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We investigate spherical, isothermal and polytropic steady accretion models in the presence of the

cosmological constant. Exact solutions are found for three classes of isothermal fluids, assuming the test

gas approximation. The cosmological constant damps the mass accretion rate and—above a certain

limit—completely stops the steady accretion onto black holes. A ‘‘homoclinic-type’’ accretion flow of

polytropic gas has been discovered in anti–de Sitter spacetimes in the test-gas limit. These results can have

cosmological connotation, through the Einstein-Straus vacuole model of embedding local structures into

Friedman-Lemaitre-Robertson-Walker spacetimes. In particular, one infers that steady accretion would

not exist in the late phases of Penrose’s scenario of the evolution of the Universe, known as the Weyl

curvature hypothesis.
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I. INTRODUCTION

There are still serious reasons, in our opinion, to inves-
tigate Bondi-type accretion models [1]. First, they are still
not fully explored in the general-relativistic context, de-
spite significant work that has been done in the last decades
(see [2–9] and many of forthcoming references). Second,
and even more important, when put in the framework of
cosmological spacetimes, they can be thought of as simple
toy models that shed light on the possible influence of the
cosmological constant � onto the formation of material
structures. We obviously do not mean that these models
can reproduce the arrangement of matter in, say, super-
clusters of galaxies; we expect, however, that if the cos-
mological constant damps Bondi accretion, then realistic
models should reveal less robust structure formation.
Third—and this essentially constitutes a reversal of the
former argument—if accretion is � dependent, then the
natural question is to ask under what circumstances it is
possible to estimate the value of the cosmological constant
just by a quasilocal analysis?

In a recent paper [9] two of us investigated stationary,
spherically symmetric accretion flows of self-gravitating
polytropic fluids in cosmological spacetimes. The physical
picture discussed in [9] was as follows. We considered a
spherical cloud of self-gravitating polytropic gas, accreting
steadily on a central black hole. The outer areal radius of
the cloud, its total mass and the mass of the black hole were
fixed. We also fixed the parameters of the gas: the poly-
tropic exponent and the local speed of sound at the outer
boundary. The numerical data presented in [9] suggested
that the mass accretion rate of transonic solutions de-
creases with the increasing modulus of the cosmological
constant, irrespective of its sign, provided that the mass of
gas is kept constant.

In this paper we investigate spherically symmetric,
steady flows of test gases for polytropic and isothermal

equations of state. The emerging picture turns out to be
more complex than it could be inferred from the previous
work. In particular, the relation between the accretion rate
and the cosmological constant depends on the assumed
details of the model.
Section II of this paper specifies the de Sitter and anti–de

Sitter spacetimes and gives equations that are relevant for
the description of steady accretion. Section III shows the
existence of ‘‘homoclinic’’ solutions, i.e., solutions for
which the graph of the square of the radial velocity versus
the areal radius forms a closed loop joining the same
critical point. This phenomenon happens only for poly-
tropic equations of state and negative cosmological con-
stant. A similar behavior was observed in approximate
analysis of accretion models with low angular momentum
[10]. To our knowledge, it is the first time that such
solutions have been obtained strictly and in spherical
symmetry.
Section IV discusses transonic flows of isothermal fluids

in the test gas limit. We find exact solutions and investigate
the dependence of the mass accretion rate on �. In most
cases, when keeping fixed the asymptotic mass density, the
mass accretion rate decreases with the increase of �. The
exception is the stiff equation of state p ¼ e, where p is
the pressure and e denotes the energy density. Thus, the
baryonic mass accretion rate achieves a maximum at
some �< 0.
In Sec. V we consider accretion in suitably

prepared—Swiss-cheese vacuolized [11]—Friedman-
Lemaitre-Roberston-Walker (FLRW) models. Accreting
systems are put in the interiors of the vacuoles, in a way
that keeps the overall FLRW geometry—which means that
the total mass of the vacuoles is fixed. Then we study the
dependence of accretion onto cosmological constant. It
appears that polytropic and isothermal fluids behave differ-
ently. The accretion rate of polytropic fluids achieves a
maximum at a negative value of �. Isothermal fluids
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accrete with efficiency that monotonically decreases with
the increase of �.

The interesting feature of polytropic accretion flows is that
the accretion stops completely when the absolute value of�
is large enough. In all isothermal and polytropic accretion
flows, we observe freezing when positive� is large enough.
This is yet another indication, in agreement with [9], that the
cyclic universe scenario of Penrose [12] cannot work.

The last section contains a concise summary and
addresses main issues of this paper.

Throughout this paper we adhere to the common rela-
tivistic notation. The determinant of the metric is denoted
with g ¼ detg��. Greek indices run through � ¼ 0, 1, 2,

3; Latin indices denote spatial dimensions i ¼ 1, 2, 3.
The signature of the metric is (�;þ;þ;þ), and we use
geometric units with G ¼ c ¼ 1.

II. ACCRETION IN SCHWARZSCHILD–(ANTI–)DE
SITTER SPACETIMES

A. General equations

We consider a static, spherically symmetric metric g��

with the line element of the form

ds2 ¼ gttdt
2 þ 2gtrdtdrþ grrdr

2 þR2ðd�2 þ sin 2�d�2Þ;
(1)

where gtt, gtr, grr and R are functions of coordinate radius r
only. Angle variables satisfy 0 � � � � and 0 � �< 2�.

The motion of the fluid is described by standard conser-
vation laws

r�ð�u�Þ ¼ 1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
�u�Þ ¼ 0; (2)

r�ððeþ pÞu�u� þ pg��Þ ¼ 0: (3)

Here u� denotes the four-velocity of the fluid, � is the
baryonic density, p is the pressure, and e denotes
the energy density. In the following, we will also use the
specific enthalpy h ¼ ðeþ pÞ=�.

We impose spherical symmetry onto hydrodynamic
quantities. Thus, u� ¼ u� ¼ 0, and �, p, e and h are
functions of r only.

The continuity equation (2) can be integrated, yielding

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gttgrr þ ðgtrÞ2

q
�ur ¼ const: (4)

We will further assume that the flow is smooth (i.e., no
shock waves occur). Euler equations (3) can then be
written as

u�r�ðhu�Þ þ @�h¼ u�@�ðhu�Þ � h��
��u

�u� þ @�h¼ 0;

(5)

where we have used the continuity equation (2) and the
thermodynamic relation dh ¼ dp=� (this assumes an

isentropic flow—cf. [13]). The zeroth component of the
above equation (for � ¼ t) reads

ur@rðhutÞ � hðutut�t
tt þ utur�

r
tt þ urut�

t
rt þ urur�

r
rtÞ ¼ 0:

All terms containing Christoffel symbols in the above
expression cancel, and one is left with

@rðhutÞ ¼ 0; (6)

or

hut ¼ const: (7)

Exploiting the normalization condition for the four-
velocity (u�u

� ¼ �1), one can show that

ut ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt þ ½�gttgrr þ ðgtrÞ2�ðurÞ2

q
:

For the barotropic equation of state h ¼ hð�Þ, the
solutions describing the flow can be found by solving the
set of algebraic Eqs. (4) and (7).

B. Horizons and accretion in Schwarzschild–(anti–)de
Sitter spacetimes

In the following we search for solutions describing steady,
spherically symmetric accretion flows in Schwarzschild–
(anti–)de Sitter spacetimes.
We choose the areal radius R as the coordinate radius r.

There is still a gauge freedom—one can impose an
arbitrary condition onto the trace trK � Ki

i of the ex-
trinsic curvature Ki

j of the Cauchy hypersurface t¼const

(see [14] for the definition of extrinsic curvature)—but in
all gauges one has �gttgrr þ ðgtrÞ2 ¼ 1. That plays a role
in our forthcoming calculations; in all gauges,

ut ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt þ ðurÞ2

q
:

In standard coordinates all components of the extrinsic
curvature vanish, and the line element is diagonal; it reads

ds2 ¼ �
�
1� 2m

r
��

3
r2
�
dt2 þ dr2

ð1� 2m
r � �

3 r
2Þ

þ r2ðd�2 þ sin 2�d�2Þ: (8)

Herem denotes the Abbott-Deser mass of the central black
hole [15].
The horizons are located at zeros of 1� 2m=r�

ð�=3Þr2, or equivalently � �
3 r

3 þ r� 2m. For 0<�<

1=ð9m2Þ the cubic polynomial � �
3 r

3 þ r� 2m has two

real positive zeros given by

ra ¼ 2ffiffiffiffi
�

p cos

�
�

3
þ 1

3
arccos ð3m

ffiffiffiffi
�

p
Þ
�
;

rb ¼ 2ffiffiffiffi
�

p cos

�
�

3
� 1

3
arccos ð3m

ffiffiffiffi
�

p
Þ
�
:

It is easy to show that
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0< 2m< ra < 3m<
1ffiffiffiffi
�

p < rb <
3ffiffiffiffi
�

p :

Here ra is the areal radius of the black hole horizon, which
will be further denoted by rh, i.e., rh ¼ ra; rb corresponds
to the cosmological horizon. In this paper we will only deal
with black holes satisfying 1� 9�m2 > 0.

For �< 0 there is just one real root of 1� 2m=r�
ð�=3Þr2 that corresponds to the black hole horizon. It is
given by

rh ¼ 2ffiffiffiffiffiffiffij�jp sinh

�
1

3
arsinhð3m

ffiffiffiffiffiffiffi
j�j

p
Þ
�
:

Equations (4) and (7) written in coordinates (8) have the
form

r2�ur ¼ const; (9)

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r
��

3
r2 þ ðurÞ2

s
¼ const: (10)

Remarkably, it is possible to introduce new, suitably
adapted Eddington-Finkelstein-type coordinates that are
regular at the black hole horizon, and for which Eqs. (4)
and (7) have precisely the same form—given by Eqs. (9)
and (10). We define Eddington-Finkelstein time tEF by

dt ¼ dtEF �
2m
r þ �

3 r
2

1� 2m
r � �

3 r
2
dr:

In the new coordinates the metric can be written as

ds2 ¼ �
�
1� 2m

r
��

3
r2
�
dt2EF þ 2

�
2m

r
þ�

3
r2
�
dtEFdr

þ
�
1þ 2m

r
þ�

3
r2
�
dr2 þ r2ðd�2 þ sin 2�d�2Þ:

The above coordinate system is singular for �< 0 and
large values of r.

C. Characteristics of the sonic point

Equations (9) and (10) admit transonic solutions—the
ones that are subsonic far from the center, and become
supersonic in the vicinity of the black hole. We define the
sonic point as a location in which a2 ¼ ður=utÞ2, where a is
the local speed of sound.

By differentiating Eqs. (9) and (10) with respect to r, one
can show that��

ur

ut

�
2 � a2

�
@r ln u

r ¼ 1

rðutÞ2
�
2a2ðutÞ2 �m

r
þ�

3
r2
�

for a barotropic equation of state of the form h ¼ hð�Þ
(in this case dh=h ¼ a2d�=�). Thus, if a2 ¼ ður=utÞ2, and
additionally @r ln u

r is finite, we have

2a2ðutÞ2 �m

r
þ�

3
r2 ¼ 0;

and finally

ðurÞ2 ¼ m

2r
��

6
r2:

The assumption that j@r ln urj<1 is important. In the
following we will describe a class of solutions that violate
this condition, although a2 ¼ ður=utÞ2.
In the rest of this paper, quantities referring to the sonic

point will be denoted with an asterisk, i.e.,

ður�Þ2 ¼ m

2r�
��

6
r2� ¼ a2�

�
1� 3m

2r�
��

2
r2�
�
: (11)

D. Boundary conditions

We assume that the ball of fluid extends up to a radius r1,
where it has the baryonic density �1 (or the energy density
e1) and the local speed of sound a1. These data specify a
transonic solution uniquely, with the exception of possible
bifurcations—see the discussion concerning ‘‘homoclinic-
type’’ polytropic solutions). We demand also that the
boundary values satisfy ður1Þ2 � 2m=r1 � a21.
In the asymptotically flat fixed spacetime (e.g., in the

Schwarzschild spacetime), one usually lets r1 ! 1, so
that �1 and a1 are asymptotic values. This defines a model
that is mathematically elegant, but suffers from a physical
contradiction—the self-gravity of an infinite mass of fluid
is neglected. A solution is to keep r1 large, but finite. In
this case it is also possible to take into account the self-
gravity of the fluid, as it was done in [9]. In general, the
assumption that the fluid region is finite is also necessary
in Schwarzschild–(anti–)de Sitter spacetimes. Global
solutions (with r1 ¼ 1) exist for �< 0 and isothermal
equations of state.

E. Mass accretion rates

In the case of spherically symmetric, asymptotically flat
systems with fluids one can define two sensible measures
of mass. Thus it is not surprising that the mass accretion
rate appears in two forms [9,16].
There is the quasilocal baryonic mass

mBð�Þ ¼
Z
�
d3x

ffiffiffiffiffiffiffi�g
p

ut�;

here� is a three-dimensional region of a t ¼ const hyper-
surface. This definition follows directly from the continuity
equation (2); one has

@tmBð�Þ ¼ �
Z
@�

ffiffiffiffiffiffiffi�g
p

�uidSi;

where dSi denotes the integration element, normal to the
boundary @�. For the line element (8) the baryonic mass
comprised within an anulus ðr1; r2Þ can be expressed as
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mBðr1; r2Þ ¼ 4�
Z r2

r1

drr2ut�:

It changes according to @tmBðr1; r2Þ ¼ _Bðr1Þ � _Bðr2Þ.
Here, _B ¼ �4�r2ur� is the baryonic mass accretion rate.

The other quasilocal measure of the mass contained in
the anulus ðr1; r2Þ can be written, in coordinates (8), as

mðr1; r2Þ ¼ 4�
Z r2

r1

drr2e: (12)

The corresponding mass accretion rate reads

_m ¼ �4�r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r
��

3
r2 þ ðurÞ2

s
urðeþ pÞ:

Formula (12) is well known from the analysis of static
systems in the polar gauge. It holds for accreting systems
discussed in this paper as well. In fact, for self-gravitating
spherically symmetric systems, this mass can be expressed
as the surface-type Podurets-Misner-Sharp-Hawking [17]
functional

mðRÞ ¼ R

2

�
1� R2

4
�ðRÞ�0ðRÞ

�
:

The above expression can be also written as

mðRÞ ¼ m� 4�
Z R1

R
drr2

�
e� trK � Kr

r

2k
niji

�
:

Here we assume the general metric of the form (1). In this
formulation, m is the conserved Abbott-Deser mass [15] in
spacetimes that are asymptotically Schwarzschild–(anti–)
de Sitter; � ¼ 2kþ trK � Kr

r , �
0 ¼ 2k� trK þ Kr

r denote
the optical scalars of the surface R ¼ const; j is the current
density of the material field, while n� and k are, respec-
tively, a normal to a centered sphere given by R ¼ const
and its mean curvature, in the t ¼ const hypersurface. This
last formula has been obtained in [18] for maximal hyper-
surfaces with trK ¼ 0 of asymptotically flat geometries,
but it is valid in any spacetime slicing [19,20].

It has been found earlier, for � ¼ 0, that both _m and _B
are constant on a fixed time slice (@r _m ¼ @r _B ¼ 0 [4,16]).
Since they do not depend on time in the steady flow
approximation, they are proportional, @r _m ¼ C@r _B, with
a constant C that can be found from boundary conditions.

Similarly one can obtain from Eqs. (9) and (10) that also
for� � 0 neither _B nor _m depends on r. In the steady flow
approximation we again have _m ¼ Cð�Þ _B, but now the
constant depends on the cosmological constant.

In the case of static systems the binding energy can be
defined as the difference between the baryonic and the
asymptotic mass, Mbind ¼ mB �m ([21]; see also [22]).
Then the sign of binding energy is correlated with the
stability/instability of a spherical fluid ball; positive sign
corresponds to stable systems, while negative binding en-
ergy indicates instability [21]. We conjecture that also in
the steady flow approximation it is sensible to define the

flow binding energy by MBF � _B� _m. Thus, locally,
MBF ¼ _Bð1� CÞ. Since C changes with the change of
�, that may induce a change in the sign of MBF, possibly
indicating a change of its stability status.

III. ACCRETION OF TEST POLYTROPIC FLUIDS

A. Numerical solutions

In this section we specialize to polytropic fluids obeying
an equation of state of the form p ¼ K��, where K and �
are constant. For the polytropic equation of state

h ¼ �� 1

�� 1� a2
;

and thus Eq. (10) can be written as

ð�� 1� a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r1
��

3
r21 þ ður1Þ2

s

¼ ð�� 1� a21Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r
��

3
r2 þ ðurÞ2

s
:

Similarly

� ¼ �1
�
a2

a21

�� 1� a21
�� 1� a2

� 1
��1

; (13)

and

ur ¼ r21
r2

�
a21
a2

�� 1� a2

�� 1� a21

� 1
��1

ur1: (14)

Parameters characterizing a transonic solution are
obtained by solving, with respect to r�, equation

ð�� 1� a2�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r1
��

3
r21 þ ður�Þ2 r

4�
r41

�
a2�
a21

�� 1� a21
�� 1� a2�

� 2
��1

s

¼ ð�� 1� a21Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3m

2r�
��

2
r2�

s
; (15)

where we substitute

ður�Þ2 ¼ m

2r�
��

6
r2�

and

a2� ¼
m
2r�

� �
6 r

2�
1� 3m

2r�
� �

2 r
2�
:

In general, this procedure yields many roots, from which
we select those that are real and positive. In the next step
one computes all values of a2� corresponding to obtained
values of r�. A general restriction for a2� is 0< a2� < �� 1.
In the last step one has to ensure that the solution satisfies
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ður1Þ2
1� 2m

r1
� �

3 r
21 þ ður1Þ2

< a21;

i.e., that the solution is subsonic at the outer boundary.
The asymptotic velocity u1 can be obtained from

ur1 ¼ r2�
r21

�
a2�
a21

�� 1� a21
�� 1� a2�

� 1
��1

ur�:

Note that the only parameters that enter the above
equations are m, �, r1 and a1, i.e., the properties of the
sonic point do not depend on �1.

We obtain the solution by solving the equation

ð�� 1� a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r1
��

3
r21 þ ður1Þ2

s

¼ ð�� 1� a21Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r
��

3
r2 þ r4�

r4

�
a2�
a2

�� 1� a2

�� 1� a2�

� 2
��1ður�Þ2

s

with respect to a2 in the interesting range of r. Finally, ur is
computed as

ur ¼ r2�
r2

�
a2�
a2

�� 1� a2

�� 1� a2�

� 1
��1

ur�:

Sample solutions corresponding to the parameters that
were specified in [9], i.e., m ¼ 1, � ¼ 4=3, r1 ¼ 106 and
a21 ¼ 2� 10�4, are plotted in Figs. 1 and 2 for positive
and negative �, respectively. Both plots show graphs of
ður=utÞ2 and a2, intersecting at sonic points. Figure 1

depicts solutions obtained for �r21 ¼ 0, 2� 10�3

and 3� 10�3. Solutions shown in Fig. 2 correspond to
�r21 ¼ 0, �0:1 and �4:118.
It is important to stress that in both sectors (of positive

and negative �) there are limits on the maximum absolute
value of the cosmological constant for which stationary
solutions exist. This would be a natural behavior to expect
in the case of Schwarzschild–de Sitter spacetime, where
the location of the cosmological horizon is shifted towards
lower and lower values with an increase of �, and it
coincides with the outer boundary of the accreting cloud
for �r21 ¼ 3ð1� 2m=r1Þ. In fact, for polytropic fluids,
stationary solutions cease to exist for much lower values of
�. In the example specified above, no stationary solution
exist for �r21 * 3:69� 10�3.
It is quite surprising that there is also a limit on the

maximal allowed j�j in the Schwarzschild–anti–de Sitter
case. An interesting mechanism is responsible for this fact,
and it can be observed already in Fig. 2. Here, for �r21 �
�4:118 the value of ður=utÞ2 at r ¼ r1 reaches 2� 10�4,
that is precisely the assumed value of a21, and the graphs of
ður=utÞ2 and a2 form a closed loop. No stationary transonic
solutions can be found for larger j�j. The limiting solution
is a part of what we call a ‘‘homoclinic-type’’ solution. By
‘‘homoclinic-type’’ solutions, we mean solutions that form
closed loops on the graph of ður=utÞ2 versus r, joining a
single critical sonic point. In this respect they are similar to
homoclinic orbits in the theory of dynamical systems.
In the standard picture of Bondi-type accretion two sta-

tionary solutions intersect at a sonic point. One of them is
subsonic outside the sonic point and becomes supersonic
for r < r� (such solutions are plotted in Figs. 1 and 2). The
other solution is supersonic for r > r� and subsonic for

4 5 6
10 15

10 12

10 9

10 6

FIG. 1 (color online). Transonic solutions obtained for the
polytropic equation of state with � ¼ 4=3, m ¼ 1, r1 ¼ 106

and a21 ¼ 2� 10�4. The plot shows graphs of both a2 and
ður=utÞ2 for three different values of the cosmological constant
�r21 ¼ 0, 2� 10�3 and 3� 10�3.

4 5 6
10 19

10 15

10 11

10 7

FIG. 2 (color online). Same as in Fig. 1, but for �r21 ¼ 0,
�0:1 and �4:118.
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r < r�, and it is usually interpreted as describing ‘‘wind’’
instead of accretion flow, although the equations do not
specify the sign of the radial velocity. In the case of the
limiting, ‘‘homoclinic-type’’ solution described above, this
additional branch satisfies ður=utÞ2 ¼ a2 at r ¼ r1, so the
two branches of the solution join again at r1. Note that in
this case j@rurj ¼ 1 at r1. This situation is depicted in
Fig. 3. For the sake of clarity, the solutions in this plot
were computed assuming exaggerated values of parame-
ters. Unlike those plotted in Fig. 2, these solutions do
not satisfy our assumptions ður1Þ2 � 2m=r1 � a21. The
‘‘homoclinic’’ (or limiting) solution was obtained
for m ¼ 1, � ¼ 4=3, r1 ¼ 200, a21 ¼ 10�2 and �r21 �
�0:3329.

The structure of solutions for �< 0 can be better
understood, when inspecting the whole family of solutions
characterized by the same constants that appear on the
right-hand sides of Eqs. (9) and (10), i.e., solutions satisfy-
ing the same integral conservation laws. They can differ by
the specific entropy, proportional to the polytropic constant
K, and they correspond to different boundary values a1
and �1. Such solutions can be joined by stationary shock
waves, provided that appropriate Rankine–Hugoniot con-
ditions are satisfied. A sample of these solutions is plotted
in Fig. 3. They are computed assuming polytropic con-
stants K ¼ 0:4K0, 0:7K0 and 1:3K0, where K0 denotes the
polytropic constant corresponding to the ‘‘homoclinic’’
solution (this is the value that can be computed from the
assumed boundary conditions).

B. Mass accretion rates

Given the numerical solutions described above, one can
easily find the corresponding accretion rates. The baryonic
mass accretion rate can be computed as

_B ¼ 4�jur1jr21�1

¼ 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2r�
��

6
r2�

s
r2�
�
a2�
a21

�� 1� a21
�� 1� a2�

� 1
��1

�1: (16)

One can also obtain a compact expression for _m.
A straightforward calculation gives

_m ¼ C _B; where C ¼ �� 1

�� 1� a2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��r2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2�

p : (17)

We postpone the discussion of the resulting dependence of
_B and _m on � to Sec. V.
The binding energy flow readsMBF¼ _B� _m¼ _Bð1�CÞ.

It is instructive to investigate the dependence of C on a2�.
One finds (remember that r� depends on a�, through the
sonic point relations)

@C

@a2�
¼ C

1þ 3a2�

�
5� 3�þ 9a2�
2ð�� 1� a2�Þ

þ �r2�
a2�ð1� 3

2 �r2�Þ þ 1
2�r2�

�
:

Thus, taking into account that � � 5=3 and j�jr2� � 0, we
infer thatC increases with a2�. NowCða2� � 0Þ is bigger than
1 if �< 0; thence MBF < 0. In the opposite case, when
�> 0 and a2� � 0,MBF is positive, but with the increase of
� it may become negative. If one can pursue the analogy
with static polytropic fluids [21], then MBF < 0 would
signal instability of the accreting system. This stability issue
will be investigated elsewhere.

IV. ACCRETION OF TEST ISOTHERMAL FLUIDS

For the isothermal equation of state p ¼ ke the
‘‘baryonic’’ density can be computed as

� ¼ �1 exp
Z e

e1

de0

e0 þ pðe0Þ ¼ �1
�
e

e1

� 1
1þk
: (18)

The specific enthalpy is

h ¼ eþ p

�
¼ ð1þ kÞe1

�1þk1
�k: (19)

Here e1 denotes the value of the energy density e at the
outer boundary of the cloud. Note that the above calcula-
tion is formal, and it should be properly interpreted. Here �
is understood as an integrability factor for which the cur-
rent �u� is conserved in the smooth region of the flow. For
the fluid with zero baryonic density (the Harrison et al.
limit [23])—e.g. photon gas with p ¼ e=3—a nontrivial
quantity of this type is the entropy, and the proper physical
interpretation of �u� is that of the entropy current.

1 2 5 10 20 50 100 200
10 8

10 6

10 4

0.01

1

FIG. 3 (color online). Solutions obtained for the polytropic
equation of state with � ¼ 4=3. Different curves correspond to
solutions with different polytropic (entropy) constants K. The
‘‘homoclinic’’ solution (polytropic constant K0) is characterized
by the square of the speed of sound equal a21 ¼ 1=100 at
r1 ¼ 200. In this example m ¼ 1, �r21 � �0:3329.
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Also note that it is not conserved across possible shock
waves (see, e.g., [24]).

Equations (9) and (10) can be now written as

r2�ur ¼ const; (20)

�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r
��

3
r2 þ ðurÞ2

s
¼ const: (21)

For k ¼ 1=3, 1=2, 1 the above set of equations can be
reduced to a polynomial equation of the order � 3, and
one can obtain explicit solutions. The case with k ¼ 1=3 is
known as the radiation fluid—it can be viewed as the limit
of a perfect gas equation of state with � ¼ 4=3 in which the
contribution of the baryonic density to the energy density is
negligible. The case with k ¼ 1 yields a particularly
elegant and simple solution. Accretion of k ¼ 1 fluid
onto a moving Schwarzschild or Kerr black hole was
solved in [25].
Accretion of the fluid with the so-called ‘‘phantom’’

equations of state of the form p ¼ k�, k < 0 in
Schwarzschild–(anti–)de Sitter spacetimes was also
considered in [26,27], but with no analysis of explicit
solutions.

A. Sonic points

Transonic solutions can be also constructed for
equations of state of the form p ¼ ke. Note that a2 ¼ k ¼
const, and Eq. (11) yields

ður�Þ2 ¼ m

2r�
��

6
r2� ¼ k

�
1� 3m

2r�
��

2
r2�
�
: (22)

The above equation can be solved for r� assuming any
value of k, but we will only need solutions for k ¼ 1=3,
1=2, 1.
Setting k ¼ 1=3 yields a unique solution r� ¼ 3m,

ður�Þ2 ¼ ð1� 9�m2Þ=6. Note that the location of the sonic
point does not depend on the cosmological constant!
For k ¼ 1, Eq. (22) can be reduced to 1� 2m=r� �

ð�=3Þr2� ¼ 0, i.e., the sonic point (or sonic points) is
(are) located at the horizon(s).
For k ¼ 1=2, the location of the sonic point can be

obtained by solving the equation

�

6
r3� � r� þ 5

2
m ¼ 0: (23)

For �< 0, the discriminant of the above equation, that is

1

�2

��
15m

2

�
2 � 23

�

�
;

is positive, and the only real root is given by

r� ¼ 2

ffiffiffiffiffiffiffi
2

j�j

s
sinh

0
@1
3
arcsin

0
@15m ffiffiffiffiffiffiffij�jp

4
ffiffiffi
2

p
1
A
1
A:

For �> 0, the discriminant is negative (remember
that 1� 9�m2 > 0), and there are 3 real solutions. The
position of the sonic point is given by

r�1 ¼ 2

ffiffiffiffi
2

�

s
cos

0
@�
3
þ 1

3
arccos

0
@15m ffiffiffiffi

�
p

4
ffiffiffi
2

p
1
A
1
A:

Another positive root of Eq. (23), i.e.

1 2 5 10 20 50 100
0.0
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0.8

1.0

1.2

FIG. 4 (color online). Solutions obtained for equations of state
p ¼ ke, with k ¼ 1=3, 1=2, 1, � ¼ 1=1000 and m ¼ 1. Dotted
vertical lines denote the locations of the horizons.
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FIG. 5 (color online). Solutions obtained for equation of state
p ¼ ke, with k ¼ 1=3, 1=2, 1, � ¼ �1=1000 and m ¼ 1. The
dotted vertical line denotes the location of the horizon.
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r�2 ¼ 2

ffiffiffiffi
2

�

s
cos

0
@�
3
� 1

3
arccos

0
@15m ffiffiffiffi

�
p

4
ffiffiffi
2

p
1
A
1
A;

is larger than the areal radius of the cosmological horizon.
Note that ra � r�1 � rb < r�2, where ra and rb are the
locations of the horizons.

B. Mass accretion rates

For transonic flows the mass accretion rate _m can be
expressed by a simple formula depending on r� and k. A
straightforward calculation, making use of Eqs. (19)–(22),
yields

_m ¼ 4�ð1þ kÞffiffiffi
k

p
r2k�

�
m

2r�
��

6
r2�
�1�k

2 ðr21jur1jÞ1þke1: (24)

Note that, according to earlier arguments, _B ¼
4��1r21jur1j should be rather interpreted as the entropy
accretion rate. In the following, we will discuss the
behavior of _B mainly to maintain contact with previous
works.

C. Isothermal fluids: explicit solutions

1. Radiation fluids: k¼ 1=3

For k ¼ 1=3, Eqs. (20) and (21) yield

ð1� 2m
r � �

3 r
2 þ ðurÞ2Þ3

r4ðurÞ2 ¼ const

¼ ð1� 2m
r�
� �

3 r
2� þ ður�Þ2Þ3

r4ður�Þ2

¼ 3

4

ð1� 9�m2Þ2
ð3mÞ4 ;

where we have used the obtained parameters of the sonic
point. In the following we solve the above equation for
ðurÞ2. Introducing Y ¼ 1� 2m=r� ð�=3Þr2 þ ðurÞ2, one
obtains the equation Y3 � bY þ ab ¼ 0, where

a ¼ 1� 2m

r
��

3
r2 and b ¼ 3

4

ð1� 9�m2Þ2
ð3mÞ4 r4:

One can show that the discriminant of the above cubic
equation is nonpositive, provided that 1� 9�m2 > 0. It
vanishes for r ¼ 3m, i.e., at the sonic point. Thus, except
for the sonic point, there are 3 real solutions, but only 2 of
them yield positive ðurÞ2. Defining

X1 ¼ �1þ 2m

r
þ�

3
r2 þ ð1� 9�m2Þr2

ð3mÞ2

� cos

8<
:�

3
� 1

3
arccos

2
433m2ð1� 2m

r � �
3 r

2Þ
ð1� 9�m2Þr2

3
5
9=
;;

X2 ¼ �1þ 2m

r
þ�

3
r2 þ ð1� 9�m2Þr2

ð3mÞ2

� cos

8<
:�

3
þ 1

3
arccos

2
433m2ð1� 2m

r � �
3 r

2Þ
ð1� 9�m2Þr2

3
5
9=
;;

one can write the expressions for the two branches of the
solution as

ðurÞ2 ¼
�
X2; r 	 3m;
X1; r < 3m;

(25)

for the branch that is subsonic outside the sonic point, and

ðurÞ2 ¼
�
X1; r 	 3m;

X2; r < 3m;
(26)

for the branch that is supersonic outside the sonic point.
For �> 0, both branches are well defined in the region

enclosed between the horizon of the black hole (located at
ra) and the cosmological horizon (located at rb). The
solution given by Eq. (25) yields ur ¼ 0 at r ¼ rb, so
that the density � becomes divergent at the cosmological
horizon. Similarly, for the branch given by Eq. (26), one
has ur ¼ 0 at r ¼ ra, and � diverges at the horizon of
the black hole. On the other hand, the solution given by
Eq. (25) can be continued beneath the horizon of the black
hole, while the branch described by Eq. (26) extends
beyond the cosmological horizon. For 0<�m2 < 1=18
this solution can be continued arbitrarily far outside the
cosmological horizon, but there is a limit on this continu-
ation for 1=18<�m2 < 1=9. In the latter case, there exist
a finite radius r > rb for which the argument of the arccos
function appearing in Eq. (26) reaches �1.
These facts can be interpreted in the following intui-

tively transparent way. Solution (25) describes the accre-
tion process; the accreting gas cannot extend beyond the
cosmological horizon, while it can penetrate the interior of
a black hole. Conversely, the solution given by Eq. (26)
must describe the wind. Therefore it cannot start from the
horizon of a black hole (our fluids satisfy the dominant
energy conditions) but instead it can extend beyond the
cosmological horizons. Obviously, one must choose the
right sign of ur—positive for the wind and or negative for
the accretion.
Both accretion rates _B and _m can be easily computed,

yielding

_B ¼ 4��1r21jur1j
and
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_m ¼ 16�

3
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffi
2m23

p ð1� 9�m2Þ13ðr21jur1jÞ43e1;

where

r21jur1j¼ r21

8<
:�1þ2m

r1
þ�

3
r21þð1�9�m2Þr21

ð3mÞ2

�cos

2
4�

3
þ1

3
arccos

0
@33m2ð1� 2m

r1
��

3 r
21Þ

ð1�9�m2Þr21

1
A
3
5
9=
;

1
2

(27)

for a solution that is subsonic outside the sonic point. Note
that if the equation of state with k ¼ 1=3 is interpreted as
describing the fluid with vanishing baryonic density, the
expression for _B gives the entropy accretion rate.

Both expressions can be simplified in the case where
r1 
 m. Equation (27) can be expanded in powers of
m=r1 around m=r1 ¼ 0, keeping the product �r21 fixed.
The zero-order term in this expansion is

r21jur1j ¼ 6
ffiffiffi
3

p
�m2ð1��r21=3Þ3=2;

and the accretion rates can be approximated as

_B � 24
ffiffiffi
3

p ð�mÞ2�1ð1��r21=3Þ3=2

and

_m � 32
ffiffiffi
3

p ð�mÞ2ð1��r21=3Þ2ð1� 9�m2Þ1=3e1:

2. Solution for k ¼ 1=2

In this case, Eqs. (20) and (21) yield—expressing the
square ðurÞ2� and �r2� in terms of m=r�—

1� 2m
r � �

3 r
2 þ ðurÞ2

r2ur
¼ const

¼ 1� 2m
r�
� �

3 r
2� þ ður�Þ2

r2�ur�

¼ � 2

r2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2r�
��

6
r2�

s

¼ � 2

r2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

r�
� 1

s
; (28)

where we assumed that ur < 0. Define

Y1 ¼ Br2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2r4 � 1þ 2m

r
þ�

3
r2

s
;

Y2 ¼ Br2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2r4 � 1þ 2m

r
þ�

3
r2

s
;

where

B ¼ � 1

r2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

r�
� 1

s
;

and

r� ¼

8>>>>>><
>>>>>>:

2
ffiffiffiffiffi
2
j�j

q
sinh

�
1
3 arsinh

�
15m

ffiffiffiffiffi
j�j

p
4
ffiffi
2

p
��

; �< 0;

5m=2; � ¼ 0;

2
ffiffiffi
2
�

q
cos

�
�
3 þ 1

3 arccos
�
15m

ffiffiffi
�

p
4
ffiffi
2

p
��
; 0<�< 1

9m2 :

The solution of Eq. (28) can be written as

ur ¼
�
Y1; r 	 r�;
Y2; r < r�;

(29)

representing the branch that is subsonic outside the sonic
point, and

ur ¼
�
Y2; r 	 r�;
Y1; r < r�;

(30)

for the branch that is supersonic outside the sonic point.
Note that in both cases, taking ur with the reversed sign
yields the solution representing ‘‘wind’’ instead of accretion.
The above solutions have a similar structure to those

obtained for k ¼ 1=3. The density corresponding to the
velocity given by Eq. (30) is divergent at the horizon of the
black hole; clearly, it must represent the wind solution,
according to the preceding discussion concerning the
k ¼ 1=3 isothermal fluid. Similarly, solution (29) has a
divergent density at the cosmological horizon (for
�> 0); this must describe the accretion process.
Obviously, the sign of ur must be positive or negative,
respectively.
The accretion rates corresponding to solutions that are

subsonic outside the sonic point read

_B ¼ 4��1r21jur1j
and

_m ¼ 6
ffiffiffi
2

p
�

r�

�
m

2r�
��

6
r2�
�1
4ðr21jur1jÞ32e1;

where

r21jur1j ¼ �r21

0
@Br21 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2r41 � 1þ 2m

r1
þ�

3
r21

s 1
A:

These expressions can be put in simpler (approximated)
forms, when we employ the boundary condition r1 
 m.
In this case,

_B � 4��1r2�
ð1� �

3 r
21Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3m
r�
� 1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m
r�
� 1þ �r4�

3r21

r
and
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_m � 6
ffiffiffi
2

p
�

�
m

2r�
��

6
r2�
�1
4
r2�

2
64 ð1� �

3 r
21Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3m
r�
� 1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m
r�
� 1þ �r4�

3r21

r
3
75

3
2

:

3. Isothermal fluids: Stiff equation of state

In this section we take the equation of state p ¼ e.
Equations (20) and (21) can be now written as

r2�ur ¼ const;

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r
��

3
r2 þ ðurÞ2

s
¼ const:

Thus

ðurÞ2 ¼ 1� 2m
r � �

3 r
2

Cr4 � 1
;

where C is some constant. The value of C can be fixed by
requiring that the flow remains regular on the black hole
horizon, i.e., for

r ¼ rh

¼

8>>>><
>>>>:

2ffiffiffi
�

p cos
h
�
3 þ 1

3 arccos ð3m
ffiffiffiffi
�

p Þ
i
; 0<�< 1

9m2 ;

2m; � ¼ 0;

2ffiffiffiffiffi
j�j

p sinh
h
1
3 arsinhð3m

ffiffiffiffiffiffiffij�jp Þ
i
; �< 0:

Thus Cr4h ¼ 1, and

ðurÞ2 ¼ 1� 2m
r � �

3 r
2

ð rrhÞ4 � 1
; (31)

the velocity remains finite at r ¼ rh. That in turn ensures
that also the density � remains finite at the horizon of the
black hole. It is equal to

� ¼ �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðrhr Þ4Þð1� 2m

r1
� �

3 r
21Þ

ð1� ðrhr1Þ4Þð1� 2m
r � �

3 r
2Þ

vuuut :

For�> 0, the density given by the above formula diverges
at the cosmological horizon. It is also possible to construct
a solution that is regular there, but the regularity condition
cannot be satisfied simultaneously at both horizons. In
either case, the solution passes through a sonic point
located precisely at this (event or cosmological) horizon
at which the solution is regular.

The accretion rate _B can be now computed as

_B ¼ 4�jur1jr21�1 ¼ 4��1r2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r1
� �

3 r
21

1� ðrhr1Þ4

vuuut : (32)

Note that for � ¼ 0 we have rh ¼ 2m and

_B ¼ 16��1m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2m

r1
Þð1þ ð2mr1Þ2Þ

q ! 16�m2�1

for r1 ! 1. This coincides with the result obtained in [25]
for the spherically symmetric case.
The mass accretion rate reads

_m ¼ 8�r�2
h ðr21jur1jÞ2e1 ¼ 8�r2h

1� 2m
r1

� �
3 r

21
1� ðrhr1Þ4

e1:

For r1 
 m the above formulas can be approximated as

_B � 4��1r2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

3
r21

s
(33)

and

_m � 8�r2h

�
1��

3
r21

�
e1:

D. Further discussion

Each of the three models in question possesses two tran-
sonic solutions. One of them is supersonic at infinity, singular
at the black hole horizon, regular at the cosmological horizon
(if one does exist) and can extend beyond the cosmological
horizon. The only sensible interpretation, as argued above, is
that this solution (with positive coordinate velocity ur) rep-
resents a wind—outflowing gas—and the bulk of gas is
disconnected from the event horizon. The other solution is
regular at the horizon and singular at a cosmological horizon
(if that exists). It should be interpreted, as pointed above, as
the accretion flow. It is clear that the physical accreting gas
must be comprised within the cosmological horizon and it
can penetrate the interior of the black hole.
In contrast to the polytropic case, all investigated iso-

thermal solutions can be defined globally for �< 0, i.e.,
one can set r1 ¼ 1. This resembles the classic situation
occurring in the Schwarzschild case where the accretion
cloud can also formally extend to infinity [2]. Note that for
�< 0 the asymptotic behavior of the solutions is different
from that known from the Schwarzschild case. Sample
solutions obtained for the equations of state p ¼ ke with
k ¼ 1=3; 1=2; 1 are plotted in Figs. 4 and 5, for �> 0 and
�< 0, respectively.
For all three solutions the mass accretion rate _m decreases

with the increase of the cosmological constant �—provided
that remaining data are fixed—and it vanishes at a critical
value of �. The corresponding behavior of _m is depicted in
Fig. 9—these graphs are plotted basing on the analytic
formulas given in this section, with m ¼ 1 and r1 ¼ 106.
The dependence of the accretion rate _B on � is quite

similar, and we decided not to present any additional plots in
this paper. Let us point, however, an interesting exception—
the systemwith the ultrahard equation of state p ¼ e. In this
case _B achieves a maximum in the Schwarzschild–anti–de
Sitter sector. This fact follows directly from Eq. (32).
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V. ACCRETION IN THE ‘‘SWISS CHEESEMODEL’’
OF FLRW GEOMETRY

In this section we adopt our accreting solutions to a
cosmological universe. The standard construction is the
Einstein-Straus ‘‘Swiss cheese’’ model [11]. A spherically
symmetric black hole surrounded with accreting gas is put
inside a vacuole surrounded by a comoving boundary, that
is matched (using the Darmois-Israel junction conditions
[28,29]) to the external FLRW spacetime. The cosmologi-
cal constant permeates both the exterior and the interior
of the vacuole, but outside of that only dust is allowed. The
Darmois-Israel conditions demand that along the comov-
ing boundary the first and second fundamental forms are
continuous. In the spherically symmetric case, the radius R
has to be continuous and, in addition, (i) the mass m of the
accreting system should be exactly equal to the mass of
dust in the excised ball and (ii) the boundary should be
comoving with the Hubble velocity H. The whole gluing
construction can be done explicitly. Balbinot et al. have
found an explicit solution that describes the corresponding
matching between the internal Schwarzschild–de Sitter
and external FLRW (dustþ�) spacetimes [30].

A. Accretion rates inside a vacuole

We wish to find how the presence of a cosmological
constant�would affect the mass accretion rate _m of a fluid
onto the center. It follows from the preceding discussion
that when changing parameters of solutions while keeping
isotropy and homogeneity of a cosmological geometry, we
must fix the total mass of the system comprised within the
vacuole. Thus we shall investigate the dependence of
the accretion rates on the cosmological constant, assuming
the mass is fixed.

We define the mass of the fluid as

mf ¼ 4�
Z r1

rh

drr2e:

One can show—using Eqs. (18) and (20)—that for
equations of state of the form p ¼ ke, the mass of the fluid
can be expressed as

mf ¼ 4�e1ðr21jur1jÞ1þk
Z r1

rh

dr0

r02kjurj1þk
:

For k ¼ 1 the above integral can even be evaluated analyti-
cally, but the resulting formulas are long and not very
illuminating.

Expressing e1 in terms of the corresponding mf, and

making use of Eq. (24), one obtains the following formula
for _m:

_m ¼ 1þ kffiffiffi
k

p
r2k�

�
m

2r�
��

6
r2�
�1�k

2

�Z r1

rh

dr0

r02kjurj1þk

��1
mf:

An analogous result can also be obtained in the test-fluid
polytropic case. A lengthy calculation allows us to express
the mass of the fluid as

mf ¼ 4��1
�� 1

�

�
�� 1� a21

a21

� 1
��1

�
Z r1

rh

drr2
�

a2

�� 1� a2

� �
��1 �� a2

a2
:

Similarly, expressing �1 in terms of mf, we can obtain the

following formulas for the accretion rates

_m ¼
�
m

2r�
��

6
r2�
�
r2�
a3�

�
a2�

�� 1� a2�

� �
��1

�

�
�Z r1

rh

drr2
�

a2

�� 1� a2

� �
��1 �� a2

a2

��1
mf;

_B ¼ �

�� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2r�
��

6
r2�

s
r2�
�

a2�
�� 1� a2�

� 1
��1

�
�Z r1

rh

drr2
�

a2

�� 1� a2

� �
��1 �� a2

a2

��1
mf;

where we used Eqs. (16) and (17).
Figures 6 and 8 show the dependence of the accretion

rates _m on the cosmological constant for systems with fixed
masses. In both plots the accretion rates are normalized to
unity for � ¼ 0, so the actual value of mf is irrelevant. A

particularly interesting situation occurs for polytropic fluids.
This case is depicted in Fig. 6, assuming m ¼ 1, � ¼ 4=3,
r1 ¼ 106, and a21 ¼ 2� 10�4, 2� 10�3, and 2� 10�2,
respectively. For all values of a1, the accretion rate tends to
zero at some finite positive and some finite negative value
of �, for which stationary solutions cease to exist (zeros
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FIG. 6 (color online). Dependence of the accretion rate _m on�
for systems with fixed mass mf. We plot data corresponding to

polytropic fluids with � ¼ 4=3, m ¼ 1, r1 ¼ 106 and a21 ¼ 2�
10�4, 2� 10�3, and 2� 10�2. The last graph depicts data
obtained for the equation of state p ¼ e=3.
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corresponding to negative values of� are not visible, due to
limitations of the plot). The maximum of the accretion rate
occurs at some small negative value of �, that depends on
a1. Figure 6 also shows the accretion rate _m for the constant
mass system with the equation of state p ¼ e=3. It is natural
to expect that this should constitute a limit of a sequence of
polytropes with � ¼ 4=3 and increasing internal energy
(sound speed) (cf., e.g., [24]). It is somewhat surprising to
find out that for p ¼ e=3 the dependence of the accretion
rate on � is strictly decreasing, and there is no zero in the
sector of negative cosmological constants (the limit is proba-
bly still achieved, but in a point-wise sense). In this respect,
isothermal solutions differ qualitatively from the polytropic
ones.

Figure 8 shows analogous relations for systems with
equations of state p ¼ e=3, p ¼ e=2, p ¼ e and fixed
masses of the fluid. In this case we also assumed m ¼ 1
and r1 ¼ 106. The obtained relations are strictly mono-
tonic—all accretion rates decrease with �. A zero is
achieved at �r21 ¼ 3ð1� 2m=r1Þ, i.e., when the location
of the cosmological horizon coincides with the assumed
outer boundary of the accretion cloud.

Figures 7 and 9 show the dependence of _m on � for
systems with fixed boundary values of the densities �1 or
e1. Figure 7 presents results for polytropes with the same
parameters as in Fig. 6. Quite surprisingly, in all examined
cases the dependence of _m on � appeared to be strictly
decreasing.

The fact that the relation between the accretion rate and
the cosmological constant depends, for polytropic fluids,
so strongly on the parametrization of the solutions is con-
nected with the behavior of the density for �< 0, and

ultimately with the existence of the ‘‘homoclinic-type’’
solutions. In the standard Schwarzschild case [2] with
realistic parameters of the model, the density of the fluid
is nearly constant in the bulk of the accretion cloud, so the
total mass of the fluid is practically proportional to the
boundary density [16]. Thus both parametrizations—fixing
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FIG. 8 (color online). Dependence of the accretion rate _m on�
for systems with fixed mass mf. The three graphs correspond to

equations of state p ¼ e=3, p ¼ e=2, and p ¼ e. We assumed
m ¼ 1 and r1 ¼ 106.
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FIG. 9 (color online). Dependence of the accretion rate _m on�
for systems with fixed boundary energy density e1. The three
graphs correspond to equations of state p ¼ e=3, p ¼ e=2, and
p ¼ e. We assumed m ¼ 1 and r1 ¼ 106.
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FIG. 7 (color online). Dependence of the accretion rate _m on�
for system with fixed boundary energy density e1. Here all
parameters are exactly the same as in Fig. 6.
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the total mass of the accretion cloud, or the boundary value
of the density—are basically equivalent. This is no longer
true for polytropic fluids and �< 0, in which case the
density varies considerably for large radii—this can be
seen in Fig. 2 [note that �� 1=ðr2urÞ].

B. Self-gravitating polytropic flows

Below we shall include self-gravity of fluids and find
numerically transonic accretion flows. The relevant equa-
tions and the details of the numerical procedure can be
found in [9]. It is convenient to work in the comoving
coordinates. The line element reads

ds2 ¼ �N2dt2 þ ~adr2 þ R2ðd�2 þ sin 2�d�2Þ;
where N (the lapse), ~a and the areal radius R are functions
of t and r. We assume the total mass m ¼ 1, � ¼ 4=3,
R1 ¼ 106, and a21 ¼ 2� 10�4. The boundary values of
the unknown metric function N and the mean curvature of
centered two-spheres k of constant R at R1 are

k ¼ N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

R1
��

3
R21 þU21

s
;

whereU ¼ N�1dR=dt. The functionsN, k and the velocity
U completely specify the spacetime geometry. There are
the following free parameters: the cosmological constant
�, the mass accretion rate _B and the asymptotic density
�1. After specifying them, equations are integrated in-
ward, starting from R1. These quantities have to satisfy
the asymptotic conditions, U21 � 2m=R1 � a21.

The calculations had been performed for a few dozen of
negative values of the cosmological constant �. We take
�R21 2 ð�3� 10�3; 0Þ. For each fixed value of � we find
solutions corresponding to different values of _m.

Figure 10 displays obtained results in the regime of test
gases; its fractional contribution varies between 2%–3% of
the total mass. The ordinate shows the ratio 1�mf=m of

the mass

mf ¼ 4�
Z R1

Rh

drr2e

of gas to the total mass m. Here, as before, Rh denotes the
areal radius of the horizon of the central black hole. The
total mass has been normalized to 1. The abscissa shows
log _B. It is clear that the mass accretion rate increases with
the increase of j�j for �R21 2 ð�2� 10�3; 0Þ (that fea-
ture was not discovered in [9]) and then starts to decrease.
Similar results can be obtained for systems with higher gas
content, with analogous conclusions. This behavior agrees
with what we found earlier in the case of test polytropes.

It follows from the inspection of the figure that the
sensitivity of the mass accretion rate onto the cosmological
constant is quite prononuced— _B increases by a few per-
cent between �R21 ¼ 0 and �R21 ¼ �2� 10�3.

VI. CONCLUSIONS

We have found new exact solutions that describe the
spherical steady accretion of isothermal test fluids (p ¼
ke, k ¼ 1=3, 1=2, 1) in Schwarzschild–(anti–)de Sitter
spacetimes. We discovered numerically the existence of
‘‘homoclinic’’ solutions—solutions for which the graph of
the square of the radial velocity versus the areal radius
forms a closed loop joining the same critical point. It is
interesting that they exist only for polytropic equations of
state and for a negative cosmological constant.
We found that when keeping fixed the asymptotic mass

density of fluids, the mass accretion rate decreases with the
increase of �. This is true for polytropic and isothermal
fluids, with the exception of the stiff equation of state
p ¼ e. In this particular case the baryonic mass accretion
rate achieves a maximum at some �< 0 (it is still a
decreasing function of � for �> 0). On the other hand,
when the mass of the accreting system is kept constant,
then polytropic and isothermal fluids behave in a different
way under the change of �. Polytropic accreting flows
achieve a maximum mass accretion rate at a negative value
of �. The investigated isothermal fluids accrete with the
efficiency that monotonically decreases with the increase
of �. These constatations are relevant cosmologically.
The interesting feature of polytropic accretion flows is

that the accretion stops completely when the absolute
value of � is large enough. The accretion flows stop for
both isothermal and polytropic fluids when positive � is

FIG. 10. The abscissa shows the logarithm of mass accretion
rate _m and the ordinate shows 1�mf=m for self-gravitating

polytropes with � ¼ 4=3, R1 ¼ 106, a21 ¼ 2� 10�4 and the
total mass m ¼ 1. The various lines correspond to �R21=10�3 ¼
0, �1, �2, �3. The maximum of _m is achieved around
�R21 ¼ �2� 10�3.
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large enough. This agrees with earlier findings valid only
for polytropic fluids [9].

These results shed light on the possible influence of the
cosmological constant � onto the formation of material
structures. They allow one to expect, that if the cosmologi-
cal constant enhances/damps Bondi accretion, then realis-
tic models should reveal more/less robust structure
formation. Moreover, the mere fact that the robustness of
accretion is � dependent opens, at least in principle, a way
to estimate the value of the cosmological constant by a
quasilocal analysis.

The ‘‘Weyl curvature hypothesis’’ [12] asserts, in its
informal version, that a Friedman-Lemaitre-Robertson-
Walker spacetime, where the Ricci curvature is nonzero
but the Weyl curvature vanishes, evolves towards a vacuum
spacetime filled with black holes and gravitational
radiation—with nonvanishing Weyl curvature and negligible

Ricci tensor. This scenario assumes that initially small in-
homogeneities of FLRW universe accrete matter and trans-
form themselves into black holes, which gradually merge,
leaving at the end a net of huge black holes and a lot of
gravitational radiation. Our findings suggest that the role of
steady accretion in the realization of this scenario, in the
presence of dark energy, is insignificant. This can be inter-
preted as indication that the cyclic universe scenario of
Penrose [12] cannot work.
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