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The Casimir force between conducting plates at rest in an inertial frame is usually computed in equal-

time quantization, the natural choice for the given boundary conditions. We show that the well-known

result obtained in this way can also be obtained in Dirac’s light-front coordinates. This differs from a light-

front analysis where the plates are at ‘‘rest’’ in an infinite momentum frame, rather than an inertial frame;

in that case, as shown by Lenz and Steinbacher, the result does not agree with the standard result. As is

usually done, the analysis is simplified by working with a scalar field and periodic boundary conditions, in

place of the complexity of quantum electrodynamics. The two key ingredients are a careful implementa-

tion of the boundary conditions, following the work of Almeida et al. on oblique light-front coordinates,

and computation of the ordinary energy density, rather than the light-front energy density. The analysis

demonstrates that the physics of the effect is independent of the coordinate choice, as it must be. This is

meant not as a new derivation of the Casimir effect but as a demonstration that light-front quantization is

not somehow flawed in its treatment of such vacuum effects.
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I. INTRODUCTION

The Casimir effect [1,2] is the existence of a force
between conducting plates due to the exclusion of vacuum
modes by boundary conditions at the plates. The vacuum
energy density between the plates differs from the free
density and defines an effective potential energy for the
plates that varies with the plate separation. The energy
density is computed by summing over the allowed modes,
and the variation of the effective potential yields the force.
To simplify these calculations, the physical boundary
conditions at the conducting surfaces can be replaced
by periodic boundary conditions, and the photon field
replaced by a massless scalar field.

Because the plates are at rest in an inertial frame, the
natural choice of coordinates for the analysis is the stan-
dard set of equal-time coordinates, rather than Dirac’s
light-front coordinates [3,4]. Nevertheless, attempts at
analysis in light-front quantization have been made [5,6].
In Ref. [5], the analysis considered the light-front analog of
spatial periodicity, with boundary conditions periodic in
x� � t� z rather than z. However, this corresponds to
plates moving with the speed of light, which cannot be
realized experimentally, and, in any case, the calculation
did not lead to a well-defined Casimir force. In Ref. [6], the
coordinate choice was modified away from Dirac’s light-
front coordinates in such a way as to avoid the difficulties
encountered by Lenz and Steinbacher. In their analysis,
Almeida et al. arrived at suitable boundary conditions,
conditions periodic in z that mix their time and space
coordinates. Such a choice is also not ‘‘natural’’ for light-
front coordinates because it mixes x� with light-front time
xþ � tþ z.

In both of these attempts, light-front quantization appeared
somehow deficient and Dirac’s light-front coordinates

seemed unusable for the computation of this vacuum ef-
fect. We wish to rectify these impressions and exonerate
light-front coordinates. In this paper we show that the
Casimir effect can be calculated in Dirac’s light-front
coordinates, without any modifications, given the proper
choice of boundary conditions.
A careful choice of boundary conditions is not the entire

story. To complete a calculation of the Casimir effect in
light-front coordinates, we must calculate the true vacuum
energy,1 not the light-front energy p� � E� pz. The
ordinary energy E is what determines the effective poten-
tial, which in turn determines the Casimir force. That the
physics of a system is determined by E was seen in a light-
front variational analysis of�4 theory by Harindranath and
Vary [7] and in finite-temperature calculations by Elser and
Kalloniotis [8]. In the latter case, the important point is
that a partition function should be computed for contact
with a heat bath at rest in an inertial frame; if the light-
front energy p� is used instead of E, the heat bath must
be interpreted as moving with the speed of light, an
unphysical situation.2

Our definition of light-front coordinates is illustrated in
Fig. 1. In addition, we define transverse spatial coordinates
~x? ¼ ðx; yÞ and the light-front momentum p ¼ ðpþ �
Eþ pz; ~p?Þ. The scalar product of four-momentum and
coordinates is then given by p � x ¼ 1

2 ðpþx� þ p�xþÞ �
~p? � ~x?, and the mass-shell condition p2 ¼ m2 yields
p� ¼ ðp2

? þm2Þ=pþ. We will make some use of these

relations in the following sections.
The remainder of the paper contains our analysis of the

Casimir effect for plates perpendicular to the z axis, in

1This is not an issue for oblique light-front coordinates, where
the light-front energy may be used directly [6].

2For further discussion of this point, see Ref. [9].
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Sec. II, and for plates perpendicular to the x axis, in
Sec. III. The latter case, where periodicity in the spatial
coordinate is the same for both equal-time and light-front
coordinates, is considered in order to check that our ap-
proach has not destroyed the agreement between coordi-
nate systems already obtained by Lenz and Steinbacher [5].
A summary is given in Sec. IV.

II. LONGITUDINAL CASE

We first consider plates separated in the z direction,
as shown in Fig. 1. One plate is at z ¼ 0, and the other at
z ¼ L. The standard result for the expectation value of the
energy density is a sum over zero-point energies [2],

hH i ¼ 1

2L

X1

n¼�1

Z d2p?
ð2�Þ2 En; (2.1)

with

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þ

�
2�n

L

�
2

s
: (2.2)

The sum is typically regulated by a heat-bath factor3

e��En . The sum then yields

hH i ¼ 3

2�2�4
� �2

90L4
: (2.3)

The second term provides the effective potential, indepen-
dent of the regulator, and determines the Casimir force.

To simulate the Casimir effect, we impose periodic
boundary conditions on a neutral massless scalar field and
compute the vacuum energy density. The mode expansion
for the scalar field is

� ¼
Z dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�3pþp faðpÞe�ip�x þ ayðpÞeip�xg; (2.4)

with the modes quantized such that

½aðpÞ; ayðp0Þ� ¼ �ðp� p0Þ: (2.5)

The periodicity imposed is�ðzþ LÞ ¼ �ðzÞ; in light-front
coordinates, this is

�ðxþ þ L; x� � L; ~x?Þ ¼ �ðxþ; x�; ~x?Þ: (2.6)

This implies �pþL=2þ p�L=2 ¼ 2�n or

p2
?

pþ � pþ ¼ 4�

L
n; (2.7)

with n any integer between �1 and 1. The positive
solution of this constraint is

pþ
n � 2�

L
nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2�

L
n

�
2 þ p2

?

s
: (2.8)

Then n ¼ �1 corresponds to pþ ¼ 0, and n ¼ 1 to
pþ ¼ 1.
The mode expansion of the field is restricted to a dis-

crete sum for the longitudinal modes. We define discrete
annihilation operators

anð ~p?Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������
dpþ

dn

��������

s
aðpþ

n ; ~p?Þ; (2.9)

for which the commutation relation becomes

½anð ~p?Þ; ayn0 ð ~p0
?Þ� ¼ �nn0�ð ~p? � ~p0

?Þ; (2.10)

and change the integration over pþ to a sum over n,

Z
dpþ ¼

Z dpþ

dn
dn ! X

n

dpþ

dn
; (2.11)

where dpþ
dn ¼ 2�

L
pþ
n

En
. Substitution then gives

�ðxþ ¼ 0Þ ¼ 1ffiffiffiffiffiffi
2L

p X
n

Z d2p?
2�

ffiffiffiffiffiffi
En

p

� fanð ~p?Þe�ipþ
n x

�=2þi ~p?� ~x?

þ ayn ð ~p?Þeipþ
n x

�=2�i ~p?� ~x?g; (2.12)

where the leading 1ffiffiffiffiffi
2L

p factor is consistent with the normal-

ization of the discrete basis functions e�ipþ
n x

�=2þi ~p?� ~x? on
the interval �2L< x� < 0.
For the free scalar, the light-front (LF) energy and

longitudinal momentum densities are H� ¼ 1
2 j ~@?�j2

andHþ ¼ 2j@��j2. Their vacuum expectation values are

FIG. 1. Light-front coordinates for the longitudinal case.
The periodicity is in z, from 0 to L. The line for z ¼ L intersects
the x� axis at x� � t� z ¼ �2L.

3In light-front quantization, the same factor should be used,
since the system should be in contact with a heat bath at rest in
an inertial frame.
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h0jH�j0i ¼ 1

4L

X
n;n0

Z d2p?d2p0
?

ð2�Þ2 ffiffiffiffiffiffiffiffiffiffiffiffi
EnEn0

p ~p? � ~p0
?

� h0janð ~p?Þayn0 ð ~p0
?Þj0i

¼ 1

4L

X
n

Z d2p?
ð2�Þ2En

p2
? (2.13)

and

h0jHþj0i ¼ 2

2L

X
n;n0

Z d2p?d2p0
?

ð2�Þ2 ffiffiffiffiffiffiffiffiffiffiffiffi
EnEn0

p pþ
n p

þ
n0

4

� h0janð ~p?Þayn0 ð ~p0
?Þj0i

¼ 1

4L

X
n

Z d2p?
ð2�Þ2En

ðpþ
n Þ2: (2.14)

These yield an energy density

ELF � 1

2
ðh0jH�j0i þ h0jHþj0iÞ (2.15)

¼ 1

8L

X
n

Z d2p?
ð2�Þ2En

�
2E2

n þ 2
2�

L
nEn

�
(2.16)

relative to light-front coordinates. The second term is zero,
because it is proportional to

P1
n¼�1 n ¼ 0. We then obtain

ELF ¼ 1

4L

X
n

Z d2p?
ð2�Þ2 En: (2.17)

However, we still need to relate this to the energy density
relative to equal-time coordinates, which we denote simply
by E.

Integration over a finite volume between the plates
yields

E ¼ 1

LL2
?

Z 0

�2L
dx�

Z L?

0
d2x?ELF: (2.18)

A change of variable from x� to z ¼ ðxþ þ x�Þ=2 at fixed
xþ simplifies this to

E ¼ 1

LL2
?

Z L

0
2dx�

Z L?

0
d2x?ELF ¼ 2ELF: (2.19)

Thus, the energy density is

E ¼ 1

2L

X
n

Z d2p?
ð2�Þ2 En; (2.20)

which matches exactly the standard result (2.1). When
properly regulated, the sum can be performed to extract
the regulator-independent piece and the force calculated
from the derivative with respect to the separation.

III. TRANSVERSE CASE

The transverse case is less problematic. In fact, a direct
implementation of light-front coordinates, without any of

the considerations made here, does yield the correct result
[5]. Therefore, there could be concern that the additional
steps that we have introduced will somehow destroy this
agreement. However, this does not happen, as we show in
this section.
Without loss of generality, let the periodicity be in the x

direction, so that we require �ðxþ; x�; xþ L?; yÞ ¼
�ðxþ; x�; x; yÞ. This is satisfied if px is restricted to
the discrete values pn � 2�n=L?. We define discrete
annihilation operators

anðpþ; pyÞ ¼
ffiffiffiffiffiffiffi
2�

L

s
aðpþ; pn; pyÞ; (3.1)

with the commutation relation

½anðpþ; pyÞ; ayn0 ðp0þ; p0
y� ¼ �nn0�ðpþ � p0þÞ�ðpy � p0

yÞ:
(3.2)

The scalar field is then

�ðxþ ¼ 0Þ ¼ 1ffiffiffiffiffiffiffi
L?

p X
n

Z dpþdpyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2pþp

� fanðpþ; pyÞe�ipþx�=2þipnxþipyy

þ ayn ðpþ; pyÞeipþx�=2�ipnx�ipyyg: (3.3)

The leading factor is consistent with the normalization

of the wave functions e�ipþx�=2þipnxþipyy on the interval
0< x < L?.
The energy and longitudinal momentum densities are

h0jH�j0i ¼ 1

2L?

X
nn0

Z dpþdpydp
0þdp0

y

8�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþp0þp ðpnpn0 þ pyp

0
yÞ

� h0janðpþ; pyÞayn0 ðp0þ; p0
yÞj0i

¼ 1

2L?

X
n

Z dpþdpy

8�2

p2
n þ p2

y

pþ (3.4)

and

h0jHþj0i ¼ 2

L?

X
nn0

Z dpþdpydp
0þdp0

y

8�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþp0þp pþp0þ

4

� h0janðpþ; pyÞayn0 ðp0þ; p0
yÞj0i

¼ 1

2L?

X
n

Z dpþdpy

8�2
pþ: (3.5)

Averaged together, these determine ELF to be

ELF¼ 1

2L?

X
n

Z dp�dpþdpy

8�2

p�þpþ

2
�

�
p��p2

nþp2
y

pþ

�
:

(3.6)

The delta function is equivalent to the mass-shell
condition:
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�

�
p� � p2

n þ p2
y

pþ

�
¼ pþ�ðp2Þ ¼ pþ�ðE2 � E2

nÞ; (3.7)

with En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�L?

nÞ2 þ p2
z þ p2

y

q
, and facilitates a conver-

sion to integration over the equal-time variables E ¼
ðpþ þ p�Þ=2 and pz ¼ ðpþ � p�Þ=2. The conversion
yields

ELF ¼ 1

2L?

X
n

Z 2dEdpzdpy

8�2
EðEþ pzÞ 1

2En

�ðE� EnÞ:

(3.8)

The E integral can be done immediately, with use of the
delta function. The contribution from the pz term is
zero, because that part of the pz integral is trivially odd.4

This leaves an energy density relative to light-front
coordinates of

ELF ¼ 1

4L?

X
n

Z dpzdpy

ð2�Þ2 En: (3.9)

The transformation to the energy density relative to equal-
time coordinates is, as before, just multiplication by two.
Therefore, we obtain in the transverse case

E ¼ 1

2L?

X
n

Z dpzdpy

ð2�Þ2 En; (3.10)

which matches the usual equal-time result and is of the
same form as in the longitudinal case.

IV. SUMMARY

By a physical choice of boundary conditions and vac-
uum energy, we have computed in Dirac’s light-front co-
ordinates the vacuum energy density appropriate for the
Casimir effect [1] and obtained the standard result (2.1).
This is meant not as a new derivation of the Casimir effect,
although it is, but as a demonstration that light-front quan-
tization is not somehow flawed in its treatment of such
vacuum effects. Unlike previous attempts [5,6], we have
invoked the physics of plates at rest in an inertial frame and
have not resorted to alteration away from Dirac’s light-
front coordinates. Keeping the plates at rest is not natural in
light-front coordinates, but is physically correct. Similarly,
the vacuum energy is computed as the standard equal-
time energy, which is the correct input to the calculation
of a Casimir force. Again, this is not the natural choice in
light-front coordinates, where one would usually calculate
the light-front energy. In other words, by being careful to
calculate the same physical quantity, we have obtained the
standard result, though with use of a different coordinate
system.
Clearly, light-front coordinates are not the preferred

system for this calculation. However, there are many situ-
ations in nonperturbative field-theoretic calculations where
light-front coordinates are much superior [4]. In particular,
Fock-state expansions are well defined and the associated
wave functions are boost invariant, making the calculation
of observables relatively straightforward. That something
such as the Casimir effect, which is much less natural for
light-front coordinates, can also be calculated correctly
provides additional confidence in the usefulness of the
approach.
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