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Based on a physical argument, we derive a new analytic formula for the amplitude of density

perturbation at the threshold of primordial black hole formation in the Universe dominated by a perfect

fluid with the equation of state p ¼ w�c2 for w � 0. The formula gives �UH
Hc ¼ sin 2½� ffiffiffiffi

w
p

=ð1þ 3wÞ� and
~�c ¼ ½3ð1þ wÞ=ð5þ 3wÞ�sin 2½� ffiffiffiffi

w
p

=ð1þ 3wÞ�, where �UH
Hc and ~�c are the amplitude of the density

perturbation at the horizon crossing time in the uniform Hubble slice and the amplitude measure used in

numerical simulations, respectively, while the conventional one gives �UH
Hc ¼ w and ~�c ¼ 3wð1þ wÞ=

ð5þ 3wÞ. Our formula shows a much better agreement with the result of recent numerical simulations

both qualitatively and quantitatively than the conventional formula. For a radiation fluid, our formula

gives �UH
Hc ¼ sin 2ð ffiffiffi

3
p

�=6Þ ’ 0:6203 and ~�c ¼ ð2=3Þsin 2ð ffiffiffi
3

p
�=6Þ ’ 0:4135. We also discuss the

maximum amplitude and the cosmological implications of the present result.
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I. INTRODUCTION

Primordial black holes may have formed from primordial
fluctuations in the early Universe [1,2]. Since primordial
black holes can in principle be observed at the present epoch,
current observations constrain the abundance of primordial
black holes and thereby primordial fluctuations. In other
words, primordial black holes can be used as a probe into
the early Universe. This kind of analysis was first imple-
mented by Carr [3]. See Carr et al. [4] for its latest update.

To constrain early Universe scenarios from the observa-
tional constraint of primordial black holes, the formation
threshold of the primordial black hole is very important.
The conventional condition known as Carr’s [3] is that a
primordial black hole is formed if and only if the density
perturbation �H when the fluctuation enters the horizon is
in the range w ¼ �c < �H < �max ¼ 1, where the equa-
tion of state p ¼ w�c2 is assumed. Although uncertainties
in numerical factors of order unity in both the threshold
and maximum values were noticed in the original paper,
the uncertainties have often been omitted in the subsequent
literature. However, the uncertainty of factor 2 in the
threshold value �c results in enormous uncertainty in the
prediction of the abundance of primordial black holes if we
are given the power spectrum of the density perturbation
because �c should be much greater than the standard
deviation �. The maximum value �max , which was origi-
nally regarded as the separate universe condition [5], has
recently been shown [6,7] to be purely geometrical.

Since Nadezhin, Novikov, and Polnarev [8,9] pioneered
the fully general relativistic numerical simulations of

primordial black hole formation, the threshold of primor-
dial black hole formation has been extensively investigated
by numerical relativity [10–15]. Niemeyer and Jedamzik
[10] reported the threshold value �c ’ 0:67–0:71, which
was later revised to the value ’ 0:43–0:47 with a purely
growing mode by Musco, Miller, and Rezzolla [12]. The
latest value for a radiation fluid is given by �c ’ 0:45–0:47
and ’ 0:48–0:66 depending on the parametrization of cur-
vature profiles, as shown in Figs. 10 and 11 of Polnarev and
Musco [13]. Moreover, Musco and Miller [15] presented
the numerical simulations of primordial black hole forma-
tion and the threshold values obtained for different values
of w in the range 0:01 � w � 0:6.
Khlopov and Polnarev [16] pioneered the production of

primordial black holes in the matter-dominated phase,
where w ¼ 0, in the context of grand unification. In the
context of modern inflationary cosmology, the production
of primordial black holes is interesting not only in the
radiation-dominated phase but also immediately after the
inflationary phase, where w � 1 is effectively satisfied.
Suyama et al. [17,18] showed that primordial black holes
cannot be overproduced during the resonant preheating
phase after the inflation, but the production can be signifi-
cantly enhanced in the universe undergoing tachyonic
preheating. Alabidi et al. [19,20] discussed primordial
black hole formation in the matter-dominated phase im-
mediately after the inflation, where the formation effi-
ciency may be enhanced by the softness of the equation
of state but suppressed due to the effects of nonspherical
collapse dynamics.
In the current paper, we derive a new analytic formula for

the threshold of primordial black hole formation for general
values of w for w � 0 based on a physical argument. For*harada@rikkyo.ac.jp
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this purpose, we use a spherically symmetric model of a
uniform overdensity surrounded by an underdense compen-
sating layer in the flat Friedmann background. Fixing a
gauge problem, we then see a very good agreement of our
analytic formula with the numerical result by Musco and
Miller [15] both qualitatively and quantitatively.

This paper is organized as follows. In Sec. II, we briefly
summarize the original analysis of the condition for pri-
mordial black hole formation. In Sec. III, we present our
analytic model, derive a matter-independent maximum
amplitude of the density perturbation, and discuss apparent
horizons in this model. In Sec. IV, we analyze the threshold
of primordial black hole formation in the matter-dominated
universe and in the universe dominated by a perfect fluid.
In the latter case, we derive a new analytic expression for
the threshold value. In Sec. V, we clarify the gauge problem
and compare our analytic formula with the numerical
result. In Sec. VI, we discuss the probability distribution
of perturbations. Section VII is devoted to summary. We
follow the metric signature ð�;þ;þ;þÞ and the abstract
index notation by Wald [21].

II. BRIEF SUMMARY OF THE
ORIGINAL ANALYSIS

The original analysis by Carr [3] is based on the physical
argument that for an overdensity to form a primordial black
hole, the size of the overdensity at the maximum expansion
Rmax should be larger than the Jeans radius RJ (the Jeans
criterion) but smaller than the particle horizon size RPH,
which is comparable with the curvature scale of the over-
dense region. The maximum size was considered as neces-
sary for the overdense region not to be separated from the
rest of the universe [5]. This implies

RJ & Rmax & RPH: (2.1)

Note that the particle horizon size is given by RPH �
c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G�max =3

p
, while the Jeans radius is given by RJ �ffiffiffiffi

w
p

RPH, where�max is the density of the overdense region at
themaximumexpansion and the equationof statep ¼ w�c2

is assumed. The condition (2.1) implies that the density
perturbation �0 of mass scaleM at t ¼ t0 must satisfy

w

�
M

MH0

��2=3
& �0 &

�
M

MH0

��2=3
; (2.2)

whereMH0
is themass enclosedwithin the horizon at t ¼ t0.

This roughly gives

w ’ �c & �H & �max ’ 1; (2.3)

where �H is the density perturbation at the horizon crossing
and �c and �max denote the threshold value and the maxi-
mum value of �H for primordial black hole formation,
respectively. This is often known as Carr’s condition for
primordial black hole formation. For a radiation fluid w ¼
1=3, this gives the often quoted value �c ’ 1=3. A more

precise argument to derive this condition will be described
later in this paper.
As Carr [3] indicated, if the equation of state is suffi-

ciently soft, nonspherical effects play important roles
rather than the Jeans criterion. Kopp, Hofmann, and
Weller [6] pointed out that the maximum value �max is
not directly related to the separate universe but to the
geometry of the overdense region.

III. DENSITY PERTURBATION MODEL
AND THE MAXIMUM AMPLITUDE

A. Three-zone model

Here we introduce a spherically symmetric model of
density perturbation, which we will use for the analytic
derivation of the formation threshold and the maximum
amplitude. The model is schematically depicted in Fig. 1.
The background universe is given by a flat Friedmann

solution

ds2 ¼ �c2dt2 þ a2bðtÞðdr2 þ r2d�2Þ; (3.1)

where d�2 is the line element on the unit two-sphere. The
Friedmann equation is given by�

_ab
ab

�
2 ¼ 8�G�b

3
; (3.2)

where �b is the mass density of the background universe.
The overdense region is described by a closed Friedmann
solution,

ds2 ¼ �c2dt2 þ a2ðtÞðd�2 þ sin 2�d�2Þ; (3.3)

or

ds2 ¼ �c2dt2 þ a2ðtÞ
�

dr2

1� Kr2
þ r2d�2

�
; (3.4)

where K ¼ 1 and r ¼ sin�. The Friedmann equation is
given by

FIG. 1. The schematic figure of the three-zone model of den-
sity perturbation.
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�
_a

a

�
2 ¼ 8�G�

3
� c2

a2
; (3.5)

where � is the mass density of the overdense region. The
overdensity is surrounded by an underdense layer which
compensates the overdensity. We adopt a model where the
overdense region is described by a closed Friedmann so-
lution for 0<�< �a, the surrounding underdense layer is
matched with the overdense region at � ¼ �a, and the
further surrounding flat Friedmann solution is matched
with the compensating layer at r ¼ rb. Thus, the areal
radius of the overdense region is given by Ra ¼ a sin�a,
while that for the matching surface between the compen-
sating layer and the flat Friedmann universe is given by
Rb ¼ abrb. We call fluctuations with 0< �a < �=2 and
�=2< �a < � types I and II, respectively, according to the
notation of Kopp, Hofmann, and Weller [6]. We note that
the coordinates in Eq. (3.4) cannot entirely cover the over-
dense region of type II fluctuation.

This model can be exact only for the dust case. In other
cases, inhomogeneity will penetrate the homogeneous re-
gions through sound waves. To keep the model exact, we
would need to introduce someunphysicalmatter field or shell
in the compensating region. We here use this model, which
can be called a ‘‘three-zone’’ model, to obtain the threshold
value of primordial black hole formation. This model can be
justified at least for w � 1, where the effect of pressure
gradient force is very small. It can also be justified at least
in the early stage of evolution because in the absence of
decaying mode the inhomogeneity will be locally described
by a homogeneous solution at each spatial point, and the
pressure gradient force can be neglected in accordance with
the Belinsky–Khalatnikov–Lifshitz conjecture [22,23].

B. Maximum amplitude of the density perturbation

For convenience, we define the time-dependent density
parameter � of the overdense region by

� ¼ 8�G�

3H2
¼ 1þ c2

a2H2
; (3.6)

whereH ¼ _a=a is the Hubble parameter and we have used
Eq. (3.5) in the last equality. Defining the Hubble horizon
radius RH ¼ cH�1 in the overdense region, Eq. (3.6) can
be transformed to

ð�� 1Þ
�
Ra

RH

�
2 ¼ sin 2�a: (3.7)

This implies the left-hand side is time-independent and
coincides with sin 2�a. The density perturbation � of the
overdense region to the background universe is defined by

� ¼ �� �b

�b

: (3.8)

The density parameter � can then be related to �
according to

� ¼ ð1þ �Þ
�
Hb

H

�
2
; (3.9)

where Hb ¼ _ab=ab is the background Hubble parameter
and Eqs. (3.2) and (3.6) are used. It should be noted that the
above relation is exact. � is gauge-independent, while
both � and Hb are gauge-dependent.
The horizon crossing time is defined by the equality

between the areal radius of the overdense region, Ra, and
the Hubble horizon of the background flat Friedmann
universe, RHb

¼ cH�1
b . Equations (3.7) and (3.9) imply

that the density perturbation �H at the horizon crossing
time is given by

�H ¼
�
H

Hb

�
2 � cos 2�a; (3.10)

which trivially satisfies�
H

Hb

�
2 � 1< �H �

�
H

Hb

�
2
: (3.11)

The maximum value is taken only for�a ¼ �=2, where the
overdense region is a three-hemisphere. The lower limit
corresponds to both �a ¼ 0 and �, and the latter corre-
sponds to the separate universe limit of the overdense
region. The inequality (3.11) is automatically satisfied
only if we assume the overdense region. One value for �H

generally corresponds to two distinct configurations, the
one of type I and the other of type II. The maximum density
does not correspond to the separate-universe configuration
�a ¼ �, as indicated by Kopp, Hofmann, and Weller [6].
We can take a time slice on which the Hubble constants

are the same between the overdense and the background
regions, i.e., H ¼ Hb. We call this time slice the uniform
Hubble slice. This is the case in the constant mean curva-
ture slice, which is taken by Shibata and Sasaki [11].
In the uniform Hubble slice, Eq. (3.9) implies that the

time-dependent density parameter � and the density per-
turbation � are directly related, i.e.,

� ¼ 1þ �UH; (3.12)

where �UH denotes � in the uniform Hubble slice.
Equation (3.7) then implies

�UH

�
Ra

RH

�
2 ¼ �UH

H ¼ sin 2�a: (3.13)

Therefore, �UHðRa=RHb
Þ2 is time-independent and coin-

cides with �UH
H . It immediately follows

0< �UH
H � 1; (3.14)

where �UH
H ¼ 1 holds only for �a ¼ �=2. The above con-

clusion does not depend on the equations of state or even
the matter fields. The analysis does not invoke any linea-
rization with respect to the amplitude of the density per-
turbation. It should be noted that we do not need to assume
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even the existence of maximum expansion here, although
we will discuss it later in a different context.

If there is a maximum expansion phase of the overdense
region, Eq. (3.5) implies

amax ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G�max =3

p ; (3.15)

where �max is the density of the overdense region at the
maximum expansion. In other words, amax coincides with
the Hubble horizon radius of the background flat
Friedmann universe in the uniform density slice.

C. Trapped surfaces and apparent horizons

In spherically symmetric spacetimes, we have a well-
behaved quasilocal mass, which is called theMisner–Sharp
mass [24]. The Misner–Sharp mass M is defined as

M ¼ c2

2G
Rð1� gabraRrbRÞ; (3.16)

where R is the areal radius. This is closely related to the
outgoing and ingoing null expansions, �þ and ��, respec-
tively,where andhereafterwe assume�þ � ��without loss
of generality [25]. If 2GM=ðc2RÞ> 1, we have �þ�� > 0.
A surface on which �þ�� > 0 is called a trapped surface.
A surface onwhich both �þ and�� are negative (positive) is
said to be future (past) trapped. If 2GM=ðc2RÞ< 1, we have
�þ�� < 0. A surface on which �þ�� < 0 is said to be
untrapped. If 2GM=ðc2RÞ ¼ 1, we have �þ�� ¼ 0. A sur-
face on which �þ�� ¼ 0 is called a marginal surface or an
apparent horizon.1 A surface on which �þ ¼ 0 and �� < 0
(�þ > 0 and �� ¼ 0) is called a future (past) apparent
horizon. A future apparent horizon implies that no null
geodesic congruence has positive expansion on it, which
suggests the formation of a black hole. If the spacetime is
asymptotically flat, the existence of a future apparent hori-
zon implies the existence of a future event horizon outside or
coinciding with it [26]. In fact, even if the spacetime is not
asymptotically flat, a future apparent horizon can be re-
garded as a black hole horizon. See Ref. [25] for more
rigorous terminology, definitions, and proofs.

In the closed Friedmann spacetime, the areal radius and
the Misner–Sharp mass are given by R ¼ a sin� and

M ¼ c2

2G
a

�
1þ

�
_a

c

�
2
�
sin 3�; (3.17)

respectively. Since

2GM

c2R
¼

�
1þ

�
_a

c

�
2
�
sin 2�; (3.18)

the apparent horizon, where 2GM=ðc2RÞ ¼ 1, is given by a
two-sphere

sin� ¼
�
1þ

�
_a

c

�
2
��1=2

: (3.19)

At the maximum expansion, there is a marginally trapped
surface at � ¼ �=2 or a great sphere. From Eqs. (3.18) and
(3.19), it follows that any type II fluctuation immediately
after the maximum expansion necessarily has future
trapped surfaces, where 2GM=ðc2RÞ> 1, including � ¼
�=2, and a future apparent horizon at � 2 ð�=2; �aÞ,
which is given by Eq. (3.19).

IV. THRESHOLD OF PRIMORDIAL BLACK
HOLE FORMATION

A. Matter-dominated universe

In this section, we assume that the matter field is a dust,
where our three-zone model is exact. The Friedmann equa-
tion for the overdense region is then given by

_a2 ¼ A

a
� c2; (4.1)

where A ¼ 8�G�0a
3
0=3with � ¼ �0 and a ¼ a0 at t ¼ t0.

The solution of Eq. (4.1) is given by

a ¼ amax

2
ð1� cos�Þ; t ¼ tmax

�
ð�� sin�Þ; (4.2)

where amax and tmax are given in terms of a0 and �0 as
follows:

amax ¼ �0

�0�1
a0¼ �0

ð�0�1Þ3=2cH
�1
0 ; tmax ¼�

2

amax

c
;

(4.3)

where Eq. (3.6) is used.
The apparent horizon in the overdense region is given by

� ¼ 2� and � ¼ 2�� 2�: (4.4)

If we concentrate on type I fluctuation, i.e., 0<�a < �=2,
the future apparent horizon corresponds to � ¼ 2�� 2�.
Let us assume that a future apparent horizon exists when
the overdense region shrinks to f (0< f < 1) times the
maximum expansion, i.e., a=amax ¼ f. Then, Eqs. (3.19)
and (4.1) yield

�a > arcsin
ffiffiffi
f

p
: (4.5)

At the maximum expansion, the areal radius of the over-
dense region is given by

Ra;max ¼ amax sin�a: (4.6)

This cannot be greater than amax . The combination of
Eqs. (4.5) and (4.6) meansffiffiffi

f
p

amax < Ra;max � amax : (4.7)

Since we can rewrite Ra;max as

1Strictly speaking, the notion of an apparent horizon depends
on the choice of a Cauchy surface on which it is defined. We here
take the t ¼ const surface as a Cauchy surface.
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Ra;max ¼ amax sin�a ¼ �0

�0 � 1
a0 sin�a ¼ �0

�0 � 1
Ra;0;

(4.8)

where Ra;0 ¼ a0 sin�a is the areal radius of the overdense

region at t ¼ t0, using Eq. (4.3) we find

f < ð�0 � 1Þ
�
Ra;0

RH0

�
2 � 1; (4.9)

where RH0
¼ cH�1

0 . This is the condition for primordial

black hole formation in terms of the quantities at t ¼ t0.
The above condition is exact, although the factor f is left
unspecified.

It is a convention to express the condition for primordial
black hole formation in terms of the density perturbation
�H at the horizon crossing. As we have seen, ð�0 � 1Þ�
ðRa;0=RH0

Þ2 is equal to the density perturbation �UH
H at the

moment of horizon crossing in the uniform Hubble slice.
Equation (4.9) can then be reduced to the condition in
terms of �UH

H as follows:

f < �UH
H � 1: (4.10)

In the dust case, f should be determined by considering the
effects, such as caustics, inhomogeneity, and deviations
from spherical symmetry inside the overdense region;
these effects can strongly affect the collapse dynamics
and then prevent the overdense region from becoming a
black hole at the moment before the overdense region
shrinks to f times the maximum expansion. These effects
have been discussed by Khlopov and Polnarev [16].

B. Universe dominated by a perfect fluid
with p ¼ w�c2

1. Jeans radius and Carr’s threshold

We will see how the primordial black hole formation
condition against the pressure gradient force is obtained
with the three-zone model. We assume the equation of state
p ¼ wc2� (w> 0). Except for w � 1, we can expect that
the Jeans criterion gives the threshold of black hole for-
mation rather than the nonspherical effects. For this case,
the flat Friedmann solution is given by

ab / t2=ð3ð1þwÞÞ: (4.11)

The Friedmann equation for the overdense region is
given by

_a2 ¼ Aa�ð1þ3wÞ � c2; (4.12)

where A is given by

A ¼ 8�

3
G�0a

3ð1þwÞ
0 ; (4.13)

with � ¼ �a and a ¼ a0 at t ¼ t0.
At the maximum expansion, the areal radius of the

overdense region is given by

Ra;max ¼ amax sin�a: (4.14)

This cannot be greater than amax due to spherical geometry,
while this must be greater than the Jeans radius RJ of the
overdense region at maximum expansion,

RJ < Ra;max � amax : (4.15)

The precise estimate of RJ is not a trivial task. The standard
Newtonian argument of the Jeans instability in a static and
uniform gas cloud gives

RJ ¼ cs

ffiffiffiffiffiffiffi
�

G�

s
; (4.16)

where � and cs are the density and the sound speed of the
background uniform gas cloud, respectively. We may re-
place cs with

ffiffiffiffi
w

p
c in the present case. Now we can adopt

the following choice:

RJ ¼
ffiffiffiffi
w

p
c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G�max =3

p ¼ ffiffiffiffi
w

p
amax : (4.17)

Note that this is
ffiffiffiffi
w

p
times the Hubble radius of the back-

ground flat Friedmann universe in the uniform density
slice.
Since Eqs. (3.6), (4.12), and (4.13) yield

amax

a0
¼

�
�0

�0 � 1

�
1=ð1þ3wÞ

(4.18)

and

a0 ¼ ð�0 � 1Þ�1=2cH�1
0 ; (4.19)

Eq. (4.15) gives the following exact relation:

w< ð�0 � 1Þ
�
Ra;0

RH0

�
2 � 1: (4.20)

Since

ð�0 � 1Þ
�
Ra;0

RH0

�
2 ¼ �UH

H ; (4.21)

again, we find the following condition for primordial black
hole formation:

w< �UH
H � 1: (4.22)

However, this is clearly dependent on the choice of RJ. In
other words, it is the choice of RJ given by Eq. (4.17) that
reproduces Carr’s threshold.

2. Refining the threshold

It should be noted again that there is some ambiguity in
the choice of the Jeans radius in Eq. (4.17) by a numerical
factor of order unity. Here we develop a physical argument
to determine the numerical factor of the threshold value.
Defining the new variables ~a and ~t [7,27] such that

~a ¼ a1þ3w; d~t ¼ ð1þ 3wÞ~a3w=ð1þ3wÞdt; (4.23)
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we can transform Eq. (4.12) into the dust form:�
d~a

d~t

�
2 ¼ A

~a
� c2: (4.24)

This can be integrated to give the parametric form of the
solution,

~a ¼ ~amax

1� cos�

2
; ~t ¼ ~tmax

�� sin�

�
; (4.25)

where ~amax and ~tmax are given as follows:

~amax ¼ �0

�0 � 1
~a0; ~tmax ¼ �

2

~amax

c
: (4.26)

Using the ð�;�Þ coordinates, the line element can be
rewritten in the form

ds2 ¼ ~a2=ð1þ3wÞ
�
� 1

ð1þ 3wÞ2 d�
2 þ d�2 þ sin 2�d�2

�
:

(4.27)

The apparent horizon in the overdense region is given by

� ¼ 2� and � ¼ 2�� 2�: (4.28)

If we concentrate on type I perturbation, i.e., 0<�a

<�=2, the future apparent horizon corresponds to � ¼
2�� 2�.

The Jeans scale appears in the confrontation between the
pressure gradient force and the gravitational force or equiv-
alently between the sound crossing time and the free fall
time. The sound wave propagates in the closed Friedmann
geometry according to

a
d�

dt
¼ � ffiffiffiffi

w
p

c: (4.29)

Using Eqs. (4.23) and (4.25), this can be rewritten as

d�

d�
¼ �

ffiffiffiffi
w

p
1þ 3w

(4.30)

in terms of � and �. The solutions are given by

� ¼ � 1þ 3wffiffiffiffi
w

p �þ C�; (4.31)

where C� are constants of integration.
The rarefaction wave starts at the surface � ¼ �a of

the overdense region at � ¼ 0 and propagates inwardly to
the center. The compression wave also propagates from the
center to the surface outwardly, if there is any inhomoge-
neity within the overdensity. Since the region is initially
expanding and the pressure gradient force generally pushes
the fluid outwardly, if the sound wave crosses over the
overdense region before the maximum expansion, the dy-
namics of the overdense region may be strongly affected
due to the pressure gradient force so that it may not reach
the maximum expansion but continue expanding. We can
at least expect that the pressure gradient force significantly
delays the collapse in this case.

This expectation motivates us to adopt the criterion that
if and only if the sound wave crosses from the center to the
surface outwardly or from the surface to the center in-
wardly before the maximum expansion, the pressure gra-
dient force prevents the overdense region from becoming a
black hole. This requirement is naturally equivalent to the
formation criterion that the sound crossing time over the
radius be longer than the free fall time from the maximum
expansion to complete collapse. See Fig. 2, which shows
the trajectory of the sound wave for the threshold case,
where the sound wave crosses over the radius of the over-
dense region at the same time of the maximum expansion.
The present criterion reduces to the following condition:

�a >
�

ffiffiffiffi
w

p
1þ 3w

: (4.32)

This means that the Jeans scale RJ at the maximum ex-
pansion can be identified with

RJ ¼ amax sin

�
�

ffiffiffiffi
w

p
1þ 3w

�
: (4.33)

Therefore, we obtain the following formula for the thresh-
old value of primordial black hole formation:

�UH
Hc ¼ sin 2

�
�

ffiffiffiffi
w

p
1þ 3w

�
; (4.34)

and �UH
H for primordial black hole formation must satisfy

�UH
Hc < �UH

H � 1: (4.35)

FIG. 2. The trajectories of the sound waves and apparent
horizons in the �� plane for the formation threshold. The sound
wave just crosses over the radius of the overdense region from
the big bang to the maximum expansion, which is denoted by a
thick solid line. The stronger and weaker conditions are also
shown by thin dashed lines.
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This can be considered as a (roughly) necessary and suffi-
cient condition for primordial black hole formation.

Formula (4.34) implies that �UH
Hc increases from 0,

reaches a maximum value sin 2ð ffiffiffi
3

p
�=6Þ ’ 0:6203 at w¼

1=3, and decreases to 1=2, as w increases from 0 to 1. �UH
Hc

decreases as w increases from 1=3 because of the factor
1=ð1þ 3wÞ on the right-hand side in Eq. (4.30). This factor
appears because the dynamical time of the collapse gets
shortened by the contribution of the pressure to the source
of gravity. �UH

Hc is approximated as �UH
Hc 	 �2w if w � 1,

which is �2 times the conventionally used Carr’s threshold
value w, and almost twice for a radiation fluid w ¼ 1=3.
This means that our analytic formula implies much less
production efficiency for w � 1 and considerably less
efficiency for w ¼ 1=3 than the conventional estimate.
On the other hand, for w * 0:6, our formula gives a lower
threshold value and hence implies higher production effi-
ciency than the conventional estimate.

Although there are many other possible choices for the
criterion of black hole formation, the present choice to
derive Eq. (4.34) not only is physically natural but also
shows a very good agreement with the numerical result as
we will see later. To see this more explicitly, we further
invent the following two conditions. The one is a stronger
formation condition that the future apparent horizon must
form before the sound wave crosses over the radius. This
leads to

�a >
2�

ffiffiffiffi
w

p
1þ 2

ffiffiffiffi
w

p þ 3w
or �UH

Hc ¼ sin 2

�
2�

ffiffiffiffi
w

p
1þ 2

ffiffiffiffi
w

p þ 3w

�
:

(4.36)

The other is a weaker condition that the future apparent
horizon must form before the sound wave propagates in-
wardly from the surface to the center and then outwardly
back from the center to the surface. This leads to

�a >
�

ffiffiffiffi
w

p
1þ ffiffiffiffi

w
p þ 3w

or �UH
Hc ¼ sin 2

�
�

ffiffiffiffi
w

p
1þ ffiffiffiffi

w
p þ 3w

�
:

(4.37)

V. COMPARISON WITH THE
NUMERICAL RESULT

A. Density perturbation in the comoving slice

We here study the density perturbation in the comoving
slice. For this purpose, we need to systematically introduce
inhomogeneity, which arises from the big bang universe.
Indeed, Polnarev and Musco [13] introduce a time-
independent function of r, K ¼ KðrÞ, into the Friedmann–
Robertson–Walker metric (3.4) and obtain an asymptotic
solution of the Einstein equation in the limit t ! 0, where
all the hydrodynamical quantities are nearly homogeneous
with their perturbations being small deviationswith the small
parameter � ¼ ðRHb

=RaÞ2 but the curvature perturbations

can be arbitrarily large. They call such solutions asymptotic
quasihomogeneous solutions. They explicitly obtain the first-
order solution in terms of �, which is consistent with a pure
growing mode of superhorizon scale in the linear perturba-
tion theory. (See Ref. [28] for higher-order solutions.) They
use the first-order solution as initial data to simulate the
subsequent nonlinear evolution.
We here give the relationship between the density per-

turbations in the uniform Hubble slice and in the comoving
slice. The combination of Eqs. (32), (41), (57), and (85) of
Polnarev and Musco [13] gives the first-order solution for
the density perturbation � in the following form:

�COM
1 ¼ 3ð1þ wÞ

5þ 3w

1

3r2
d

dr
½r3KðrÞ�r20

�
RHb

Ra

�
2
; (5.1)

where �COM
1 and r0 denotes the first-order solution for

the density perturbation in the comoving slice and the
comoving radius of the overdense region, respectively.
For the overdense region in our three-zone model, we
have KðrÞ ¼ 1 and r0 ¼ sin�a, and therefore

1

3r2
d

dr
½r3KðrÞ�r20 ¼ sin 2�a ¼ �UH

H : (5.2)

Defining ~� by

~� ¼ �COM
1

�
Ra

RHb

�
2
; (5.3)

we find that this is time-independent and

~� ¼ 3ð1þ wÞ
5þ 3w

�UH
H : (5.4)

~� is used as the measure of the density perturbation in the
numerical simulations in Refs. [12–15]. Note that although
~� is defined in terms of the first-order solution of the
asymptotic quasihomogeneous solution, the relation (5.4)

between ~�c and �UH
H is exact.

B. Comparison with the numerical result

The latest accurate estimate of the threshold value based
on fully general relativistic numerical simulations has been
given by Musco and Miller [15] for 0:01 � w � 0:6.
Figure 3 shows the comparison of our analytic formula
with the numerical result shown in Fig. 8 of Ref. [15].
Since the numerical result is not so sensitive to the
parameter 	 of the curvature profile function adopted in
Ref. [15], we only plot the numerical result for 	 ¼ 0 or a
Gaussian profile for clarity. According to Musco and
Miller [15], we here present the comparison with the

perturbation variable in the comoving slice, ~�, which is
directly related to the exact density perturbation in the
uniform Hubble slice at the moment of horizon crossing,

�UH
H , by Eq. (5.4). In terms of ~�, our analytic formula gives
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3ð1þ wÞ
5þ 3w

sin 2

�
�

ffiffiffiffi
w

p
1þ 3w

�
¼ ~�c < ~� � ~�max ¼ 3ð1þ wÞ

5þ 3w
:

(5.5)

In Fig. 3, we plot our analytic formula for the threshold
~�c together with Carr’s original value w and its gauged
value 3ð1þ wÞw=ð5þ 3wÞ. We also plot our stronger and
weaker conditions in the same figure. As we can see in
Fig. 3, our analytic formula agrees with the result of the
numerical simulations within 20% approximately for
0:01 � w � 0:6. Note that our analytic formula gives
~�c 	 3�2w=5 for w � 1, ð2=3Þsin 2ð ffiffiffi

3
p

�=6Þ ’ 0:4135
for w ¼ 1=3 and 3=8 for w ¼ 1. We also find that the
numerical result can be qualitatively explained by our
sinusoidal function rather than the straight line. For larger
values of w (w * 1=3), our formula appears to systemati-
cally underestimate the threshold value. For a radiation
fluid (w ¼ 1=3), our formula gives a value smaller than the
numerical result of Musco and Miller [15] by 10% ap-
proximately. However, we should note that the numerical
result also should have dependence on the density profile.
It has been reported [13] that the threshold value for a

radiation fluid is ~�c ’ 0:45–0:47 and ’ 0:48–0:66 depend-
ing on the parametrization of curvature profiles as shown in
Figs. 10 and 11 of Ref. [13]. This suggests that the 20%
deviation cannot be avoided within our simplified analytic
model. Our formula shows a much better agreement for
smaller values of w than Carr’s original formula and its
gauged version, as expected. Even for larger values of w,

we can still see that our formula generally shows a better
agreement both qualitatively and quantitatively than the
gauged version of Carr’s formula. We can also see that the
numerical result of Musco and Miller [15] is between our
stronger and weaker conditions.
Our threshold formula implies that the threshold values

are approximately given by �UH
Hc ’ 0:5–0:6 and ~�c ’ 0:4

and for 1=3 & w & 1 and are not so sensitive to w in this
range. Our formula also suggests that primordial black
holes can be formed from type I fluctuations even for

very hard equations of state, i.e., w ’ 1, because ~�c is

well below ~�max .

VI. PROBABILITY DISTRIBUTION

Conventionally, it has been assumed that the probability
distribution for the density perturbation follows a Gaussian
distribution. Then, the fraction 
0ðMÞ of the Universe
which goes into primordial black holes of mass scale M
at the formation epoch is given by


0ðMÞ ¼
Z �max ðMÞ

�cðMÞ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2��2ðMÞp exp

�
� �2

2�2ðMÞ
�
d�

’ erfc

�
�cðMÞffiffiffi
2

p
�ðMÞ

�
’

ffiffiffi
2

p
ffiffiffiffi
�

p �ðMÞ
�cðMÞ exp

�
� �2

cðMÞ
2�2ðMÞ

�
;

(6.1)

where �ðMÞ is the standard deviation of the density per-
turbation of mass scale M, the factor 2 comes from the
Press–Schechter theory, erfcðxÞ is the complementary error
function, and we have assumed �max 
 �c 
 �ðMÞ in the
second and last equalities. The last expression is a conse-
quence of the asymptotic expansion of erfcðxÞ for x 
 1.
In the above expression,M just denotes the mass contained
within the overdense region and may be different from the
final black hole mass because of possible critical behavior
[29] or mass accretion.
However, as we have seen, the density perturbation �

has a finite maximum value, and one value of � generally
corresponds to two perturbation configurations, �a, the one
of type I and the other of type II. The type II fluctuation is
nonlinearly large, although � may be very small. The
Gaussian assumption to � implies the following unreason-
able consequence: a linearly small perturbation �a ’ 0,
where the overdense region is only slightly bent, and a
highly nonlinear perturbation �a ’ �, which is nearly
separate from the rest of the universe, would be realized
with the same probability.
Recently, Kopp, Hofmann, andWeller [6] suggested that

the curvature fluctuation is more suitable for the assump-
tion of probability distribution. The curvature fluctuation �
is defined by the conformal factor of the three metric in the
conformally flat form:

ds23 ¼ b2ðtÞe2�ðt;sÞðds2 þ s2d�2Þ: (6.2)

FIG. 3. The threshold values and the maximum value of the
density perturbation variable ~� in the comoving slice for differ-
ent values of w. The crosses plot the result of numerical
simulations by Musco and Miller [15] for the profile parameter
	 ¼ 0 or a Gaussian curvature profile. The solid, long-dashed,
and dashed lines denote the analytic formula obtained in
Sec. IVB, Carr’s original formula, and its gauged version,
respectively. We also plot our stronger and weaker conditions
with thin dotted-dashed lines, which are discussed in Sec. IVB.
The short-dashed line denotes the geometrical maximum value,
corresponding to a three-hemisphere.
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The averaged curvature fluctuation �� is defined in Ref. [6]
in terms of �a as

�� ¼ 1

3
ln
3ð�a � sin�a cos�aÞ

2sin 3�a

; (6.3)

where bðtÞ is chosen to be common between the overdense
region and the background flat Friedmann region. On the
other hand, the peak value of the original variable �ðt; 0Þ,
which will be denoted just by � , can be approximately
expressed as [6]

� ’ �2 ln cos
�a

2
(6.4)

in the present model, if the contribution from the compen-
sating layer is negligible. �� and � are plotted as functions of
�a in Fig. 4 of Ref. [6]. � (or ��) can be arbitrarily large
even for RHb

=Ra � 1, where the density perturbation � is

sufficiently small. Moreover, unlike �, � monotonically
increases from 0 to 1 as �a increases from 0 to �.
The threshold value can be derived by substituting

�a ¼ arcsin
ffiffiffiffiffiffiffiffiffi
�UH
Hc

q
into the right-hand side of Eq. (6.4).

Since any type II fluctuation necessarily has a future ap-
parent horizon immediately after the maximum expansion,
the threshold configuration must be of type I, and hence
0<�a < �=2.

We should note that � takes a value between 0 and 1,
that it has one-to-one correspondence with the overdensity
configuration �a, and that � is proportional to � in the
linear regime. For the above three facts, we can naturally
extend a Gaussian distribution for � (or any other similar
curvature variable) to the nonlinear regime, although this
needs further justification. As a consequence of this as-
sumption, a linearly small perturbation, i.e., �a ’ 0, is
realized with high probability, while a nearly separate
universe, i.e., �a ’ �, is realized with extremely low
probability. That is, we have


0ðMÞ¼
Z 1

�cðkBHÞ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�P� ðkBHÞ
q exp

�
� �2

2P� ðkBHÞ
�
d�

¼ erfc

0
@ �cðkBHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P� ðkBHÞ
q

1
A

’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P� ðkBHÞ

q
ffiffiffiffi
�

p
�cðkBHÞ exp

�
� �2c ðkBHÞ
2P� ðkBHÞ

�
; (6.5)

where P� ðkÞ is the power spectrum of � , kBH ¼ abHb at the

horizon crossing, and only in the last expression
�2c ðkBHÞ 
 P� ðkBHÞ is assumed. Since �2c 
 P� ðkBHÞ is

usually assumed, it is clear that the precise estimate of
the threshold value �c is very important.

For type I fluctuations, we find 0< �� < ��h ¼ ð1=3Þ�
ln ð3�=4Þ ’ 0:2857, where ��h is the value for �a ¼ �=2.
Our analytic formula gives an expression for ��c as
follows:

�� c ¼ 1

3
ln
3ð�a � sin�a cos�aÞ

2sin 3�a

���������a¼�
ffiffiffi
w

p
=ð1þ3wÞ

: (6.6)

For w � 1, this implies ��c 	 �2w=10. Since ��c is
a monotonically increasing function of �a, ��c takes a

maximum value ��c ’ 0:08602 at w ¼ 1=3 and ��c ¼
ð1=3Þ ln ½ð�=2� 1Þ= ffiffiffi

2
p � ’ 0:06377 at w ¼ 1. As for the

peak value � , we use the approximate expression (6.4).
Then, for type I fluctuations, we find 0< � < �h ¼ ln 2 ’
0:6931, where �h is the value for �a ¼ �=2. Our analytic
formula gives an expression for �c as follows:

�c ¼ �2 ln cos
�

ffiffiffiffi
w

p
2ð1þ 3wÞ : (6.7)

For w � 1, this implies �c 	 �2w=4. �c takes a maxi-
mum value �c ’ 0:2131 at w ¼ 1=3 and �c ¼
�2 ln cos ð�=8Þ ’ 0:1583 at w ¼ 1.
Figure 4 plots our analytic formula for the threshold

values ��c and �c. For 1=3 & w & 1, we find 0:064 & ��c &
0:086 and 0:16 & �c & 0:21, and both are insensitive
to w.

VII. SUMMARY

We have introduced an analytic three-zone model to
describe primordial black hole formation. We then applied
this model and derived a matter-independent maximum
amplitude of density perturbation at the horizon crossing
time. Next, we applied the same model to the perfect fluid
with the equation of state p ¼ w�c2. We then analytically
derived a threshold value �UH

Hc for the density perturbation

FIG. 4. The threshold values of the curvature perturbations ��
and � for different values of w. The lower thick and upper thin
solid lines denote our analytic formula for the threshold ��c and
the value ��h for a three-hemisphere, respectively. The lower
thick and upper thin dashed lines denote our analytic formula for
the threshold �c and the value �h for a three-hemisphere, re-
spectively, under the approximation described in the text. The
regions below and above the three-hemisphere line correspond to
type I and II fluctuations, respectively, for each of �� and � .
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at the horizon crossing in the uniform Hubble slice by a
physical argument about the sound waves and the maxi-
mum expansion. We have clarified the relationship of the
density perturbations between the uniform Hubble slice
and the comoving slice. Then, we compared the analytic
formula to the result of the state-of-the-art numerical
simulations from the initial data constructed by the first-
order asymptotic quasihomogeneous solutions. We have
seen that our analytic formula shows a very good agree-
ment with the result of the numerical simulations, and the
agreement is generally much better than Carr’s formula
obtained almost forty years ago. Further analytic and nu-
merical studies on this problem will be extremely impor-
tant to determine the threshold and the probability of
primordial black hole formation and then give the precise

prediction for the abundance of primordial black holes for
given early Universe scenarios.
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