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Opposite charged two-body system of identical counterrotating black holes
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A four-parametric exact solution describing a two-body system of identical Kerr-Newman counter-
rotating black holes endowed with opposite electric/magnetic charges is presented. The axis conditions are
solved in order to really describe two black holes separated by a massless strut. Moreover, the explicit

form of the horizon half length parameter o in terms of physical Komar parameters, i.e., Komar’s mass M,
electric charge Qf, angular momentum J, and a coordinate distance R is derived. Additionally, magnetic
charges Qp arise from the rotation of electrically charged black holes. As a consequence, in order to
account for the contribution to the mass of the magnetic charge, the usual Smarr mass formula should be
generalized, as it is proposed by A. Tomimatsu, Prog. Theor. Phys. 72, 73 (1984).
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L. INTRODUCTION

Binary black hole systems in equilibrium, without a
support strut in between, have been extensively studied
in vacuum since the famous double-Kerr-NUT solution
was presented by Kramer et al. in 1980 [1]. These types
of solutions are nonregular [2], due to the fact that at least
one of the Komar masses results to be negative [3,4],
appearing as ring singularities off the axis.

A binary system of identical Kerr-Newman (KN)
sources separated by a massless strut (conical singularity)
[5] in between has been recently studied by Manko et al.
[6]. The strut prevents the sources from falling into each
other and provides an interaction force which, nevertheless
in this case, does not contain any spin-spin interaction.
Furthermore, the equilibrium condition of the two-body
system is reached after removing the strut and it reveals
that the system is composed of identical counterrotating
relativistic disks, lying on the equatorial plane, whose
individual electric charges, equal to their respective
masses, result to have the same sign [7,8]. All of these
aforementioned two-body systems do not contain individ-
ual magnetic charges; hence, they fulfill the standard Smarr
formula for the mass [9].

Additionally, following the ideas of Varzugin [10] we
solved, in Ref. [11], the axis conditions in order to define a
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four-parametric asymptotically flat exact solution, which
describes two unequal counterrotating black holes sepa-
rated by a massless strut. We established a straightforward
procedure to obtain explicitly the functional form of the
horizon of length 2¢ in terms of Komar physical parame-
ters [12]. It determines the structure of the whole spacetime
and its geometrical properties in a more physical way.

The main purpose of the present paper is to solve the
axis conditions in order to describe a binary system of
two identical counterrotating black holes endowed with
opposite electric/magnetic charges. We will show that
magnetic charges arise as a result of the rotation of electri-
cally charged black holes. In this description, in order to
account for the contribution of the magnetic charge Qp to
the mass, the Smarr mass formula [9] is generalized; it
becomes a cubic equation. This modification is already
proposed by Tomimatsu [13], so that we only provided
its physical form.

The interaction force related with the strut contains
now, due to the rotation, a spin-spin interaction. Different
limits of our solution are also discussed. Since the identical
KN black holes are counterrotating and have opposite
electric charges, the full metric exhibits an equatorial
antisymmetry property in the sense proposed by Ernst
et al. in [14]. The upper black hole is characterized by
having J > 0 and Qf < 0, while the lower one has J <0
and O > 0.

The outline of the paper is as follows: In Sec. II we solve
the axis conditions for the case of a two-body system of
identical counterrotating black holes, endowed with oppo-
site charges and separated by a conical line singularity [5].
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In Sec. III explicit formulas for the geometrical properties
of the two-body system, and the analytical form of o
in terms of Komar physical parameters, are derived.
In Sec. IV the full metric for the extreme limit case is
obtained. The concluding remarks are presented in Sec. V.

I1. OPPOSITE CHARGED TWO-BODY SYSTEM OF
IDENTICAL COUNTERROTATING BLACK HOLES

According to Ernst’s formalism [15] the Einstein-
Maxwell equations describing the stationary axisymmetric
electrovacuum spacetimes can be reduced to the following
system of equations:

(Re€ + |DP)AE = (VE + 2DVD)VE, 0
(Re€ + |P2)AD = (VE + 2DVD)VD,
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where V and A are the gradient and Laplace operators
defined in Weyl-Papapetrou cylindrical coordinates (p, z)
and acting over the complex potentials £ = f — |®|> + ¥
and ® = —A, + iA}. Here, A4 is the electric potential
and A} is associated with the magnetic potential A, both
components of the electromagnetic four-potential A; =
(0,0, A5, Ay). Any solution of Eq. (1) determines the metric
functions y and w of the line element [16]

ds* = f1[e*Y(dp* + dz?) + p>de?] — f(dt — wde)?,
(2

by means of the following set of differential equations:

4y, =pfIE, + 20D, |? — |€, + 20D 2] —4pf (D, > — [P, ),

2y, = pf2Re[(E, + 20D ,)(E, +20D,)] — 4pf ! Re(D,D,),
w, = pf?Im(, + 20,

w, = —pf 2Im(E, +20d)),

3)

where the subindices p and z denote partial differentiation, the bar over a symbol represents complex conjugation and

x> =

xX. An electrovacuum exact solution of Eq. (1), describing a binary system composed by KN sources, can be

obtained with the aid of the Sibgatullin method (SM) [17,18]. Following this approach, the Ernst potentials £, @ and the

full metric read [18]

E F D 2Im[E_(G, + H,) — FI D
5=_+’ (I)=—, f_ - _ m[ ( 0 0) :]’ 627= e ,
E_ E_ 20E_| 20, PTIZ, 7.
1111 0 f(al) f(az) f(CY3) f(a4)
*+1 1
D=E.E_+E,E_+2FF, E.=1]=*1 C F=—11 C ,
0 0
0 0
fitfr 0 flay) flay) flaz) flag)
0 p1 P2 P35 P4 0 1111
Z 1 1 1 1 1
! B I
G{) = 1 C ’ H() = _BZ C I= ! 5
_ B 1
0 eq
_ e, 0 C
O () _
€ O
Yuri Yier2 Yizrs Yisra Yiu Y2 Y13 Yi4
YTt Yz Ya3F3 Yoaly | Y21 Y22 Y23 Vo4 .
C= , a, = , pn_zz_an_rm
My My, M3z My My My, M3 My,
My My My My My My My My

2
M, =[e;+2ffle)a,—B)~",  fla,) = ij’}’jn,
=

Yin = (an - Bj)_ly ry = P2 + (Z - an)2~

“4)

where the parameters e; are functions of a,, f i» and :Bj? they read
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P 2“ﬁ=1(31__ @,) _ 2 2f1f1f
LB -B)BI—B)BI—B) EB B 5
e, = 2Hi:1(ﬁ2_a’n) _ 2 2f2fk

(Ba=BIB2=BIB2—B2) & B~ Bi

Equation (4) contains a set of twelve algebraic parame-
ters {a,, f;, B;}, where the real or complex values of a,
define subextreme objects (black holes) or hyperextreme
objects (relativistic disks). It is important to note that the
metric (4) is not asymptotically flat at spatial infinity, since
NUT sources [19] as well as the total magnetic charge are
present. Therefore, in order to get rid of such monopolar
terms, which break the asymptotic flatness of the solution, it
is necessary to impose and solve the corresponding con-
ditions on the symmetry axis (axis conditions). By con-
struction, Eq. (4) satisfies an elementary flatness condition
on the upper part of the symmetry axis: w(a; <z <o) =0
and y(a; <z < o) = 0. Besides, the metric function -y
ensures the fulfillment of the balance condition on the lower
part of the symmetry axis: y(—o0 <z < ay) = 0. The
remaining conditions on the symmetry axis read

wlp=00a,<z<a3) =0,

(6)
wlp=0—-—0<z<a) =0.

A straightforward simplification leads us to the follow-
ing algebraic system of equations:

Im[a_(g- +5H_)] =0, Im[a, (g4 +H4)]=0,

0 2 2 11 1+1
1
g = |1 (as) ,
0
0
0 1 1 1 1
1
he =11 (as) ) ™
€]
()
Tyn V2 Yz Y
0. = Ty TV Y Y
- My My My My
My My My My

The total mass M, total electric charge @, and total
magnetic charge B of our binary system can be calculated
asymptotically from the Ernst potentials on the symmetry

axis, which lead to
Re[el + 62] = _2M, fl + f2 = Q + lB (8)

Replacing Eq. (5) into the first equation of (8) yields the
relation
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Bi+ Byt B+ By=—2M. )

By choosing B + B, = —M = =2M, Q =0, and
B =0, we are describing a system of two identical
counterrotating KN black holes of mass M, endowed
with opposite electric/magnetic charge Qz/Qp with a
well-known conical line singularity [5] in between. The
corresponding horizons of the black holes are defined
by the real values of the constant parameters «,, they
fulfill the relation oy + a4 = a, + @3 = 0, as shown in
Fig. 1. The parameters «, can be written in terms of the
relative coordinate distance R and the half length o of each
rod describing the black holes; they read

R
—az3=——o0. (10)

a; = —ay ==+ 0, a) = 3

2

An explicit solution to the algebraic equations (7) is
given by

_  2q, -
f1,2=+ﬁr Bio=—M=*+p+is,

p=R*/4— M? + o2,

5 = (R — aM>) (M — 02 — . O?), b
. ~ _R-2M
9o = Qo(R/2 M)’ M- R+ 2M;

where the constant parameter Q, is the value of the
electric charge QO in absence of magnetic charge Qp. It
is important to note the fact that M, J, —Qf are the
parameters characterizing the upper constituent of the
system, while M, —J, +Qp characterize the lower part
of the system. The black holes are separated by a coordi-
nate distance R. In order to guarantee equatorial antisym-
metry of the exact solution [14], the electric and magnetic
charges of the constituents should have opposite sign. By
using Eq. (11), one is able to prove that Eq. (4) reduce to

FIG. 1. Two identical KN black holes on the symmetry axis,
with the values @; = —ay = R/2+ 0, @y = —a3 = R/2 — o,
and R > 20.

084062-3



I. CABRERA-MUNGUIA et al.
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_Im[(A +1)G — xI] AR =0 + [y
|APZ =TI + x>’ Kar\ryrsry

2y

A =40 (ks +2¢3)(r) — r3)(ry — r4) + R*(k_ = 2g2)(ry — ry)(r3 — r4)

+ 20'R(R2 —40'2)[0'R(r]r4 + r2r3) + l.5(7"1}"4 - }"27"3)],

I'=2M0oR(R> —40%)[oR(r; +ry+r3 +ry) —2QM* —i8)(ry —ry —r3 + 14)),
X =4q,0R[(R —20)(e; +4M?)(r; — ry) + (R + 207)(e_ — 4M?)(r, — r3)],
G= —2z2' +20R[40Kk  (riry — r3r4) + 2Rk _(rir3 — ryry) — MR —20)v, (r; — ry) — MR+ 20)v_(r, — 13)],
T =4Mq,[20%(R?> — 4M? — 2i8)(r 1y + r31r4) + R22M? — 202 + i8)(ryr3 + 1or4)] — 2¢,(R> — 407)
X{2M[ (e, + 4M*)riry — (e~ — 4M?)ryr3] + oR[(e4 + 8M?)(ry + ry) + (e — 8M?)(r, + r3) + 80 MR]},

K, = 40’R*(R* — 40?), K+ = M*(R* —407) = 2¢3,

where r, have the following reparametrized form:

12 =\/P2 +(@—R/2% o)

ryq = \/p2 +(z+R/2F o)

(13)

The corresponding Ernst potentials on the symmetry
axis are given by

2q,|

& — 729!
e@=— [ . (14)

e =727 2Mz +2M?* — R?/4 — 0% — ié.

The above solution [Eq. (12)] possesses the equatorial
antisymmetry property in the sense of [14], according to
which after making the change z — —z, the metric func-
tion w changes its global sign and the Ernst potentials
on the symmetry axis satisfy the relations e(z)e(—z) = 1
and f(z) = ¥f(—z)e(z). From Eq. (12), Q = 0 defines a
two-body system of equal counterrotating black holes
[10]. It is a particular case of the solution presented in
Ref. [11]. Furthermore, if o = JM? — nQ? with Q, =
—Qpf, Eq. (12) represents a binary system of identical
opposite charged Reissner-Nordstrom black holes [20].
On the other hand, the analysis of the energy momentum
tensor of the strut in between leads us to the expression for
the interaction force [5,21]:

M2(R* — 402) + Q%(R — 2M)?
(R* — 4M*)(R? — 402 — 4uQ32)’
(15)

F=gler—1)-

where 7 is the value of the metric function y on the region
of the strut.

III. ANALYTIC FORM OF o AND GEOMETRICAL
PROPERTIES OF THE SOLUTION

In this case, the half length of the horizon o can be
written as a function of physical Komar parameters [12]:

ve =€ (R*20)**£8¢3,  €.:=0cRF(2M?*—id),

(12)

f
M, Qf, J, and a coordinate distance R. Nevertheless, the
individual magnetic charge Qp is not vanishing in this
approach. In order to calculate o we are going to use the
Tomimatsu’s formulas [22],

1 1
M= - pym [H oV, dedz, O =— | wAldeds

_477 H

1
Op = g [H wAy dedz,

1 1 ~
J=- 8_77' [H (1)[1 + EQ)\I,Z - A3A/31 - (AgA3)Z:|d§DdZ,
(16)

with Ay := A; + wA, and the magnetic potential A5 is
defined as the real part of Kinnersley’s potential ®, [23].
Using the SM [18], one finds that

7)

Since the black holes are identical, the horizon for the
upper object is defined as a null hypersurface H = {—o =

:—%=0,0=¢ =27 p— 0} From Eq. (16), one can
show that M represents the individual mass of each of the
black holes. On the other hand, the electric and magnetic
charges read
0,(R* — 4M?)

R?> —40% —4uQ>’ (18)
_20,V(R> — 4M*)(M? — 0 — pQ7)

R?> —40? — 40> '

Op=—

Op

Notice that the electric and magnetic charges possess
opposite sign. After combining both equations in (18),
one gets

0%+ 0% =—-0:0,  (0p<0,03>0), (19

where the parameter O, allows us to define a new auxiliary
variable as follows:
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0
03’

Xi=1+

0, = —0gX, (20)

and o can be written as a function of X in the form

2
o= \/X(M2 — QiuX) + RT(I - X). 21

The last integral in Eq. (16), which defines the angular
momentum J, is not vanishing and the usual Smarr formula
for the mass [9] is not anymore fulfilled. As Tomimatsu
proposed [13], it should be enhanced in order to include the
contribution to the mass of the magnetic charge; it acquires
the corresponding additional term:

S
M=:—+2QJ+q>ngE+MA$
a
=0 +2Q0J + ®HQp + M5, (22)

where @ = —AH — QALY is the electric potential in the
frame rotating with the black hole and M is an extra
boundary term associated to the magnetic charge [13],
given by

|
Mi= - fH(A3Ag)zdgodz

i a1
(R~ 40% — 4u Q)

[ (R+20)(R+4M +20) + 402 ] 23)
2M(M + o)(R +20) — wQ3(R—2M) |

—202(R - 2M)2[

Let us call o the constant value of the metric function
o at the horizon. Q) := 1/w" is the angular velocity.
A simple calculation leads us to the following expressions
for Q and ®4:

_ R+20VuM? - 0® — pQ7)
~2M(M + o)(R + 207) — pQA(R — 2M)’ (24)
. 0,(R = 2M)(M + o)

bz = 2MM + o)(R + 20) — pO2(R — 2M)’

Replacing Q, from Eq. (20) and o from Eq. (21) into
Egs. (23) and (24), one gets

¢ _ nwOL(X — D[2(R + 20) — (R — 2M)X]

A 2M[R + 20 — (R —2M)X] — nQ%X?)’

_ M (R+20)vX — 1 (25)
2 MR + 20 — (R — 2M)X] — nQ%X?*’
H QE:U‘(M + O')X

O = .
E° M[R+20 — (R—2M)X] — n03x>?

Combining Eq. (25) with each other, it is easy to find a
kind of enhanced form for the Smarr formula, which
includes the contribution to the mass of the boundary
term associated with the magnetic charge [13],
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M=o+ Q|2 - 1—Q% +<I>H1+Q%3
=0 Qp0p ? E a Ok
E E
(26)
The substitution of o from Eq. (21) into Eq. (26) leads us

to the following cubic equation in terms of the auxiliary
variable X:

2M? 2 4)?
— ) -==0 (7
2(1 — M))] 0} @7

The explicit real root solution of Eq. (27) is given by

fa +[b — o + B3

X — 1)[x - 2(1 -

X=1+
[b — a® + b(b — 2a7)]'/3
1 am? 2J?
a2=—<1—72 ), 2=i4, b =2d
3 QE(1 — ) OF
(28)

From the second Eq. (20) the individual magnetic charge
reads

Qp = —QpvX — L (29)

In the electrostatic limit, i.e., J = 0, X = 1, o reduces to

o = M2 — Qhp, (30)

which is one special case of the corresponding relation
given in [20]. On the other hand, in the vacuum limit, i.e.,
Q0r=0,X=1+(1— w)J?/4M*, o reads [10]

J2

In both limits the magnetic charge, Eq. (29), vanishes.
However, this is not true in the electrovacuum case as we
shall show later. The interaction force due to the strut in

between reads
M2

T e —are

R 2
0+ B yn) . G
Notice the explicit appearance of the magnetic charge.

It is worthwhile to mention that Eq. (32) has the same
form in the nonextreme case, as well as in the extreme case.
The difference is that in the extreme case the condition
o = Orelates the parameters appearing in Egs. (21) and (27).

A. Analytic calculation of o

A counterrotating opposite charged two-body system
clearly reveals the appearance of magnetic charges as a
consequence of the rotation of electrically charged black
holes. In order to derive an explicit form of o we will
consider first a system of two identical counterrotating
black holes in a weak electromagnetic field. Therefore,
the corresponding value of X is

084062-5
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J2(1 — w)?
X~1+—> 33
4M* (33)
Hence, the magnetic charge reads
J(l - ,u)
Op=—0Qr——7p (34)
and o reduces to
J? J2(1 — pu)?\2
The interaction force can now be written as
M? R 2 J2(1 — p)?
~ — V(1 +——)
F =+ im < 4M2) < 4M* )
(36)

Let us now consider a system of opposite electric
charged black holes with slow rotation. The corresponding
value of X is now given by

473 (1 — u)?
Xm1+ U7 (37)
[4M* — Q3(1 — )]
the magnetic charge reads
2J(1 — )
= — , 38
QB QE4M2_Q%(]_M) ( )
and o can be written as
2M? + 05(1 — p)?
o= ,M*— Qiu — 812< £ )M (39)
\/ £ [4M? — 03(1 — WP
The corresponding interaction force is given by
M? R 2
F =y " OeH ( 4M2>
42 (1 — p)?
><<1+ 70— ) 2). (40)
[4M* — Q%(1 — w)]
J
c— A —2aMxT', P — 2¢g,yI'_
A+ 2aMxT .’ A+ 2aMxT .’
e = #’
8(x2 _ y2)4
I. =
D = [a*(@? ~ M0~ 2R + @M — 17 = g% — 1P — 16a*824°

N ={a?(a®> — M*)(x* — y*)* + &’ M*(x* — 1) + ¢2(1 — y*) + 2aMx[(a® — M?)(x> — y?)

+ 4a?82[a(x® + y* — 2x%y?) + Mx(1 — y») P,

W = Ma?[(a? — M*)(x* — y*)(3x* + y?) + M>(3x* + 6x% — 1) + 8aMx*] + g2 [M(y* — 1)> —

R

5() = J(az - Mz)(MZ - /-LQ(Z))’ o= E,

f:ﬁ’
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It is important to note that the interaction force corre-
sponding to the two examples given above presents a spin-
spin interaction and consequently magnetic charges appear
in the systems under consideration.

B. Geometrical properties

The surface gravity « and area of the horizon § can be
obtained directly from Eq. (12) and without any previous
knowledge of the explicit form of o. In order to calculate
K, one can use the formula [13]

k=V—0% 2" (41)

where y# is the metric function 7y evaluated at the horizon.
A straightforward calculation leads us to the following
expressions for the surface gravity and the area of the
horizon:

_ Ro(R + 20)
~ 2M(M + o)(R + 20)(R + 2M) — Q*(R — 2M)*’
2 _ 2
S = 477[2M(M + )(1 + %M) %} (42)

where Q, was already defined in Eq. (20). One should note
that the strut between the KN black holes disappears in the
limit R — oo and the bodies are isolated. In this limit both
magnetic charges vanish as well as the extra boundary term
given by Eq. (23) and therefore Eqs. (35) and (39) reduces

to o = y/M* — Q} — J?/M>. In addition, if R — 2M, the
two horizons can touch each other, the angular velocities

are stopped and the two-body system evolves into one
single Schwarzschild black hole.

IV. THE EXTREME LIMIT OF THE SOLUTION

The extreme limit can be obtained by setting o = 0 in
Eq. (12), and after a careful use of the I"Hopital’s rule, one
gets

_ 4a?8,03 = DO — DW
R ,

A = a*(a® — M?)(x*> — y»)? + &> M?>(x* — 1) + g2(1 — y*) + 2ia?5,(x* + y> — 2x%y?),

. {(\/MZ—MQZJrl\/;—_——)I: M2~ wQi — 1) = Wad ~ M ) |+ w03 - )

Y2 =D = y?),
+ M2 — DY

4axy?],

(43)

084062-6
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where (x, y) are prolate spheroidal coordinates

ry +r_ ry —r_

2a

e YT

PHYSICAL REVIEW D 88, 084062 (2013)

p>+ (z * a)?, (44)

s ri=

related to the cylindrical coordinates (p, z) through the following transformation formulas:

p=ay(@ =1 =),

7= axy. (45)

The extreme limit case given by Eq. (43) is a three-parametric exact solution where the physical parameters are related

by Eq. (27) and by the following equation:

+ 2
X2+(a M)

afa+M
— X — =0. 46
0% Q%( ) (40

a—M

Nevertheless, it is quite complicated to derive an analytic expression of one of the parameters in terms of the other three.
After combining Eqgs. (27) and (46), it is possible to get the following relation:

y (26000 20) = Q30 = ) + i+ 31— 1771
J =

21061 132(1 = )3

X \/M\/M[4M2M + 031 — w21 - pM? + 03(1 = ), (47

whose asymptotic expansion lead us to

7] L 2Mt = 0p(M? — 0F) (1) -

~]1+
2 _ N2

(48)

and it implies that the inequality J>/M? > M? — Q%2 >0
holds for positive values of the distance R > 2M, for
which 0 < u < 1. The equality J?/M? = M? — Q% is
reached if the distance becomes large enough and tends
to infinity (i.e, & = 1), where the black holes are isolated.
It is important to stress the fact that magnetic charges
depend also on the coordinate distance R as shown in
Egs. (34) and (38), but they vanish if the distance tends
to infinity.

It should be pointed out that the metric Eq. (43) fulfills
the axis condition for all the regions on the symmetry axis:
w(y = *1) = 0for|z] > @and w(x = 1) = 0 for |z| < a.
It reduces to well-known limits: by setting Qp = 0 it
results to be one particular case of the Kinnersley-Chitre
solution [24]. The extreme double-Reissner-Nordstrom
(DRN) solution is obtained if |Qg| = w~'/2M > M and
J = 0 (black dihole solution [25]). The extreme DRN
solution was already considered in Ref. [26] for unequal
constituents. However, the expression for the interaction
force between identical extreme Reissner-Nordstrém com-
ponents is not written, it explicitly reads

2M? 2M?
F= [ ] R>2M. (49)

= +
R?—4M*L  R* —4M?

V. CONCLUDING REMARKS

This paper deals with a complementary asymptotically
flat exact solution related to identical counterrotating
black hole sources, in the presence of electromagnetic
field. Particularly, the black holes are endowed with oppo-
site electric/magnetic charges. Our description provides an
analytical way to derive the expression for ¢ in terms of the
physical Komar parameters and the coordinate distance.
This new exact solution gives a physical explanation of the
appearance of magnetic charges in the solution as a con-
sequence of the rotation of electrically charged black holes.
Moreover, the presence of magnetic charges violates the
usual Smarr formula for the mass; it should be enhanced in
order to take into account the contribution to the mass of
the magnetic charge.

On the other hand, it is worthwhile to mention that
according to the positive mass theorem [27,28] a regular
solution of Egs. (12) and (43) should fulfill the mass
formula Eq. (26): M = Q[2J — Q;05(1 — 0%/0%)] +
®H(1 + 0%/0%)QF > 0. Nevertheless, the theorem does
not imply that the condition M > 0 is enough to prove
regularity of the solutions. Hence, one has to look at the
denominator of the Ernst potentials in order to prevent such
singularities. Nowadays, a reliable analytical study of sin-
gularities does not exist and it probably is due to the high
order polynomials appearing in the denominator of the
Ernst potentials. This inconvenience leads us to resort to
numerical analysis. Let us look for such singularities in the
extreme limit case, we have that

A+2aMxF+ =FR+iFI=O, (50)
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where
Fr = a*(a®> — M?>)(x*> — y*)* + &’ M*(x* — 1)
+ 2aMx[(a? — M?)(x*> — ) + M*(x* — 1)]
+q,(1—y) =0
F; =2ad,[a(x®> + y* — 2x?y?) + Mx(1 — y?)] = 0.
(51

In Weyl-Papapetrou cylindrical coordinates (p, z) the
interior naked singularity of a black hole lies on the
symmetry axis. In the plane (x,y) the region x =1,
|y|=1, contains the allowed values for the solution
Eq. (43) in order to avoid naked singularities off the
axis. The curves defined by Eq. (51) do not have inter-
sections in such a region if M >0 and therefore the
solution is regular (see Fig. 2). Moreover, if M <0, in
the solution Eq. (43) ring singularities off the axis arise
due to the intersections of the curves of Eq. (51) in the
region x > 1, [y| <1 (see Fig 3).

Additionally, the easiest analytical proof on the
regularity of the solution can be made in the extreme
DRN sector, since the curves defined by Eq. (51)
are now reduced to a geometric locus of two straight

lines whose intersection forms

2arctan[o/~Va? — M?],

M2 M?
Fe=Foee = (x+0) — (1= =0

an angle of 0=

a ?
where the straight lines are given by

ﬁ(x + %) (53)

The conditions x = 1 and |y| < 1 are enough to prove
that both straight lines cross inside the region x > 1,

y==*

(@)

FIG. 2. (a) No zeros in the denominator of the Ernst potentials
in the (x, y) plane, for the values M =1, Qp = —0.1, Qp =
0.15, J = 3.31, and @ = 1.2. Fy and F| are represented by the
continuous and dashed lines, respectively. (b) The stationary
limit surfaces of two identical counterrotating extreme KN black
holes with M > 0.

PHYSICAL REVIEW D 88, 084062 (2013)
(@) (b)

FIG. 3. (a) Singularities located at x = 1.34, y = *0.7, for the
values M = —1, Qg = —Qp = —0.1, J =03, and a =1.3.
(b) Ring singularities off the axis for M <0, located at p =
0.83, z =~ = — 1.23. The small displacement of the ring singu-
larities with respect to their corresponding ergosurface is due to
the presence of the electromagnetic charge.

T (a) T

-1 /,/ -0.5
-2 ,/I N\ -1.0
/ \
-3L
-2 -1 0 1 2 3 0.0 0.1 0.2 0.3 0.4
X o
FIG. 4. (a) Crossing inside the region x > 1, |y| <1 due to

M <0, for the values @ = 1, M = —0.4. (b) Emergence of
singular surfaces if M < 0 in the DRN sector.

|yl <1, forming singular surfaces off the axis (see
Fig. 4),

1[_“‘_“1 ( M)
—(1+Z) <1, = M<0,
I =M/ @ (54)
1 M
—7(1+—)>—1,=>M<0.
V1 — M?/a? @

Moreover, the conditions x = 1 and |y| > 1 are suffi-
cient to avoid the cross inside of such regions, and there
exist no singular surfaces off the axis,

1 M
(1+—)>1,:>M>0,
o

V1 — M?/a? (55)

- (1+ %) <-1=u>0

To conclude, we should mention that our description can
be reduced to the well-known limits as the vacuum and
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electrostatic ones [10,20]. In the extreme limit presented, it
is not trivial to derive relations between the parameters and
it remains as a future work to be analyzed. Particularly it
would be also quite interesting to accomplish a deeper
analysis of the inequalities between struts and Komar
physical quantities, provided and discussed by Gabach
Clement [29].

PHYSICAL REVIEW D 88, 084062 (2013)
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