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We calculate the parametrized post-Newtonian parameters � and � for scalar-tensor gravity with a

generic coupling function ! and scalar potential V in the Jordan conformal frame in the case of a static

spherically symmetric source. Since the potential generally introduces a radial dependence to the effective

gravitational constant as well as to � and �, we discuss the issue of defining these parametrized post-

Newtonian parameters and compare our expressions with previous calculations in simpler cases. We

confront our results with current observational constraints on the values of � and � and thus draw

restrictions on the form of the functions ! and V around their asymptotic background values.

DOI: 10.1103/PhysRevD.88.084054 PACS numbers: 04.50.Kd, 04.25.Nx, 04.80.Cc

I. INTRODUCTION

The discovery of the accelerated expansion of the
universe and the phenomenon of dark energy has brought
about a new surge of interest in alternatives to Einstein’s
general relativity in the recent years [1]. One of the most
simple and paradigmatic of these is the Jordan-Brans-
Dicke theory where the gravitational interaction is medi-
ated by an extra scalar degree of freedom � in addition to
the usual tensor ones [2]. A more generic scalar-tensor
gravity (STG) action is characterized by two arbitrary
functions, the coupling function !ð�Þ in the kinetic term
of the scalar field and the potential Vð�Þ [3–7]. In cosmol-
ogy the STG models of dark energy allow evolving effec-
tive barotropic index w and dynamical crossing of the
‘‘phantom divide’’ [8] which remains a curious possibility
in the combined observational data [9] and could be a sign
pointing beyond the standard �CDM scenario based on
general relativity.

However interesting its performance in cosmology, a via-
ble gravitational theory must also pass the tests on local
scales, e.g., give a good account of the motions in our solar
system. A natural framework for such a check is provided by
the parametrized post-Newtonian (PPN) formalism [10,11].
Recent years have produced new fascinating and precise
measurements of the PPN parameters [12–16]. The classic
result for the parameters� and� in STGwith arbitrary!ð�Þ
but without a potential was obtained by Nordtvedt [4]. More
recently Olmo [17] and Perivolaropoulos [18] calculated the
parameter � in the case of the Jordan-Brans-Dicke theory
(constant !) with a nonvanishing potential Vð�Þ. The full
equations up to the second post-Newtonian approximation for
generic !ð�Þ and Vð�Þ have been worked out in Ref. [19],
while Ref. [20] tackles light propagation up to the same PPN
order for STGwith a vanishing potential. The PPN parameter

� has also been found for scalar-tensor type theories where
the scalar field has a nonstandard kinetic term or possesses
scalar-matter coupling [21,22]. The STG PPN issues are
further discussed in the context of screening mechanisms
thatmitigate the effects of the scalar field [23], and dynamical
equivalence with fðRÞ gravity [24].
This article fills the gap in the literature and presents the

PPN parameters � and � in the case of generic scalar-
tensor theories with arbitrary functions !ð�Þ and Vð�Þ.
We display the action and field equations of these theories
in Sec. II and derive their post-Newtonian approximation
in Sec. III. From this approximation we obtain a set of
post-Newtonian equations which we solve in Sec. IV.
Finally in Sec. V we compare our results with measure-
ments in the solar system and obtain constraints on the so
far arbitrary functions !ð�Þ and Vð�Þ. We end with a
conclusion in Sec. VI.

II. ACTION FUNCTIONAL AND
FIELD EQUATIONS

We study scalar-tensor theories of gravitation in which
gravity is described by a dynamical scalar field � in
addition to the metric tensor g��. We focus on theories

which are defined by the action

S¼ 1

2�2

Z
V4

d4x
ffiffiffiffiffiffiffi�g

p �
�R�!ð�Þ

�
@��@��� 2�2Vð�Þ

�
þSm½g��;�m� (1)

in Brans-Dicke-like parametrization in the Jordan confor-
mal frame [5–7]. We have chosen units such that c ¼ 1,
ℏ ¼ 1 and �2 is related to the dimensionful Newtonian
gravitational constant GN via

�2 ¼ 8�GN: (2)

The matter part of this action is given by Sm½g��; �m�,
where �m collectively denotes all matter fields. The gravi-
tational part of the action contains two free functions of
the scalar field �: the coupling function !ð�Þ and the
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potential Vð�Þ. A distinct scalar-tensor theory is defined
by a particular choice of these functions. In the following
we will restrict ourselves to the case 2!þ 3> 0 in order
to avoid ghosts in the Einstein conformal frame [5,6], as
well as Vð�Þ � 0 and �> 0, but otherwise leave the
functions ! and V arbitrary.

The variation of the action (1) with respect to the metric
and the scalar field yields the gravitational field equations

R�� ¼ 1

�

�
�2

�
T�� � !þ 1

2!þ 3
g��T

�
þr�@��

þ !

�
@��@��� g��

4!þ 6
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d�
@��@��

�

þ �2

�
g��

2!þ 1

2!þ 3
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�2

2!þ 3

dV

d�
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h�¼ 1

2!þ3

�
�2T�d!
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@��@��þ2�2

�
�

dV

d�
�2V

��
;

(4)

wherer� denotes the covariant derivative,h � g��r�r�

is the d’Alembert operator and T�� is the energy-

momentum tensor obtained from the matter action Sm. In
the following sectionwewill expand these field equations in
a post-Newtonian approximation.

III. POST-NEWTONIAN APPROXIMATION

We now expand the field equations (3) and (4) of scalar-
tensor gravity as displayed in the preceding section up to
the first post-Newtonian order. For this purpose we make
use of the PPN formalism [10,11] and assume that the
gravitating source matter is constituted by a perfect fluid
which obeys the post-Newtonian hydrodynamics. In this
section we start from this assumption and assign appropri-
ate orders of magnitude to all terms appearing in the
field equations. The resulting equations can then be solved
subsequently for each order of magnitude in the next
section.

The starting point of our calculation is the energy-
momentum tensor of a perfect fluid with rest energy
density �, specific internal energy �, pressure p and
four-velocity u�, which takes the form

T�� ¼ ð�þ ��þ pÞu�u� þ pg��: (5)

The four-velocity u� is normalized by the metric g��,

so that u�u�g�� ¼ �1. A basic ingredient of the PPN

formalism is the perturbative expansion of all dynamical
quantities in ordersOðnÞ / j ~vjn of the velocity vi ¼ ui=u0

of the source matter in a given frame of reference. For the
metric g�� this is an expansion around a flat Minkowski

background,

g�� ¼ 	�� þ h��

¼ 	�� þ hð1Þ�� þ hð2Þ�� þ hð3Þ�� þ hð4Þ�� þOð5Þ; (6)

where each term hðnÞ�� is of order OðnÞ. In order to describe
the motion of test bodies in the lowest post-Newtonian
approximation an expansion up to the fourth velocity order
Oð4Þ is sufficient. A detailed analysis shows that not all
components of the metric need to be expanded to the fourth
velocity order, while others vanish due to Newtonian en-
ergy conservation or time reversal symmetry. The only
relevant, nonvanishing components of the metric perturba-
tions are given by

hð2Þ00 ; hð2Þij ; hð3Þ0j ; hð4Þ00 : (7)

In order to determine these components for a given matter
source we must assign velocity orders also to the rest mass
density, specific internal energy and pressure of the perfect
fluid. Based on their orders of magnitude in the solar
system one assigns velocity orders Oð2Þ to � and � and
Oð4Þ to p. The energy-momentum tensor (5) can then be
expanded in the form

T00 ¼ �ð1þ�þ v2 � hð2Þ00 Þ þOð6Þ; (8a)

T0j ¼ ��vj þOð5Þ; (8b)

Tij ¼ �vivj þ p
ij þOð6Þ: (8c)

We further assume that the gravitational field is quasistatic,
so that changes are only induced by the motion of the
source matter. Time derivatives @0 of the metric compo-
nents and other fields are therefore weighted with an addi-
tional velocity order Oð1Þ.
In order to apply the PPN formalism to the scalar-tensor

gravity theory detailed in Sec. II we further need to expand
the scalar field � in a post-Newtonian approximation. For
this purpose we expand � around its cosmological back-
ground value �0,

� ¼ �0 þ c ¼ �0 þ c ð2Þ þ c ð4Þ þOð6Þ; (9)

where we assume �0 to be of order Oð0Þ and the pertur-

bations c ðnÞ are of orderOðnÞ. We also need to expand the
functions !ð�Þ and Vð�Þ around �0. A Taylor expansion
to the required order takes the form

! ¼ !0 þ!1c þOðc 2Þ; (10a)

V ¼ V0 þ V1c þ V2c
2 þ V3c

3 þOðc 4Þ; (10b)

with constant expansion coefficients which we assume to
be of velocity order Oð0Þ. With these definitions the field
equations (3) and (4) in the lowest velocity orderOð0Þ read

0 ¼ �2

2!0 þ 3

�
2!0 þ 1

�0

V0 þ V1

�
	��; (11)

0 ¼ 2�2

2!0 þ 3
ð�0V1 � 2V0Þ: (12)

In order for these to be satisfied we must set V0 ¼ V1 ¼ 0,
which is a consequence of our expansion (6) of the metric
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around a flat background. The scalar field equation up to
the fourth velocity order then reduces to

�
r2 � 4�2�0V2
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�
ðc ð2Þ þ c ð4ÞÞ
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ð3p�����Þ þ 2�2!1

ð2!0 þ 3Þ2�c
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;00

þ 2�2�0

2!0 þ 3

�
3V3 � 4!1V2

2!0 þ 3

�
ðc ð2ÞÞ2 � !1

2!0 þ 3
c ð2Þ

;i c ð2Þ
;i

þ hð2Þij c
ð2Þ
;ij þ

�
hð2Þij;j þ

1

2
hð2Þ00;i �

1

2
hð2Þjj;i

�
c ð2Þ

;i þOð6Þ:
(13)

We further expand the right-hand side of the gravitational
tensor field equation (3) up to the necessary velocity order
and obtain

R00 ¼ �2

�0ð2!0 þ 3Þ
�
ð!0 þ 2Þ�� 2�0V2ðc ð2Þ þ c ð4ÞÞ

� ð!0 þ 2Þhð2Þ00�þ
�
ð2!0 þ 3Þv2 þ ð!0 þ 2Þ�

þ ð3!0 þ 3Þp
�

�
�þ 2�0V2h

ð2Þ
00 c

ð2Þ

þ
��

4�0!1

2!0 þ 3
� 2!0 � 1

�
V2 � 3�0V3

�
ðc ð2ÞÞ2

þ !1

2�2
c ð2Þ
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;i �

�
!0 þ 2

�0

þ !1

2!0 þ 3

�
�c ð2Þ

�

þ 1

�0

�
c ð2Þ

;00 þ
1

2
hð2Þ00;ic

ð2Þ
;i

�
þOð6Þ; (14a)

R0j ¼ 1

�0

ðc ð2Þ
;0j � �2vj�Þ þOð5Þ; (14b)

Rij ¼ �2

�0

�ð!0 þ 1Þ�þ 2�0V2c
ð2Þ

2!0 þ 3

ij þ

c ð2Þ
;ij

�2

�
þOð4Þ:

(14c)

In order to solve these equations we finally need to fix a
gauge for the metric tensor. A useful choice for the class of
scalar-tensor theories we consider is given by [25]

hi
j
;j �

1

2
h�

�
;i ¼

1

�0

c ;i; (15a)

h0
j
;j �

1

2
hj

j
;0 ¼

1

�0

c ;0: (15b)

In this gauge we can express the Ricci tensor up to the
necessary velocity order as

R00 ¼ � 1

2
r2hð2Þ00 � 1

2
r2hð4Þ00 þ 1

�0

c ð2Þ
;00 þ

1

2�0

hð2Þ00;jc
ð2Þ
;j

� 1

2
hð2Þ00;jh

ð2Þ
00;j þ

1

2
hð2Þjk h

ð2Þ
00;jk þOð6Þ; (16a)

R0j ¼ � 1

2
r2hð3Þ0j � 1

4
hð2Þ00;0j þ

1

�0

c ð2Þ
;0j þOð5Þ; (16b)

Rij ¼ � 1

2
r2hð2Þij þ 1

�0

c ð2Þ
;ij þOð4Þ: (16c)

This completes our derivation of the post-Newtonian field
equations. We can now use Eq. (13) to solve for the scalar
field perturbation c and Eqs. (14) and (16) to solve for the
metric perturbations h��, up to the necessary velocity

orders. This will be done in the following section.

IV. STATIC SPHERICALLY
SYMMETRIC SOLUTION

In the previous section we have derived the field
equations of scalar-tensor gravity in a post-Newtonian
approximation. It is now our aim to construct a simple
solution to these equations, which corresponds to the static,
spherically symmetric gravitational field of a single, point-
like mass. Our derivation consists of three steps. First,
we solve the field equations for the metric perturbation

hð2Þ00 in the Newtonian approximation in Sec. IVA. Using

this result we can then solve for hð2Þij in Sec. IVB and for

hð4Þ00 in Sec. IVC.

A. Newtonian approximation

In the remainder of this article we restrict ourselves to
the gravitational field generated by a pointlike mass M,
which is described by the energy-momentum tensor (8)
with

� ¼ M
ð ~xÞ; � ¼ 0; p ¼ 0; vi ¼ 0: (17)

This simple matter source induces a static and spherically
symmetric metric, which can most easily be expressed
using isotropic spherical coordinates. In the rest frame of
the gravitating mass we use the ansatz

g00 ¼ �1þ 2GeffðrÞUðrÞ � 2G2
effðrÞ�ðrÞU2ðrÞ

þ�ð4ÞðrÞ þOð6Þ; (18a)

g0j ¼ Oð5Þ; (18b)

gij ¼ ½1þ 2GeffðrÞ�ðrÞUðrÞ�
ij þOð4Þ; (18c)

where r denotes the radial coordinate and the Newtonian
potential UðrÞ is given by

UðrÞ ¼ �2

8�

M

r
: (19)

In the potential �ð4Þ we collect terms of order Oð4Þ which
are not of the form G2

eff�U
2, such as the gravitational self-

energy. The three unknown functions we need to determine
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are the effective gravitational constant GeffðrÞ and the PPN
parameters �ðrÞ and �ðrÞ. The latter two can be defined
either as the coefficients of the effective gravitational
potential Ueff ¼ GeffU as shown in the metric (18) or as
the coefficients �eff ¼ Geff� and �eff ¼ G2

eff� of the

Newtonian potential terms U and U2. The first definition
invokes the interpretation that the measured values of �
and � can be related to the effective gravitational potential
Ueff , while the second definition suggests to relate the
measured values of �eff and�eff to the Newtonian potential
U of a fixed mass M. We choose the first definition in this
article since the mass of the Sun, which dominates the solar
system physics, is determined from its gravitational effects
on the planetary motions.

For our calculation of the Newtonian limit we start by
solving Eq. (13) up to the second velocity order,

ðr2 �m2
c Þc ð2Þ ¼ � �2

2!0 þ 3
� (20)

for the scalar field perturbation c ð2Þ. The constant

mc ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0V2

2!0 þ 3

s
(21)

can be interpreted as the mass of the scalar field [26].
Equation (20) is a screened Poisson equation, which is
solved by

c ð2ÞðrÞ ¼ 2

2!0 þ 3
UðrÞe�mc r: (22)

The solution for c ð2ÞðrÞ thus takes the form of a Yukawa
potential.

In the next step we consider Eqs. (14a) and (16a) up to
the second velocity order. From these we derive

r2hð2Þ00 ¼ m2
c

�0

�
c ð2Þ �!0 þ 2

2�0V2

�

�
: (23)

We can write the solution in the form

hð2Þ00 ðrÞ ¼ 2GeffðrÞUðrÞ; (24)

where the effective gravitational constant is given by

GeffðrÞ ¼ 1

�0

�
1þ e�mc r

2!0 þ 3

�
: (25)

In order to interpret this result for Geff as an effective
gravitational constant we need to choose an experiment
in which the gravitational interaction takes place at a
constant scale r ¼ r0. We can then choose units in which
Geffðr0Þ ¼ 1. This corresponds to a rescaling of the cos-
mological background value �0 of the scalar field to

�0 ¼ 1þ e�mc r0

2!0 þ 3
: (26)

However, we cannot make this choice globally, and hence
cannot remove the factor GeffðrÞ from the metric (18) by a

choice of units in which Geff � 1, as it is conventionally
done in the basic PPN formalism [10]. This is the reason
for the ambiguity in the definition of the PPN parameters �
and � we discussed above.

B. PPN parameter �ðrÞ
We now turn our focus to the spatial components hð2Þij of

the metric perturbation. From Eqs. (14c) and (16c) we
obtain

r2hð2Þij ¼ �m2
c

�0

�
c ð2Þ þ!0 þ 1

2�0V2

�

�

ij: (27)

From this equation we can immediately read off that the

solution for hð2Þij is diagonal. We find that

hð2Þij ðrÞ ¼
2

�0

�
1� e�mc r

2!0 þ 3

�

ijUðrÞ: (28)

Comparison with Eq. (18c) then yields the PPN parameter
�ðrÞ and we obtain

�ðrÞ ¼ 2!0 þ 3� e�mc r

2!0 þ 3þ e�mc r
: (29)

This result agrees with a previously obtained result for a
purely quadratic scalar potential Vð�Þ and constant cou-
pling function !ð�Þ [17,18]. In the limit V2 ! 0 and fixed
finite !0, which implies mc ! 0, the PPN parameter �

approaches the known value

� ¼ !0 þ 1

!0 þ 2
(30)

for scalar-tensor gravity with a massless scalar field [4].
Analogously in the limit 1=ð2!0 þ 3Þ ! 0 and fixed finite
V2 we havemc ! 0 but find the limiting value � ¼ 1. The

same value � ¼ 1 is also approached in the opposite
limiting case of a massive scalar field with mc r � 1.

C. PPN parameter �ðrÞ
We finally calculate the PPN parameter beta as given in

Eq. (18a). For this purpose we need the fourth order

perturbation c ð4Þ of the scalar field�. This can be obtained
from the fourth order part of Eq. (13), which reads

ðr2�m2
c Þc ð4Þ

¼ �2

2!0þ3
ð3p���Þþ m2

c!1

2�0V2ð2!0þ3Þ�c
ð2Þ

þc ð2Þ
;00þm2

c

�
3V3

2V2

� 2!1

2!0þ3

�
ðc ð2ÞÞ2� !1

2!0þ3
c ð2Þ

;i c ð2Þ
;i

þhð2Þij c
ð2Þ
;ij þ

�
hð2Þij;jþ

1

2
hð2Þ00;i�

1

2
hð2Þjj;i

�
c ð2Þ

;i : (31)

As for the second order perturbation c ð2Þ we obtain a
screened Poisson equation, but with a different source
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term. The terms involving the pressure p and specific
internal energy � drop out because of our choice (17) of
a point mass as the source of the gravitational field. We

further neglect the term �c ð2Þ, which corresponds to a

gravitational self-energy. Finally, the term c ð2Þ
;00 drops out

since we consider only static solutions. The solution to the
remaining equation is then given by

c ð4ÞðrÞ¼ 2

ð2!0þ3Þ2
�
1

�0

� !1

2!0þ3

�
U2ðrÞe�2mc r

þ 2mc

�0ð2!0þ3ÞU
2ðrÞr½emc rEið�2mc rÞ

�e�mc r lnðmc rÞ�þ
3mc

ð2!0þ3Þ2

�
�
V3

V2

� 1

�0

� !1

2!0þ3

�
U2ðrÞr½emc rEið�3mc rÞ

�e�mc rEið�mc rÞ�: (32)

Here Ei denotes the exponential integral, which is defined
by

Eið�xÞ ¼ �
Z 1

x

e�t

t
dt: (33)

Using the result (32) we can now determine g00 to the
fourth velocity order. From Eqs. (14a) and (16a) we obtain

r2hð4Þ00 ¼ �hð2Þ00;ih
ð2Þ
00;i þ hð2Þij h

ð2Þ
00;ij �

2�2

�0

�
v2 þ !0 þ 2

2!0 þ 3
�

þ 3!0 þ 3

2!0 þ 3

p

�

�
�þ m2

c

2�2
0V2

��
!0 þ 2

�0

þ !1

2!0 þ 3

�
�c ð2Þ þ ð!0 þ 2Þ�hð2Þ00

�

� !1

�0ð2!0 þ 3Þ c
ð2Þ
;i c ð2Þ

;i þm2
c

�0

��
2!0 þ 1

2�0

� 2!1

2!0 þ 3
þ 3V3

2V2

�
ðc ð2ÞÞ2 � hð2Þ00 c

ð2Þ þ c ð4Þ
�
:

(34)

Again terms involving p and � drop out for the pointlike
matter source we consider, while terms involving the ve-
locity v drop out since we perform the calculation in the
rest frame of the matter source. We further neglect the

terms �hð2Þ00 and �c ð2Þ, which correspond to gravitational

self-energies and thus contribute only to the potential �ð4Þ
displayed in Eq. (18a). The remaining equation can then be
integrated and we obtain

hð4Þ00 ðrÞ ¼ �2G2
effðrÞ�ðrÞU2ðrÞ; (35)

where �ðrÞ is given by

�ðrÞ ¼ 1þ !1e
�2mc r

G2
effðrÞ�0ð2!0 þ 3Þ3 �

mc r

G2
effðrÞð2!0 þ 3Þ

�
2

�2
0

½e�mc r þ Eið�mc rÞmc r�

þ 1

2�0ð2!0 þ 3Þ
�
2!0 � 2

�0

þ 3V3

V2

� !1

2!0 þ 3

�
½e�2mc r þ 2Eið�2mc rÞmc r� þ 1

�2
0

½2e�mc r � emc rEið�2mc rÞ

þ 2Eið�mc rÞmc rþ e�mc r ln ðmc rÞ� þ 3

2�0ð2!0 þ 3Þ
�
V3

V2

� 1

�0

� !1

2!0 þ 3

�

� ½�e�2mc r þ emc rEið�3mc rÞ � 2Eið�2mc rÞmc r� e�mc rEið�mc rÞ�
�
: (36)

It follows from the asymptotic behavior of the exponential
integral in the case x � 1,

Eið�xÞ � e�x

x

�
1� 1!

x
þ 2!

x2
� 3!

x3
þ � � �

�
; (37)

that all terms involving !1 or V3 fall off proportional to
e�2mc r, and are thus subleading to the terms involving only
!0 and V2 which fall off proportional to e�mc r. We there-
fore conclude that at large distances mc r � 1 from the
source both !1 and V3 may be neglected. Again we con-
sider the three limiting cases which we already discussed
for �. In the limit V2 ! 0 and fixed finite !0 we obtain the
known result

� ¼ 1þ !1�0

ð2!0 þ 3Þð2!0 þ 4Þ2 (38)

for a massless scalar field [4]. The second case 1=
ð2!0þ3Þ!0 and fixed finite V2 yields the limit � ¼ 1.

We also find the limiting value� ¼ 1 in the casemc r � 1
of a massive scalar field.
This result completes our solution to the post-Newtonian

field equations derived in Sec. III. We have calculated the
metric up to the first post-Newtonian order as displayed in
Eq. (18). From our calculation we obtained expressions for
the effective gravitational constant (25) and the PPN pa-
rameters � (29) and � (36). In the next section we will
show how these results can be compared to measurements
of the PPN parameters, and which restrictions arise on the
scalar-tensor theories we consider.

V. COMPARISON WITH EXPERIMENTS

In the preceding section we have derived expressions for
the PPN parameters �ðrÞ and �ðrÞ as functions of the
expansion coefficients !0, !1, V2 and V3. In this section
we discuss restrictions on these coefficients which arise
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from measurements of � and � in the solar system. We
thereby neglect the terms involving !1 and V3, since their
contribution to the PPN parameters at large distances is
subleading to that of !0 and V2, as we argued in the
previous section.

The PPN parameters have been measured by various
high precision experiments in the solar system [10,11]. In
this article we restrict ourselves to those measurements
which provide the strictest bounds on the parameters �
and � and have a characteristic interaction distance r0.
In particular, we will use the bounds obtained from the
following experiments:

(i) The deflection of pulsar signals by the Sun has been
measured using very long baseline interferometry
(VLBI) [12]. From this � has been determined to
satisfy �� 1 ¼ ð�2	 3Þ � 10�4. Since the radar
signals were passing by the Sun at an elongation
angle of 3
, the gravitational interaction distance is
r0 � 5:23� 10�2 AU.

(ii) The most precise value for � has been obtained from
the time delay of radar signals sent between Earth
and the Cassini spacecraft on its way to Saturn [13].
The experiment yielded the value �� 1 ¼ ð2:1	
2:3Þ � 10�5. The radio signals were passing
by the Sun at a distance of 1.6 solar radii or
r0 � 7:44� 10�3 AU.

(iii) The most well-known test of the parameter � is the
perihelion precession of Mercury [11]. Its precision
is limited by measurements of other contributions
to the perihelion precession, most importantly the
solar quadrupole moment J2. The current bound is
j2�� �� 1j< 3� 10�3. As the gravitational
interaction distance we take the semi-major axis
of Mercury, which is r0 � 0:387 AU.

(iv) The tightest bounds on � are obtained from lunar
laser ranging experiments searching for the
Nordtvedt effect, which would cause a different
acceleration of the Earth and the Moon in the solar
gravitational field [14]. For fully conservative theo-
ries with no preferred frame effects the current
bound is 4�� �� 3 ¼ ð0:6	 5:2Þ � 10�4. Since
the effect is measured using the solar gravitational
field, the interaction distance is r0 ¼ 1 AU.

There are more recent experiments which we will not use
here since they cannot be characterized by a single value r0
for the interaction distance. These include in particular
combined VLBI measurements of � at elongation angles
between 5
and 30
 [15] and measurements of � and �
using ephemeris for a large number of celestial bodies in
the solar system [16]. One may argue that also the mea-
surements of � listed above cannot be characterized by a
single interaction distance, since the distance between the
Sun and the radio signals varies along their path. A rig-
orous treatment would therefore require a calculation of
null geodesics in the solar system [22]. We will not enter

this calculation here and instead assume that the dominant
gravitational interaction occurs at the shortest distance to
the Sun.
The constraints on the values of the expansion coeffi-

cients !0 and V2 obtained from the experiments listed
above can be visualized by plotting the experimentally
excluded regions in parameter space, where we use coor-

dinates m ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffi
�0V2

p
, measured in inverse astronomical

units mAU ¼ 1 AU�1, and !0. Vertical lines mark regions
which are excluded by VLBI measurements, while hori-
zontal lines mark regions which are excluded by Cassini
tracking. Similarly, regions with lines from bottom left to
top right are excluded by the perihelion precession or
Mercury, while regions with lines from top left to bottom
right are excluded by lunar laser ranging.
Figure 1 shows the complete region of the parameter

space which is excluded by the experiments listed above.

FIG. 1. Complete excluded region in parameter space.

FIG. 2. Region excluded by VLBI measurements.
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The largest area is contributed by the Cassini tracking
experiment, from which the tightest bounds on � have
been obtained. As one can see from Fig. 2 the region
excluded by VLBI measurements is significantly
smaller. This can also be seen for negative values of !
from Fig. 3.
The parameter region excluded by measurements of � is

shown in Fig. 4. One can see that it is located entirely in
the region already excluded by measurements of �. This
also holds for negative values of !0 as shown in Fig. 5.
This result is due to the fact that the bounds on � are
significantly weaker than the bounds on �. In order to
obtain stricter constraints on the parameter space from �,
experiments at higher precision are required. Alternatively
measurements of � or � at smaller interaction distance r0
could exclude regions of the parameter space for larger
values of m.

VI. CONCLUSION

In this article we discussed the post-Newtonian ap-
proximation of scalar-tensor theories of gravity with
arbitrary coupling function !ð�Þ and arbitrary potential
Vð�Þ. In the post-Newtonian limit these functions can be
characterized by four coefficients !0, !1, V2, V3 of the
Taylor expansion. We then defined the PPN parameters
� and � and calculated their values for a static point
mass as functions of these four constants. It turned out
that the PPN parameters are not constant, but depend on
the distance between the gravitating source and the test
mass. In the appropriate limits our expressions reduce to
earlier results obtained for simpler cases [4,17,18]. We
further found that for a massive scalar field the contri-
bution of !1 and V3 to the values of the PPN parameters
can be neglected at large distances from the source,
mc r � 1.

We finally compared our results to measurements of �
and � in the solar system and obtained bounds on the
constants !0 and V2. It turned out that the strictest
bounds are obtained from measurements of � by
Cassini tracking, so that the current measurements of
� place no further restrictions on !0 and V2. In order to
obtain new bounds it would be necessary to measure the
parameters � and � at higher precision or at shorter
interaction distances between the gravitational source
and the test mass. The latter would allow probing and
possibly excluding larger values of V2, corresponding to
a higher mass of the scalar field.
The work presented in this article allows for various

further studies. While we have restricted ourselves to a
calculation of the PPN parameters � and � for a static
point mass, one may ask which further contributions to
the post-Newtonian metric arise from moving sources or
sources with nonvanishing pressure, internal energy or
gravitational self-energy. A calculation of these contribu-
tions would provide insight into further PPN parameters,

FIG. 3. Region !0 < 0.

FIG. 4. Constraints from �.

FIG. 5. Constraints from � for !0 < 0.
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which are related to preferred-frame and preferred-

location effects. Comparison of these parameters with

their values measured in the solar system may place

further bounds on viable theories of scalar-tensor gravity.

Another line of investigation would be the case of strong

fields provided by, e.g., binary pulsars. We further aim to

extend our work to theories with more than one scalar

degree of freedom, and thus chart the landscape of

multiscalar-tensor gravity.
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