency checks using some
relevant Ward identities, which reduce the number of inde-
pendent contributions and that will be discussed below.

These identities need to be derived from scratch by using
the full Lagrangian of the standard model, as discussed in
Refs. [1,13]. In this study we are going to reconsider the
gravitational form factor of a standard model fermion in
the presence of a background graviton in the off-diagonal
flavor case, which has been discussed before [2], extending
that analysis. One of the goals of this reanalysis is to
include all the mass corrections to the related form factors,
which have not been given before. These corrections are
important in order to proceed, in a follow-up work, with a
systematic phenomenological study of their implications.
In this respect, mass corrections are important in order to
extract the exact behavior of these form factors in the
infrared and ultraviolet limits, which may be of experi-
mental interest. We have compared our new results against
the previous ones given in Ref. [2] in the limit of massless
external fermions and found complete agreement.
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Our work is organized as follows. In Sec. II, we give the
theoretical framework of the standard model Lagrangian
in a curved space-time, assuming as a background metric
the usual four-dimensional one. In Sec. III, we discuss the
contributions coming from the counterterms of the wave-
function renormalization and derive the structures of the
unrenormalized and renormalized Ward identities. We
have checked that these are satisfied by the reducible set
of the 12 factors chosen for the presentation of the final
result. These will be explicitly given in Sec. IV, and finally,
in Sec. V, we present our conclusions.

II. THE LAGRANGIAN

We follow closely the layout of our previous work [1],
where more details concerning the general structure of the
action describing the coupling of the standard model to
gravity can be found. We just recall, in order to make our
treatment self-contained, that the interaction of the stan-
dard model fields with gravity is described by the action
integral

S = —iz [d“x,/—gR + j.d“x,/—gESM (1)
K

together with a term of improvement
S;=x f d*x/~gRH'H, (2)

where R is the scalar curvature and H is the Higgs doublet.
The identification of this second term goes back to
Ref. [14]. The coefficient y is an arbitrary parameter,
which at the special value y,= 1/6 renders the
Lagrangian conformally symmetric when the scalar is
massless and guarantees its renormalizability at the leading
order in the gravitational k, where k> = 167Gy, with Gy,
being the gravitational Newton’s constant. For instance, in
the case of the Higgs field, this takes place if we drop the
quadratic terms in the Higgs potential. As in our previous
work, our results are given for an arbitrary y.

The standard model action Sgy is obtained by promoting
the ordinary SM Lagrangian to a curved background,
which is parameterized by the metric expansion g,, =
My + Kh,,, where 9, = (+, —, —, —) and h,,, denotes
the fluctuation of the graviton field around the flat limit. At
this order the graviton-matter interactions, which we are
going to evaluate in the flavor-changing fermion sector, are
described by Green’s functions with a single insertion of
the energy-momentum tensor

;o2 8
224 \/_—g(sg;w

The complete standard model energy-momentum tensor
includes several contributions which can be found in
Ref. [13].

[Ssm + Silg=r- (3)
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III. THE PERTURBATIVE EXPANSION

The interaction of one graviton with two fermions of
different flavor is summarized by the vertex function

™ = i(f, pilT* O)lp;, f;) @

that we intend to study. Here p; (f;) and p; (f;) indicate the
momenta (flavor) of initial and final fermions, respectively.
We will restrict to the case of flavor-changing transitions,
namely, f; # f;. In order to simplify the results, we will
also use the combinations of momenta p = p; + p; and
g = pj — p;- The external states are taken on their mass
shell, p? = m? and p ;= mj2 and can be either leptons or
quarks. From now on, we will assume that m; # m;. In the
last case, since the EMT is diagonal in color space, the
color structure is rather trivial and therefore we omit it.

At tree level the flavor-changing gravitational interac-
tion is absent, so that the leading order contribution comes
from the quantum corrections. At one-loop level, instead,
we decompose the 7% matrix element as

Pur = v 4 fur )

where the first term on the right-hand side represents the
pure vertex corrections induced by the W= gauge boson
and its Goldstone ¢~ exchanges, while the last term, T47,
includes the self-energy diagrams plus the usual counter-
terms (CT) coming from the wave-function renormaliza-
tion insertions on the external legs. The inclusion of this
last term 7% is needed in order to get finite results for the
matrix element T‘“’, as it will be extensively discussed in
Sec. IIT A. The finiteness of the result is just a consequence
of the nonrenormalization theorem of conserved currents,
when applied to the case of a conserved EMT.

We choose to work in the R, gauge, where every massive
gauge field is always accompanied by its unphysical lon-
gitudinal part. The diagrammatic expansion of T@V is de-
picted in Fig. 1 and is made of one contribution of triangle
topology plus contact terms [see Figs. 1(c) and 1(d)] with
a fermion and a graviton pinched on the same external
point. The Feynman rules are listed in Appendix A. The
computation of these diagrams has been performed in
dimensional regularization using the on-shell renormaliza-
tion scheme [15]. In this scheme the renormalization con-
ditions are fixed in terms of the physical parameters of
the theory to all orders in perturbation theory. These are
the masses of physical particles, the electric charge, and the
quark mixing matrix. Moreover, the renormalization con-
ditions on the fields are obtained by requiring a unit residue
of the full two-point functions on the physical particle
poles. This implies that, in the on-shell renormalization
scheme, the T4 takes contributions only from the usual
counterterms coming from the wave-function renormaliza-
tion insertions on the external legs.
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FIG. 1.
flavors and corresponding momenta, respectively, with f; # f;.

A. Contribution from the wave-function
renormalization

As we have just mentioned, the 7%’ matrix element
corresponding to the vertex corrections is ultraviolet diver-
gent, and, due to the nonrenormalization theorem of the
conserved EMT, it is made finite by adding the contribu-
tions from the wave-function renormalization on the exter-
nal legs, namely, f"’c‘% . This last contribution can be easily
determined by using the following method, as illustrated in
Ref. [1]. We promote the counterterm SM Lagrangian to a
curved background and then extract in the usual way the
appropriate renormalized Feynman rules for single inser-
tions of the EMT on the fields of the standard model. The
metric is taken to be flat after all the functional differ-
entiations. Then, for the off-diagonal flavor contributions
(i # j) to TAY, we have

Té’}‘} - l<pl’fl|T (O)lpj)fj>
= Zﬁi(pi){(v“p” + ¥ ph)(CH P + CRY PR)
+ zn'uy[cllji(mlpl‘ - mJPR)
+ CS'_ (m;Pp — ijL)]}uj(pj): (6)
where

+ 1 + 1

Cl* =50z} * 8zi1), R = S0z SZEN, (1)
with SZZ-LJfR being the fermion wave-function renormaliza-
tion constants. In the on-shell renormalization scheme,
which we have chosen for our computation, the renormal-
ization conditions are fixed in terms of the physical parame-
ters of the standard model to all orders in the perturbative
expansion. In particular, for the fermion wave-function
renormalization constants with i # j, one obtains

072l = = R+ mom )
m; —
" (m,, " mﬁ)z;?j(m;)},
R 2 e aSR(p2 L (12 &
8Zl; = 5 Relm;Zij(my) + mym ;2 (mj)
i J

S (12
+ 2m;m ;%3 (m3)}
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Diagrams of one-loop SM corrections to the flavor-changing graviton-fermion vertex, where f; ; and p; ; specify the fermion

The symbol Re gives the real part of the scalar integrals in
the self-energies, but it has no effect on the Cabibbo-
Kobayashi-Maskawa matrix elements. Its presence yields
5Z;rj = 6Z;;(m} < m73). Remember also that if the mixing

matrix is real, Re can obviously be replaced with Re.
For completeness we give the standard model flavor-
changing self-energies (i # j)

G

SE(p?) = ——E= SV VEm? + 2m?

,J(p ) 477_2\/5; f fj[( f W)

X 31(172 mjzr mj,) + m%v],

25(2)__ GF VV 23(2 2 2) 9

i\P7) = Zlf £y 20\PT, My, Mty ), ®)
where

2 .2 2 mi —

Bi(p » My, ml) = T[BO(P mo, )

1
— By(0, m3, m3)] — 3 Bo(p?, mj, m?).
(10)

We have explicitly checked that the counterterm in Eq. (6)
is indeed sufficient to remove all the ultraviolet divergen-
ces of the 7% matrix element so that 7#” is finite, as
expected.

B. The Ward identity from the conservation
of the EMT

The conservation of the energy-momentum tensor con-
strains the 7#” matrix element reducing the 12 form factors
defined above to a smaller subset of six independent con-
tributions. We can derive the Ward identity by imposing
the invariance of the one-particle irreducible generating
functional—which depends on the external gravitational
metric—under a diffeomorphism transformation and then
functional differentiating with respect to the fermion fields.
We omit the details of this procedure, which has been
discussed extensively in [13] and in [1] for the TVV' and
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the Tff vertices, respectively. The analysis, in this
new case, follows similar steps. In momentum space, for
the unrenormalized matrix element we obtain the Ward
identity

N v — v v 4q v
q.Tw = w;(p){piTij(p) — piTi(py) + jﬂ(rzj(l?i)a'”
- UWF:‘,;‘(P_/‘))}MJ‘(P.;)y (11)

where o#” = [y#, y”]/4 and I';;(p) is the fermion two-
point function which is given by

Ly(p) = il35(p*) PP, + 25(p*) pPr
+ 35(p)(m; P, + m;Pg)] (12)

The off-diagonal (in flavor space) two-point form
factors XLRS(p?) are explicitly given in Eq. (9). After
renormalization, one can show that the Ward identity will
take the simpler form

q,T"" =0, (13)

which corresponds to the conservation of the energy-
momentum tensor.

C. The Ward identity in the reducible basis

Because of the chiral Vector/Axial-Vector nature of the
W interactions, we expand the flavor-changing matrix
element in terms of 12 invariant amplitudes f; and tensor
operators Oy as

P afi(@?) + ¢’ f2(q*) =0,
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“ ) GF 12 .
THY = 2 {(p; O,uv ) ) 14
116772 2};fk(q )i (p)Oy ui(p;) (14)

with the tensor basis given by

Oy =(y*p” +y"p*)Py, O4" =n*"M_,
03" =(y*q" +y"q*)Pr,  Og" =ptp"M_,
05" =n""M,, 0y" =q*q"M_,
Oy =p+p'M,, 0%y =(p*q" +q*p")M_,
” , . mm; ,
O =qrq"M,, O =—52(y*p"+y"p")Px,
My
[ "o v yTa MVzmimj " v VM
Og" = (p*q"+q*p" )M, O7, oo (y*q"+7v"q")Pg,
w

(15)

where P, = (1 * v¥s)/2 and M+ = m;Pg * m;P;, and
u; /(p;;) are the corresponding fermion bispinor ampli-
tudes in momentum space.

This is the most general rank-2 tensor basis that can be
built out of two momenta, p and ¢, a metric tensor and
Dirac matrices y* and 7y°, whose expression has been
given in [2].

The renormalized flavor-changing matrix element 7#”
satisfies the Ward identity in Eq. (13). This generates
homogeneous equations (2) for the renormalized form
factors f;(g?) given by

@) + fs(@®) + p-afelq®) + gm;zqflz(qz) =0,
w

. 2 2
P afsl@) + L) L@ =0 @)+ i)+ 2D+ e afole) = @) =0
w w
2 2
1@ + p-afs(@®) + 4 fiola?) = p4m+2q @ =0, p-aful@) +¢*fnlg®) =0, (16)
w

which allow one to reduce the number of independent
contributions to the 7#” matrix element to six from the
original 12.

IV. FLAVOR-CHANGING FORM FACTORS:
EXPLICIT EXPRESSIONS

In this section, we present the explicit expressions of
the renormalized form factors f, appearing in Eq. (14) and
using the following notation:

Fi@® = D A Filg? my), (17)
f

where we have factorized the term Ay =V, V}”‘ ; (the
external fermions are assumed here to be quarks of down

type), with V;; the corresponding CKM matrix element.
They have been computed in the on-shell case retaining the
full dependence on the internal (m/, my,) and external
masses (m;, m;) and on the virtuality ¢ of the graviton
line. They are expressed in terms of the dimensionless
ratios xg = (mj + m3)/q*, xp = (m} —m})/q*, x;=
m?/q*, and xy = my/q* and of the combination
A= x}, — 2xg + 1. We recall that m, is the mass of the
fermion of flavor f running in the loop.

Because of their complexity, we expand our results
onto a basis of massive one-, two-, and three-point scalar
integrals as

7
Fi(g®, mg) = Y Ci, (18)
=0
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where
IO = 1, 14 = Bo(qz, m?-, m]%),
I = Ag(m?) — Ag(m3,),

I, = By(m3, m3, m3,),

Is = Bo(qz, m%v, m%v),

- 2 2 2 2 0 0
Is = Co(mj, q*, m3, mg, my, my),

I, = Co(mjz, g% m3, mi, mj%, mjzc)
(19)

We have chosen to give the explicit results for the renor-
malized form factors Fy, F3, F4, Fy, Fg, and F;, while the
remaining six can be obtained by exploiting the Ward
identities derived in the previous section, which give

I = By(m;, mjzc, miy),

X
F, = —xpF, Fs=——Fy+x,Fy + -5 Fy,
my
F F,— 2 F
6 “Xply 11>
2m%,v
Xp 1 XsXp
F9:2—2F1 —2F7+x%)Fg— B Fll’
q q w
1 s
FlO__?Fl_xDFx"' > Fin Fi, = —xpFyy
w

(20)
The explicit form of the coefficients C} appearing in the
expansion of the F;’s in Eq. (18), due to their lengthy
expressions, can be found in Appendix C. However, as a
strong check of our computation, we have computed all 12
form factors f;(g?) appearing in Eq. (14) and verified that
they satisfy the Ward identity in Eq. (16).
Finally, we remark that the Fs, F5, F7, and Fy form
factors show a dependence on the parameter y which
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appears in the gravitational coupling of the ¢~ Goldstone
bosons through the improved energy-momentum tensor.

V. CONCLUSIONS

We have presented the computation of the structure of
the gravitational form factors of the standard model fermi-
ons in the off-diagonal flavor sector. The analysis has been
developed according to our previous study [1], where
we have discussed the electroweak corrections in the
flavor-conserving case. The work extends a previous in-
vestigation [2] of the same flavor-changing vertex in which
the external mass dependence has not been included.
The exact expressions presented in our work are relevant
for a phenomenological study of the small and intermedi-
ate momentum behavior of these form factors, which we
plan to address in the near future.
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APPENDIX A: FEYNMAN RULES

We collect here all the Feynman rules involving a gravi-
ton that have been used in this work. All the momenta are
incoming.

(i) Graviton—gauge boson—gauge boson vertex

VO[
k1
hHv K 2 uvaf uvaf 1 praf Al
= —ig (k1 - ko + My) C +D (kl,k2)+EE (k1, ko) ¢, (A1)
ko
VB
where V stands for the vector gauge boson W.
(i1) Graviton-fermion-fermion vertex
(4
ko
L K
h’ = —Zg{v“ (k1 + k)" + 7" (k1 + ko) — 20" (§y + Ky — 2my) }, (A2)
k1
(4

(iii) Graviton-scalar-scalar vertex
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S
ko o
B Wﬂx”’ - ig{klkaUcuwa B Mg nwj}
AN K v Y
k;\\ — 2§2X{(k’1 + k)M (k1 + ko)” — 0" (k1 + k’2)2}7
S
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(A3)

where S stands for the Goldstone ¢* of the gauge boson W. The first line is the contribution coming from the minimal
energy-momentum tensor, while the second is due to the improvement term.

(iv) Graviton-scalar-fermion-fermion vertex

hHv

where the coefficients are defined as

€ My

CL,. =i—— Vi
ST \/ESW my v

CcL . = —j e My
2 \/ESW my Y¥

(v) Graviton—gauge boson—fermion—fermion vertex

Ve (0
k1 ks
)
ko
hHv P
with
CL

e
_ =7 —YV- s
W+l//¢, \/ESW v

The tensor structures C, D, and E which appear in the Feynman rules defined above are given by

CrL

L
Co-pu

R _ e m¢ )
Corin = T g my
CR . =i ¢ My
LN TR 1
_ R_ pof
waPL—l-vawPR)C Y3 ,
e
— i C oy R
OV T T 27

C,u,l/pa' = NupMve + NuwoMvp = NuvMpos

D/LVpO'(kl’ k2) = nuvklokZp - [nﬂa-klljkg + nupklo'kZV - npoklukZV + (Iu' « V)]r
E;va(r(kl’ k2) = nﬂv(klpklo' + kZkatr + klkarr) - [nmrkl,u,klp + nvka,u,err + (lu‘ “« V)]

APPENDIX B: SCALAR INTEGRALS

(A4)

(A5)

(A6)

(A7)

(A8)

In this Appendix, we collect the definitions of the scalar integrals appearing in the computation of the matrix element.
One-, two-, and three-point functions are denoted, respectively, as A, By, and C, with
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1 1 1 1
A md) = — [d”l—, Bo(p?, m2 m?) = — /d”l
o(mg) e P—m o(py, mg mi) im? (1 = m3) (1 + p1)* = m})’ (B1)
1 1
C ( 2! ( - )21 2: mzy m2’ m2 - T 9 /dﬂl
o\P1, \P1 = P2)° Py, My, My, My ) ( — mo)((l + p])z _ mz)((l + p2)2 _ mz)

APPENDIX C: FORM FACTORS

Here we list the coefficients C{ which appear in the expansion of the form factors Fy, F3, Fy, F5, Fg, and F; defined in
Eq. (18). The remaining ones, as already mentioned, can be computed by using the Ward identities in Eq. (20).

1) Coefﬁcients C! entering in F:

) =

Ci

12)1 {3(xD —x3) + 6(1 — xg)(xp — 6xyy) + 16(x; — xpp)(x; + 2xyp)},
f - 3x5 + 4)CW +3
6A

7
8)\2
— xD(xS(ZOxf — 46xy — 6) + x5(—28xpxy — dx,(Txp +4) + 56x%, + Sdxy +4) + 24(x; — xy)(xy + 2xy)
+ 6xp + x3 — 26xy — 1) + xp(xF(8x, + 6xyy + 3) — 2x5(2xpxy + x,(2xp +5) — 4xj, + xy)
- 8(xf — xy)(xp + 2xy) = 3x3 + 10xy) — (1 = 2x5)* 2y (2xp + x5) + (x5 — 2x7)* — 8x3)},

{xp(6xp + x5 — 16xy — 2) + x3)(xs(—10x; + 18xy + 3) + 12(xpxy + x% +xp = 2x3) — 32xy — 3)

8)\2 {x}(=(6x; + x5 — 16xy — 2)) + x3(x5(—10x; + 18xy, + 3)

+ 12(xpxy + szc + xp = 2x3) — 32xy — 3) + x5, (x3(20x; — 46xy — 6)
+ x5(—28xpxy — 4xp(Tx; + 4) + 56x3, + Sdxy +4) + 24(x; — xy)(x; + 2xy) + 6xp + x3 — 26xy — 1)
+ xp(xFBxy + 6xy + 3) — 2x5(2xpxy + xp(2x, +5) — 4xf, + xyw) — 8(x; — xy)(xy + 2xy)
- 3x§ + 10xyy) + (1 = 2x5)*(xy (2x + x5) + (x5 — 2x7)* — 8x3,)},

12)12 {x3(3(8x; — 3)xg — 2x4(16x; + 32xy + 11) + 10xyy + 9) — 3x3(8x; + 26xy + 3)
+ dxg(=Txpxy + xp(13x; + 5) + 42x3, + 34xy) + 24(6x; — Txfy + 92xpxy — 2x,(2xp + 1)(12x; — 1)

+ 9x3 — 96x3, — 68xy},

e
3)\2 {xBxw(x} + x5 — 2) — 2x7, + 3xF — 2x5 — 36x3, + 1)

+ dxy (x5 (—=3xg + dxy + 5) + (x5 — 3xy — 2)(Bxg — 2xy — 1)) — 12x]2c(xs -1+ 12x}},
4
%{Sxév(—Zx% +5xp +4xg —2) — 4x%V(x2D(—2xf — 2x5 + 3) + (x; + x5)(6x; + x5) — 5x; — 2xg)
= 2y (—4x7(xp + x5 — 2) + 3xp(xp(2x5 — 3) — (x5 — 2)xg) + 2(xp, — x3)(xp — x5) + 4x3)
+ xp2xp — x5 + D(—=x3 + (x5 — 2xf)2 + 4xp) — 16x7,},
4
o {2 gy (—dxy + 320y +7) = 8y = 2) + (2= 6x)a} + 23 — 16x,)nfy

+ dxp(dx, — xy + x,(2x, — D(8xy +5) + 8xy + 1) + x‘l*)(4xf —-1)+ 16x%v(10xf +9x5 —9)
— 4y (34x x5 + 24x7 — 50x; + 3x5(9x5 — 16) + 24) + 8xyy(—(xy + 8)x5 + (4(xy — Dxy + 6)xs + 6xf
- 4x}(xf +2) +4x3 —2) — (x5 — 2xp)?2xp(xg — 1) — Sx} +3x% — dxg +2) — 64x3,}, (CDhH

(ii) Coefficients C% entering in F:
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2
)= g—A{—xS(3x2D + 32x; — 20xy + 3) + 2x(7x3, + dxy +9) — 4y (203, + dxy +3) + 8x12c + 6x%},
1
B 3A(x3 — x3)

q2

C4X2(xp + xg)
+ x%(ZxW(2xf(xS +3) +x:+xg+2) + 4x}x5 + 2xpx5 + 12x.)20 —2xp — 8(xg + 3)xfy — x5 — 2x% — 5xg +2)

{=x3(xg(6x; + x5 + 12xy +4) — 4x; — 8xy — 3) + x} + xg(dxg — 3)(2x, + x5 + 4xy)},
D f f D f

{xp(=2x7 + x5 + 2y + 2) + xp(dxy(2x, + x5 + 1) — 2xpx5 + 8x7 — 2xp — x5 + x5 — 16x3)

+ xp(2x5(—2x7 + xy — 4) + x5(2x,2xy +9) + 4xF — 2xy(dxy +9) + 5) — dwpxy — 2xp(2x +5) + x3
+ 8x, + 12xy — 1) + xpg(—8x, + dxy — 1) + 2x5(xp(dxy + 6) + 4xF — xy(8xy +9) +2)

= 2x5(xp(10xy — 3) + 10x7 + (3 = 20xy)xy + 1) + 2(5 — 2xp)xy — 4x,(xp +2) + 2x§ + 8x3) + x5,

+ x3(=8xp + dxy + 1) — 2x5(2xp(Sxy + 2) + 10x7 — Sxyy(doryy + 1)) + x5(8xp(xy + 2) + 87

2 2
= 2xwBxy +9) — 1) + 4(x; — xy)(xp + 2xy) + 2x¢} + X%{Z(xl) + Dxp — (xp — D(xp + xg)},

2
G=—-——F—— 1 {=xp(=2x; + x5 + 2xy +2) + xp,(4xy (2x; + x5 + 1) — 2xpxg + 8x7 — 2x;
41 (xp — x5)

—x2 + xg — 16x3,) + x%)(—2xw(2xf(xs +3) +x:+xg+2) - 4x]2px5 — 2xpxg — 12)6.}2C + 2xp + 8(xg + 3)x%,
+xg + 205 + Sxg — 2) + xp (2x5(—2x, + xy — 4) + x5(2x,2xy +9) + 4xj2£ — 2xy(4xy +9) +5)

— 2x/(2xy +5) — 4x]2c + x5 4+ dxy(xy +3) — 1) + xD(x§(8xf —dxy + 1) — 2x3(x(4xyy +6) + 4x]2c

— x(Bxy +9) +2) + xg(x(20xy — 6) + 2Oxj2( —40x3, + 6xy +2) + 4x,(xy +2) + 4x]2( — 2x%

— 2y (doy +5)) + x9 + x3(—8x, + dxy + 1) — 2x5Q2x,(Sxy + 2) + 10xF — Sxyy(dxy + 1))

+ x§(8xf(xw +2)+ Sx% — 2xyw(Bxy +9) — 1) + 4(x; — xy)(xp + 2xy) + 2x4}

2 2
- X%{z(xo — Dx; + (xp + D(xp — x)},
2
Ci= &{xé(—mxs(bcf + xw) + 4x,(3 — 8xy) — 28)612r +3x% + dxyGxy +5) + 1) + x‘,‘j(8xf —-2)
+ xs(dxp(dxy —7) + 44x§- +AxyOxy — 1) = 1) + (22x; + 2)x§ — 8(—xpxy (9xy +2) + 3xj3f + ZX%

+ 6x3, (xy + 1)) + 10x, — 3x3 — 4xy},

2
G = —&{—x%@(xf — 10)xy + 2x; + 15x5Q2xy + 1) + 44x3, —7) + x3H8xy + 4) + x%(—lef + 28xy +5)

+ xg(8x(xy + 5) + 36x% + 26xy, (2xy — 3) — 4) — 4(x(—18x3, + xy + 5) + 6x3 + 9x2
1 f 1 w 7 0

4 2
+ 2xyw(6x3, + xy — 4)) + 3x3} + X%(x% — 2xp — xg),
4
C§ = &{40}@,‘,(—)% + 2x; + xg) = dogy (—xp(8xy + dxg + 5) + 2x, + 4(xp + 2)xg + 403x7 + xp — 1) + 3x3)
+ 2w () — 2x; — x5)(5x} — 4(xp + 3)xg + dxp(xp + 1) + x3 + 6) + dxpxg — xf — 2x3 — 8xpxy + 24xj2£x§
+ 24x,x5 — 32xxg — 48x7xg — 24x,xg + 16x7 + 320} + 24x7 + 8xp + x5 — 4xg + 2x5 — 3243}

2 4
- ,\/%{x%(ZxW — 1) = 2xy(2x; + xg5) + (x5 — 2x7)? + 4x/},
4
C] =~ f?{—ZxW(x%) +2xp + x5 —2) + (=2x; + x5 — D(x} + 2xp — x5) + 8xf Hxp (4x, — 1)
— Axg(xp + xy) + 4((xp — xw)? + xy) + X3 (C2)
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(iii) Coefficients C!, entering in F:

2
)= m{xf(x,% — Txg + 10xy + 6) — xy(7x3 — 19xg + 20xy, + 12) + IOxJ%},

|

4 3q2)\2(x% — x%)

&

a

2
{xp(6xpxg — 10x, + 12x5xy — 2x5 + x5 — 200y — 3) + 2x7 — (x5 — 3)x5(2x; + x5 + 4xy)},

1
Mxp + xg)
+ 203 (xs + 6) = xyy (4(xs + 6)xy + Txg — 10x5 + 5)) + 205 (xp(2xg(—4xs + Sxpy +6) — Ty — 4)

+ x%(leS = 7) + xy(5x5(Bxg — dxyy — 4) + ldxy + 7)) + xp(—x,(x5(xs(12xg — 16xy — 15) + 22xy + 6)
+8xy +3) + 2x]2c(x5(8x5 —11) = 4) + xp (xg(xg(24xg — 32xy — 29) + ddxy +2) + 16xy + 7))

= 2xpxy + xy (2, (2(xg — 4)xg + 1) + x5(6(xs — 2)xg + 7)) + x(xs(dxp(xg — 4) — 2x3 + 2x5 — 3) + 2x;)
—4(2(x5 — 4)xs + 1)xyy ),

M{—x}‘)(xf(xs +dxy +2) + 4x}2( + xw(=9x5 — 8xy +4)) + xp (x,(2(x5 + 6)xyy + x5 — 2x5 +7)
+ 2xJ2c(xS +6) = xy (4(xs + 6)xy + Tx — 10x5 + 5)) + 207, (x ;(2x5(4x5 — Sxyy — 6) + Ty + 4)

+ x]20(7 — 10xg) + xy (Sxg(—3xg + dxy +4) = T2xy + 1)) + xp(—xp(xs(xs(12x5 — 16xy — 15)

+ 22xy + 6) + 8xy +3) + 2x12,(x5(8x5 —11) = 4) + xp(xg(xg(24xg — 32xy — 29) + 44xy +2)

+ 16xy + 7)) = 2x3xy — xy(2x,(2(xg — 4)xg + 1) + x5(6(xs — 2)xs + 7)) + xp(x5(2x5(—2x; + x5 — 1)
+16x; +3) — 2xp) + 4(2(x5 — 4)xg + Dy},

{x4D(xf(xS +dxy +2) + 4x% + xy(—9xg — 8xyy +4)) + x%)(xf(Z(xS +6)xy +x2 —2xg+7)

1
m{x%(x5(36xf — 6xyy — 9) = 2(2x pxyy + 5x,(8x, + 3) + 6x3,) + 6x% + 40xyy + 11) — 4} (2x, + 1)
— x%(lef + 108xy + 5) + 2x5(2(—58x/xy + 25x]2¢ +xp+ 81x3%,) + 77xy — 1) — 4(6(13 — 15xf)x%v
= 59xxy + x;(5xp(6x; + 1) — 2) + 60x3, + 20xy) + 3x7},

1

= 20x3, (18x; + 13x5 — 2) + 2(2x5 — 1)xyy (50x; + Txg + 8) + 42x px3 — 132x12£x5 — 56x x5 + 12())cj’r
+ 156x7 + 40x, — 3x3 + 5x5 + 2x5 + 240x3,},

2
fT{x‘l‘)(ZxW(Sxf —4xg +5) + 4x; — 2xg — 56x3, + 3) + 2x7, (x3(—6x, + 13xyy — 2) + x5(—5(4x; + 5)xy
+ 12x§- +16x; +52x3, + 1) + 2(5(12x, + Dxgy, + (5 — 6xp)xpxy — xp(4x,(x, + 3) +7) — 50x3,) + x3
+10xy — 1) = 2x3(8x; + Sxy + 1) + xF(x (28 — 44xy) + 72x} +4(6 — 1lxy)xy +2) — 4xs(6x}(5 — Txw)
+ xf(60x%4, —26xy +4)+ 32x} + xy (10(1 = Sxy)xy +3)) + 8(50xfx%V +2(1 — 15x}2c)x%v
— xp(2xp(5x; +9) + Txy + xp(xp + 1)(2x,(5x, +4) + 1) — 20x3,) + x3},
s
473
+ 17xy + 1) + 6(4x; — 3)x3, + 2x,(6x; + 25)xy — 4xf(10x]2( +xp—2) +x3 +4x3, — 16xy — 1)
+ 8x%,v(50xf +37xg —36) — 12x%v(8(4xf —3)xs +4(x(5xy —9) +3) + 15x3) + 2xy ((26x, — 34)x2
+ (28x(3x; — 2) + 22)x + 44x, — 8xF(5x; +9) + 19x3 — 8)
—(xg— 2xf)2(—20x}2p + (xg — 2)xg +2) — 160x}, ). (C3)

{x‘})(4xf(4xf —2xy + 1) +2xg — 2xyy — 3) — 2x%)(x§(6xf —3xy —2) + x5(10x,(2x; — 4xy — 1)

(iv) Coefficients CY entering in F;:
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9=

cl =

3=

] =

)

Q=

cl =

2
4D {3x% + xg(dx; — dxy — 6) — 8(x; — xy)(xp + 2xy) — 4xp + 4xy + 3},
oL 5D f ! ! s
2x
%{XQD(_(XIL + Xg + 2XW - 1)) + XS(Xs(_ZXf + Xs — 4xW - 1) + 6(Xf + 2)CW)) - 3()(]( + 2XW)},
3A(xp — x3)
pe

m{—x‘})(xf(—bcs + 4)CW + 2) + 4)63» + ZXW(6)CS - 4XW + 1) — 1) + X3D(3X§(4Xf - 4)CW - 1)

+ x5(34xy — 6(4x xy + 4x]2f + xp — 8x3)) + 16(x; — xy)(x; + 2xy) + 2x; — 18xy + 1)

+ x5 (3 (8x; — 8xy — 2) + xF(—4dxp(dxy + 1) — 16x]2c + 4xy(Bxy +9) + 1) — 2x5(3x; + xyy + 1)

+ 16(x; — xy)(xy + 2xy) + 6xp — 10xy + 1) + xp(xs(xg(—24x, + 8xy — 7) + 8(x; — xy)(xp + 2xy)
+ 22x; + 6x% — 2xy +2) — 2(2x; + xy)) + x%(—2xf —8xy + 1)+ (11— 2xS)2(—2xf + xg + 2xy)

X (xg = 2(xp + 2xy))} — )(276]2{2xf(xD +2xg — 1) — xpxg + x5 + xp — 2x3 + xg},
7

42 (xp — xs)

+ x5(6(4x pxy + 4x§ + xp = 8xfy) — 3dxyy) — 16(x; — xy)(xp + 2xyy) — 2x; + 18xy — 1)

+ x5, (63 (8x; — 8xy — 2) + xF(—4dxp(dxy + 1) — 16xj2£ + 4xyBxy +9) + 1) — 2x5(3x; +xyy + 1)

+ 16(x; — xy)(x + 2xy) + 6xp — 10xy + 1) + xp(2Q2x, + xyy) — x5(x5(—24x, + 8xy — 7)

+ 8(x; — xw)(xy + 2xyy) + 22x, + 6xF — 2xyy + 2)) + x5 (2x, + 8xyy — 1) + (1 — 2x5)%(—2x, + x5 + 2xyy)

{=xp(ep(—2x5 + oy +2) + dxf + 2xy(6xs — dxy + 1) — 1) + x)(3x5(—4xy + dxy + 1)

2 2
X (xg = 2(xs + 2xy))} + X%{XD(_ZXf + x5 — 1)+ xp — 2xg — Dixs — 2xp)},

2
N 616;5 (=2x; + x5 — dxy — D{xh8x; — 2) — 2x5(2xp + 6xyy + 1) + 12(x; — xy)* — 4y + 303 + 12xy + 1},
2
X
(]6/\5{_48)6%‘/ + 4xf, (—8x3, + 18x, + Txg + 1) + (=2x; + x5 — 1)(x, — 4(3x; + 2)xg
2 4q°x)
+4Q@x,(xp + 1) + 1) + 3x3) + 2Axy(—8x, + 4xg + 9)} + x : (2x; — x5 + 1),
4

+ xh(12xy — 1) — 2x3(4x; + 3oy + 2) + x3(4(G5x,xy + 6xp(xp + 1) + x3,) + 42xy + 2)
— 4xs(2x§-(xw +6) + xp(6 — dxy(xy + 1)) + 8x} + xw(2(5 = 3xy)xy + 7)) + 8((10x, + 1)x3,
= 2(xp + DBxp — 1)xf, — xf(2x;- +xp + 2y +xp(p + D Qxp(xp + 1) + 1) — 4x3) + x§ + dxy )

2 4
+ X%{—x% + (x5 = 2x)(—2xp + x5 + 2xy) + dx; — 20y},
4
%(—2);;» + x5 — dxy — D2xp + x5 — 2xy — D{xh(dx, — 1) — dxg(ap + xy) + 4((xp — xp)* + xy) + x5

(C4)

Coefficients C} entering in Fyg:

IO.XD

W(Xf - XW)(_ZXf + Xs — 4)CW - 1),

2
%{XZD(4Xf - S.XS + SXW + 5) + xS(SxS(—fo + Xg — 4XW - 1) + 12()(14 + 2xW)) - 6(Xf + ZXW)},
3g7 A (xp, — x3)
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Ci= M{x‘},(éle — x5 + 8xy +6) + x(9xs5(2x; — x5 + dxy +2) — 16x; — 32xy — 7)

A (xp + xs)

— 2x5(=2x3(3xs + 6xy + 2) + 9xp + 3x3 + x5 + 18xyy + 2) + xp(xs(xs(24x, — 12xg + 48xy + 17)

- 10(3)()( + 6XW + 1)) + 4Xf + 8XW + ]) + 2X% - (ZXS - 1)3()(5 - 2(Xf + ZXW))},
Ci= g{xﬁ)(—@g + x5 — 8xy — 6) + xp(9xs(2x; — x5 + 4xy +2) — 16x, — 32xy — 7)

A (xp = xs)

+ 2x3(=2x3(3x; + 6xy + 2) + 9xp + 343 + x5 + 18xyy + 2) + xp(x5(xs(24x, — 12xg + 48xy + 17)

— 10(3x; + 6xy + 1)) + 4x; + 8xyy + 1) + 203, + (2xg — 1)3(xg — 2(x; + 2xy))},
Cf = 224 ((13 = 16x,)xs + 32x,(xy + 2uy) + 263, — 34z — 13) + (2%, + 1201 + 19)
— 2x5(—56x pxy + 2xp(x; + 2) + 150x3, + 86xy + 3) + 2(—2x,(90x7, + 4dxy + 1) + 60x;- - 14xj2r
+ xw(30xy (dxy + 5) +43) + 1) — 15x3},
c = %{44(—1@% +90x; — 13x5 + 29) + (=2x; + x5 — 1)(— 1323 — 4(15x, + Dxg
+ 60x,(x; + 1) + 15x3 + 2) + 2Axy(—16x; + 8x5 — 9) — 240x3,},

Ccé= f)):f {20, (x5 (12Qx pxyy — xp + x3) + Ty — 4) — 6(4x; + 3)x3, — 6xp(4x, + 5)xy + 12x,(x, + 1)
+x3(3 — bxy) + 48x3, — Sxy +2) + xp(4xy — 1) + 2x3(20x, + Txy + 4) — 2x3(18x,(xy +2) + 6OxJ2c
+ (13 — 6xy)xy + 2) + 4xs(—6x§(xw —8) + 12x,(=3xf, + xy + 1) + 40x} + xy 20y — 3)xy +5))
+4(=2(50x; + 13)x3, + 6(2x;(5x; +4) + 1)xj, + (Zx?.(IOxf +9) — Dxy
— dxp(xp + D(5xp(xy + 1) + 1) + 40x3,) — 5x¢},
*xp

— 24xj3( +8xp—2) + xp(1 — dxy) — 2x_39(2xf + 25xy + 4) + 4xg(72(x; — 1)x3, — 32(xp — 3)xp + S)xy
+4x3 — 2xp — 70x7) + x5(xp(8 — 36xy) + 90xy (2xy + 1) +4) + 8(5(7 — 10x)x7, + 6(x; — 1)(5x, — 3)xiy
+xp(2x; + 3)(5x — 3)xy +2(2 — Sxf)x; + 20x3,) + 5x¥ + 20xy ) (C5)

(vi) Coefficients C¥; entering in F;:

Clzxw
C(l)l = W{Q,Xf - 3)CS + 28)CW + 3},
Xw
C}I - m{x? - XZD + 6(1 - XS)(Xf + 2xw)},
2
q°x
C%l = WDW—FXS){X%(_ZXJF + Xg + IOXW + 2) - .XSD()Cs(GXf - 40)CW - 5) + 8(Xf - )CW)(.Xf + 2)CW)
+x3 + 28xy + 2) — xp(2xy(2xp (x5 + 4) — 15x% + 11xg + 8) + 4 pxg + 4x‘}2¢xs — 8xpxg + 16x_% + 6x/
— 8(xs + 4)xj, + x5 + 1) + xp(x5(24x, — 2xy + 6) — 2x5(10xpxyy + xp(10x, + 11) — 20x7, + 4xy + 1)
+ 4xpxy + xj% +xp— 2x%) — 7x§ — 2xy) +xp — (1 — 2x5)2(2xW(2xf + xg) + (xg — fo)2 — 8x3)},
q*xy
C?l = — —{—x4D(—2xf + x5 + 10xy +2) — x%(x5(6xf — 40xy — 5) + 8(x; — xy)(xp + 2xy)

4)\2XD()CD - XS)
+ x5 + 28xy + 2) + xf2xyw(2xp (x5 + 4) — 15x3 + 1lxg + 8) + 4upxg + 4x§x5 — 8xpx5 + 16);?r + 6xp
— 8(xg + 4)xf, + x3 + 1) + xp(xF(24x; — 2xpy + 6) — 2x5(10xpxyy + xp(10x; + 11) — 20x3, + 4xy + 1)

+ 4(xpxy + szc +xp— 2x%) — 7x§ — 2xy) + x5 + (1 — 2x5)2(2xw(2xf + xg) + (xg — 2xf)2 — 8x3)},
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2
Cly = T b (8, = 2) = 2x2ay + 15y + 1) + 1205, = )y = ) = by + 303 + 30my + 1),

S S
Cll_

6 —
Cll_

7
Cll

(2]
(3]

(5]

(6]
(7]
(8]

CIZXW
32

{=2x38xy + 1) — 2x5(6xy — dxy + 1) + 12(dxpxy + x_?v +xp— 5x%,) + 3x% + 8xy + 1},

A 12x3 (= 2x3, + 6xp + x5 + 1) — 20y (xp (4x; — 2x5 + 3) + (dx, — 2)xg

—4xp(3x; +2) + x3) + (=2x; + x5 — 1)(x3, — (x5 — 2x)* — 4x;) + 40x3, },

q*xy
422
+ (xg = 2xp)%) — 36x3,(2x; + x5 — 1) + 32x3,}.

{4xw(x%)(4xf — 1) + 4x;(3xp + xg) — 8xp + x5(3x5 — 4) +2) — (2x + x5 — 1)(x%)(4xf -1)
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