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Numerical relativity simulations of compact binaries with the Z4c and Baumgarte-Shapiro-Shibata-

Nakamura-Oohara-Kojima (BSSNOK) formulations are compared. The Z4c formulation is advantageous in

every case considered. In simulations of nonvacuum spacetimes, the constraint violations due to truncation

errors are between 1 and 3 orders of magnitude lower in the Z4c evolutions. Improvements are also found in

the accuracy of the computed gravitational radiation. For equal-mass irrotational binary neutron star

evolutions, we find that the absolute errors in phase and amplitude of the waveforms can be up to a factor

of 4 smaller. The quality of the Z4c numerical data is also demonstrated by a remarkably accurate

computation of the Arnowitt-Deser-Misner mass from surface integrals. For equal-mass nonspinning binary

puncture black hole evolutions, we find that the absolute errors in phase and amplitude of the waveforms can

be up to a factor of 2 smaller. In the same evolutions, we find that away from the punctures the Hamiltonian

constraint violation is reduced by between 1 and 2 orders of magnitude. Furthermore, the utility of

gravitational radiation controlling, constraint preserving boundary conditions for the Z4c formulation is

demonstrated. The evolution of spacetimes containing a single compact object confirms earlier results in

spherical symmetry. The boundary conditions avoid spurious and nonconvergent effects present in high

resolution runs with either formulation with a more naive boundary treatment. We conclude that Z4c is

preferable to BSSNOK for the numerical solution of the 3þ 1 Einstein equations with the puncture gauge.
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I. INTRODUCTION

This is the conclusion of a series of papers [1–5] about
the development of a formulation of general relativity
(GR), called Z4c, that attempts to combine the strengths
of two popular evolution systems for applications in free-
evolution numerical relativity. Here we summarize the
logical development of the formulation.

In the BSSNOK formulation [6–8], there is a zero-speed
characteristic variable in the constraint subsystem,which can
result in largeHamiltonian constraint violations in numerical
applications; the removal of this mode is one of the key
advantages of the generalized harmonic formulation [9–12]
over BSSNOK. The generalized harmonic formulation also
possesses a constraint damping scheme [13], which expo-
nentially damps away small, high-frequency constraint
violations at the continuum level. Furthermore, the trivial
wavelike nature of the generalized harmonic subsystem al-
lows for the convenient construction of constraint preserving
boundary conditions (CPBCs)[14–16]. On the other hand,
the key advantages in the BSSNOK formulation are the
choice of conformal variables and the fact that the formula-
tion does not come tied to a particular gauge, which allows
for the selection of the moving puncture gauge [17–22]. The
combination of these two strengths allows for the evolution
of black holes represented by coordinate singularities on the
grid without severe numerical difficulties. For BSSNOK
radiation controlling constraint preserving boundary
conditions have been proposed [23] but to our knowledge

have not been successfully used in numerical applications.
With these considerations in mind, a conformal decomposi-
tion of the Z4 formulation [24–30] was proposed in Ref. [1].
Because of the close relationship between the Z4 and gener-
alized harmonic formulations, this conformal decomposition
inherits all of the strengths outlined in the previous discus-
sion. In Ref. [1] a set of spherically symmetric (1D) tests
involving single black hole and neutron star spacetimes
demonstrated that, indeed, the Z4c formulation guarantees
the robustness of and better constraint preservation than
BSSNOK, especially for nonvacuum spacetimes. It was
also found that the main advantage of Z4c in the bulk of
the computational domain, namely, the propagating con-
straint violations, presents problems at the outer boundary
if the constraints are not absorbed but rather reflected.
A first attempt to tackle this problem was presented in

Ref. [2], in which high derivative order constraint pre-
serving boundary conditions based on those of Ref. [16]
were proposed for Z4c. Well-posedness of the Z4c con-
straint subsystem initial boundary value problem was
demonstrated, and numerical results in explicit spherical
symmetry demonstrated the efficacy of the constraint
preserving boundary conditions. In this work we use
constraint preserving boundary conditions, motivated by
a forthcoming study [5], in which well-posedness of high
order boundary conditions that are constraint preserving
and control incoming gravitational radiation [31,32] is
analyzed.
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In Ref. [3], the performance of the Z4 constraint damping
scheme of Ref. [13] applied to Z4c in black hole and neutron
star spacetimes was studied in detail in spherical symmetry.
The constraint damping scheme is effective, as expected, in
the nonlinear system provided that the constraint violation is
sufficiently small and resolved on the numerical grid; in the
case of grid noise, the combination of artificial dissipation
and damping helps to suppress constraint violations. But it
was found that care should be taken in the choice of damping
parameters. Success in spherical tests does not necessarily
guarantee that of three-dimensional (3D) simulations.
Preliminary simulationswithZ4c and Sommerfeld boundary
conditions (BCs) in three dimensions with pure box-in-box
mesh refinement showed poor behavior at the outer bounda-
ries in long evolutions. Therefore, to try and bridge the gap
between the evolutions in spherical symmetry and full appli-
cations in astrophysical spacetimes, numerical stability of
Z4c in 3D evolutions was studied in Ref. [4], where numeri-
cal stability of the linearized Z4c system coupled to the
puncture gauge with a novel discretization was shown, and
numerical evidence from the apples-with-apples [33–35]
tests was presented with both the standard and the novel
discretization. The importance of algebraic constraint pro-
jection was highlighted, and limitations of the puncture
gauge for applications in cosmology were observed.

The first application of Z4c was the study of the end state
of a collapsing neutron star with the puncture gauge [36]
in 1D and 3D simulations of spherical configurations. The
puncture gauge handles collapsing matter without the need
for (matter or metric) excision because, during the process,
the shift condition pushes the spatial coordinates off of the
matter region. This study was followed up with a similar
discussion of dust collapse in Ref. [37].

A variation of the conformal decomposition, ‘‘conformal
and covariant Z4’’ (CCZ4), was proposed in Ref. [38]. The
difference between Z4c and CCZ4 is that CCZ4 includes a
parametrized constraint addition that, for some choice, cor-
responds to the original four-covariant Z4 formulation. In the
generalized harmonic formulation, it is known that the
inclusion of these nonprincipal terms can be problematic in
some test cases [39], but constraint growth can be mitigated
by the use of constraint damping, which is the approach of
Ref. [38]. For a particular choice of the constraint addition
parameters not corresponding to the four-covariant
Z4 system, evolutions of binary black hole spacetimes
were presented and shown to reduce Hamiltonian constraint
violation, by a factor of around 4 or 5 (see Fig. 4 of Ref. [38]),
relative to such simulations for the BSSNOK formulation.
On the other hand, in the Z4c system, a nonprincipal con-
straint addition thatmakes the equations ofmotion as close as
possible to those of the BSSNOK formulation while still
obtaining the desired partial differential equation (PDE)
properties in the constraint subsystem is chosen. It would
be interesting to know in more generality how the addition
of nonprincipal constraints affects their evolution.

In this paper we present the first long-term 3D
evolutions of black hole and neutron star binaries with the
Z4c formulation. In Sec. II the Z4c equations of motion
and boundary conditions are presented. We then discuss, in
Sec. III, changes to the BAM numerical code since Ref. [40].
In particular, we describe the implementation of spherical
patches for the wave zone [41] and the radiation controlling
constraint preserving conditions of Ref. [5]. In Secs. IVand
V, we present our simulations of single and binary compact
objects, respectively. Appendices A and B contain, respec-
tively, descriptions of the spherical patch implementation
and evolution of Teukolsky waves, the latter of which we
use for code validation. We conclude in Sec. VI.
We use units G ¼ c ¼ 1 throughout, unless otherwise

stated.

II. Z4C EQUATIONS OF MOTION

In this section we summarize for completeness the Z4c
equations of motion, constraints, and boundary conditions.
The evolved quantities of the formulation are the confor-
mal spatial metric ~�ij, the lapse �, the shift vector �

i, the

conformal trace-free part of the extrinsic curvature ~Aij, the

constraint �, and, up to constraint addition, the trace of

the extrinsic curvature K̂ ¼ K � 2�. Finally, we evolve

the the conformal contracted Christoffel symbols ~�i, which

are initially set according to ~�i ¼ �@j ~�
ij.

Evolution equations.—The equations of motion for the
Z4c formulation are

@t� ¼ 2

3
�½�ðK̂ þ 2�Þ �Di�

i�; (1)

@t ~�ij¼�2� ~Aijþ�k@k ~�ijþ2~�kði@jÞ�k�2

3
~�ij@k�

k (2)

for the metric components;

@tK̂ ¼ �DiDi�þ �

�
~Aij

~Aij þ 1

3
ðK̂ þ 2�Þ2

�

þ 4��½Sþ �� þ ��1ð1� �2Þ�þ �i@iK̂; (3)

@t ~Aij ¼ �½�DiDj�þ�ðRij � 8�SijÞ�tf þ�½ðK̂þ 2�Þ ~Aij

� 2 ~Ak
i
~Akj� þ�k@k ~Aij þ 2 ~Akði@jÞ�k � 2

3
~Aij@k�

k

(4)

for the extrinsic curvature components; and

@t~�
i ¼ �2 ~Aij@j�þ 2�

�
~�i

jk
~Ajk � 3

2
~Aij@j ln ð�Þ

� 1

3
~�ij@jð2K̂ þ�Þ � 8�~�ijSj

�
þ ~�jk@j@k�

i

þ 1

3
~�ij@j@k�

k þ �j@j~�
i � ð~�dÞj@j�i

þ 2

3
ð~�dÞi@j�j � 2��1½~�i � ð~�dÞi�; (5)
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@t� ¼ 1

2
�

�
R� ~Aij

~Aij þ 2

3
ðK̂ þ 2�Þ2

�

� �½8��þ �1ð2þ �2Þ�� þ �i@i� (6)

for the remaining variables. Here the intrinsic curvature
associated with the ADMmetric �ij ¼ ��1 ~�ij is written as

Rij ¼ R�
ij þ ~Rij; (7)

~R�
ij ¼

1

2�
~Di

~Dj�þ 1

2�
~�ij

~Dl ~Dl�� 1

4�2
~Di� ~Dj�

� 3

4�2
~�ij

~Dl� ~Dl�; (8)

~Rij ¼ � 1

2
~�lm@l@m ~�ij þ ~�kði@jÞ~�k þ ð~�dÞk~�ðijÞk

þ ~�lmð2~�k
lði~�jÞkm þ ~�k

im
~�kljÞ; (9)

and we employ the shorthand

ð~�dÞi ¼ ~�jk~�i
jk: (10)

The derivative operator Di is that compatible with the
ADM metric. Numerical evolutions are performed with a
particular flavor of the puncture gauge [17,18,21,22]:

@t� ¼ ��2�LK̂ þ �i@i�; (11)

@t�
i ¼ �2�S

~�i � 	�i þ �j@j�
i: (12)

Constraints.—The system is subject to constraints

� ¼ 0; 2 ~Zi ¼ ~�i � ð~�dÞi ¼ 0; (13)

H ¼ Rþ ~Aij
~Aij � 2

3
ðK̂ þ 2�Þ2 � 16�� ¼ 0; (14)

~Mi ¼ @j ~A
ij þ ~�i

jk
~Ajk � 2

3
~�ij@jðK̂ þ 2�Þ

� 2

3
~Aij@jðlog�Þ � 8�~�ijSj ¼ 0; (15)

ln ðdet ~�Þ ¼ 0; ~�ij ~Aij ¼ 0; (16)

of which the latter two, the algebraic constraints, are
explicitly imposed in numerical integration.

Boundary conditions.—When the spacetime manifold
has a smooth boundary with spacelike unit (with respect
to the ADM metric) normal si, we choose for the trace of
the extrinsic curvature the boundary condition

@tK̂ ¼̂��
ffiffiffiffiffiffiffi
�L

p �
@sK̂ þ 1

r
K̂

�
� @A@A�þ �i@iK̂; (17)

where ¼̂ denotes equality only in the boundary, we use the
shorthand @s � si@i, and we use uppercase Latin indices A,

B, C to denote those that have been projected with the
operator qij ¼ 
i

j � sisj. We can alternatively write this as

a second order derivative boundary condition on the lapse.
Note that in the expressions for the boundary conditions,
we never commute the unit normal, projection operator qij,

or physical projection operator qðPÞklij ¼ qkiq
l
j � 1

2qijq
kl

through any derivative operator. For example, @t~�
s ¼

si@t~�
i. So we have

@tv
i ¼ si@tv

s þ qiA@tv
A; (18)

@tSij ¼ sisj@tSss þ 1

2
qij@tSqq þ 2sðiqjÞ

A@tSsA

þ qðPÞABij@tSTFAB (19)

for vectors vi and symmetric tensors Sij, respectively. We

refer to the various components of the time derivative
under this 2þ 1 decomposition as the scalar, vector, and
tensor sectors in the obvious way. If we are given confor-
mally flat initial data with �isi ¼ 0 and �2�S is constant,
as is always the case for the data evolved in this work, we
choose the boundary conditions

@t~�
s¼̂	�i@i~�

s þ 	

�2�S

�i�j@i@j�
s

þ 	

�2�S

�i½@i�j�@j�s � 	2

�2�S

�i@i�
s; (20)

for the longitudinal part of the shift. We take

@t� ¼̂ � �@s�þ �i@i�; (21)

@t ~Ass ¼̂ � ��

�
2 ~Di ~Ais � 2

3
~Dsð2K̂ þ�Þ � 2

3
Rss

þ 2

3
�@s½~�s � ð~�dÞs� � 1

3
�@A½~�A � ð~�dÞA�

þ 1

3
Rqq � 3 ~Diðln�Þ ~Ais � �1½~�s � ð~�dÞs�

�

þ �½ ~AssðK̂ þ 2�Þ � 2 ~Ai
s
~Ais� � 2

3
�DsDs�

þ 1

3
�DADA�þL�

~Ass; (22)

for constraint preservation in the scalar sector, where, for
example, ~Di ¼ ~�ij@j when acting on scalars, so that the

tilde denotes that the conformal metric was used in the
contraction. In the vector sector, we have

@t~�
A ¼̂ � �

ffiffiffiffiffiffiffiffi
~�ST

q
½@s~�A � ~@A~�s� þ ~@B@B�

A þ 4

3
~@A@s�

s

þ 1

3
~@A@B�

B � 2

3
�~@Að2K̂ þ�Þ þ �j@j~�

A (23)

for the gauge and
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@t ~AsA ¼̂���

�
~Di ~AiA�2

3
~DAK̂�1

3
~DA

~��3

2
~Diðln�Þ ~AiA

�1

2
�1½~�A�ð~�dÞA��RsAþ1

2
�qAi@s½~�i�ð~�dÞi�

�

��DADs�þ�½ ~AsAðK̂þ2�Þ�2 ~Ai
A
~Ais�þL�

~AsA

(24)

for the constraints, where we denote projected indices by
uppercase characters starting from the beginning of the
alphabet. Here we denote Rqq ¼ qijRij. Finally, we take

@t ~A
TF
AB ¼̂ � �

�
~Ds

~AAB � ~DðA ~ABÞs þ 1

2
~AsðA ~DBÞðln�Þ

� 1

2
~AAB

~Dsðln�Þ þ ~Ai
A
~AiB � 2

3
~AABðK̂ þ 2�Þ

�
TF

� �DAD
TF
B �þL�

~ATF
AB; (25)

for the tensor sector. The boundary conditions in the
scalar and vector sectors are designed to absorb outgoing
constraint violations. The last of the conditions (25)
are equivalent to the requirement that �0 ¼̂ 0 (see
Refs. [31,32,42] for more details). This condition could
also be used with the BSSNOK formulation, but for con-
straint preservation more work may be needed to adapt the
other conditions. In the development of this work, we have

tried alternative conditions on K̂ and ~�i with only small
differences in the outcome. We do not claim that these
gauge boundary conditions are optimal. In our numerical
experiments, we sometimes also employ the more naively
constructed Sommerfeld conditions

@tK̂ ¼̂� ffiffiffiffiffiffiffi
�L

p
�

�
@sK̂ þ 1

r
K̂

�
þ �i@iK̂; (26)

@t~�
s¼̂ � 2ffiffiffi

3
p ffiffiffiffiffiffiffi

�S
p

�

�
@s~�

s þ 1

r
~�s
�
þ �i@i~�

s; (27)

@t~�
A¼̂ � ffiffiffiffiffiffiffi

�S
p

�

�
@s~�

A þ 1

r
~�A

�
þ �i@i~�

A; (28)

@t�¼̂ ��

�
@s�þ 1

r
�

�
þ �i@i�; (29)

@t ~Aij¼̂ ��

�
@s ~Aij þ 1

r
~Aij

�
þ �k@k ~Aij: (30)

Note that since the trace constraint on ~Aij is constantly

imposed, the last of these conditions (30) constitutes only
five boundary conditions. Since the Z4c formulation
coupled to the puncture gauge has ten incoming character-
istics in the weak field region, these conditions are not
overdetermined, in contrast to the standard conditions
used with BSSNOK with box-in-box mesh refinement.
Regardless of the formulation, or whether Sommerfeld
conditions are taken for every evolved field or just the

subset K̂, ~�i, �, ~Aij, they are not constraint preserving

and do not control incoming gravitational radiation.

III. NUMERICAL METHOD AND PARAMETERS

In this section we describe the numerical technique
employed in this work. We use the BAM code [40,43–45],
a Cartesian-based adaptive mesh refinement infrastructure
optimized for the evolution of binary black hole (BBH)
and binary neutron star (BNS) spacetimes in 3þ 1 GR.
Vacuum spacetime evolutions have also been performed
with the AMSS-NCKU code [46], which employs the same
methods but with an independent implementation.

A. AMSS-NCKU and BAM basics

Before discussing the upgrades to the codes used in this
work, we summarize the main points of the numerical
methods used by AMSS-NCKU and BAM. The evolution
algorithm is based on the method of lines with explicit
Runge–Kutta (RK) time integrators (in this work we em-
ployed fourth order RK for vacuum spacetimes and third
order RK for nonvacuum spacetimes) and finite differences
approximation of the spatial derivatives. The numerical
domain is made of a hierarchy of cell-centered nested
Cartesian grids (nested boxes centered on the punctures
[45,47]). The hierarchy consists of L levels of refinement
labeled by l ¼ 0; . . . ; L� 1. A refinement level consists of
one or more Cartesian grids with constant grid spacing hl
on level l. A refinement factor of 2 is used such that hl ¼
h0=2

l. The grids are properly nested in that the coordinate
extent of any grid at level l, l > 0, is completely covered by
the grids at level l� 1. Some of the mesh refinement levels
can be dynamically moved and adapted during the time
evolution according to the technique of ‘‘moving boxes.’’
The Berger–Oliger algorithm is employed for the time
stepping [48], though only on the inner levels [44].
Interpolation in Berger–Oliger time stepping is performed
at second order. A Courant–Friedrich–Lewy factor of 0.25
is employed in all the runs. We refer the reader to
Refs. [40,46] for more details.

B. Numerical treatment of the field equations

The BSSNOK and Z4c equations of motion are imple-
mented numerically in the same way. Fields derivatives are
approximated by centered finite difference expressions
(fourth order in this work), except for the shift advection
terms, which are instead computed with lopsided expres-
sions [40,49–51]. Algebraic constraints are enforced after
every time step in BAM and after every Runge–Kutta sub-
step in AMSS-NCKU. The gauge parameters in our numerical
simulations are fixed to �L ¼ 2=�, �S ¼ 1=�2, and 	 ¼
2=MADM, unless otherwise stated. Note that this is not a
choice of parameters for which the calculations of Ref. [5]
are expected to guarantee well-posedness of the initial
boundary value problem because we have not carefully
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taken �S in such a way as to avoid either some generically
distinct speeds in the system clashing or sets of measure
zero on which the evolution equations may be only weakly
hyperbolic. In earlier studies [38] the choice c > 0 with
�S ’ c=�2 was not found to greatly affect the behavior of
the scheme in applications. As highlighted in Appendix A
of Ref. [4], it is challenging to identify problems caused by
weak hyperbolicity in applications, even if the system is
weakly hyperbolic everywhere in space. If the degeneracy
happens on sets of measure zero, we therefore expect that
in practical applications it will be nearly impossible to
identify as the cause of any concrete numerical problem,
although in principle such degeneracy should of course be
avoided. In the Z4c simulations presented in this work, the
constraint damping scheme with the values �1 ¼ 0:02 and
�2 ¼ 0 is used. These values have been suggested in the
detailed 1D numerical analysis of Ref. [3]. Preliminary
exploratory runs in three dimensions indicated the com-
bined use of artificial dissipation and constraint damping
terms is important (in some cases essential) to avoid in-
stabilities at the interfaces between boxes and spherical
patches, thus confirming some of the expectations from the
1D runs (see also the discussion in Appendix A). OPENMP

support in terms of a hybrid OPENMP/MPI implementation
has been added inside BAM to key functions with high
computational cost, such as evolution equations, interpo-
lation, and wave extraction, which improves the efficiency
of memory management of the code.

C. Hydrodynamics treatment (BAM only)

The algorithm implemented for the general relativistic
hydrodynamics (referred to hereafter as ‘‘matter’’ for brev-
ity) is a robust high-resolution-shock-capturing (HRSC)
method [43] based on primitive reconstruction and the
Local–Lax–Friedrichs (LLF) central scheme for the nu-
merical fluxes; see, e.g., Ref. [52]. Metric variables are
interpolated in space by means of sixth order Lagrangian
polynomials, while matter ones are interpolated by a
fourth order weighted essentially nonoscillatory scheme.
Primitive reconstruction is performed here with the fifth
order weighted essentially nonoscillatory (WENO) scheme
of Ref. [53], which has been found important for long-term
accuracy [54,55].

D. Spherical patches for the wave zone

Both the AMSS-NCKU and BAM codes have been upgraded
for this work. The Cartesian box-in-box mesh refinement
has been extended with spherical patches (‘‘cubed spheres’’)
[41,56,57] for the wave zone. They provide us with adapted
coordinates for waves and, as demonstrated in Appendix A,
improved accuracy in gravitational wave (GW) extraction.
The presence of a spherical outer boundary furthermore
allows a straightforward implementation of BCs (either
Sommerfeld or CP) due to the absence of corners. When
the spherical patches are being used, the Cartesian moving

boxes, as previously implemented, are employed only in the
strong-field region for the simulation of the binary orbital
motion, or a collapsing star, while the propagation of gravi-
tational and possibly also electromagnetic waves distant
from the source is simulated on cubed spheres [41,57] (see
also Refs. [58–60]). The technique is based on the covering
of the sphere by six patches, each patch having local coor-
dinates that are then mapped to Cartesian ones in such a way
as to avoid pathologies associated with standard spherical
polar coordinates. As opposed to the box-in-box setup,
spherical patches allow constant radial resolution with linear
scaling in the number of grid points, while the boxes result
in effectively constant angular resolution as well. In prac-
tice, the l ¼ 0 Cartesian box is substituted with six patches
overlapping with the Cartesian box at level l ¼ 1 and among
themselves. The resolution of h1 is also the radial resolution
employed in the patches. A grid configuration is specified by
the number of: i) levels L; ii) grid points in each nonmoving
box per direction n; iii) grid points in each moving box per
direction nmv; iv) the coarsest box per direction h1 ¼ h; and
v) grid points in each patch, nr and n�;�, which are typically

chosen as n�;� ¼ n=2. More details on the implementation

are given in Appendix A. Finally, GWs are extracted using
the Newman–Penrose formalism, in particular by comput-
ing the c 4 scalar on coordinate spheres in the wave zone
(see Sec. III of Ref. [40]). Mode decomposition of c 4 is
performed by projections onto spin weighted spherical
harmonics and integration on the spheres with a Simpson
algorithm.

E. Boundary conditions

The radiation controlling, constraint preserving boundary
conditions (17)–(25) are implemented according to the
following simple recipe. Inside every Runge–Kutta sub-
step, Lagrange extrapolation, of sixth order in our experi-
ments, is used to populate enough ghost zones in a
neighborhood of the boundary so that the same finite
difference and dissipation operators used in the bulk may
be evaluated at the boundary. The metric components �,
�i, �, ~�ij are updated at the boundary with their standard

equations of motion from the bulk, whereas the boundary
conditions (17)–(21) and (23)–(25) are used in place of the

standard equations of motion for K̂, ~�i, �, ~Aij. Since the

evolution system is not symmetric hyperbolic, at least in-
side a large class of symmetrizers [4], with the standard
puncture gauge, we cannot rely on a discrete energy
method to guarantee numerical stability, even in the linear
constant coefficient approximation. We will see, however,
that this implementation of the boundary conditions is
numerically well-behaved in the experiments we perform.
Sommerfeld boundary conditions are implemented in a
similar way; instead of replacing the equations of motion

for K̂, ~�i,�, ~Aij by Eqs. (17)–(25) we choose Eqs. (26)–(30)

and likewise for BSSNOK, but without the � boundary
condition.
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IV. LONG-TERM EVOLUTION OF SINGLE
COMPACT OBJECTS

In this section we present 3D evolutions of single isolated
compact objects and compare systematically BSSNOK
and Z4c runs. The main focus is on the behavior of the
Hamiltonian constraint violation due to truncation and arti-
ficial BCs errors. We assess long-term stability of the Z4c
formulation in 3D evolutions of puncture black holes (both
nonspinning and rapidly spinning) and compact stars and
demonstrate an overall improvement in constraint preserva-
tion and in some instances accuracy of physical quantities
(absolute numerical errors at finite resolution) when the
Z4c formulation is employed. The spurious effect of
Sommerfeld BCs and the improvement obtained with the
new BCs are discussed in detail. Our results for spherically
symmetric spacetimes are interpreted in view of previous
results obtained in Refs. [1,2] by means of 1D simulations.
The use of Z4c does not significantly improve the compu-
tation of the gravitational radiation emitted by a rapidly
spinning Bowen–York puncture [61]. In particular we find
that in both cases, we do not obtain a clear point-wise
convergence of the waves at the resolutions used in these
tests. This result is possibly related to a lack of resolution, or
to the use of punctures in the black hole description, rather
than to deficiencies in either formulation.

A. Nonspinning puncture

Evolutions of a nonspinning puncture of mass M ¼ 1
with BSSNOK and Z4c and Sommerfeld and constraint
preserving BCs are compared. We confirm qualitatively
the results obtained with 1D simulations [1,2]. In particular
the new BCs reduce significantly the spurious constraint
violation incoming from the boundary in the case of Z4c.
The largest single constraint violation, however, occurs at
the puncture, where both formulations give similar results.

Setup.—We employ five levels of box-in-box mesh re-
finement and attach the shells at r� 21:5M. Each box has
n ¼ 40, and the resolution of level l ¼ 5 is h5 ¼ 0:0625M
per direction. We choose n�;� ¼ 40 angular and nr ¼ 40

radial points in each spherical patch so that the outer
boundary is located at r ¼ 58:5M. No symmetries are
imposed. The puncture is evolved with a precollapsed lapse
as discussed in Ref. [40]. In real applications the outer
boundary is typically placed further out, perhaps at 500M
or 1000M. Although this does not solve issues caused by
the boundary in principle, and is not an efficient treatment,
in practice it reduces some of the features we will encoun-
ter here. By design, however, in these tests, we aim to see
the behavior of the constraint preserving conditions.

Constraint violation in the strong-field region.—In
each test we find that the Hamiltonian constraint violation
in a neighborhood of the puncture is large, taking a
maximum value, at this resolution of �103 at around
t ¼ 5M, before being rapidly suppressed to �3. These
values should not be taken particularly seriously because

of the finite regularity of the solution at the puncture. Since
much of the physics is concentrated around the puncture,
large numerical error and therefore large constraint viola-
tion are to be expected in this region. These violations
converge away more slowly than others in the simulations.
The Z4c evolutions do not reduce this violation. As ob-
served in spherical symmetry (see Fig. 10 of Ref. [3]), we
see small amounts of the puncture constraint violation
propagating out of the horizon with either formulation.
Unsurprisingly, the rectangular mesh-refinement bounda-
ries in the 3D evolutions obscure the feature. The Z4c
evolutions do not qualitatively affect this behavior, which
seems to improve with resolution.
Constraint violation at large radii.—In Fig. 1 the

Hamiltonian constraint violation on the spherical shells
in space at times t ¼ 75M and t ¼ 1000M is plotted.
We find that the incoming constraint violation of the
Z4c Sommerfeld evolution is comparable to that of
the BSSNOK evolution, although at late times most of
the constraint violation caused by the outer boundary has
been absorbed by the boundary; the problem is that the
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FIG. 1 (color online). Constraint violations in space at t ¼ 75M
(upper panel) and t ¼ 1000M (lower panel) in an evolution of a
Schwarzschild puncture. At t ¼ 75M we see an incoming pulse of
Hamiltonian constraint violation in both the BSSNOK and Z4c
evolutions. The fact that the violation propagates in the BSSNOK
evolution test is not in contradiction with the PDE properties of
the BSSNOK constraint subsystem because the Hamiltonian
constraint itself is not a zero-speed characteristic variable of the
constraint subsystem. At this resolution, the incoming constraint
violation with the Z4c constraint preserving boundary conditions
is roughly three times smaller than that of Z4c with the
Sommerfeld boundary condition, but the violations with the
constraint preserving boundary conditions converge away with
resolution while those of the Sommerfeld conditions do not. In the
lower panel, we can see the effect that the zero-speed mode of the
BSSNOK constraint subsystem has on the Hamiltonian constraint
violation at the outer boundary at late times.
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constraint violation induced by the Sommerfeld boundary
condition, with either BSSNOK or Z4c, does not converge
away with resolution. Note that comparing the BSSNOK
Sommerfeld evolution with the Z4c CPBC data is not
entirely fair because there is every possibility that con-
straint preserving boundary conditions for BSSNOK, see,
for example, Ref. [23], could also be implemented. In any
case, it is evident that the Z4c constraint preserving bound-
ary conditions are helpful in reducing this violation. It is
possible to reduce further the constraint violation by using
a large constraint damping term, as, for example, in
Ref. [38], but in spherical symmetry, we found that values
of �1 > 0:1M can adversely affect the dynamics of the
evolutions with Z4c at late times. We are therefore wary
of using large damping parameters but make no claim
about the effect of such damping terms on other conformal
decompositions of Z4.

B. Nonrotating star

Our comparison of the new three-dimensional numerics
with earlier findings in spherical symmetry is completed by
the evolution of a single stable neutron star. We find Z4c
advantageous in reducing constraint violation that accu-
mulates in grid regions occupied by the matter. In particu-
lar the L2 norm of the Hamiltonian constraint is found to be
3 orders of magnitude smaller for standard resolutions. The
spurious ringing effect due to Sommerfeld BCs pointed out
in spherical symmetry is visible also in 3D simulations but
does not dominate the error budget at typical resolutions.
In our earlier study [1], we also evolved an unstable single
star in a so-called migration test. We suppress such an

experiment here; our tests of strong-field dynamics are
instead performed with binary spacetimes in Sec. V.
Setup.—We use three levels of box mesh refinement and

attach the spherical grids at r� 18M. The lowest resolution
runs use n ¼ 48, and the star is completely covered by the
innermost grid level l ¼ 2 with a resolution of h2 ¼ 0:36M
per direction. We choose n�;� ¼ 48 angular and nr ¼ 48

radial points in each spherical patch so that the outer bound-
ary is located at r ¼ 50M. Additional runs at twice the
resolution (n ¼ 96) are performed. No symmetries are im-
posed. The star is described by a � ¼ 2 polytropic equation
of state (EOS) with gravitational mass M ¼ 1:4M� and
radius 5:7M, which is exactly the same model evolved in
Ref. [1] in bespoke spherical symmetry. The evolutions are
characterized by oscillations triggered by truncation errors.
Constraint violation and truncation error dynamics.—

The key findings of the earlier numerical experiments in
spherical symmetry were: (i) In the BSSNOK region con-
taining matter, the Hamiltonian constraint inside the star
grows throughout the evolution, whereas in the Z4c evo-
lution, it does not. (ii) The BSSNOK simulations have
larger oscillations (larger truncation errors) than Z4c.
(iii) If Sommerfeld BCs and sufficient resolution are em-
ployed, incoming modes from the boundary perturb the
star amplifying unphysically the oscillations (see Fig. 1 of
[2]). In 3D simulations we find some similar features. The
growth of the Hamiltonian constraint is the dominant one;
because of a lack of resolution, the oscillations are not
significantly affected, and the effect of Sommerfeld BCs is
less pronounced but visible. The norm of the Hamiltonian
constraint is plotted as a function of time in the left panel of
Fig. 2. By the end of the simulation, the constraint violation

0 100 200 300 400 500 600 700 800
10

−7

10
−6

10
−5

10
−4

10
−3

t/M

||H
am

|| 2

Z4c + CP

BSSNOK

Z4c + Som

0 100 200 300 400 500 600 700 800
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

t/M

ρ(
t)

/ρ
(0

)

Z4c + CP

BSSNOK

Z4c + Som

FIG. 2 (color online). The L2 norm of the Hamiltonian constraint violation (left) and the central density (right) as a function of time
for evolution of a single stable star with polytropic EOS of index � ¼ 2. The Hamiltonian constraint violation is approximately two
orders of magnitude smaller at the end of the experiment when using Z4c. With Z4c, the Sommerfeld boundary conditions (26)–(30)
cause large violation when the outer boundary becomes causally connected to the central body. The dynamics of all of the evolutions,
the oscillations in the central density, are very similar. The star rings at its radial mode proper frequency.
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in the Z4c evolution is about 2 orders of magnitude smaller
than the BSSNOK violation and interestingly smaller even
than the initial violation. The behavior is similar to that
shown in Fig. 5 of Ref. [1]. Wewill demonstrate the growth
of the Hamiltonian constraint also point-wise on the grid in
Sec. V in the case of binary spacetimes. Considering
momentum constraint violations, one finds, as in spherical
symmetry, that the differences are far less dramatic. The
main difference in this case is that the momentum con-
straint violations with BSSNOK are more dynamical, and
slightly larger, although this is probably just because of
reflections from the Sommerfeld outer boundary condition,
which propagate many times over the computational do-
main. With either BSSNOK or Z4c, the largest persistent
violation in the momentum constraint occurs at the surface
of the star. In the right panel of Fig. 2, we show the
oscillations of the central density during the simulation
time. It is not possible to distinguish significant differ-
ences, probably because of the low resolution employed.
The large effect seen in Ref. [1] was with a resolution ten
times higher than here.

Sommerfeld boundary kick.—In the left panel of Fig. 2,
one sees the effect of the Sommerfeld BCs with Z4c on the
norm of the Hamiltonian constraint. As in the single punc-
ture evolution, roughly when the outer boundary becomes
causally connected to the central body, there is a large
incoming pulse of constraint violation. This pulse perturbs
the central object, but unlike in the spherical case (see
Fig. 1 of Ref. [2]), the violation is not the dominating
effect on the dynamics. In the right panel of Fig. 2, we
do not see a significant jump in the central density. A
blowup of the central density plot is, however, shown in

Fig. 3, together with data from a shorter run at twice the
resolution. The figure demonstrates that at approximately
60M, the star is slightly perturbed by the Sommerfeld BCs.
More importantly, the figure shows that the size of the
perturbation is not converging away with resolution,
whereas the amplitude of the oscillations does, so we
expect this error to be dominant at higher resolutions. By
contrast CPBCs are characterized by smaller reflections.
The Hamiltonian constraint violations propagating out
from the star appear to converge at approximately second
order, in line with our expectation for our hydrodynamics
scheme. This rate of convergence is maintained by the
constraint preserving boundary conditions (see also
Fig. 5 of Ref. [2]).

C. Rapidly spinning puncture

Here we compare the evolutions of a single Bowen–York
spinning puncture [61–63] with spin a ¼ S=M2 ’ 0:92.
We choose such a comparatively large value of the spin
parameter (see also Ref. [64]) to test performance for large
values of the conformal factor. For a ’ 0:92 the puncture
contributes only 24% of the mass, while the remainder is in
the Brill wave contribution of the conformal factor. Both
formulations give comparable results in terms of stability,
the norms of the constraint violation, the majority of which
occurs at a few points near the puncture, and gravitational
waves. With either system we observe that point-wise
fourth order convergence is not achieved in the GWs at
the resolutions at which we performed the tests, although
global errors scale between third and fourth order. We
expect that this behavior is related to inaccuracies caused
either by a lack of resolution or intrinsic to the puncture
description of the black hole.
Setup.—We use five levels of box mesh refinement and

attach the spherical grids at r� 50M. In the lowest reso-
lution runs, each box has n ¼ 48 points per direction, and
the resolution of level l ¼ 5 is h ¼ 0:065M. We choose
n�;� ¼ 48 angular and nr ¼ 48 radial points in each

spherical patch so that the outer boundary is located at r ¼
150M. Runs at resolutions n ¼ 64, 96, 128 (with the grid
spacing scaled in order to maintain the same grid setup) are
performed. Bitant symmetry is imposed. The initial data
for this test is constructed in with an ad hoc method, used
elsewhere in the literature, in which the BAM spectral
binary puncture initial data solver is applied to a single
puncture with large spin and another, unboosted and un-
spinning, located very close by with a relative uncorrected
mass of 10�12. There is no sign of the second puncture on
the grid. Problems with convergence do, however, make
this construction a point to address.
Basic features of the dynamics.—The (2, 0) multipolar

mode of rc 4 emitted during the evolution of this initial
data are shown in Fig. 4 for the lowest resolution runs. The
waves lie on top of each other; as resolution is increased,
they converge to each other. At late times, t ¼ 350M, a
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FIG. 3 (color online). A closer inspection of the oscillation of
the central density at early times, both at the original and twice
the resolution, for the Z4c evolutions. The constraint violation
from the Sommerfeld boundary causes a jump in the central
density, as observed in earlier work [1,2]. This effect does not
converge away with resolution but at these resolutions is not the
dominant effect.
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boundary effect is visible in the BSSNOK data. The BCs of
Z4c improve this behavior significantly. Note that t ¼
350M corresponds roughly to the time needed by a wave
initially near the puncture to propagate to the outer bound-
ary, be reflected from the strong field region, and travel out
once again to the extraction sphere at 90M. No feature is
visible as the wave passes from the outer boundary at
around t ¼ 210M, perhaps because c 4 is by construction
insensitive to incoming gravitational radiation. We com-
puted the ADM mass integral [see Eq. (32) later] and find
that in the BSSNOK runs, a drift begins exactly when the
outer boundary becomes causally connected with each
observer, although this drift is then swamped by the effect
of the outgoing gravitational waves. The effect of the
Sommerfeld boundary condition on physical quantities is
discussed in more detail for binary neutron star simulations
later.

Constraint violation.—As in the nonspinning case, the
largest Hamiltonian constraint violation is at the puncture.
The evolution of the L2 norm of the Hamiltonian constraint
is shown in the top panel of Fig. 5 for the lowest resolution
runs. The results from Z4c and BSSNOK are comparable.
At time t� 220M BSSNOK data are affected by the
Sommerfeld boundary conditions. The bottom panel of
Fig. 5 shows the Hamiltonian violation in space at t�
220M. The largest violation is at the puncture and of

similar magnitude, but far from the grid origin, Z4c viola-
tion behaves better.
Convergence.—We looked at the self-convergence of the

waves presented in the upper panel of Fig. 4. At early times,
up to t� 100, only second order point-wise convergence is
observed with either BSSNOKor Z4c. Later, the errors scale
at third-to-fourth order rate in magnitude (norm), but point-
wise convergence is lost. The use of either more resolution,
properly constructed initial data, or simply more refinement
levels, i.e., high resolution at the puncture, might improve
this behavior. In Ref. [40] similar convergence tests were
performed but with a lower spin a ¼ 0:194, with two more,
a total of seven, levels of mesh refinement, but with a
smaller range in resolutions and a lower maximum resolu-
tion in a neighborhood of the puncture. Although the plots
presented in Ref. [40] (see Fig. 6) are scaled for fourth order
convergence, the difference in resolutions makes it hard to
distinguish between different convergence factors with con-
fidence. The earlier study also found point-wise conver-
gence is not maintained in the gravitational waves; thus,
our findings are consistent. A detailed discussion of spin and
higher order finite differencing can be found in Ref. [64].

V. EVOLUTION OF COMPACT BINARY
INITIAL DATA

In this section we assess the performance of the Z4c
formulation in the simulation of the merger of two compact
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FIG. 4 (color online). Comparison of the waves with Z4c and
BSSNOK from the single spinning puncture. The upper panel
shows the (2, 0) multipole mode of the real part of rc 4 emitted
during the evolution. The data are taken from the lowest reso-
lution (483 points per direction) test. The Z4c and BSSNOK
waves agree extremely well until about t� 300M, roughly the
time when the incoming constraint violation from the BSSNOK
Sommerfeld boundary condition is reflected from the central
body and reaches the extraction sphere at r ¼ 90M. The lower
two panels show the difference between the same quantity for
the 64 (96) and 96 (128) point runs, respectively. The two
systems are almost perfectly comparable.
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FIG. 5 (color online). Hamiltonian constraint violation for the
spinning puncture evolution. As in the upper panel of Fig. 4, data
are taken from the lowest resolution (n ¼ 48 points per direc-
tion) test. The upper panel shows the L2 norm of the constraint as
a function of time. The jump in violation at around t ¼ 200M in
the BSSNOK data appears to be caused by the Sommerfeld
boundary conditions and does not converge away with resolu-
tion. The bottom panel shows the Hamiltonian violation in space
at time t ¼ 220M, approximately at the peak of the jump in the
upper plot, in the near-field (l ¼ 2 box) region.
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objects. Two standard initial configurations are studied,
with a set of approximately 60 simulations, in detail: an
equal-mass, nonspinning BBH and an equal-mass, irrota-
tional BNS.We discuss evolutions of about three orbits and
compare systematically the results from several conver-
gence series with the corresponding ones obtained with
BSSNOK.

Presentation rubric—In the presentation of the results,
we describe the main features of the dynamics; then the
Hamiltonian constraint violations are compared, and fi-
nally the accuracy of the GWs and other physical quantities
are discussed in relation with the Hamiltonian constraint
violations. For brevity we discuss only the main emission
channel, the (2, 2) multipole of the radiation. As is standard,
the (complex) c 4 projection rc 4

22, extracted on a coordinate
sphere Sr of radius r, is decomposed into amplitude and
phase according to

rc 4
22 ¼ A22e

�i�22 : (31)

On the same coordinate sphere, we compute the integral

EADMðrÞ ¼
Z
Sr

dsl
ffiffiffiffi
�

p
�ij�

klð�ik;j � �ij;kÞ; (32)

the spatial metric �ij ¼ ��1 ~�ij which approximately rep-

resents the ADM energy. The ADM energy (or mass) of the
system is given by

MADM ¼ lim
r!1EADMðrÞ; (33)

and it is a conserved quantity. On a given sphere in the
wave zone, however, EADMðrÞ is expected to deviate from
MADM due to the gravitational energy radiated away from
the sphere,

EradðrÞ ¼ r2

16�

Z t

0
dt0

Z
d�

��������
Z t0

0
dt00c 4

��������
2

: (34)

Note that the outer integral in Eq. (34) is performed by a
simple Riemann sum. The angular momentum is computed
with similar ADM-like integrals (see, e.g., Ref. [65] and
references therein), but note that this quantity remains
ambiguously defined (gauge dependent) also in the asymp-
totic limit r ! 1 for a generic asymptotically flat space-
time. We stress that the observed differences, up to outer
boundary effects, seem to converge to the same continuum
solution. They are, however, significant at fairly high res-
olutions in most of the cases we studied. Particularly
relevant are the differences in Hamiltonian constraint vio-
lation in the evolution of nonvacuum spacetimes. We show
evidence that these violations are correlated with the qual-
ity of the numerical waveforms.
Convergence tests.—Standard three level self-

convergence tests are performed using simulations at differ-
ent grid resolutions. These tests can be biased by the choice
of the triplet. As discussed in Ref. [55], we consider only
triplets in which i) the ratios between the low and medium
and medium and high resolutions are hL=hM ’ hM=hH > 1
(ideally>2), and ii) the scaling factor is at least of order 2,
s ¼ ðhpL � hpMÞ=ðhpM � hpHÞ * 2, where p is the conver-
gence rate. We find that if these criteria are not met, then
the measured convergence order from different triplets is not
consistent. Additionally, in our experience we found it
important to verify that the use of different triplets gives
consistent results. Even when the criteria above are satisfied,
different triplets can give differing convergence factors. The
result is acceptable if the rates consistently improve as
higher resolution triplets are taken.
Initial data.—Before discussing the results, we summa-

rize the initial data and grids employed. Initial data for
BBHs are conformally flat puncture initial data constructed
using the Brandt–Brügmann puncture method [66] with the
BAM implementation of the spectral puncture initial data

solver [67]. The holes have equal mass, an initial separa-
tion of d ¼ 7M, and are placed in a quasicircular configu-
ration, on which the Padé resummed eccentricity reduction
algorithm of Ref. [68] was applied. The initial data are
interpolated onto the MSS-NCKU and BAM grids by eighth
order Lagrangian barycentric interpolation. Initial data for
BNS assume a conformally flat metric and irrotational
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FIG. 6 (color online). Tracks of the punctures for binary black
hole inspiral for the configuration BBH2 in Table I. In the
continuum limit, up to outer boundary effects, the tracks should
agree perfectly because we are evolving the same data with the
same gauge choice regardless of the formulation. At finite
resolution, however, different formulations and discretizations
may give different results. Initially the tracks agree, but a
difference accumulates; the BSSNOK punctures merge slightly
sooner than the Z4c ones. This plot does not indicate either set of
numerical data is better than the other, only that there is
qualitative agreement between the results.
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flow. The initial separation is D� 10M; ADM mass and
angular momentum are M ¼ 3:005M� and J ¼ 8:3M2,
respectively. The stars are described by a � ¼ 2 polytropic
EOS; each has baryonic mass of Mb ¼ 1:625M�. These
initial data have been produced with the LORENE [69]
library and have been already evolved in several places
[43,55,70]. The data are interpolated onto the BAM grid by
spectral interpolation.

Grid setup.—All of the runs performed at different
resolutions are listed in Table I, together with details of
the grid setup. Note that several of the BBH simulations,
those marked with a ‘‘�’’ in Table I, have been performed
with both the BAM and AMSS-NCKU codes, indicating, at
least for the chosen grid settings, the robustness of our
findings. Note that our lowest resolution vacuum setup
BBH0 has maximum resolution comparable to that of the
highest resolution in the earlier BAM calibration paper [40],

although the boxes in Ref. [40] were larger, which also
affects accuracy. The resolutions of the setups BBH2 and
BBH3 are comparable to the ones of recent BBH simula-
tions [71,72] that required only moderate accuracy, while
the maximum BBH9 resolution is similar to what was used
to obtain some of the BAM waveforms for the NINJA-2
catalog [73]. The highest resolution in the matter simula-
tions BNS6, BNS6r, approaches those in the accurate runs
of Refs. [54,55]. Other details about gauge conditions,
damping parameters, etc., have been already given in
Sec. III.

A. Equal-mass, nonspinning BBH

Basic features of the dynamics.—Let us discuss the
evolution of BBH initial data. The black holes evolve for
about 2.5 orbits before merging, radiating energy and
angular momentum in gravitational waves. In Fig. 6 the
puncture tracks are plotted for the grid BBH2 in Table I.
The gravitational waves have exactly the same basic pro-
file, but unlike in the evolution of a single spinning punc-
ture (see Fig. 4), they are visually distinguishable, with the
absolute maximum of the (2, 2) multipole mode of the real
part of rc 4 occurring, approximately 2:2M, earlier in the
BSSNOK data, in accordance with the expectation from
Fig. 6. The differences that accumulate over the evolution
converge away with resolution. In the BBH4 data, the
delay is only 1:1M. Also in contrast to the single spinning
puncture case, presumably because the outer boundary is
placed so far out at r ’ 2090M, no boundary feature is
visible in the BSSNOK waves, at least up to a radius of
r ¼ 400M within the run time of the simulation.
Constraint violation.—In Fig. 7 the Hamiltonian con-

straint log 10jHj is plotted in space for the BBH1 runs on
the orbital plane at a simulation time t ¼ 146M (roughly
1.5 orbits) on refinement levels l ¼ 3, 4, 5. As in the case of
the single puncture evolution, the Hamiltonian constraint
violation is dominated by the punctures and, for this data,
at this time, has a maximum absolute value of �10�2

regardless of the formulation. However, the Hamiltonian
constraint violation differs in the strong-field region de-
pending on the formulation. In the BSSNOK case, a sig-
nificant Hamiltonian violation extends to level l ¼ 3 with
an almost spherical pattern. In the Z4c case, the violation is
mainly restricted to the highest level around the puncture.
Note the effect of Cartesian mesh refinement in the plot.
For the same data, the momentum constraint away from the
puncture is also roughly 1 order of magnitude smaller in
the Z4c data. Note that although the expression we gave for
the Hamiltonian constraint (14) differs in terms involving

� and K̂ from the form normally used in the BSSNOK
case, altering these terms would not affect our conclusions

because the product of � and K̂ is typically much smaller
than the Hamiltonian constraint violation. The highest
resolution runs, BBH9, have the smallest constraint
violation even in the strong field region, but the violation

TABLE I. Summary of the grid configurations and of the runs.
Columns: name of the configuration, maximum refinement level,
moving levels are those with l > Lmv, number of points per
direction in the moving levels, resolution in the level l ¼ L� 1,
number of points per direction in the nonmoving levels, resolu-
tion in the levels l ¼ 1 (radial resolution in the shells), number of
radial points in the shells, number of angular points in the shells,
and outer boundary. Note that the resolution is given in units of
M for BBH runs but in units of M� for BNS runs. Runs marked
with ‘‘�’’ were reproduced with the AMSS-NCKU code.

Name L Lmv nmv hL�1 n h1 nr n�;� rout

BBH0* 9 2 48 0.0182 72 2.33 865 24 2092

BBH1 9 2 56 0.0156 84 2.0 1008 28 2091

BBH2* 9 2 64 0.0137 96 1.75 1150 32 2089

BBH3 9 2 72 0.0122 108 1.556 1293 36 2088

BBH4* 9 2 80 0.0109 120 1.4 1436 40 2088

BBH5 9 2 88 0.0099 132 1.273 1581 44 2090

BBH6 9 2 96 0.0091 144 1.167 1718 48 2087

BBH7 9 2 112 0.0078 168 1.0 2008 56 2088

BBH8 9 2 128 0.0068 192 0.875 2293 64 2086

BBH9 9 2 144 0.0061 216 0.777 2579 72 2086

BNS0 4 1 48 0.5 72 2.0 212 24 482

BNS0r 4 1 48 0.5 72 2.0 412 24 885

BNS1 4 1 56 0.429 84 1.71 245 28 482

BNS1r 4 1 56 0.429 84 1.71 478 28 882

BNS2 4 1 64 0.375 96 1.5 278 32 481

BNS2r 4 1 64 0.375 96 1.5 545 32 881

BNS2a 4 1 64 0.375 96 1.5 678 32 1081

BNS3 4 1 72 0.333 108 1.33 312 36 477

BNS3r 4 1 72 0.333 108 1.33 612 36 877

BNS4 4 1 80 0.3 120 1.2 345 40 476

BNS4r 4 1 80 0.3 120 1.2 678 40 875

BNS5 4 1 88 0.273 132 1.09 378 44 475

BNS5r 4 1 88 0.273 132 1.09 745 44 875

BNS6 4 1 96 0.25 144 1.0 412 48 476

BNS6r 4 1 96 0.25 144 1.0 812 48 876
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there is dominated by that of the puncture. The difference
between the Hamiltonian constraint violation of the BBH1
and the BBH9 data in this region is at most a factor of 3 for
either formulation despite the difference in resolution.

Gravitational wave accuracy.—Quantitative differences
are observed in the gravitational radiation computed in
BSSNOK and Z4c simulations. The differences can be
appreciated in self-convergence tests for phase and ampli-
tude. Empirically we find, with either formulation, that the
results are consistent with third order convergence. Using
this, we simply compare the sizes of the rescaled errors
across the two formulations. Typical results are presented
in Fig. 8. The phase errors accumulated to merger (t�
270M) are shown in the bottom panels. When Z4c is
employed, we observe a factor 3 of improvement. This
behavior is common to all of the simulations performed.
Similarly, the amplitude error improves by a factor 2 to 3, as
can be appreciated from the top panel of the figure. The
results obtained with the Z4c are not only characterized by
smaller errors but also by the fact that convergence is
maintained for longer time, in particular in phase errors.
All the errors are observed to converge with increasing
resolution. The Z4c and BSSNOK data sets also appear to
converge to each other, suggesting the same continuum limit
is approached. However, extrapolating to the continuum
based on a finite number of resolutions will give different
approximate results for the two formulations, say, for the
phase of the waveform. Still, we conclude that at finite
resolution, the use of Z4c results in the computation of
more accurate waveforms.

Convergence issues.—For the converge tests presented
in Fig. 8 third order convergence is obtained, despite the
use of fourth order operators for the bulk derivatives (see

below). In our experiments with the described grid settings,
we find it difficult to achieve fourth order convergence in
GWs from orbiting puncture runs, regardless of the for-
mulation employed. On the other hand, clearer (order
approximately 3.5) convergence is demonstrated in
Appendix B for the Teukolsky wave, a simpler problem
which, however, retains some of the important features,
namely, nonlinearity, in the sense that we evolve with the
full BAM Z4c infrastructure, constraint violation, because
the wave only satisfies the constraints to linear order in
perturbation theory, present in the BBH calculations. On
the other hand, the Teukolsky wave test has neither moving
boxes nor punctures. We were unable to identify the pre-
cise reason for the behavior in the presence of punctures;
however, we point out the following well-known facts:
(i) Punctures have finite regularity, which can obviously

affect the formal order of convergence of high order
finite-differencing stencils.

(ii) Moving box simulations have several source of
errors (second order time interpolation, regridding,
the number of mesh refinement buffer zones, 3D
interpolation, data between boxes and shells,
spheres, and mode projection); a clearly defined
error budget is very complicated to construct (for
a discussion, see, e.g., Refs. [40,41,74]).

(iii) Simulations have several freely specifiable parame-
ters (grid parameters and/or gauge parameters), and
systematically tuning all of them is beyond the aim
of this work.

(iv) The convergence order observed actually depends
on the triplets chosen in the self-converge test. The
experimentally measured convergence factors lie
between two and four for both the formulations
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FIG. 7 (color online). Hamiltonian constraint violation in BBH simulations at time t� 146M (after�1:5 orbits) on the orbital plane
and in the strong-field region for the grid setup BBH1 in Table I. The plots show log 10jHj for levels l ¼ 5, 4, 3; the left panel shows the
BSSNOK data, and the right shows that of Z4c. Directly at the punctures, the violation is similar in either case, but the surrounding
region has smaller violation in the Z4c data. Some aspects of the grid structure are visible in the violation.
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during the inspiral. Around the time of the merger,
the BSSNOK convergence rate drifts up to five or
six. The drift is on average smaller for higher
resolution triplets. This does not mean that the
BSSNOK data are converging at a high order but
rather that the errors in the simulation do not allow
us to judge the rate in a meaningful way with a
simple error model. We do not claim that wave-
forms from either formulation are unreliable, but
we are reluctant to estimate the absolute errors by
Richardson extrapolation, which assumes a certain
rate of convergence.
AMSS-NCKU–BAM comparison.—The qualitative
features of these results have also been observed in
simulations with the AMSS-NCKU code. Starting
with the puncture tracks as in Fig. 6, we find that
the BSSNOK also merge slightly earlier at a given
resolution, roughly 3:2M for BBH0 and 1:0M for
BBH2, in the same ballpark as the values obtained
with BAM. Note that we do not expect to obtain
identical values from the two codes because,
although they share many ingredients, some specif-
ics, for example, the shells implementation and grid

placement, differ. As in Fig. 7, the Hamiltonian
constraint appears to be smaller in the Z4c data
when using AMSS-NCKU. To test the robustness of
this finding, we have made a number of experi-
ments with different precollapsed initial profiles
for the lapse. We also tried different constraint
damping factors for �1, up to �1 ¼ 0:1. Neither
change seems to make a significant difference; the
Z4c Hamiltonian constraint is always smaller.
Note that in the earlier stability work [4], the
Hamiltonian constraint was computed directly
from the conformal variables. Now, as in BAM, we
compute it by transforming first to the ADM vari-
ables. The two versions of the calculation differ by
additions of � and ~Zi, and obviously the finite
difference approximation. The AMSS-NCKU code
appears to produce slightly larger errors at mesh
refinement boundaries than those of BAM. The rea-
son for this is currently unclear but may be the
cause of the larger errors that we find in the
AMSS-NCKU waveforms. Nevertheless, we still

find, as in Fig. 8, that the Z4c wave forms are
roughly twice as accurate in phase and amplitude.
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FIG. 8 (color online). Convergence plot of binary black hole inspiral for the resolutions h ¼ 1=56, 1=80, and 1=112 (Runs BBH1,
BBH4, and BBH7). The left panel shows results for BSSNOK, and the right panel shows the results for Z4c. All the differences are
scaled for third order convergence. The extraction radius is at 150M.
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B. Equal-mass, irrotational BNS

Basic features of the dynamics.—Let us discuss the evo-
lution of BNS. The binary evolves approximately two orbits
before contact, then merges, forming a hypermassive neu-
tron star (HMNS), which finally collapses on dynamical
time scales. Dynamics and related gravitational wave emis-
sion were described in detail in our previous work [43], so
we do not repeat them here. We only mention that the
gravitational emission is characterized by approximately
six cycles during which the GW frequency increases mono-
tonically (even after contact); the merger time is defined
conventionally at peak of the amplitude’s (2, 2) mode; and
nonlinear (quasiradial and nonaxisymmetric) oscillations of
the HMNS generate the post-merger signal, which decays
exponentially after collapse. Figure 9 shows snapshots of the
rest-mass density on the orbital plane around merger for a
typical simulation obtained with the two formulations (and
same setup). There are visible differences in the ‘‘dynam-
ics,’’ and in the Z4c run, the contact and merger happens at a
later simulation time. As in the case of the BBH puncture
tracks, these plots are gauge dependent, but they refer to the
same gauge choice up to truncation errors, and so they can
be compared. In this respect, note that the centroids of the
stars are offset; this is a coordinate effect due to the choice
	 ¼ 2 in the shift condition and was studied in detail in
Ref. [43].

Constraint violation.—The L2 norm of the Hamiltonian
constraint violation during the evolution is reported in
Fig. 10. On the refinement level l ¼ 2, one can observe
an improvement of a factor �100 during the whole
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FIG. 9 (color online). Evolutions of the rest-mass density on the orbital plane as computed with the grid setup BNS6 from Table I.
The results from the BSSNOK runs are plotted in the top panel and those from Z4c underneath. Similar comments to those in the
caption of Fig. 6 apply; namely, it seems that the compact objects merge earlier in the BSSNOK data. In this case, however, there is
already an expectation that the Z4c data will be more accurate because in earlier work [43], it was found that the objects merge later
and later as resolution is increased with the BSSNOK formulation.
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setup BNS6 from Table I as in Fig. 9. At this resolution the Z4c
violation is between 1 and 2 orders of magnitude smaller
throughout the evolution.
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evolution if Z4c is employed. By contrast the norms of
each component of the momentum constraint agree for
both evolutions; an almost constant violation around
10�7 is observed. The Hamiltonian violation on the orbital
plane around merger time is shown in Fig. 11, which in-
cludes now refinement levels l ¼ 2 and l ¼ 3. Even using
the highest resolution run (BNS6), we register a 2-to-3 order
magnitude difference in the absolute value of the
Hamiltonian constraint. It is noteworthy that the violation
has an almost spherical pattern on and around the strong
field region of the binary, which suggests that the violation is
not dominated by rectangular mesh refinement boundaries.

Gravitational wave accuracy.—The differences at finite
resolution between BSSNOK and Z4c described so far have
an impact on the computation of physical quantities: gravi-

tational waves and ADMmass. Figure 12 shows the result of
a standard three-level self-convergence test for the phase
and amplitude of the (2, 2) mode of the gravitational radia-
tion emitted. Similar comments about the methodology
apply here as in the vacuum case, except that now the errors
scale consistently at second order. For the particular triplet
shown, BSSNOK data cease converging before contact. An
analog result was already found at similar resolutions in
Ref. [43] (see also the detailed discussion in Refs. [54,55]).
On the other hand, the Z4c data are found to converge at
approximately second order beyond contact and up to
merger (t� 650M). Similarly to the BBH case, Z4c wave-
forms are found to be more accurate by a factor 3-to-4 in
accumulated phase and amplitude to merger time. We relate
this behavior with the improvement obtained in Hamiltonian
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FIG. 11 (color online). Hamiltonian constraint violation in BNS simulations at time t� 511M (around merger) on the orbital plane
and in the strong field region with the grid setup BNS6 from Table I as in Figs. 9 and 10. The plots show log 10jHj; this plot is to the
BNS data what Fig. 7 is to the BBH data. In this case there is no sign of the Cartesian grid structure in the violation. Most of violation
in the BSSNOK simulation appears inside the stars. The Z4c violation seems to be on average 1 or 2 orders of magnitude smaller than
the BSSNOK violation, as seen more clearly in Fig. 9.
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FIG. 12 (color online). Convergence plot of binary neutron star inspiral for the resolutions h ¼ 1=48, 1=64, 1=80 (runs BNS0,
BNS2, and BNS4). The left panel shows results for BSSNOK and the right panel for Z4c. All the differences are scaled for second
order convergence. The extraction radius is at R ¼ 400M within the shells. The qualitative behavior of all curves does not change at
different extraction radii.

COMPACT BINARY EVOLUTIONS WITH THE Z4C . . . PHYSICAL REVIEW D 88, 084057 (2013)

084057-15



0 500 1000 1500
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

J A
D

M
(r

) 
/ J

A
D

M
(t

=
0)

t/M
0 500 1000 1500

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

t/M

J A
D

M
(r

) 
/ J

A
D

M
(t

=
0)

J
ADM

(r)

J
ADM

(r)+J*
gw

FIG. 13 (color online). ADM mass and radiated energy for BNS simulations with the grid setup BNS2a from Table I. Both are
extracted inside the shells at R ¼ 300M. The GWenergy is computed from c 4 according to Ref. [40]. The left panel shows results for
BSSNOK and the right panel for Z4c; in comparison the latter demonstrates remarkable conservation.

200 300 400 500 600 700 800
−4

−2

0

2

4

6

8

x 10
−3

t/M

∆ 
A

22

L−M
M−H
2.16 (M−H)

200 400 600

10
−6

10
−4

10
−2

200 300 400 500 600 700 800

−1

0

1

2

3
x 10

−3

t/M

∆ 
A

22

L−M
M−H
2.16 (M−H)

200 400 600

10
−6

10
−4

200 300 400 500 600 700 800

0

5

10

15

20

25

∆
Φ

22

t/M

200 400 600

10
−4

10
−2

10
0

10
2

200 300 400 500 600 700 800

0

1

2

3

4

5

6

∆
Φ

22

t/M

200 400 600
10

−4

10
−2

10
0

FIG. 14 (color online). ADM angular momentum and radiated energy for BNS simulations with the grid setup BNS2a from Table I
computed at an extraction radius of R ¼ 300M. The radiated angular momentum JGW is computed according to standard formulas; see,
for example, Ref. [65]. The left panel shows results for BSSNOK and the right panel for Z4c. The jumps in the BSSNOK data happen
exactly as the extraction spheres become causally connected to the outer boundary at 360M. Other extraction radii show the same feature.

DAVID HILDITCH et al. PHYSICAL REVIEW D 88, 084057 (2013)

084057-16



constraint preservation. Because truncation errors and the
Hamiltonian violation (especially in the matter region) in
BNS simulations are generically larger, the use of Z4c
makes a significant difference for the accuracy of these
simulations.

Mass and angular momentum conservation.—As in the
case of a single spinning puncture, we consider the ADM
mass integral, Eq. (32), and the energy radiated in GWs,
Eq. (34). In Fig. 13 we show that Z4c permits a reliable
computation of EADMðrÞ. When corrected for the GW
energy, the conservation of the ADM mass is of order of
0.1%. By contrast BSSNOK data do not even allow for a
reliable estimate ofMADM. Note that the ADMmass can be
also estimated by means of a volume integral rather than a
surface integral; see, e.g., Refs. [75,76]. The more expen-
sive volume integral computation can be more accurate and
is found to give better results for BSSNOK in the case of
black hole binaries [76]. Figure 14 shows the ADM angular
momentum integral, both with and without a correction by
radiated angularmomentum, at an extraction radius of300M,
for bothBSSNOKand Z4cwith CPBCs. The outer boundary
for this run (BNS2a in Table I) is at approximately 360M.
Evidently at either radius the BSSNOK data is very poorly
behaved and has large error. In contrast in the Z4c evolution,
the corrected angular momenta are well conserved until the
merger signal, which we expect to be much less accurate,
reaches the extraction sphere. Early in the simulation, the
BSSNOK data are also conserved, but there is a jump at
exactly the time t ¼ 60Mwhen the outer boundary becomes
causally connected to the extraction radius. We checked
that this feature holds on every extraction sphere. This
demonstrates clearly that the Sommerfeld boundary condi-
tion has an effect on the behavior of physical quantities inside
BSSNOK simulations. One way to avoid the feature would
be to place the outer boundary further away, which, depend-
ing on the physics of interest, may not be prohibitively
expensive with the spherical shells for the wave zone, but it
is not desirable to discard every extraction sphere as soon as it
becomes causally connected to the outer boundary because a
larger domain would ideally be used for more reliable wave
extraction rather than as a buffer for poor boundary condi-
tions. For comparison it would be very interesting to see data
from BSSNOK simulations, where there is still a zero-speed
mode in the constraints, with an implementation of the con-
straint preserving conditions of Ref. [23]. It is natural to
compare the early times in Figs. 12 and 13 to Fig. 11 of
Ref. [77], a similar plot, computed with the spectral Einstein
code, for inspiralling black hole neutron star binary data.
The Z4c results are competitive, although it remains to be
seen if they will continue to be so over many orbits.

VI. CONCLUSIONS

This paper is the conclusion of a series [1–5], the aim of
which was to bring the advantages of the generalized
harmonic formulation to the moving puncture method.

We presented here for the first time 3D numerical relativity
simulations of compact binaries performed with Z4c, a
conformal decomposition of the Z4 formulation.
We started with evolutions of single compact objects and

found that the expectations obtained by earlier work in
spherical symmetry are largely borne out in the 3D nu-
merics. The most striking feature in these tests is that, in
the evolution of a single stable star by t ¼ 1000M at the
resolutions used in our tests, the norm of the Hamiltonian
constraint is approximately 3 orders of magnitude smaller
in the Z4c data. For the first time, we have presented results
which combine radiation controlling, constraint preserving
outer boundary conditions with the moving puncture
method. These boundary conditions removed a perturba-
tion to the central rest mass density of the star which is
present when using Sommerfeld boundary conditions. At
the resolutions of our tests, however, the outer boundary is
typically not the leading order contribution to numerical
error. In evolutions of a single spinning puncture, we found
that the Z4c with the new outer boundary conditions re-
move certain constraint violating features present in the
BSSNOK data, but at least at early times, the qualitative
physical picture is unaltered.
We then compared evolutions of compact binary space-

times. In these tests we placed the outer boundary much
farther away from the central body so as to simplify the
discussion. Throughout the evolution of binary neutron star
initial data, we find that at the same resolutions, the Z4c
formulation has between 1 and 2 orders of magnitude less
Hamiltonian constraint violation in the norm. Interestingly
the Hamiltonian constraint violation in the Z4c tests in this
case stays at or below the level in the initial data, at least
until the stars merge, and the simulations may therefore
even be competitive with those of a constrained formula-
tion. We find similar, albeit much less pronounced effects,
in the constraint violation in binary black hole simulations,
but the change of formulation does nothing to cure the
dominant constraint violation at the punctures themselves.
The higher quality of the Z4c data is also apparent in
physically meaningful quantities. In terms of gravitational
wave accuracy, we find that with any triplet, satisfying
certain criteria, for either a binary neutron star or binary
black hole data, the absolute error in either the amplitude
or phase of the extracted gravitational waves is between
two and four times smaller in the Z4c evolutions. The
difference, in the evolution of compact binaries, between
conservation of the ADM mass integral with the
two formulations is remarkable. In the BSSNOK simula-
tions, one cannot reliably correct the integral with the
radiated gravitational wave energy to arrive at a constant.
In the Z4c simulations, near perfect conservation is
achieved. Furthermore, despite placing the outer boundary
at a large coordinate radius, we find that the BSSNOK data
are corrupted, for example, in the angular momentum, by
the Sommerfeld boundary condition, whereas the Z4c data
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are free of this problem. If nothing else this motivates the
use of constraint preserving boundary conditions with the
BSSNOK formulation.

In summary we have presented a large suite of numerical
experiments in which the Z4c formulation was shown to
give more accurate results than BSSNOK, both in terms of
constraint violation and extracted physical quantities. We
therefore expect that the Z4c formulation will become a
standard tool for numerical relativity.
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APPENDIX A: SPHERICAL PATCHES

In this appendix the implementation of the spherical
patches in the BAM and AMSS-NCKU codes is described.
We follow closely Refs. [41,57], to which we refer for
further details. We describe first the BAM implementation
and then highlight the differences in the AMSS-NCKU code.

The grid structure.—The BAM grid is made of a hier-
archy of nested Cartesian grid boxes, and each level is
labeled by the integer l ¼ 0; 1; . . . . The level l ¼ 0 (outer-
most box) is replaced with six patches with local coordi-
nates aj ¼ fR;�; �g. The grid of each patch is uniformly

spaced in local coordinates. The maps between the local
coordinates and the Cartesian coordinates are

�x patches: � ¼ arctan ðy=xÞ; � ¼ arctan ðz=xÞ (A1)

�y patches: � ¼ arctan ðx=yÞ; � ¼ arctan ðz=yÞ (A2)

�z patches: � ¼ arctan ðx=zÞ; � ¼ arctan ðy=zÞ; (A3)

where ð�; �Þ 2 ð��=4:�=4Þ � ð��=4:�=4Þ. The local
radial coordinate R is a fisheye coordinate [78–80]

R ¼ fðrÞ � fð0Þ; (A4)

as function of the radius r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. The particular

function function fðrÞ implemented is

fðrÞ ¼ Brþ A log ðcosh ½ðr� RÞ=Þ� (A5)

@rfðrÞ ¼ A tanh ½ðr� RÞ=� þ B; (A6)

where the parameters A and B determine the stretching of
the coordinate and  the transition region. The condition
fðrÞ ¼ r at interface between spherical patches and the
boxes is important to avoid a step behavior and minimize
interpolation errors. In this work we did not employ the
fisheye coordinate; i.e., we set A ¼ 0, B ¼ 1.
Spatial derivatives.—Field derivatives at a grid point

inside the patches are calculated by finite differences on
the uniformly spaced local grid. The derivatives in
Cartesian coordinates are obtained using the chain rule
and the Jacobian of the transformation xiðajÞ,

@

@xi
¼

�
@rj
@xi

�
@

@rj
; (A7)

@2

@xi@xj
¼

�
@rk
@xi

@rl
@xj

�
@2

@rk@rl
þ

�
@2rk
@xi@xj

�
@

@rk
; (A8)

note that the last term in these equations fixes a typo in
Eq. (5b) in Ref. [41].
Grid schematic.—The grid structure is sketched in

Fig. 15. The dark solid lines represent the physical grid,
and the lighter lines denote the ghost points which are
needed for the finite differences. The green shaded regions
denote the ghost zones populated by interpatch interpola-
tion and overlap with the neighbor patches. The other
colored areas overlap with the l ¼ 0 level, and the
resolution of the Cartesian box is the same as the one of
the radial one in the patch. The number of grid points in
all the ghost zones (cyan, green, and yellow) is equal.

FIG. 15 (color online). Two-dimensional scheme of the spheri-
cal patches. The darker regions denote the physical grids, the
translucent numerical ghost zones. See the text for details of the
various radii and how the color scheme relates to the numerical
method.

DAVID HILDITCH et al. PHYSICAL REVIEW D 88, 084057 (2013)

084057-18



The distance between the points r0 and r1 is equal to that
between r1 and r2.

Data communication.—Spherical patches overlap on
ghosts zones. Two neighboring patches share the radial
coordinate and the angular coordinate perpendicular to
the mutual boundary. Therefore, only a 1D interpolation
parallel to the boundary has to be performed in the green
regions of Fig. 15. A Lagrange interpolation (sixth order
in this work), which uses the most centered possible
stencil, is employed. Interpolation between patches and
the l ¼ 0 level is performed with Lagrangian polynomial
interpolation in three dimensions (colored regions of
Fig. 15). The various interpolations are done in the fol-
lowing order: i) interpolate from box to shell (yellow
region), ii) interpolate between shells (green region),
iii) interpolate from shell to box (cyan and red regions),
and iv) set symmetries in box. For simplicity, grid sym-
metries are not applied in the shells during evolution.
Each patch is evolved entirely, and only afterward values
at symmetry points are overwritten by copying them. We
note that because the interpolation of the red region in
Fig. 15 depends on points in the cyan region, the ordering
of the different interpolations can give, in principle, dif-
ferent results. On the other hand, not interpolating the red
region results in a ‘‘double evolution,’’ which we find
leads to high frequency oscillations.

Dissipation.—Artificial dissipation is necessary for
numerical stability during the evolution, in particular,
to maintain stable box-shell interface regions. Experimen-
tally we found it important to apply different amounts of
dissipation in box and spherical patches. In particular we
use a lower dissipation on the spherical patches than in the
box. For this work we tested only sixth order Kreiss–Oliger
dissipation operators, using artificial dissipation coeffi-
cients � ¼ 0:5 in the bulk and � ¼ 0:1 in the shells (see
Ref. [40] for our terminology). The number of angular
points has been chosen according to the size of the l ¼ 0
box, n�;� � n=2. Placing the box-shell interface close to

the strong field region may also cause large growth of the
error, even causing the code to crash or affect the choice of
the dissipation parameters required for stability.

Parallelization.—In order to reduce global MPI commu-
nication during shells synchronization, we use an opti-
mized parallelization. The computations on the patches
are distributed only in the radial direction. Every processor
has six patch parts with the same radial extension; hence,
the synchronization in the angular directions is performed
locally by each MPI job. Note that this method implies a
minimum number of radial points is necessary for a given
number of processors. In some early tests, we found that
avoiding interpolation in this way can result in computa-
tions that are an order of magnitude faster in the shells.

Variations of the numerical method in the AMSS-NCKU
code.—There are several differences in the implementation
of shells in AMSS-NCKU with respect to BAM. In AMSS-NCKU

there is no option to use a radial fisheye coordinate.
Relating to the interpolation between box and shell, the
scheme is somewhat different in BAM. We set the length
between the point r0 and r1 as the length of six points and
we take these points as buffer points. We set the distance
between r1 and r2 larger than the distance between r0 and
r1. We take this part of region as the double cover region of
both box and shell. We set six points for the box outside of
r2 and take them as buffer points. Similar to the treatment
of the mesh refinement interface, we fill the buffer points
for box and shell only at the end of a full fourth order
Runge-Kutta step. As opposed to BAM, we do not interpo-
late the points between r1 and r2. Because of this double
cover region, we can interpolate between box and shell in
parallel fashion. But before that we have to synchronize the
data between different shell patches. In the MPI commu-
nication, we divide the data in both radial direction and
angular directions but try to make resulting blocks as cubic
as possible for minimization of interprocessor data change.
Box-shell comparison.—Let us briefly discuss code per-

formance and waveform quality by comparing runs which
employ spherical patches (‘‘shell runs’’ hereafter) in the
wave zone to those that do not (‘‘box runs’’ hereafter). For
shell runs radial and angular resolution can be adjusted
separately, at linear scaling in the number of grid points in
radius and quadratic scaling for both angular directions.
Nested boxes imply effectively constant angular resolution
for increasing radius and decreasing radial resolution.
Increasing radial resolution leads to a cubic scaling in the
number of grid points because angular resolution increases
simultaneously. This can be partially compensated by
choosing larger boxes in the wave zone, which are com-
paratively cheap in run time because of Berger–Oliger time
adaptivity, and typical runs are limited by run time rather
than memory. Constant radial resolution is helpful for
tracking waves traveling to infinity; on the other hand,
decreasing radial resolution is a recipe sometimes em-
ployed deliberately for filtering features going to and com-
ing from the outer boundary. An entirely different type of
filter is effectively in use when extracting only (2, 2)
modes. Features due to rectangular outer boundaries and
rectangular refinement boundaries (compare to Fig. 2) are
not visible at l ¼ 2 but start to show at l ¼ 4. A spherical
outer boundary has the advantage that a unique normal
vector to the boundary exists; in fact, our early (and
incomplete) experiments with the new Z4c boundary con-
ditions failed for a cubical outer boundary. However, a
spherical boundary can also lead to a focused inward
reflection of outgoing waves, while a rectangular boundary
scatters spherical waves leading to a diffuse reflection. For
example, the back-reflection feature in Fig. 4 is much
smaller for cubical outer boundaries, as are oscillations
of a neutron star induced by boundary reflections. A clean
treatment of a spherical boundary is nevertheless prefer-
able since the reflections can be minimized, and even
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though a constraint violation from a cubical outer bound-
ary may not be as visible, it is still present in the inner
domain. The choice between box or shell runs actually
depends on the waveform accuracy goal and requires a
balance between accuracy and computational cost. We
discuss two examples employing the BSSNOK
formulation.

BAM example.—As a first example, we find that BAM

BBH box runs with L ¼ 9, Lmv ¼ 4, nmv ¼ f48; 56; 64g,
n ¼ f82; 96; 110g, and h9 ¼ f0:0365; 0:0313; 0:0293g
give results comparable to shell runs with L ¼ 7,
Lmv ¼ 2, nmv ¼ f48; 56; 64g, n ¼ f82; 96; 110g, nr¼
f686;800;914g, n�;�¼f14;16;18g, and h6¼f0:0365;
0:0313;0:0293g. Both series of simulations have the same
resolution in the Cartesian boxes and a similar com-
putational cost. The resolution in the wave zone differs
by a factor 2 in the wave zone (lower in the box runs).
The waveform errors and convergence properties are the
same in both series.

AMSS-NCKU example.—As a second example, we
compare AMSS-NCKU BBH box runs with L ¼ 11,

Lmv ¼ 8, nmv ¼ f56; 6472g, n ¼ f112; 128144g, and h11 ¼
f0:505=112; 0:505=1280:505=144gM with shell runs when
the four coarsest levels are substituted by spherical patches
that approximately extend to the same outer radius. The
computational cost of the shell runs is approximately
twice the box runs. Using this triplet, third order self-
convergence is achieved in the shell runs at all the extrac-
tion radii, while in the box runs, self-convergence is lower
than 3 at small radii and progressively degrades when the
extraction is performed on coarser levels. The waveform in
box runs is more noisy. Phase and amplitude of the wave-
form can be extrapolated according to

fðu; RÞ ¼ XK
k¼0

fðuÞR�k; (A9)

where fðu; RÞ is the quantity to extrapolate extracted at
radius R, u is a retarded time, and R the Schwarzschild
radius; see e.g., Refs. [55,81]. A measure of the extrapo-
lation error is the difference between the extrapolated
function and the last radius values. This error is reported
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FIG. 16 (color online). The BSSNOK box-shell comparison. The top row shows the errors in extrapolated waveforms when the wave
zone is covered by Cartesian boxes as described in the text. The lower row shows the shell results. The left panel shows the amplitude
and the right the phase of the (2, 2) mode of rc 4. The amplitude is improved by at least 1 order of magnitude and the phase by a factor
around 5.
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in the upper row of Fig. 16 for box runs and the lower
row for shell runs, using the radii R ¼ f150; 140;
130; 120; 110; 100; 90; 80; 70; 60; 50g and different values
of K, i.e., different polynomials. As evident from the
figures, the extrapolation for shell runs is more accurate,
and results for different K are consistent with each other
(no oscillations and overshooting). The ‘‘zigzag’’ behavior
in the left panel of the lower row of Fig. 16 is due to the
limited number of digits used in the output. For these data
the choice K ¼ 1 seems to be optimal.

APPENDIX B: EVOLUTION OF
TEUKOLSKY WAVES

In this appendix we evolve, for code validation,
Teukolsky’s wave solution with the BAM code.

Motivation.—The codes used in this work have sources
of error of different polynomial order in the grid spacing,
but the operations performed most often, finite differ-
encing and time integration, are performed at fourth
order. It is perhaps not surprising that we never find clear
fourth order convergence in our evolutions of compact
binaries.

For the hydrodynamics simulations, this behavior can be
excused because the HRSC scheme we employ is only
second order accurate. But for our vacuum simulations,
the situation is less clear. We therefore also studied the
evolution of Teukolsky’s solution [82] to the linearized
Einstein equations. This solution represents a weak gravi-
tational wave propagating on a flat background. It satisfies
the constraint equations of general relativity at linear order.
We use this solution as initial data and then evolve forward
in time with the BAM code. Note that extensive conver-
gence testing demonstrating fourth order convergence, in
test cases, was shown for the AMSS-NCKU code in Ref. [4].

Teukolsky wave initial data.—The metric has the form

ds2 ¼ �dt2 þ ð1þ AfrrÞdr2
þ 2Bfr�rdrd�þ 2Bfr�r sin �drd�

þ ð1þ Cfð1Þ�� þ Afð2Þ�� Þr2d�2
þ 2ðA� 2CÞf��r2 sin �d�d�
þ ð1þ Cfð1Þ�� þ Afð2Þ�� Þr2sin 2�d�2; (B1)

where we have

frr ¼ sin 2�ðcos 2�� sin 2�Þ; (B2)

fr� ¼ sin � cos �ðcos 2�� sin 2�Þ; (B3)

fr� ¼ �2 sin � sin� cos� (B4)

and also

fð1Þ�� ¼ ð1þ cos 2�Þðcos 2�� sin 2�Þ; (B5)

fð2Þ�� ¼ �ðcos 2�� sin 2�Þ; (B6)

f�� ¼ 2 cos� sin� cos�; (B7)

fð1Þ�� ¼ �fð1Þtt ; (B8)

fð2Þ�� ¼ cos� cos�ðcos 2�� sin 2�Þ; (B9)

with

A ¼ �3

�
Fð2Þ �

5

r3
þ 3Fð1Þ �

5

r4
þ 3F

�5

r5

�
; (B10)

B ¼
�
Fð3Þ �

5

r2
þ 3Fð2Þ �

5

r3
þ 6Fð1Þ �

5

r4
þ 6F

�5

r5

�
; (B11)

C ¼ � 1

4

�
Fð4Þ �

5

r
þ 2Fð3Þ �

5

r2
þ 9Fð2Þ �

5

r3

þ 21Fð1Þ �
5

r4
þ 21F

�5

r5

�
: (B12)

This corresponds to an outgoing wave that is a pure m ¼ 2
mode. The generating function F is given by

F ¼ a
ðt� rÞN

�N exp

�
�ðt� rÞ2

�2

�
: (B13)

Derivatives of order n of F are denoted by FðnÞ. Apart from
choosing a different generating function, our wave is very
similar to what was used in Ref. [83]. For our runs we have
chosen a ¼ 10�4, N ¼ 10 and � ¼ 10.
Setup.—We have evolved such a wave with an initial lapse

of 1 and a shift of 0. For the evolution, as in the rest of the
work, we have chosen the standard 1þ log and Gamma
driver evolution equation for lapse and shift (11) and (12)
with �L ¼ 2=�, �S ¼ 1=�2. We use four levels of box
mesh refinement and attach the spherical grids at r� 30. In
the lowest resolution runs, each box has n ¼ 48 points per
direction, and the resolution of level l ¼ 4 is h4 ¼ 0:167. We
choose n�;� ¼ n=2 angular and nr ¼ n radial points in each

spherical patch so that the outer boundary is located at r ¼
100. Runs at resolutions n ¼ 48, 64, 80 (with the grid spac-
ing scaled in order to maintain the same grid setup) are
performed.
Results.—We find that both the BSSNOK and the Z4c

system can successfully be used to evolve these waves.
For Z4c we have set �1 ¼ 0:02 and �2 ¼ 0. Since there
are no strong gravitational fields, we can extract the waves
at any radius. Figure 17 shows a convergence plot for
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waves extracted at a radius of r ¼ 80. The solid lines
show the difference between c 4 at low and medium
resolution (L�M), while the dashed-dotted lines show
the difference between medium and high resolution (M�
H). When scaled with the proper factor of 3.66 for fourth

order convergence, we see thatM�H coincides approxi-
mately with L�M. For this data set, the observed order
of convergence is around 3.5. The left panel shows the
results for BSSNOK, and the right panel shows those
for Z4c.
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[47] B. Brügmann, Phys. Rev. D 54, 7361 (1996).
[48] M. J. Berger and J. Oliger, J. Comput. Phys. 53, 484 (1984).
[49] Y. Zlochower, J. G. Baker, M. Campanelli, and C.O.

Lousto, Phys. Rev. D 72, 024021 (2005).
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D 85, 104030 (2012).
[56] J. Thornburg, The Ninth Marcel Grossman Meeting, edited

by V.G. Gurzadyan, R. T. Jantzen, and R. Ruffini (World
Scientific, Singapore, 2003), p. 1743.

[57] J. Thornburg, Classical Quantum Gravity 21, 3665 (2004).
[58] L. Lehner, O. Reula, and M. Tiglio, Classical Quantum

Gravity 22, 5283 (2005).

[59] P. Diener, E. N. Dorband, E. Schnetter, and M. Tiglio, J.
Sci. Comput. 32, 109 (2007).

[60] E. Schnetter, P. Diener, N. Dorband, and M. Tiglio,
Classical Quantum Gravity 23, S553 (2006).

[61] J.M. Bowen and J.W. York, Jr., Phys. Rev. D 21, 2047
(1980).

[62] M.W. Choptuik and W.G. Unruh, Gen. Relativ. Gravit.
18, 818 (1986).

[63] S. Brandt and E. Seidel, Phys. Rev. D 54, 1403 (1996).
[64] C. O. Lousto, H. Nakano, Y. Zlochower, B. C. Mundim,

and M. Campanelli, Phys. Rev. D 85, 124013 (2012).
[65] M. Ruiz, R. Takahashi, M. Alcubierre, and D. Nunez, Gen.

Relativ. Gravit. 40, 2467 (2008).
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[68] B. Walther, B. Brügmann, and D. Müller, Phys. Rev. D 79,

124040 (2009).
[69] E. Gourgoulhon, P. Grandclément, J.-A. Marck, J. Novak,

and K. Taniguchi, http://www.lorene.obspm.fr.
[70] L. Baiotti, B. Giacomazzo, and L. Rezzolla, Classical

Quantum Gravity 26, 114005 (2009).
[71] G. Reifenberger and W. Tichy, Phys. Rev. D 86, 064003

(2012).
[72] W. Tichy and P. Marronetti, Phys. Rev. D 83, 024012

(2011).
[73] P. Ajith et al., Classical Quantum Gravity 29, 124001

(2012).
[74] Y. Zlochower, M. Ponce, and C.O. Lousto, Phys. Rev. D

86, 104056 (2012).
[75] H.-J. Yo, T.W. Baumgarte, and S. L. Shapiro, Phys. Rev. D

66, 084026 (2002).
[76] P. Marronetti, W. Tichy, B. Brügmann, J. A. González, and
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[80] J. Baker, B. Brügmann, M. Campanelli, and C.O. Lousto,
Classical Quantum Gravity 17, L149 (2000).

[81] S. Bernuzzi, A. Nagar, and A. Zenginoglu, Phys. Rev. D
84, 084026 (2011).

[82] S. A. Teukolsky, Phys. Rev. D 26, 745 (1982).
[83] D. R. Fiske, J. G. Baker, J. R. van Meter, D. Choi, and J.M.

Centrella, Phys. Rev. D 71, 104036 (2005).

COMPACT BINARY EVOLUTIONS WITH THE Z4C . . . PHYSICAL REVIEW D 88, 084057 (2013)

084057-23

http://dx.doi.org/10.1088/0264-9381/24/12/S20
http://dx.doi.org/10.1088/0264-9381/24/12/S20
http://dx.doi.org/10.1088/0264-9381/21/2/019
http://dx.doi.org/10.1088/0264-9381/21/2/019
http://dx.doi.org/10.1088/0264-9381/25/12/125012
http://dx.doi.org/10.1088/0264-9381/25/12/125012
http://dx.doi.org/10.1103/PhysRevD.75.024006
http://dx.doi.org/10.1103/PhysRevD.83.064022
http://dx.doi.org/10.1088/0264-9381/29/1/015003
http://dx.doi.org/10.1103/PhysRevD.85.064040
http://dx.doi.org/10.1103/PhysRevD.73.064017
http://dx.doi.org/10.1103/PhysRevD.73.064017
http://dx.doi.org/10.1103/PhysRevD.77.024027
http://dx.doi.org/10.1103/PhysRevD.83.044045
http://dx.doi.org/10.1142/S0219891605000634
http://dx.doi.org/10.1103/PhysRevD.84.044012
http://dx.doi.org/10.1103/PhysRevD.84.044012
http://dx.doi.org/10.1103/PhysRevLett.92.211101
http://dx.doi.org/10.1103/PhysRevLett.92.211101
http://dx.doi.org/10.1142/S0218271899000080
http://dx.doi.org/10.1103/PhysRevD.78.124011
http://dx.doi.org/10.1103/PhysRevD.78.124011
http://dx.doi.org/10.1103/PhysRevD.54.7361
http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/10.1103/PhysRevD.72.024021
http://dx.doi.org/10.1088/0264-9381/25/10/105006
http://dx.doi.org/10.1016/j.jcp.2009.12.016
http://dx.doi.org/10.1016/j.jcp.2009.12.016
http://dx.doi.org/10.1051/0004-6361:20020776
http://dx.doi.org/10.1051/0004-6361:20020776
http://dx.doi.org/10.1016/j.jcp.2007.11.038
http://dx.doi.org/10.1016/j.jcp.2007.11.038
http://dx.doi.org/10.1103/PhysRevD.86.044030
http://dx.doi.org/10.1103/PhysRevD.85.104030
http://dx.doi.org/10.1103/PhysRevD.85.104030
http://dx.doi.org/10.1088/0264-9381/21/15/004
http://dx.doi.org/10.1088/0264-9381/22/24/006
http://dx.doi.org/10.1088/0264-9381/22/24/006
http://dx.doi.org/10.1007/s10915-006-9123-7
http://dx.doi.org/10.1007/s10915-006-9123-7
http://dx.doi.org/10.1088/0264-9381/23/16/S14
http://dx.doi.org/10.1103/PhysRevD.21.2047
http://dx.doi.org/10.1103/PhysRevD.21.2047
http://dx.doi.org/10.1103/PhysRevD.54.1403
http://dx.doi.org/10.1103/PhysRevD.85.124013
http://dx.doi.org/10.1007/s10714-008-0684-7
http://dx.doi.org/10.1007/s10714-008-0684-7
http://dx.doi.org/10.1103/PhysRevLett.78.3606
http://dx.doi.org/10.1103/PhysRevLett.78.3606
http://dx.doi.org/10.1103/PhysRevD.70.064011
http://dx.doi.org/10.1103/PhysRevD.70.064011
http://dx.doi.org/10.1103/PhysRevD.79.124040
http://dx.doi.org/10.1103/PhysRevD.79.124040
http://www.lorene.obspm.fr
http://dx.doi.org/10.1088/0264-9381/26/11/114005
http://dx.doi.org/10.1088/0264-9381/26/11/114005
http://dx.doi.org/10.1103/PhysRevD.86.064003
http://dx.doi.org/10.1103/PhysRevD.86.064003
http://dx.doi.org/10.1103/PhysRevD.83.024012
http://dx.doi.org/10.1103/PhysRevD.83.024012
http://dx.doi.org/10.1088/0264-9381/29/12/124001
http://dx.doi.org/10.1088/0264-9381/29/12/124001
http://dx.doi.org/10.1103/PhysRevD.86.104056
http://dx.doi.org/10.1103/PhysRevD.86.104056
http://dx.doi.org/10.1103/PhysRevD.66.084026
http://dx.doi.org/10.1103/PhysRevD.66.084026
http://dx.doi.org/10.1103/PhysRevD.77.064010
http://dx.doi.org/10.1103/PhysRevD.78.104015
http://dx.doi.org/10.1103/PhysRevD.78.104015
http://dx.doi.org/10.1103/PhysRevD.67.084023
http://dx.doi.org/10.1103/PhysRevD.67.084023
http://dx.doi.org/10.1103/PhysRevD.65.124012
http://dx.doi.org/10.1088/0264-9381/17/20/102
http://dx.doi.org/10.1103/PhysRevD.84.084026
http://dx.doi.org/10.1103/PhysRevD.84.084026
http://dx.doi.org/10.1103/PhysRevD.26.745
http://dx.doi.org/10.1103/PhysRevD.71.104036

