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In a recent paper we investigated stationary, relativistic Bondi-type accretion in Schwarzschild–(anti–)

de Sitter spacetimes. Here we study their stability, using the method developed by Moncrief. The analysis

applies to perturbations satisfying the potential flow condition. We prove that global isothermal flows in

Schwarzschild–anti–de Sitter spacetimes are stable, assuming the test-fluid approximation. Isothermal

flows in Schwarzschild–de Sitter geometries and polytropic flows in Schwarzschild–de Sitter and

Schwarzschild–anti–de Sitter spacetimes can be stable, under suitable boundary conditions.
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I. INTRODUCTION

In [1] we have obtained a family of solutions describing
spherically symmetric, steady accretion of perfect fluids in
Schwarzschild–(anti–)de Sitter spacetimes. Here we study
linear stability of these solutions. The proof follows strictly
the work of Moncrief [2], who showed linear stability of
analogous solutions in the Schwarzschild case.

In [1] we dealt with transonic solutions for polytropic,
p ¼ K��, and ‘‘isothermal’’ equations of state of the form
p ¼ ke with k ¼ 1=3, 1=2, 1 (for these values of k, one
obtains analytic solutions in a closed form). Here p denotes
the pressure, � the baryonic density, e is the energy density,
and K and � are constants.

In this paper we focus only on those transonic solutions
that are subsonic far from the central black hole and super-
sonic in its vicinity. Usually, there exists another branch of
solutions that is subsonic for radii smaller than the sonic
radius r�, and supersonic for r > r�. This branch has a
natural interpretation of ‘‘wind,’’ instead of an accretion
flow. We will not discuss the stability of such solutions.

The strategy adopted in [1] was as follows. We fix some,
usually finite, radius r ¼ r1 of the boundary of the cloud,
the boundary value of � or e (denoted as �1 and e1), and,
in the case of polytropic equations of state, the polytropic
exponent � and the boundary value of the local speed of
sound a1. For those parameters we search for a transonic
solution that can be continued inward, at least up to the
horizon of the black hole. The condition that the solution
passes through a sonic point fixes the boundary value of
the radial velocity, but one has to verify that the flow is
subsonic in the outer part of the accretion cloud.

For a negative cosmological constant� and the assumed
‘‘isothermal’’ equations of state, such solutions can also
be continued outward, up to infinite radii, where the energy
density tends to zero (note that in the Schwarzschild space-
time e ! e1 � 0 as r ! 1 [3]). This is not possible
for �> 0, in which case the solutions obtained for the
‘‘isothermal’’ equations of state diverge at the cosmologi-
cal horizon. Polytropic solutions can only be continued to
arbitrarily large radii for � ¼ 0.

II. NOTATION

In this paper we follow notation conventions of [1]. The
flow satisfies the continuity equation

r�ð�u�Þ ¼ 0 (1)

and the energy-momentum conservation law

r�T
�� � r�½ðeþ pÞu�u� þ pg��� ¼ 0: (2)

Here, as already stated in the Introduction, � denotes
the baryonic density; e is the energy density; p is the
pressure; u� are components of the four-velocity of the
fluid. In the following wewill also use the specific enthalpy
h ¼ ðeþ pÞ=�. The local speed of sound will be denoted
by a.
We work in geometrical units with c ¼ G ¼ 1 and

assume the signature of the metric g�� of the form

ð�;þ;þ;þÞ. Greek indices run through spacetime dimen-
sions 0, 1, 2, 3. Latin indices are used for spatial dimen-
sions only. The determinant of the metric g�� will be

denoted by detg. The projection tensor is defined as

P�
� ¼ ��

� þ u�u
�:

Throughout this paper we work in spherical coordinates
ðt; r; �; �Þ.

III. STATIONARY SOLUTIONS

We consider Schwarzschild–(anti–)de Sitter spacetimes
with the line element

ds2 ¼ �
�
1� 2m

r
��

3
r2
�
dt2 þ dr2

1� 2m
r � �

3 r
2

þ r2ðd�2 þ sin 2�d�2Þ: (3)

In [1] we obtained analytic solutions for equations of
state of the form p ¼ ke, where k ¼ 1=3, 1=2, and 1. The
following simple formulas hold in all above cases: � ¼
A=ðr2urÞ, e ¼ B�1þk, h ¼ ð1þ kÞB�k. Here A and B are
constant. The local speed of sound is also constant, a2 ¼ k.
The solution for k ¼ 1=3 is given by the following

formulas. We define
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X1 ¼ �1þ 2m

r
þ�

3
r2 þ ð1� 9�m2Þr2

ð3mÞ2 cos

�
�

3
� 1

3
arccos

�
33m2ð1� 2m

r � �
3 r

2Þ
ð1� 9�m2Þr2

��
;

X2 ¼ �1þ 2m

r
þ�

3
r2 þ ð1� 9�m2Þr2

ð3mÞ2 cos

�
�

3
þ 1

3
arccos

�
33m2ð1� 2m

r � �
3 r

2Þ
ð1� 9�m2Þr2

��
:

Then the square of the radial component of the four-velocity of the solution branch that is subsonic outside the sonic point
can be written as

ðurÞ2 ¼
�
X2; r � 3m;

X1; r < 3m:
(4)

The sonic point is defined as a location where a2 ¼ ður=utÞ2. For k ¼ 1=3 it is located at r� ¼ 3m, irrespective of the value
of the cosmological constant.

For k ¼ 1=2 the sonic radius is given by

r� ¼

8>>><
>>>:
2

ffiffiffiffiffi
2
j�j

q
sinh

�
1
3 arsinh

�
15m

ffiffiffiffiffi
j�j

p
4
ffiffi
2

p
��

; �< 0;

5m=2; � ¼ 0;

2
ffiffiffi
2
�

q
cos

�
�
3 þ 1

3 arccos

�
15m

ffiffiffi
�

p
4
ffiffi
2

p
��

; 0<�< 1=ð9m2Þ:

The radial component of the velocity can be expressed as

ur ¼
8><
>:
B�r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�r4 � 1þ 2m

r þ �
3 r

2
q

; r � r�;

B�r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�r4 � 1þ 2m

r þ �
3 r

2
q

; r < r�;
(5)

where

B� ¼ � 1

r2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

r�
� 1

s
:

For k ¼ 1, one obtains

ðurÞ2 ¼ 1� 2m
r � �

3 r
2

ð rrhÞ4 � 1
; (6)

where the areal radius of the black hole horizon is given by

rh ¼

8>>><
>>>:

2ffiffiffiffiffi
j�j

p sinh
h
1
3 arsinhð3m

ffiffiffiffiffiffiffij�jp Þ
i
; �< 0;

2m; � ¼ 0;
2ffiffiffi
�

p cos
h
�
3 þ 1

3 arccos ð3m
ffiffiffiffi
�

p Þ
i
; 0<�< 1=ð9m2Þ:

For �> 0 the above solutions extend only up to the cosmological horizon, i.e., for

r <
2ffiffiffiffi
�

p cos

�
�

3
� 1

3
arccos ð3m

ffiffiffiffi
�

p
Þ
�

[note that we are only dealing with static Schwarzschild–
de Sitter spacetimes with �< 1=ð9m2Þ]. For �< 0 the
solutions cover the entire spacetime (except for the singu-
larity at r ¼ 0), with � ! 0 as r ! 1.

In [1] we also investigated polytropic solutions, both for
positive and negative values of �. Unlike ‘‘isothermal’’
solutions, they cannot be expressed in a closed form, but

they can be easily computed numerically, by solving
algebraic equations only. As already mentioned in the
Introduction, they can be extended to arbitrarily large radii
only for� ¼ 0. The absence of global polytropic solutions
is not very surprising for�> 0 because of the existence of
cosmological horizons, but it is not obvious for �< 0.
There is an interesting mechanism that is responsible for
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this fact, and it is discussed in [1]. The stability analysis
presented below applies also for polytropic solutions,
modulo a reservation concerning boundary conditions.

IV. MONCRIEF’S METHOD

The technique used in [2] allows for a linear stability
analysis against isentropic perturbations for which the
vorticity tensor

!�� ¼ P�
	P�


½r
ðhu	Þ � r	ðhu
Þ�
vanishes. We say that such perturbations satisfy the
potential flow condition.

It is easy to show that for an isentropic flow, for which
dh ¼ dp=�, Eqs. (1) and (2) yield

u�r�ðhu�Þ þ @�h ¼ 0:

Using the above equation, one gets

!�� ¼ r�ðhu�Þ � r�ðhu�Þ ¼ @�ðhu�Þ � @�ðhu�Þ:
Thus, if !�� ¼ 0, the vector field hu� can be expressed

(locally) as a gradient of a potential, i.e., hu� ¼ @�c .

In this case, the normalization condition for the four-

velocity, u�u
� ¼ �1, yields h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�@�c @�c

p
and

u� ¼ @�c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�@�c @�c

p
. Most notably, the continuity

equation (1) can be simplified to the scalar equation

r�

�
�

h
r�c

�
¼ 0: (7)

It can also be shown that stationary, isentropic Bondi-type
flows satisfy the potential flow condition, i.e., !�� ¼ 0.

The equation governing linear perturbations of the po-
tential �c can be obtained directly from Eq. (7). It reads

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p @�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detG

p
G��@��c

	
¼ 0; (8)

where G�� denotes the Lorentzian metric

G�� ¼ �

ah
½g�� þ ð1� a2Þu�u��:

The inverse matrix and the square root of the absolute value
of its determinant read

G�� ¼ ah

�

�
g�� �

�
1

a2
� 1

�
u�u�

�
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detG

p
¼ �2

ah2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg

p
:

Equation (8) has a form of a wave equation for �c ,
with respect to the metric G��. There is a related energy-

momentum tensor

T�
� ¼ 1

2

�
G�	@��c @	�c � 1

2
��

�G	
@	�c @
�c

�
and the perturbation energy measure

E¼�2
Z
�
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detG

p
Tt

t

¼
Z
�
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detG

p �
�1

2
Gttð@t�c Þ2þ1

2
Gij@i�c @j�c

�
;

where the integration is carried out over a spacelike,
t ¼ const region �. In the following, we are interested
in perturbations on the spherically symmetric, steady ac-
cretion flow on the background metric given by Eq. (3).
The energy of perturbations comprised in a region between
two radii r1 and r2 can be written as

Eðr1;r2Þ ¼
Z r2

r1

dr
Z �

0
d�

Z 2�

0
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detG

p

�
�
� 1

2
Gttð@t�c Þ2 þ 1

2
Grrð@r�c Þ2

�
:

The time derivative of Eðr1;r2Þ can be easily computed,

d

dt
Eðr1;r2Þ ¼ 2

Z �

0
d�

Z 2�

0
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detG

p
Tt

r









r2

r1

¼
Z �

0
d�

Z 2�

0
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detG

p
½Grtð@t�c Þ2

þGrr@t�c @r�c �








r2

r1

: (9)

The strategy of proving the linear stability is standard,
but there are certain adjustments, specific to the accretion
problem. The first step is to note that it is enough to focus
on perturbations that are located outside the sonic point.
Intuitively, this is because linear acoustic perturbations
cannot escape from the supersonic region with r < r�.
Formally, the surface r ¼ r� is a null surface with respect
to the metricG��, located outside the event horizon of the

black hole [2]. Let r1 denote the radius of the outer
boundary of the accretion cloud. As pointed earlier, for
�< 0 and ‘‘isothermal’’ equations of state discussed in
Sec. III, one can set r1 ¼ 1, but in general r1 has to be
finite. The energy of the perturbations located outside the
sonic horizon is equal to Eðr�;r1Þ. In the second step of

the proof one has to show that Eðr�;r1Þ is positive definite.

The last step consists of establishing conditions, under
which dEðr�;r1Þ=dt � 0. We say that the accretion flow is

linearly stable, provided that the above conditions are
satisfied.
Positivity of Eðr�;r1Þ follows by a direct inspection.

Working in coordinates (3), we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detG

p
Gtt ¼ � ffiffiffiffiffiffiffiffiffiffi

detg
p �ðutÞ2

a2h

1� a2ðurutÞ2
ð1� 2m

r � �
3 r

2Þ2 ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detG

p
Grr ¼ ffiffiffiffiffiffiffiffiffiffi

detg
p �ðutÞ2

a2h

�
a2 �

�
ur

ut

�
2
�

(remember that a2 > ður=utÞ2 for r > r�).
There are two boundary terms in the expression

for dEðr�;r1Þ=dt given by Eq. (9). The inner boundary
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term (for r ¼ r�) is clearly nonpositive. Note thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p

Grr vanishes at r ¼ r�, whileffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detG

p
Grt ¼ ffiffiffiffiffiffiffiffiffiffi

detg
p �

h

�
1

a2
� 1

�
utjurj � 0:

The outer boundary term (at r ¼ r1) is more trouble-
some. If r1 <1, one has to assume that @t�c ¼ 0 and
@r�c ¼ 0 at r ¼ r1; otherwise, no result concerning
stability can be established. However, if the above condi-
tions are satisfied, then dEðr�;r1Þ=dt � 0, and the accretion

flow is linearly stable.
For r1¼1 one has to inspect the asymptotic (for r!1)

behavior of �c . In our case, this is only possible for
�< 0, and ‘‘isothermal’’ equations of state p ¼ ke with
k ¼ 1=3, 1=2, 1. The asymptotic behavior of �c is differ-
ent in these three cases, and it is different from that
described in [2]. This issue is discussed below.

V. ASYMPTOTIC BEHAVIOR

In what follows we assume �< 0 and consider only
three cases: p ¼ ke with k ¼ 1=3, 1=2, 1.

General bounds on the asymptotic falloff of @t�c and
@r�c are given by requiring that the energy of perturba-
tions Eðr�;1Þ is finite. They turn out to be marginally

sufficient for the purpose of the stability proof, but the
actual behavior of �c—controlled by Eq. (8) and govern-
ing the evolution of the perturbations—is characterized by
a faster falloff.

We restrict ourselves to perturbations whose asymptotic
behavior can be characterized by

�c ¼O
�
1

rn

�
; @t�c ¼O

�
1

rn

�
; @r�c ¼O

�
1

rnþ1

�
;

(10)

as r ! 1, where n > 0 is a constant that should be deter-
mined. In other words, we assume that �c must fall off at
least as 1=rn. It is important that (10) must hold for all
times t and all angles � and �.

For � ¼ 0, both
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG

p
Gtt and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p

Grr have
the same asymptotic behavior of Oðr2Þ (irrespective of the
assumed equation of state). The condition of the finiteness
of Eðr�;1Þ implies—assuming Eq. (10)—that

@t�c ¼O
�

1

r3=2þ�

�
; @r�c ¼O

�
1

r5=2þ�

�
; as r!1;

with � > 0. This suffices to show that dEðr�;r1Þ=dt � 0.

A careful reader can notice a difference between
Eq. (10) and implicit assumptions made in [2]. For �¼0
it is enough to assume that the derivatives @t�c and
@r�c have at most power-law falloffs @t�c ¼ Oð1=rnÞ,
@r�c ¼ Oð1=rn0 Þ, without specifying the relation between
n and n0. Then, it follows from the condition Eðr�;1Þ <1,

that @t�c ¼ Oð1=r3=2þ�Þ and @r�c ¼ Oð1=r3=2þ�0 Þ,
where �, �0 > 0. This is sufficient to conclude that

dEðr�;1Þ=dt � 0, but such a reasoning cannot be repeated

for � � 0 without providing additional information on
@r�c and @t�c .

A. Asymptotic behavior for p ¼ e=3

For the equation of state p ¼ e=3, one can show the
following asymptotic behavior: ur ¼ OðrÞ, � ¼ Oð1=r3Þ,
�=h ¼ Oð1=r2Þ (this follows directly from the explicit

solutions given in Sec. III). Thus,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG

p
Grr ¼ Oðr2Þ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG

p
Gtt ¼ Oð1=r2Þ, and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG

p
Grt ¼ Oðr0Þ. The

requirement of the finiteness of the energy Eðr�;1Þ yields,
assuming Eq. (10), @r�c ¼ Oð1=r3=2þ�Þ and @t�c ¼
Oð1=r1=2þ�Þ. This and Eq. (9) allow us to show that

dEðr�;1Þ=dt � 0. Indeed, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG

p
Grtð@t�c Þ2 ¼

Oð1=r1þ2�Þ and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p

Grr@t�c @r�c ¼ Oð1=r2�Þ.
A faster falloff of �c can be inferred from Eq. (8)

(in addition to the requirement that Eðr�;1Þ <1). In the

case of the equation of state p ¼ e=3, Eq. (8) can be
satisfied up to a leading order in the asymptotic expansion,
provided that �c ¼ Oð1=rÞ. These statements require an
explanation. Equation (8) can be written as

Gtt@2t �c þ2Gtr@2tr�c

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�detG
p @rð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detG

p
GrtÞ@t�c

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�detG
p @rð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detG

p
Grr@r�c Þþha2

r2�
���c ¼0;

(11)

where �� denotes the Laplacian on the two-sphere.
Assume now the asymptotic behavior of the solution in
the form (10). Then, taking into account the asymptotic
falloff of the unperturbed solution for p ¼ e=3, one can
check that the leading order term in Eq. (11) is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p @rð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detG

p
Grr@r�c Þ ¼ ðn� 1ÞOðr�nþ2Þ:

Clearly, in order to satisfy Eq. (11) in the leading order, we
have to demand that n ¼ 1. This yields the claimed falloff
�c ¼ Oð1=rÞ. The above reasoning may by iterated, pos-
sibly yielding a stronger falloff condition. An analogous
procedure can also be repeated for the cases with p ¼ e=2
and p ¼ e, which are discussed briefly in the following
paragraphs.

B. Asymptotic behavior for p ¼ e=2

In this case � ¼ Oð1=r2Þ, �=h ¼ Oð1=rÞ, and ur ¼
Oðr0Þ. Also

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p

Grr ¼ Oðr3Þ, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p

Gtt ¼
Oð1=rÞ, and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG

p
Grt ¼ Oðr0Þ. Here the situation is

similar to that for p ¼ e=3. Linear stability can be proved
for perturbations satisfying Eðr�;1Þ <1 and Eq. (10). Then

@r�c ¼ Oð1=r2þ�Þ, @t�c ¼ Oð1=r1þ�Þ, and thus both

terms appearing in Eq. (9),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG

p
Grtð@t�c Þ2 and
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p

Grr@t�c @r�c , behave asymptotically as
1=r2þ2� and 1=r2�, respectively.

Again, additional information provided by Eq. (8) yields
a faster falloff, namely �c ¼ Oð1=r2Þ. For the sake of
brevity, we omit the details of this calculation.

C. Asymptotic behavior for p ¼ e

In the case of ultrahard equation of state p ¼ e,
Eq. (8) is equivalent to a standard wave equation on
the Schwarzschild–anti–de Sitter spacetime. A similar
problem—evolution of scalar fields in asymptotically
Schwarzschild–anti–de Sitter spacetimes—was investigated
recently in [4].

For p ¼ e, �=h ¼ const. We have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG

p
Grr ¼

Oðr4Þ, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p

Gtt ¼ Oðr0Þ, Gtr ¼ 0. Finiteness of the

energy norm yields @r�c ¼ Oð1=r5=2þ�Þ, and thus

@t�c ¼ Oð1=r3=2þ�Þ. The above bounds are again
marginally sufficient for the stability; one getsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p

Grr@t�c @r�c ¼ Oð1=r2�Þ.
The asymptotic behavior enforced by Eq. (8) is

�c ¼ Oð1=r3Þ.

VI. SUMMARY

We investigated conditions under which the Bondi-type
accretion in Schwarzchild–(anti–)de Sitter spacetimes is
stable. Stationary solutions were obtained in [1] for
‘‘isothermal’’ equations of state of the form p ¼ ke, with
k ¼ 1=3, 1=2, 1. Polytropic solutions, corresponding to
equations of state p ¼ K��, were also investigated,

although they cannot be written in a closed form. All these
solutions appear linearly stable, provided that the perturba-
tions vanish at the outer boundary of the cloud. If the
accretion cloud can formally extend up to infinity—this
happens for the investigated ‘‘isothermal’’ equations of
state and �< 0—one can show that the amplitude of
perturbations with a finite energy decays sufficiently fast
to ensure stability.
One has to bear in mind that linear stability is only a

prerequisite of (nonlinear) stability. Moreover, our analysis
does not take into account the self-gravity of the accreting
fluid. In principle, self-gravity of perturbations could play a
role in the stability analysis even in cases when the self-
gravity of the stationary, unperturbed flow can be safely
neglected. However, a truly consistent treatment would
require taking into account self-gravity of the unperturbed
flow as well. Stationary solutions of self-gravitating poly-
tropic fluid in asymptotically Schwarzchild–(anti–)de
Sitter spacetimes were obtained numerically in [5].
Nonlinear stability of self-gravitating Bondi-type accretion
flows without cosmological constant was investigated, also
numerically, in [6].
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