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The study of compact binary inspirals and mergers with gravitational wave observatories amounts to

optimizing a theoretical description of the data to best reproduce the true detector output. While most of

the research effort in gravitational wave data modeling focuses on the gravitational waveforms them-

selves, here we will begin to improve our model of the instrument noise by introducing parameters that

allow us to determine the background instrumental power spectrum while simultaneously characterizing

the astrophysical signal. We use data from the fifth LIGO science run and simulated gravitational wave

signals to demonstrate how the introduction of noise parameters results in the resilience of the signal

characterization to variations in an initial estimation of the noise power spectral density. We find

substantial improvement in the consistency of Bayes factor calculations when we are able to marginalize

over uncertainty in the instrument noise level.
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I. INTRODUCTION

The cornerstone sources of gravitational radiation
targeted by the LIGO/Virgo observatories are mergers of
binary systems comprised of compact stellar remnants
such as neutron stars and/or black holes. Signal processing
for ground-based gravitational wave detectors is a daunting
data mining problem as merger signals are rare events of
short duration, lasting tens to hundreds of seconds, buried
in years worth of instrument noise. Extracting astrophys-
ical information from this mountain of data requires an
elaborate analysis pipeline, which in turn is dependent on
accurate theoretical predictions for the signals being pur-
sued and on the instrument noise with which those signals
compete.

While noise characterization is important for any
measurement, it is especially vital for gravitational wave
(GW) detection because most events will contribute
relatively little power to the data. In this noise-dominated
regime, small changes to the instrument background result
in fractionally significant changes to the relative strength of
the signal (or signal-to-noise ratio) and, consequently,
inferences that can be made about the system parameters.
For a detailed theoretical account of the role noise plays
in the process of drawing inferences from the data, see
Vallisneri’s 2011 work [1]. For studies investigating the
impact of real LIGO/Virgo noise on astrophysical infer-
ences using simulated gravitational wave signals, see
Refs. [2–4].

In Gaussian noise, the data analysis strategy for compact
mergers relies on Weiner matched filtering [5,6], which, in
turn, assumes an accurate model for the instrument data. In
the matched-filtering paradigm, we first require gravita-
tional wave simulations, or waveforms, h, which can be
computed for arbitrary astrophysical parameters � over the

prior volume of the search. Then, assuming the data d are
comprised of a gravitational wave signal and additive
Gaussian noise n, a matched-filtering statistic is adopted

such as the signal-to-noise ratio (SNR) � � ðdjhÞ= ffiffiffiffiffiffiffiffiffiffiffiðhjhÞp
or chi-squared residual,

�2 � ðd� hjd� hÞ; (1)

where we have used the standard noise weighted inner
product

ðajbÞ � 2
Z 1

0

aðfÞbðfÞ� þ a�ðfÞbðfÞ
SnðfÞ df (2)

with SnðfÞ representing the one-sided noise spectral den-
sity, i.e., the expectation value of the instrumental noise’s
Fourier power.
In the analysis of LIGO/Virgo data, the search for

candidate signals is performed by convolving the simulated
instrument response to a grid of precomputed trial
waveforms hð�Þ, or templates, with the data computing a
statistic that is maximized when the template identically
matches the signal, and keeping events, or ‘‘triggers,’’
which exceed a threshold for statistical significance [7,8].
The statistic employed in GW searches is similar in prin-
ciple to � but modified using statistical studies of the data
to satisfy the Neyman–Pearson criterion of minimizing the
false dismissal rate for a fixed false alarm probability.
Candidate events that exceed the statistical threshold and
pass consistency checks across the network are further
analyzed using stochastic samplers based on the nested
sampling [9–12] and/or Markov chain Monte Carlo
(MCMC) [2,3,13,14] algorithms to characterize the proba-
bility density function of � from which inferences about
the astrophysical system are then made. The latter portion
of the data analysis procedure, generically referred to as
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‘‘parameter estimation’’ (PE), is the focus of the work
presented here.

Parameter estimation procedures, like the search,
amount to comparing predictions for the GW data with
those that were actually collected by the interferometers.
Unlike the search phase, which uses a grid of waveforms to
make a point estimate of the GW signal’s parameters, PE is
performed over the continuous parameter space, and the
goal of the sampler is to find all of the locations in the
prior volume that sufficiently minimize the �2 statistic or
maximize the likelihood

pðdj�Þ / e��2=2; (3)

which, when weighted by our prior expectations for the
model parameters pð�Þ, yields the posterior distribution
function

pð�jd;MÞ � pðdj�;MÞpð�jMÞ
pðdjMÞ ; (4)

where pðdjMÞ is the marginalized likelihood, or evidence,
computed formally by integrating the numerator of Eq. (4)
over the full parameter space. The posterior distribution
function encodes our knowledge about the astrophysical
system, and it is from this distribution that all inferences
are ultimately made. Here and throughout this paper,
pðajbÞ denotes the conditional probability density of a
given b so, for example, the likelihood pðdj�;MÞ is the
probability (density) that we would measure data realiza-
tion d given model M and parameters �. Implicit in this
strategy are all of our assumptions about the data, repre-
sented by M, regarding both the signal (the gravitational
waves themselves) and the instrument noise. Improving
any aspect of M effectively improves the sensitivity of the
detectors, and software is a very cost-effective upgrade.
The majority of development work in this regard has
focused on the numerator of Eq. (2) through the study of
gravitational wave source modeling (e.g., Refs. [15–18]),
in which the goal has been to develop approximate wave-
forms that are both accurate, precise, and computationally
efficient. The importance of waveform development can-
not be overstated, with key challenges remaining as we
approach the advanced detector era.

Having an accurate noise model is of similar value to
waveform simulations, but has historically received less
attention, with the instrumental background assumed to be
stable and easily characterized. The standard picture of
gravitational wave detector data assumes that, in the
Fourier domain representation, the noise correlation matrix
is diagonal (i.e., the noise distribution is stationary [19])
and that the noise samples are Gaussian distributed in each
bin. The GW detector noise is characterized by the one-
sided power spectral density (PSD) SnðfÞ � 2

T h~n2ðfÞi.
A typical additional assumption on the data model is that
the PSD is both constant over the observation time and
precisely known. Figure 1 shows the average PSD for

LIGO from the initial design sensitivity configuration
and the expected performance of Advanced LIGO when
the facilities reach full sensitivity.
The three main assumptions about the noise model—

stationarity, Gaussian distributed, and known PSD—are
overly restrictive. The instrumental background is at best
slowly varying and at worst subject to short-duration, high-
amplitude excursions of excess power, or ‘‘glitches.’’ Even
in the absence of the (very problematic) glitches, failure to
account for long-term changes in the noise PSD can
introduce systematic errors in the signal characterization,
which may be comparable to the fundamental statistical
measurement uncertainties. Examples in which PSD fluctu-
ations have significantly biased the parameter estimation
were encountered during the parameter estimation analysis
of simulated signals added to data from the sixth LIGO and
secondVirgo science runs (S6 andVSR2, respectively) [20].
Parameter estimation is only half of the story, as the

follow-up analyses can be employed to quantifiably assess
the probability that a candidate detection is a GWevent by
comparing the evidence for competing models of the data.
In this context, the alternative model to a GW detection is
that the data contain only instrument noise. Thus, having
an adequate noise model is a prerequisite for performing
meaningful evidence comparisons.
Previous considerations for extending GW data analyses

beyond the strict assumptions about the noise came with
Allen et al. in Refs. [6,21], to which most subsequent
studies owe their heritage. The papers by Allen et al., while
considering generic GW data analysis, are ultimately
focused on measuring a stochastic GW background, which
was more recently addressed in a space-based detector
context [22] in which the noise must be modeled as the
usual instrumental background plus a foreground of
blended gravitational-wave signals from the Galaxy.
There are several studies promoting the use of a student’s
t distribution in lieu of Gaussian noise [19,23] as well as
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FIG. 1 (color online). Average LIGO PSDs during the S5 run
[38], with a prediction for the early Advanced LIGO PSD for
comparison [40].
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model selection recipes that employ additional coherence
tests between detectors in the global interferometer net-
work [24]. Finally, several proof-of-principle studies using
simulated data and parametrized noise models [22,25–27]
appear in the literature, building from techniques devel-
oped in response to the Mock LISA Data Challenges
(e.g., Refs. [28,29]).

In this work, we will employ a simple modification to
the noise model by upholding our classic assumptions
about the statistical properties of the noise but adding
parameters to our model of the data that fit for the PSD
in each detector. The additional degrees of freedom that we
will introduce to the model are not strongly correlated with
astrophysical parameters, thus avoiding marginalization
penalties for the physical quantities of interest (e.g.,
mass, spin, location, etc.). The parametrized noise model
demonstrated here still operates completely in the Fourier
domain without modifying the underlying functional form
of the noise distribution and therefore cannot account for
short-duration transient and non-Gaussian noise events.
However, we find significant improvement in the consis-
tency of the parameter estimation and model selection
results when using real LIGO data. Mitigating the effects
of detector glitches and therefore relaxing the assumptions
about stationary and Gaussian noise will be left to future
work in which we intend to build off of the theoretical
progress and simulations made in Refs. [19,21,27].

II. LIGO POWER SPECTRAL DENSITY

GW observatories are (nearly) continuously collecting
data as all-sky monitors awaiting transient events. Without
the ability to make accurate, real-time estimates of the
instrument background, previous incarnations of the
parameter estimation analysis have leveraged the scarcity
of GW events by using ‘‘off-source’’ segments of data that
are temporally ‘‘nearby’’ a significant trigger produced by
the matched-filtering search. The off-source data are as-
sumed to contain only instrument noise and are divided
into smaller segments used to estimate the PSD via Welch
filtering. The terms off source and nearby are not well
defined or motivated and often come down to an ad hoc
procedure of looking at the data around a trigger and
choosing times that do not have any obvious pathologies
(glitches, highly irregular PSDs, etc.). To date, the PE
procedures have had to make trade offs between long-
duration averages of the PSD for precision and shorter
contemporaneous estimates of the noise level to combat
the slow drift of the PSD. Short-duration data segments are
not ideal for PSD estimation, as the Welch averaging is
noisy in its own right. Consequently, the prescription used
in past analysis can be limited by the availability of data for
PSD estimation, perhaps due to gaps in the data collection
or obvious glitches. The challenges of adequately estimat-
ing the PSD from off-source data will be exacerbated in the
Advanced LIGO/Virgo data because, due to the improved

sensitivity at low frequencies, the amount of time during
which GW inspiral signals are in the sensitive band of the
detector will be increased substantially over previous
incarnations of the detectors. For low-mass sources, such
as binary neutron star mergers, several hours worth of data
will be necessary for PSD estimation. Figure 2 shows how
the goals of PSD estimation are in tension with the protocol
for characterizing the instrument background. The grey
trace is the superposition of four different PSD estimates
made from successive 1024 s segments of data. The solid
(red) line is the noise spectrum of the same data, for which
the entire 4096 s were used for its determination. Both
example PSDs are compared to the average noise level for
the entire S5 run, shown in the dashed (blue) line.
Intuitively, it is clear that the random fluctuations in
the noise estimate—which effectively add noise to the
measurement—are suppressed by using more data, but at
the expense of accuracy as the PSD slowly drifts.
During times in which the GW detector’s noise

characteristics satisfy the assumptions of Gaussianity and
long-term stationarity, the outlined procedure for noise
estimation is adequate for detection, characterization,
and, to some extent, model selection. Nonetheless, data
analysis procedures must be prepared for the inevitability
of discrepancies between the estimated instrument back-
ground and the actual noise in the data being analyzed.
Figure 3 shows an example of such variations occurring
over several days using data collected when LIGO was
operating at its initial design sensitivity. The figure focuses
on the lower frequencies of the sensitivity band because, at
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FIG. 2 (color online). Comparison of PSD estimates over a
small fraction of the full LIGO bandwidth made with the
prescription applied in LIGO/Virgo parameter estimation soft-
ware and using different durations of data to characterize the
instrument background. The gray line is a superposition of four
consecutive 1024 s blocks of data, divided into 16 s segments for
which the PSD is computed and then averaged across the block.
1024 s is typical for the PE follow-up of triggers from the search
pipeline. The red (solid) line shows the average PSD if the full
4096 s of data are averaged. The blue dotted line is the average
PSD for the entire science run.
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high frequency, the noise behavior is much more stable.
Dates are in the dd/mm/yy format, and times are in UTC,
with the GPS time for the beginning of the data segment in
parenthesis. The data used to estimate the PSDs were
collected at the LIGO Livingston Observatory (local time
is UTC-6 hours). By allowing the follow-up analysis to fit
for the PSD level while simultaneously characterizing the
GW signal, the restrictions that require sufficiently quies-
cent data near a candidate event can be relaxed, instead
allowing for long-term estimates of the PSD to be used.
In this paper, we will demonstrate such an adaptation to
the model on real detector data—a first for this type of
noise modeling, which has, until now, been restricted to
proof-of-principal studies on simulated data.

Before delving into the supporting examples, we must
first understand how the noise enters into the data analysis
formalism by considering discretely sampled noise-only
data from a single interferometer. The probability of col-
lecting N noise samples ~n when noise has zero bin-to-bin
correlations is

pðdÞ � YN
i

1ffiffiffiffi
�

p
�i

e
�j~n2

i
j

�2
i ; (5)

where �2
i ¼ 1

2Sn;i, the PSD is Sn;i, and the summation is

performed over positive frequencies only. From this fun-
damental assumption about the character of the instrument
noise using Eq. (1) and the discretized version of Eq. (2)
it is clear how we arrive at the likelihood function (3)
ubiquitously applied in gravitational wave data analysis.

To relax the assumption that we precisely know the PSD,
we introduce scale parameters �, which act as piecewise
multipliers to the PSD, modifying the likelihood as
follows [26]:

Sn;i ! �jSn;i; ij < i � ijþ1

lnpðdj�;N P Þ ¼ � 1

2

�
�2 þX

j

Nj ln�j

�
þ const: (6)

Each �j spans Nj Fourier bins from ij to ijþ1. The loga-

rithmic term in Eq. (6) comes from the normalization in
Eq. (5), which is normally left out of any calculations
because it does not depend on waveform parameters and
because relative, rather than absolute, likelihoods are
employed in the PE procedures. There is an independent
set of � for each detector in the network, and an additional
summation over interferometers must be included in
Eq. (6).

III. METHODOLOGY

To test the merits of the PSD-fitting noise model, we use
data from the end of LIGO’s fifth science run (S5). S5
began on November 5, 2005, and was completed on
September 30, 2007, yielding a series of novel, though
null, studies pertaining to limits placed on gravitational
wave emission by nearby pulsars and event rates for
compact binary mergers and cosmological backgrounds
[7,30–33]. Since then, the LIGO and Virgo facilities have
undergone a series of upgrades, and additional science runs
(S6 and VSR2), to substantially improve the prospects of
directly detecting gravitational radiation and realizing the
promises of this long-anticipated new field in astronomy.
Virgo data from VSR1 were also available during part of

S5, but we have restricted this study to LIGO-only data for
the following reasons. Having only two detectors in the
network puts stress on the parameter estimation methods
due to strong degeneracies between extrinsic parameters
(spatial location and orientation of the source), and an
auxiliary goal of this work was to improve efficiency in
such a network configuration. Furthermore, it is possible
that early detections will come from a two-detector net-
work as, during any given science run, the individual
detectors have duty cycles below 100%. For example,
�75% of the ‘‘coincident time,’’ defined as having more
than one interferometer producing good science data,
during the S6/VSR2 run had only two detectors operating
[8]. Additionally, the LIGO and Virgo facilities are oper-
ating on different schedules to complete the upgrades and
commissioning of the advanced detectors.
We use the Markov chain Monte Carlo software

found in the LIGO Algorithm Library (LAL) package
LALINFERENCE, which was one of the samplers used for

the parameter estimation studies following significant
events from the S6 science run [20], in which we have
included optional noise-model parameters. Complete
details of the sampler’s specific implementation in
LALINFERENCE will be available in a forthcoming publica-

tion. The MCMC algorithm implemented in LAL leans
heavily on parallel tempering [34] to efficiently sample
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FIG. 3 (color online). Example PSDs averaged over 4096 s of
initial LIGO science data from the Livingston Observatory.
Secular drift in the noise is subtle but does significantly impact
the characterization of gravitational wave signals. Dates are in
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the complicated posterior distribution function we have
come to expect from gravitational wave detections. In par-
allel tempting, several Markov chains are run simulta-
neously, each sampling the target distribution tempered by

a parameter T such that pðdj�;M; TÞ ! pðdj�;MÞ1=T .
Chains can exchange parameters while preserving detailed
balance, thereby improving the efficiency with which
the T ¼ 1 chain samples the target posterior distribution
function. We further use the high-temperature chains
to compute model evidences using thermodynamic integra-
tion [27,35] via

pðdjMÞ ¼
Z 1

0
hpðdj�;MÞi�d�; (7)

where� ¼ 1=T is the inverse temperature of the chain. For
this application, we use 24 parallel chains with tempera-
turesT spaced geometrically, i.e.,Ti ¼ T�T

i�1 with a step size
of�T ¼ 1:3 for chains 1–12 (T ¼ 1–25) and�T ¼ 1:55 for
chains 13–24 (T ¼ 40–5000).We followed the prescription
for diagnosing parallel tempering and thermodynamic
integration laid out in Appendix A of Ref. [27] to ensure
an adequate number of chains and temperatures.

The exact implementation of the PSD scale parameters
can be adjusted; however, we did not find a strong influence
on the results for the GW parameters based on different
choices for the noise parametrization. The most obvious
adjustable features for the PSD parameters are the number
of scale factors per interferometer and the priors used for
these same parameters. We use eight scale parameters per
interferometer, spaced logarithmically in frequency giving
the noise fitting more fidelity at lower frequencies, at which
the PSD fluctuations are most prevalent. Our choice of
prior in this work is the same as originally described in
Refs. [25,26], in which we assume that the priors are
Gaussian with widths determined by the number of
Fourier bins over which each scale factor is applied. The
scheme for proposing a new scale parameter �j;y from the

current value�j;x employs a draw froma normal distribution

with variance proportional to the width of the prior. To wit,

pð�jjMÞ / e
�ð1��jÞ2

2�2
j �j;y ¼ �j;x þ Nð0; �2

j=10Þ
�j ¼ �� 1=

ffiffiffiffiffiffi
Nj

q
;

(8)

where Nj is the number of Fourier bins over which �j is

applied to SnðfÞ and � is used to broaden the prior distribu-
tion, as� ¼ 1would be used for the case inwhichwe expect
no long-term variation in the noise level. For the results
reported here, we used � ¼ 10 but found that the GW
parameter estimation was not strongly affected by this
choice for reasonable values of �. The scale parameters
are independent across interferometers as well as frequency
blocks, so the joint prior is simply the product of pð�jjMÞ.

IV. RESULTS

To test the model’s performance on real LIGO instru-
ment noise, we selected from the S5 data 300 segments
with a duration of 4096 s. As the LIGO interferometers are
susceptible to noise artifacts (i.e., glitches), data quality
flags identifying times of poor detector behavior were
developed and used in GW searches during S5 [36]. We
have chosen our segments to fall within times that pass all
of the available data quality cuts. For each segment of data,
we estimated the PSD using the Welch filtering as imple-
mented in LALINFERENCE. We then selected as the data to
be analyzed a 16 s segment from September 13, 2007,
(GPS time 873750000) and performed various tests on
that data using the PSDs from throughout S5. We will refer
to the different models being tested using the following
notation:
(i) Model N D: Gaussian noise with fixed PSD.
(ii) Model N P : Gaussian noise with variable PSD.
(iii) Model N T : Student’s t-distributed noise with

fixed PSD and degrees-of-freedom parameter 	.
Each run of the MCMC could also be performed with
(model S1) or without (model S0) including a gravitational
wave template in the model.

A. Noise-only model comparison

Our first study compared the performance of the model
on noise-only data, focusing on four PSDs estimated at
times relatively nearby the data being analyzed (August 13,
two segments from September 12, and one from September
13, all in 2007).
The top panel of Fig. 4 shows a representative posterior

for the whitened noise distribution pðn= ffiffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p Þ over a
frequency block with a common value for �, spanning
�15 Hz and encompassing 240 data samples. The grey
shaded region spans the 90% credible interval for the noise
model, and the red (solid) line shows the median noise
distribution. Effectively, what we show here is the super-
position of the different noise models used by the Markov
chain over a 15 Hz band in the data. By comparison, the
noise distribution using the true PSD would be a unit
variance, zero mean Gaussian. Using the median distribu-
tion (red, solid curve), we compute the relative error
ðpmedðnÞ � pbestðnÞÞ=pbestðnÞ, shown in the lower panel of
Fig. 4. From this figure, we can see how marginalizing over
the PSD effectively introduces broader tails to the theo-
retical noise distribution, despite still using a Gaussian
distribution for the noise at any point in the Markov chain.
We repeat the analysis using four different initial PSD

estimates and compute the Bayes factor between N P and
N D to discern wether or not adding noise parameters
sufficiently improves our fit to the data to overcome the
‘‘Occam factor’’ incurred by enlarging the prior volume of
the model by introducing new degrees of freedom. Our
results are to be found in Fig. 5, where the marginalized

FORTIFYING THE CHARACTERIZATION OF BINARY . . . PHYSICAL REVIEW D 88, 084044 (2013)

084044-5



likelihood ratio for modelBN P ;N D
is shown as a function

of the GPS time for the PSD estimation. We generally find
very strong support for the PSD-fitting model (N P ). The
only example in which the fixed-PSD model was favored,
873750000, used the data being analyzed when making the
initial noise estimation. The Bayes factor comparing N P
and N D in this example resulted in 5:1 odds in favor of
the fixed-PSD model since the PSD estimation in this case
is accurate and does not require the additional complexity
in the model. However, from a model selection standpoint,
the two models are similarly supported by the data—a
Bayes factor of 5:1 is not typically considered a strong
discriminator between models. Thus, the noise-fitting
model is roughly on par with the standard procedure
when the initial PSD estimate is accurate. On the other
hand, if we move off source to estimate the PSD, as is done
in the real analysis, we see overwhelming support for the
PSD-fitting model (notice the y axis in Fig. 5 is a logarith-
mic Bayes factor, so even though the support for N P in
example 873739840 seems small, the odds ratio is larger
than 2� 107:1). To be fair, PSD estimation is usually
performed at times much closer to the candidate event,
but that requirement is born out of the knowledge that there
is secular evolution of the PSD and that it ends up restrict-
ing the amount of data that can be used to characterize the

instrument noise, thereby increasing stochastic fluctuations
in the PSD estimation itself. The capability that we are
demonstrating here frees the analysis of that constraint and
opens the possibility of using long-term, smooth estimates
for the noise.

B. Statistical improvement in parameter estimation

The true motivation of this study is not to compare
noise-only models but to see how the PSD fitting can
impact the characterization of GW detections. To that
end, we now simulate a gravitational wave detection by
adding a binary inspiral waveform to the data collected at
GPS time 873750000 and repeat the analysis including the
signal model S1.
We selected as our signal model quasicircular, nonspin-

ning, stationary phase waveforms computed out to the
3.5th post-Newtonian order in the phase, taking only the
leading-order amplitude—the so-called TaylorF2 wave-
forms from Ref. [37]. Because this study is focused on
the instrument noise, and is not a waveform study, the
TaylorF2 templates were chosen because of their computa-
tional efficiency. We did not anticipate significantly differ-
ent results for more physically detailed waveforms. We
then compared posterior distribution functions from the
various data models as well as the evidence for detection
in the form of the Bayes factor between models with and
without noise parameters. All injections were set to have a
signal-to-noise ratio between 1 and 20, depending on the
particular example.
The LALINFERENCE MCMC sampler was run on the

same data using the PSDs estimated from the other 300
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S5 data segments, with and without noise fitting. Our figure
of merit for this study is the distribution of the medians,
and the 90% credible intervals, from each run. We focus on

the chirp mass M � ðm1m2Þ3=5=ðm1 þm2Þ1=5 because it
shows the most sensitivity. In an ideal setting, the PSD
would be known a priori, and both the median and credible
interval would be identical from run to run—the data are
not changing from one example to the next—but long-term
variations in the PSD, nonstationary and/or non-Guassian
features in the noise used to determine the PSD, and the
finite amount of data available for noise estimation all
conspire to add systematic errors to our GW measurement
and thus modify the shape of the posterior distribution
from one example to the next.

Encouragingly, we find significant improvement in the
consistency of the parameter estimation when we use the
N P model. Figure 6 shows the distribution for the median
(left panel) and the width of the 90% credible intervals
(right panel) over all 300 runs using different times to
estimate the PSD. If our PSD model were perfect, there
would be no difference from run to run. In both figures, the
red (solid) distribution is for the fixed-PSD model (N D),
and the blue (dotted) histogram comes from the results of
the variable-PSD model (N P ). The vertical dashed grey
line in each example is the value obtained when using the
PSD, which was estimated from the data being analyzed
(prior to us adding the gravitational wave signal), and is
therefore assumed to be the ‘‘true’’ value for the median
and the size of the statistical error.

The fixed-PSD (red) distribution shows two distinct
modes in the 90% credible intervals. The LIGO detectors
improved throughout S5, with an increase in sensitivity at
low frequencies roughly between April 2006 and April
2007 [38]. The two modes seen in Fig. 6 correspond to
GPS times before and after the improvements in the LIGO

detectors. While it would never be under consideration to
use months-old data to estimate the PSD for a candidate
detection, we find this an encouraging example of how
including PSD scale parameters improves the consistency
from run to run for the location of the posterior distribution
function (the median) and its width (the 90% credible
interval) are more narrowly peaked around the true value.

C. Comparison with Student’s t likelihood

We will now take a slight detour in our study to address
an alternative method for mitigating the effects of real
detector noise—using a student’s t distribution as the
underlying noise model. This was originally advocated in
a gravitational wave context by Röver et al. [23] and has
shown promise in studies in which it has been applied to
both simulated and real LIGO data [19]. In this paradigm,
the likelihood becomes

lnpðdj�;N T Þ ¼ �X
j

	j þ 1

2
ln

 
1þ �2

j

	j

!
þ Cð	jÞ; (9)

where the sum on j is performed over all of the data, �2
j is

the whitened residual power in a single bin of data, and
Cð	jÞ is the normalization that is computed using Gamma

functions in 	. In the limit of 	j ! 1, the student’s t

likelihood recovers the standard Gaussian likelihood in
Eq. (3). The student’s t distribution is the ideal theoretical
choice for the likelihood when the noise is stationary and
the PSD is unknown and must be estimated by a finite
amount of data. Under such circumstances, the degrees-of-
freedom parameter 	j is, in principal, a constant over j

determined by the number of segments of data used
to make the initial estimate of the PSD. However,
small values of 	j substantially broaden the tails of the
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FIG. 6 (color online). Distributions of median (left) and width of 90% credible intervals (right) obtained from the MCMC samples
after analyzing the same data using 300 different initial PSD estimates. The red (solid) histograms come from the model that assumes a
perfectly known PSD, while the blue (dotted) histogram is for a model with PSD-scale parameters. The vertical dashed line denotes the
value when the PSD estimation came from the data being analyzed (prior to the GW signal being injected). Using the PSD scale
parameters, we find more consistency in the posterior distribution function across different times used to estimate the PSD.
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theoretical noise distribution, making the noise model
robust against non-Gaussianity in the data. Röver found
	� 10 to work well for real detector data despite using
�30 data segments to estimate the PSD.

We ran a few of our cases using the student’s t distri-
bution N T to compare against models N D and N P .
Results are shown in Fig. 7, where we have again chosen
to focus on the marginalized posterior distribution func-
tion for the chirp mass M, as it shows the largest
dependence to the PSD time for this example. Notice
M in this example is larger than before—we used a
higher-mass injection to put the ‘‘loudest’’ part of the
waveform in the data where PSD fluctuations were most
noticeable. The top left panel shows the results using the
usual Gaussian likelihood with no PSD-scale parameters
N D. The independent variable is the displacement away
from the injected value. Different histograms correspond
to the GPS time when the PSD was estimated. Time
873750000 (blue, dashed) contains the data segment
being analyzed. The differences between chirp-mass

distributions may not seem dramatic, but given that the
data are the same for each run, we would like to mitigate
any differences due to the PSD estimation as much as
possible. If we redo the analysis but now include the
PSD-fitting parameters N P (bottom left panel), we find
improved consistency. The top right panel uses no noise
parameters but adopts a student’s t distribution with
constant 	j determined by the number of data segments

used to estimate the PSD. In this example, we find that
the student’s t likelihood does improve the convergence
for one example (873739840, green dashed line) but
could not similarly improve results using the PSD from
GPS time 871000000 (red, solid line). This does not
imply that an optimized application of the student’s
t-distribution likelihood, by choosing fewer degrees of
freedom 	, is not capable of improving this example.
The point of this demonstration is to show that differ-
ences in PE results are not simply attributed to sampling
errors in the PSD estimation (which the student’s t dis-
tribution should perfectly accommodate) and the PSD

0

1

2

3

-0.4 -0.2 0 0.2 0.4

p(
 |d

)

0

1

2

3

-0.4 -0.2 0 0.2 0.4

871000000
873739840
873750000

0

1

2

3

-0.4 -0.2 0 0.2 0.4

p(
 |d

)

0

100

200

300

400

500

871000000 873739840 873750000

lo
g 

B
ay

es
 F

ac
to

r

PSD GPS start time
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the MCMC sampler. The top right panel uses one implementation of the student’s t likelihood. The bottom left panel uses the PSD-
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scale parameters can readily ameliorate differences
between the data being analyzed and the estimated noise
level.

The bottom right panel of Fig. 7 shows an arguably more
significant divergence between the standard likelihood, the
student’s t, and the PSD scale parameters. Here, we show
how the Bayes factor we would compute to determine the
odds that a GW has been detected depends strongly on the
PSD estimation. In this example, the PSD-fitting model
N P (cyan, dotted) shows the least variability in the detec-
tion confidence based on the PSD estimation, while both the
fixed-PSD model N D (magenta, cross-hashed) and stu-
dent’s t likelihood N T (yellow, solid) exhibit similar sen-

sitivity to the noise estimation, despite N T being able to
‘‘correct’’ the posterior for GPS time 873739840. TheBayes
factors in this example are sufficiently large (� e400:1) that
these fluctuations would not impact any conclusions drawn
from the data. However, we will now investigate the role �
can play in model selection for marginal detections, when
precision and accuracy in the Bayes factor computation will
be paramount in evaluating candidate GW events.

We would be remiss if we failed to reemphasize that the
student’s t distribution in these examples uses the strict
interpretation of the degrees of freedom 	 and that by
artificially setting that to a lower value, or marginalizing
over it in the way we treat the PSD scale parameters, we
may temper the differences between the models. The PSD-
fitting method advocated in this work is in fact closely
related to the student’s t distribution likelihood in
Refs. [19,23]. By replacing our Gaussian prior on � with
an inverse-chi-squared distribution and allowing each
Fourier bin an independent �, we can analytically margin-
alize over the noise parameters and arrive at the student’s
t distribution for the likelihood. If we were to adopt the
inverse-chi-squared prior for the piecewise PSD scale pa-
rameters and integrate the posterior over �, we arrive at a
likelihood that is qualitatively similar to the student’s

t distribution but maintains the broad flexibility needed to
handle large-scale drift in the LIGO/Virgo PSD. The deri-
vation and discussion of the analytic marginalization for
our PSD-fitting model can be found in the Appendix.

D. Discerning betweens signal and noise models

For our last study, we will use the same GW system and
S5 data as before but now change the distance to the source
to get a desired SNR. In doing so, we can monitor how the
Bayes factor changes as we increase the signal strength and
compare our two Gaussian-noise models N D and N P
with regards to their model selection capabilities. The
Bayes factor vs SNR plots can be found in Fig. 8. Here,
we see substantial variation in the Bayes factors when
using noise model N D (left-hand panel), to the point
where different conclusions about low SNR gravitational
wave detections (see inset of left-hand panel) could
potentially be made. For example, the SNR ¼ 6 injection
produced Bayes factors between �50:1 and �2� 105:1
under model N D. Bayesian model selection will not
be a useful tool for discriminating between GW detection
and noise if it is subject to such variability. On the
other hand, our model selection calculation is substantially
more stable when we include the PSD scale parameters
(right-hand panel).

V. SUMMARYAND FUTURE WORK

We have demonstrated, using LIGO data from the fifth
science run, that adding scale parameters that modify the
PSD makes inferences drawn from the data more robust
against slowly varying instrument noise. The added
parameters effectively allow us to marginalize our results
over uncertainty in the PSD. This work comprehensively
demonstrates the importance, and the benefits, of modeling
detector noise in the context of parameter estimation and
model selection.
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We show in Fig. 5 that the noise model including scale
parameters � receives overwhelming support when the
PSD estimation comes from times separate from the data
being analyzed but garners comparable support to the fixed
PSD noise model when the instrument background is
estimated from the data itself (which is, of course, not
possible when a potential GW event is contained in the
data).

We show in Fig. 6 that parameter estimation—in the
way of a point estimate (the median) and the width of
the posterior distribution—is sensitive to the PSD estima-
tion and that sensitivity can be significantly reduced by
marginalizing over the noise level as prescribed here.

We performed a small comparison between the PSD-
fitting model and the student’s t likelihood in Fig. 7 and
find the student’s t distribution, as we employed it here,
was not as effective as our parametrized PSD. That being
said, we see potential in combining the assets of these
different approaches to solving the same problem and
anticipate a hybrid marginalized-PSD/student’s t likeli-
hood may prove optimal, and we will pursue this and
other strategies for noise modeling as we continue to
improve the LIGO/Virgo noise model, such as using the
analytically marginalized likelihood in the Appendix and
marginalizing over hyperparameters characterizing the
prior.

Arguably the most important impact of the noise esti-
mation is in computing the Bayes factor to select between
models suggesting a GW detection and those favoring
instrument noise. Figure 8 shows strong dependence on
the PSD estimate upward of 20% to 50% variation in
logBS1;S0

, which is reduced to & 1% to 20% when the

PSD-fitting parameters are included. This improvement
does not come at the expense of diminished sensitivity to
the GW signals (which is always a risk when the dimension
of a model is increased). Specifically, if we look at the
SNR ¼ 7 injection in Figure 8, without the PSD-fitting
parameters, we could conclude that the Bayes Factor for
the signal model was anywhere between 8� 103:1 and
1:2� 106:1, which are sufficiently different odds to war-
rant alternative interpretations of the detection if we were
to interpret the odds ratio as a sort of false alarm rate. When
the PSD parameters are included, the Bayes factors are
found to lie between 2� 103:1 and 8� 103:1, telling
a more consistent story about the significance of this
(simulated) candidate.

The noise model promoted here frees the parameter
estimation follow-up analysis from its requirement to find
data near to a candidate event to estimate the noise level.
Such a requirement can impede the PE results because
data-quality shortcomings near a GW trigger can restrict
the duration of data available for the noise estimation.
Finding enough data to estimate the PSD will become
increasingly problematic in the advanced detector era as
low-mass binary inspiral signals will be �1000 s in

duration, requiring several hours of data for adequate
Welch filtering—a very long time to hope for stationary
noise. The ability to use long-term estimates of the
instrument noise relaxes that restriction, mitigates the
impact of transient noise events in the PSD estimation,
and reduces random fluctuations introduced in the resid-
ual by the finite duration of data used to estimate the
PSD.
Our demonstrations using real instrument data in this

paper show great promise in making parameter estimation
results more robust in the presence of real instrument noise,
but they are not perfect. Alternative functional forms for
the PSD scaling parameters, such as using parametrized
power laws [22] or a physical model for the noise power
spectral density, may further improve noise modeling
while ultimately liberating the analysis from using
data outside of that which is being analyzed to provide
information about the instrument background.
While mitigating the impact of the initial PSD estimation

is certainly an important technology for gravitational wave
data analysis, it does not address the more fundamental
assumptions about the instrument noise—that the noise is
Gaussian distributed and stationary over the duration of the
data being analyzed. This study is our first foray into
applying more sophisticated noise modeling techniques
into real detector data, and we are bolstered by the results
here to pursue alternative, ‘‘heavy-tailed’’ distributions for
the noise such as the student’s t [19] or a sum of two
Gaussians [27], as well as incorporating the Bayesian
model selection on glitches into the LALINFERENCE

software as demonstrated by the Bayes Wave algorithm
first introduced in Ref. [27].
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APPENDIX: ANALYTIC MARGINALIZATION
OVER �

It is possible to analytically marginalize over the noise
parameters that appear in Eq. (6) if a slightly different prior
than Eq. (8) is used. Consider the likelihood in Eq. (6),

pðdj�;N P Þ ¼
Y
j

Y
ij<i�ijþ1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��jSn;i

p

� exp

�
�
P

ij<i�ijþ1
�2
i

2�j

�
; (A1)

where

�2
i �

j~nij2
Sn;i

: (A2)

If we impose a prior on each �j of the form [39]

pð�jj
j;N P Þ ¼
ð1þ 
jÞ1þ
j

�ð1þ 
jÞ �
�ð
jþ3Þ
j exp

�
� 1þ 
j

�j

�
;

(A3)

where 
j > 0 is a hyperparameter, then we can integrate

the dependence on �j out of the posterior (i.e., marginalize

over the �j), obtaining

pðdj�0;�;N P Þ�
Z
d�pðdj�;N P Þpð�j�;N P Þ

¼Y
j

�ðNj

2 þ2þ
jÞ
�ð1þ
jÞ ð1þ
jÞ�ðNj2 þ1Þ

�
" Y
ij<i�ijþ1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Sn;i

p
#

�
�
1þ 1

2ð1þ
jÞ
X

ij<i�ijþ1

�2
i

��ðNj2 þ
jþ2Þ
;

(A4)

where �0 ¼ � n � are the non-noise parameters, and recall
that Nj ¼ ijþ1 � ij is the number of frequency bins in the

jth group.

The prior in Eq. (A3) is chosen so that the priormean of
� is 1, and the variance is

Var priorð�Þ ¼ 1

�
: (A5)

The distribution in Eq. (A3) is not a Gaussian, but, pro-
vided that 
j � Nj, the prior does not have a strong

influence on the posterior. If, for example, we choose 
j

to match the variance in Eq. (8), that is,


j ¼
Nj

�2
; (A6)

with � ’ 10, then we do not expect that the difference
between the Gaussian prior and the inverse-chi-squared
prior will matter in the posterior. Intuitively, as long as
the prior allows for relative fluctuations in the noise level

that are greater than 1=
ffiffiffiffiffiffi
Nj

p
, the uncertainty in the posterior

from making Nj independent measurements of the noise

level in the frequency bins from ij to ijþ1 will be much

smaller than the uncertainty in the prior, and the precise
shape of the prior will not matter.
Note that the likelihood in Eq. (A4) differs in general

from the student’s t likelihood discussed in Ref. [19] and
used elsewhere in this paper. In that work, each frequency
bin is allowed to fluctuate independently in noise level, and
the prior on the noise is not constrained to have a mean of 1.
The independence of the noise bins means that there is, in
effect, one � parameter per bin in that work [see Eq. (9)];
because of the large number of noise paremeters, measure-
ments of the noise are correspondingly weak, and the
marginalized likelihood is much more dependent on choice
of prior. For the choice 	j ’ 10, the prior variance on the

noise (which is approximately the posterior variance on the
noise, since there is only one bin per noise parameter) is
about 10%; in the method discussed in this Appendix and
throughout the paper, the posterior variance is controlled
mostly by the Nj independent measurements of the noise

level associated with one �j parameter, not the wide prior.

This method can therefore cope better with the relatively
large noise variations from time to time (see Fig. 2) without
large uncertainty on the noise estimate from the data.
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