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The Hamiltonian constraint is the key element of the canonical formulation of loop quantum gravity

(LQG) coding its dynamics. In Ashtekar-Barbero variables it naturally splits into the so-called Euclidean

and Lorentzian parts. However, due to the high complexity of this operator, only the matrix elements of

the Euclidean part have been considered so far. Here we evaluate the action of the full constraint,

including the Lorentzian part. The computation requires heavy use of SUð2Þ recoupling theory and several
tricky identities among n-j symbols are used to find the final result: these identities, together with the

graphical calculus used to derive them, also simplify the Euclidean constraint and are of general interest in

LQG computations.
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I. INTRODUCTION

In the Hamiltonian formulation general relativity (GR)
is completely governed by the diffeomorphism and
Hamiltonian constraints. For many years the complicated
structure of these constraints prevented a quantization of
the theory, until Ashtekar [1] suggested to replace the
‘‘old’’ metric variables by connections and tetrads.
Indeed in these variables GR resembles other gauge theo-
ries, like Yang-Mills theory, whereupon one encounters an
SUð2Þ-Gauss constraint in addition to diffeomorphism and
Hamiltonian constraints. This formulation was further im-
proved by Barbero [2] and serves today as the classical
starting point of loop quantum gravity (LQG) [3–5].

LQG follows the Dirac quantization program [6] for
constrained systems, i.e. one introduces a preliminary
kinematical Hilbert space on which the constraints can
be represented by operators and then seeks the kernel of
these operators defining the physical Hilbert space. The
Gauss constraint is solved by introducing a so called ‘‘spin
network’’ basis [7], naturally leading to a combinatorial
discrete structure of space-time similar to the one proposed
by Penrose [8], while the diffeomorphism constraint is
solved by considering equivalence classes of spin networks
under diffeomorphisms denoted ‘‘s-knots’’ [9].

A major obstacle for completing the canonical quantiza-
tion program in LQG is the implementation of the
Hamiltonian constraint S. The difficulties are mainly
caused by the nonpolynomial structure of S and the weight

factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðqÞp

determined by the intrinsic metric q :¼
qab on the initial hypersurface �. In fact, Ashtekar [1] was
motivated by the observation that the Hamiltonian con-
straint can be cast into a polynomial form when the metric

variables are replaced by triads and complex connections.
Even though this simplifies the constraint one has to
deal instead with difficult reality conditions. This reality
structure is trivial when the theory is formulated in real
connection variables as suggested by Barbero [2].
Unfortunately, the constraint is nonpolynomial in these
variables. It was then proposed to absorb the weight

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðqÞp

in the lapse function. But it turned out [10]
that this density weight is crucial in order to obtain a finite,
background independent operator.
After many efforts [11], Thiemann [12] discovered that

both problems, the nonpolynomiality and the appearance
of the weight factor, can be solved by expressing the
inverse triads through the Poisson bracket of volume and
connections (’’Thiemann trick’’). This trick made it
possible to construct a finite, anomaly-free operator that
corresponds to the nonrescaled Hamiltonian constraint
[4,12,13] and acts by changing the underlying graph
of the spin networks. The formal solution [13] to this
constraint is superpositions of s-knot states with ‘‘dressed
nodes,’’ which are nodes with a spiderweblike structure.
Criticism appeared [14] mostly concerning the ‘‘ultralo-
cal’’ character of the construction and regularization ambi-
guities. However, until now, this is the only known scheme
able to realize an anomaly-free quantization of the Dirac
algebra at least on shell.
This construction is at the heart of many other ap-

proaches within canonical LQG, such as the master con-
straint program [15], algebraic quantum gravity (AQG)
[16], most recent models with matter [17–19], and sym-
metry reduced models like loop quantum cosmology
[20,21]. Also the covariant approach (spin-foam models)
[22] is motivated by the idea of realizing the ‘‘time evolu-
tion’’ generated by a graph-changing Hamiltonian [23].
In fact, it is hoped that the spin-foam model might provide
a physical scalar product for canonical LQG (see e.g.
[24]). The attempt to match both approaches (not only
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heuristically) has led to new regularization schemes for the
Hamiltonian constraint [25,26] and also to the discovery of
new physical states in the canonical model [27].

Despite its central role for LQG the action of S has been
analyzed explicitly in only very few examples [27–29] and
these are confined to the Euclidean part of the constraint
only. This is mainly due to two reasons: first the presence
of the volume operator [30,31] and second the nontrivial
recoupling of SUð2Þ irreducible representations. The
volume operator in LQG has been studied intensively
under both the canonical [32–34] and the covariant
perspective [35]. Yet, the matrix elements are getting
very complicated with the more edges involved so that
one has to apply numerical methods [36,37] or semiclas-
sical analysis [38,39] to evaluate them. The second diffi-
culty appears due to the regularization of the connections
by holonomies. The corresponding operators act by multi-
plication which produces several Clebsh-Gordan decom-
positions and modifications to the intertwiners between
SUð2Þ representations at the nodes.

In this paper we explicitly compute the matrix elements
of the full Lorentzian constraint in the Thiemann prescrip-
tion for trivalent nodes. The final result still depends on the
matrix elements of the volume which are unknown in closed
form, but in principle computable. In the course of the
evaluation several recoupling identities will be proven,
which greatly simplify the final result and are expected to
be useful in all the computations involving curvature loops
or the ‘‘Thiemann trick.’’ The resulting compact formula
presented here opens the possibility to test the implementa-
tion of the constraint by simulations, analyze the behavior
of S in a large j limit, or further develop the methods of [27].

The article is organized as follows. In Sec. II Thiemann’s
construction for the Euclidean and Lorentzian term is
briefly reviewed and in Sec. III the main recoupling
identities are introduced that will then be applied in
Sec. IV to the Euclidean constraint leading to a new
and very compact expression for it. Finally in Sec. V,
we present the matrix elements of the Lorentzian
part. Section VI is left for concluding remarks and two
appendixes with further details on n-j symbols and the
volume operator are included to make the manuscript
self-contained.

II. HAMILTONIAN CONSTRAINT

A. Classical constraint

Let eia be a triad on a smooth, spatial hypersurface �

defining the intrinsic metric qab ¼ �ije
i
ae

j
b. Here, a, b ¼

1, 2, 3 are tensorial and i, j ¼ 1, 2, 3 are suð2Þ indices. In
the following, �i

a denotes the spin-connection associated

with eia and Kab the extrinsic curvature. Given Ki
a :¼

sgnðdet ðejcÞÞebi Kab, it can be shown that the densitized

inverse triad Ea
i
:¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ðqÞp
eai and Ai

a :¼ �i
a þ �Ki

a form
a canonical conjugated pair,

fAi
aðxÞ; Eb

j ðyÞg ¼ ��i
j�

b
a�

ð3Þðx; yÞ; (1)

where � is a real nonzero parameter and � ¼ 8�G
c3

�. If

Fab denotes the curvature of A and s the signature of the
space-time metric then the classical Hamiltonian constraint
is of the form

S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðqÞp TrfðFab � ð�2 � sÞ½Ka;Kb�Þ½Ea; Eb�g: (2)

According to [12], the square root in (2) can be absorbed
by using Poisson brackets of the connection A with the
volume,

V :¼ Vð�Þ ¼
Z
�
dx3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðqÞ

q
; (3)

and the integrated curvature,

K :¼
Z
�
dx3Ea

jK
j
a: (4)

More explicitly, inserting

½Ea; Eb�iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðqÞp ¼ � 2

�
�abcfAi

cðxÞ; Vg and Ki
a ¼ 1

�
fAi

aðxÞ; Kg

(5)

in (2) yields

H ¼ 2

�
�abc TrðFabfAc; VgÞ (6)

and

T :¼ S�H ¼ ðs� �2Þ 4

�3
�abc TrðfAa; KgfAb; KgfAc; VgÞ;

(7)

where S was split into an Euclidean part H and remaining
constraint T, which vanishes for �2 ¼ 1 and s ¼ 1. The
second part (7) can be further modified by expressing K
through the ‘‘time’’ derivative of the volume:

K ¼ � 1

��

�
V;
Z
�
dx3H

�
: (8)

Thus S is completely determined by the connection A,
the curvature F, and the volume V all of which have
well-defined operator analogues in LQG.

B. Quantization

Prior to quantization the local expressions (6) and (7)
must be smeared and regularized. That is to say the con-
nection and curvature of the integrated constraint S½N� :¼R
� NðxÞSðxÞ are replaced by holonomies along edges and

loops, respectively. The properties of the operator depend
highly on the chosen regularization and up to now there are
several different models on the market (see e.g. [3,12,26]).
Here, we follow the original proposal [12] because it is
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comparatively easy and leads to anomaly-free and finite
operators.

Since the Euclidean constraint H½N� depends linearly
on the volume and the volume operator is acting locally on
the nodes, it suffices to construct a regularization in
the neighborhood of a node n in a given graph � and
then extend it to all of �. Let sI be a segment of an edge
eI incident at n and �IJ the loop generated by sI and sJ;
we mean �IJ ¼ sI � aIJ � s�1

J where aIJ is a semianalytic
arc which only intersects with � in the endpoints of sI
and sJ (see Fig. 1). In this way, any three (nonplanar) edges
eI, eJ, and eK incident at n constitute an elementary
tetrahedron �IJK. Starting with �IJK one can now con-
struct seven additional tetrahedra (see [12] for details),
such that the eight tetrahedra including �IJK cover a
neighborhood of n. Afterwards this is extended to a full
triangulation1 TðI; J; KÞ of � and H½N� is decomposed
into

P
�2TH�½N�.

On the elementary tetrahedron �IJK the connection
A and the curvature F are regularized as usual by smearing
along sK and �IJ, respectively, so that the regularized
constraint is defined by

H�IJK
½N� :¼ X

i;j;k2fI;J;Kg

2

3�
NðnÞ�ijk Tr½h�ij

hskfh�1
sk ; Vg�;

(9)

where hs is the holonomy along side s and NðnÞ is the
value of the lapse function NðxÞ at n. In the article [29] it
was proposed to generalize this by considering holonomies
in an arbitrary irrep m that yields

Hm
�IJK

½N� :¼ X
i;j;k2fI;J;Kg

NðnÞ
N2

m�
�ijk Tr½hðmÞ

�ij
hðmÞ
sk fhðmÞ

s�1
k

; Vg�;

(10)

with the normalization factor N2
m ¼ ð2mþ 1Þmðmþ 1Þ.

At this point, the quantization of (10) is straightforward.
Its action on a cylindrical function Ts on a spin net s with
underlying graph � is

Ĥ½N�Ts ¼ i

N2
m�l

2
p

X
n2�

8NðnÞ
EðnÞ

� X
nð�Þ¼n

�ijk TrðhðmÞ
�ij

hðmÞ
sk ½hðmÞ

s�1
k

; V̂�ÞTs: (11)

The first sum is running over all nodes of � and the second
over all elementary tetrahedra. lp is the Planck length.

Because every vertex is surrounded by 8 tetrahedra, the
smearing of H in the neighborhood of n yields 8 times the
same factor. Apart from that, at an m-valent vertex n
there are EðnÞ :¼ ðm3Þ elementary tetrahedra each of which

determines an adapted triangulation. Therefore we need to
divide by EðnÞ to avoid overcounting.
A huge advantage of the operator defined above is that it

is anomaly free, i.e. that the commutator of two constraints

Ĥ is vanishing up to diffeomorphisms. This is mainly due
to the behavior of the volume which is vanishing on
coplanar nodes.2 But, in fact, H only generates such nodes
(see Fig. 2) so that a second Hamiltonian acts again only on
the ‘‘old’’ ones.
The remaining part of the constraint T½N� can be quan-

tized similarly. However, the regularization is a bit more
involved because the extrinsic curvature must be regular-
ized separately. In principle T adds two new links each of

which is created by one operator K̂ :¼ i
l2p�

½V̂; Ĥ½1��. To
insure that the full constraint is still anomaly free, only
coplanar nodes should be generated. That means, it must
never happen that the two new links have a common

intersection. Because Ĥ is acting locally the second extrin-
sic curvature should be therefore regulated along tetrahedra
lying inside of the first ones (see Fig. 2). The holonomies in
T can be regulated as above such that finally

T̂½N�Ts ¼ 2iðs� �2Þ
N2

m�l
6
p

X
n2�ð0Þ

8NðnÞ
EðnÞ

� X
nð�Þ¼n

�ijk TrðhðmÞ
si ½hðmÞ

s�1
i

; K̂�hðmÞ
sj

� ½hðmÞ
s�1
j

; K̂�hðmÞ
sk ½hðmÞ

s�1
k

; V̂�ÞTs: (12)

In Eqs. (11) and (12) the triangulation T serves as a
regulator. This regularization dependence can be removed
by using a suitable operator topology.3

FIG. 1. An elementary tetrahedron � 2 T constructed by
adapting it to a graph �.

1Note, for each triple of edges adjacent to a node one con-
structs an independent triangulation.

2This is only true for the version defined by Ashtekar and
Lewandowski [31], not the one introduced by Smolin and
Rovelli [30].

3On diffeomorphism invariant states � 2 H diff � H �
kin the

regulator dependence drops out trivially because two operators Ŝ
and Ŝ0 that are related by a refinement of the triangulation differ
only in the size of the loops. This implies h�; Ŝc i ¼ h�; Ŝ0c i
(see [12] for details).
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III. COMPUTATIONAL TOOLS

In this section the tools for computing thematrix elements
of the Hamiltonian constraint are introduced and some
identities, which are important for the latter, are proven.

A. Graphical calculus

The evaluation of the above constraint is mainly based
on recoupling theory of SUð2Þ. In this context it has proven
beneficial to work with graphical methods. The calculus

that is used in this article was introduced in [27] and
provides an extension of the methods in [40] that is
especially useful in LQG because it incorporates an easy
treatment of (nontrivial) group elements.

1. Basic definitions

In the following small Latin letters represent irreducible
representations j; . . . 2 1

2N while Greek ones, �; . . . ¼
�j;�jþ 1; . . . j, are magnetic numbers. A state jj; �i in
the Hilbert space H j is visualized by , the adjoint

hj; �j is drawn as and a representation matrix

½RjðgÞ��� with g 2 SUð2Þ is pictured as

. Two lines carrying the same represen-

tation can be either connected by taking the scalar product,

or by contraction with the

2j symbol

(13)

This two-valent intertwiner defines an isometry between the vector representation ( , tip) and the adjoint representation
( , feather) whereby the transformations

X
�

j

� �

 !
jj; �i ¼ hj; �j and

X
�

j

� �

 !
hj; �j ¼ jj; �i

are graphically encrypted in and . The second identity can be derived from
the first one using

(14)

Note, the inner direction of (13) is crucial here since it indicates the order of the magnetic indices that differ by a sign when
it is interchanged due to ð�Þjþ� ¼ ð�Þ2jð�Þj�� and ð�Þ2ðj��Þ ¼ 1. Consequently,

Using (13) and the properties of Wigner matrices it is also straightforward to prove the following identity:

(15)

FIG. 2 (color online). The Euclidean constraint H creates a
new link (red line) joining two edges at the same vertex due to
the regularization of the curvature. On the right-hand side the
principal action of T is visualized: The red link is created by
the first extrinsic curvature while the blue one is created by the
second curvature operator that is regularized along a tetrahedron
lying inside of the first one.
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2. Recoupling

The basic building blocks of recoupling theory are the 3j symbols

(16)

that arise from coupling two irreps a and b:

(17)

As the tensor product H a �H b decomposes intoL
aþb
c¼ja�bj H c, a 3j symbol (16) is vanishing if ða; b; cÞ

are not compatible, i.e. if they do not obey ja� bj � c �
aþ b, and if �þ �þ � � 0. Since 3j’s are intertwiners
(or equivariant maps) they commute with the group action.
That means ½RaðgÞ���0	�

0�� ¼ 	��
0�0 ½RbðgÞ��

�0 ½RcðgÞ��
�0 for

any trivalent intertwiner 	���, which is encoded in

(18)

Apart from that, these symbols are invariant under an even
permutation of columns and related by ð�Þaþbþc for an
odd permutation. For this reason one has to assign an
orientation to the nodes labeling anticlockwise (þ) and
clockwise (�) order of the links [compare with (16)].
Another important symmetry is

a b c
� � �

� �
¼ ð�1Þaþbþc a b c

�� �� ��

� �
: (19)

The trivalent intertwiners (16) are fundamental building
blocks. All other intertwiners can be obtained from these.
For example a node which has ingoing as well as outgoing
links is constructed by multiplying with (13):

(20)

This together with (19) proves the equivalence of a trivalent node whose links are all ingoing with one whose links are all
outgoing, as was claimed in (16). Moreover, the intertwiner (20) is of importance when coupling two holonomies with
opposed orientation. In this case one finds with (15) and dc 	 2cþ 1

(21)
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A four-valent node arises from the contraction of two 3j symbols:

(22)

The internal leg x is drawn as a dashed line to emphasize that it is not a ‘‘true’’ edge in the sense that the leg does not have a
real extension in� but corresponds to a point and consequently cannot carry holonomies. Higher valent nodes are obtained
similarly by adding more and more internal (dashed) lines.

The advantage of the intertwiners built above is that they provide an orthogonal basis in the space of invariants
Inv½NingoingH

�
j �

N
outgoingH k� where * denotes the adjoint. The 3j symbols are even normalized to one:

(23)

While Inv½H a �H b �H c� is one dimensional, the dimension of an n-valent intertwiner space equates the number of
possible labelings of the internal legs. For example, x in (22) labels a basis4 of the four-valent space. Instead of coupling a,
b and d, c in (22), it is equally well allowed to chose a different coupling scheme, e.g., b; c��d; a, corresponding to a
different basis. These different bases are related by 6j symbols:

(24)

In a similar manner coupling schemes of five spins are related by 9j symbols (see Appendix A), schemes of six spins are
related by 12j’s, and so forth.

3. Simplifications

To avoid unnecessary complications, a slightly simplified version of the calculus introduced above is used
henceforth. We forgo the display of magnetic indices if not explicitly necessary as we did before, and abbreviate

by . In addition to that, vertices are assumed to have anticlockwise order. Only clockwise orientation is

marked explicitly by a label � (sometimes þ signs are kept for clarity). Furthermore, true edges of a spin net are
simply drawn as solid lines without explicitly showing the dependence on the group elements (triangles). Like above,
dashed lines help one to follow the coupling at a node and do not have a real extension in �. Even though this
simplifies the diagrams, there are certain aspects that have to be respected when evaluating the action of an operator
on a spin net. Obviously holonomies are always assigned to edges in � so that they can only be coupled via (17) or

4This basis is orthogonal but not normalized to one. The contraction of two intertwiners 	x, 	y yields
�x;y

dx
(signs can be always

absorbed by adjusting orientations) which follows directly from (23).
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(21) if they share (a part of) a solid edge. Instead, dashed parts can be modified arbitrarily or even removed
(see below for examples) as long as they live at the same node.5

Nevertheless, solid parts can be transformed into dashed ones by the action of an operator as will be explained in the

following example. Consider the action of Tr½
 
 
 hðmÞ
se ÔhðmÞ�1

se � on a node A (box in the graphic below) where se is a part of

an edge e emanating from the node and Ô is an arbitrary operator not depending on a holonomy along se. To start with, the

first holonomy hðmÞ�1
se is coupled to se via (21):

Here and , being open ended lines with tips and arrows, represent the magnetic indexes of hðmÞ�1
se which are not

contracted yet (note that in the whole article the index m is always used only as a spin, never as a magnetic number;
magnetic indexes only appear with greek fonts). The operator Ô will in general change the intertwiner, which now consists
of A and the dashed edge a. After evaluating Ô the holonomy hðmÞ

se is multiplied as the tip of hðmÞ
se is contracted with the

feather of hðmÞ�1
se so that

The solid part b is turned into a dashed part since first of all going along s�1
e and then along se pulls back to the node

and secondly the group element can be removed of hðmÞ
se and b due to (18). After all other components of the operator have

been applied the trace can be closed merging the remaining and .

B. Important identities

It will now be demonstrated how to work with the above calculus by means of specific examples, which will be
important in what follows. A useful technique to simplify complicated couplings is to insert a resolution of identity at the
intertwiner space. For example contracting the vertex on the left of this equation

(25)

with a trivalent vertex yields a tetrahedron that equals fad b
e

c
fg. This relation in combination with (24) proves to be very

handy for the evaluation of the following diagram:

5The only case where a solid line can be removed is when, through the coupling of other holonomies, the coloring of the edge is
changed to the trivial representation.

MATRIX ELEMENTS OF LORENTZIAN HAMILTONIAN . . . PHYSICAL REVIEW D 88, 084043 (2013)

084043-7



(26)

The signs arise from adjusting the orientation of edges and nodes. To apply (25) the orientation of the link z3 in the second

graphic has to be flipped and all nodes involved must be labeled by � instead of þ that gives ð�Þ4z3þ2ðyþmÞð�Þaþbþz3 ¼
ð�Þ2ðyþmÞð�Þaþbþz3 . Since 4j is an even integer for any spin j and ð�Þ2z1 ¼ ð�Þ2ðmþz3Þ because ðz1; z3; mÞ are compatible,

the final sign reduces to ð�Þ2yð�Þaþbþcþ ~m.
Instead of interchanging m and ~m one could have also used (24) to move to the edge a before applying (25).

Following this procedure one finds

(27)

On the other hand, the basis must be changed at least 2 times if should be finally aligned to b. Thus,

(28)

where the sum over the resulting three 6j’s [one from (25)] can be summarized in a 9j symbol6:8>>><
>>>:
a f r

d q e

p c b

9>>>=
>>>; :¼ X

x

dxð�1Þ2x
�
a b x

c d p

��
c d x

e f q

��
e f x

a b r

�
: (29)

It is often easier to follow the signs when one uses (17) [or (21)] and (25) instead of (24) as it is demonstrated in the
subsequent example7:

7Since in this specific case ~m is an integer, changing the orientation of the link ~m does not contribute a sign which is why there is no
arrow assigned to the link.

6See Appendix A for more details.
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Removing the line ~m between the upper link and the one on the right leads indeed to the same 6j as (24). After eliminating
the legs labeled by ~m in the right diagram the link m is vanishing as well due to (24). The resulting 6j’s can again be
summed up to a 9j:

(30)

Apart from the above examples, couplings of the form

are encountered in the subsequent analysis. Coupling the link m3 in a suitable way [here with (21)] yields

(31)

where (25) was utilized first to take away the two legs m3 and afterwards x2.

C. Action of the volume

Even though the volume cannot be computed analytically for generic configurations, it is comparatively easy to
calculate it for gauge-variant trivalent vertices transforming in a low spin. This is exactly the type of nodes that are of
interest here. Nevertheless, we will not explicitly calculate these matrix elements in this section but only summarize some
generic properties. More details can be found in Appendix B.

Noninvariant trivalent intertwiners can be treated as four-valent (invariant) ones, e.g.
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where one leg, herem, does not correspond to a true edge but indicates in which representation the node is transforming. In
a slight abuse of the conventions these open endsm are drawn as solid rather than dashed lines for better visibility. Whether
a leg at the intertwiner corresponds to a part of a true edge or is indicating gauge variance follows from the context.

In general V̂ alters the intertwiner structure, so that

(32)

Note, the above definition of the matrix elements Vz1
z2 depends crucially on the order of the node as well as the orientation

of the edges. Consider, for example, a node whose legs a and b are interchanged. Switching the legs back into the original
position before acting with V̂ gives a sign ð�Þz1þaþb, while exchanging them after the volume has been applied yields
ð�Þz2þaþb so that Vz1

z2 ða; bjc;mÞ ¼ ð�Þz1�z2Vz1
z2 ðb; ajc;mÞ.

IV. ACTION OF THE EUCLIDEAN CONSTRAINT

The action of the Euclidean constraint on trivalent nodes was determined for the first time in [28,29] using Temperely-
Lieb algebras and recalculated in [27] by graphical methods similar to the one introduced above. In this section a powerful
trick is presented that hugely simplifies this calculation.

A. Action on gauge-invariant trivalent vertices

For a single trivalent vertex with adjacent edges ei, ej, ek the Euclidean constraint (11) reduces to

4i

N2
m�l

2
p

�ijk Trm½ðh�ij
� h�ji

Þhsk½hs�1
k
; V� �; (33)

where the LapseNðnÞwas set to one and the subscriptm in Trm indicates that the holonomies have spinm. Moreover, since
Trm½h�ij

� ¼ Trm½ðh�ij
Þ�1� ¼ Trm½h�ji

� expression (33) reduces further to8

4i

N2
m�l

2
p

�ijk Trm½ðh�ij
� h�ji

ÞhskVhs�1
k
�: (34)

To begin with, the holonomy h�1
sk has to be coupled to the edge ek which leads to a gauge-variant vertex because the

magnetic indices are not contracted yet. Consequently,

(35)

8This argument applies to all intertwiners so that the commutator can be always replaced by hskVhs�1
k
.
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The action of the remaining holonomies in (34) can be simplified by
Theorem (loop trick)

(36)

where �ði; j; kÞ ¼ 1 if the edges ei, ej, ek are ordered anticlockwise, otherwise it equals �1.
Proof. The ‘‘free ends’’ of ðh�ij

� h�ji
Þhsk can be joined artificially by (21) which is graphically encoded in

Suppose hij ¼ ½RmðgÞ�
� then

To pass from the first line to the second, relation (15) was invoked. The sign ð�Þ2mþ ~m originates from the permutation of
the columns of the 3j symbol and is annihilated due to (19) in the last line.

Inserting this in the first equality proves the theorem.
As in the example on page 11, adding hsk to (35) transforms the solid line c1 into a dashed line so that with (36) and

~P
x :¼

P
xdx one obtains
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(37)

(38)

In (37) the sign ð�Þ2ðjkþmÞ stemming from coupling hs�1
k
and from (36) is canceled by ð�Þ2m, which arises from coupling the

part hs�1
j
of h�ij

, and by ð�Þ2a ¼ ð�Þ2ðbþjkÞ that is produced by the switch of the direction of a after coupling hsi . The dashed
parts of the diagram are removed by first making use of (25) to get rid of the triangle ðm;m; c1Þ and then of (30). Parts of the
signs resulting from these twomoveswere afterwards absorbed by an oddpermutation of rows and columns of the 9j symbol.9

To obtain the full action of Ĥ the above expression has to be contracted with �ijk so that

with

H
jijj
ab ðjkÞ ¼ 8i

N2
m�l

2
p

�ði; j; kÞ ~X
c1;

m12ð2Nþ1Þ

X
c2

Vjk
c2 ðji; jjjc1;mÞð�Þjj�bþc2�c1

�
m m m1

jk c2 c1

�8><
>:

a ji m

b jj m

jk c2 m1

9>=
>;: (39)

As for the volume, it is crucial to respect the orientation of the nodes and edges in the above formula. For example,

Swapping the legs ji and jj back into the original position before applying Ĥ generates a sign ð�Þjiþjjþjk and switching
them afterwards again contributes ð�Þaþbþjkð�Þaþjiþmð�Þbþjjþm for the nodes and ð�Þ2ðaþbþmÞ for reorienting the loop so
that in total10 H

jijj
a b ðjkÞ ¼ H

jjji
b a ðjkÞ. This result seems to be astonishing at first sight since Ĥ is antisymmetric. However, if

10The same conclusion can be reached by directly analyzing Eq. (39).

9See Appendix A for details.
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ðji; aÞ and ðjj; bÞ are exchanged in the matrix element then �ij changes its direction but also the legs of the nodes are
twisted so that in total this is nothing else than a relabeling and therefore should not change the value.

B. Action on gauge-variant nodes

Below we will have to calculate the extrinsic curvature of gauge-variant nodes, which is why we also have to evaluate

the action of Ĥ on nodes of this kind (here: a trivalent one transforming in spin m1). To start with we apply the following
trick:

(40)

Here, neither nor corresponds to true edges. Rather they indicate that the node is transforming inH m �H m1
.

Since the volume acts as a derivative operator and therefore only ‘‘grasps’’ true edges (see Appendix B), it is advisable to
glue and together, taking advantage of (17) and (25). Instead of having to evaluate V̂ on the node with two open
links, it is now possible to simply treat it as before acting on a node with just one open legm2 2 fjm�m1j; . . . ; mþm1g.
Together with(36) this yields

The dashed parts can be simplified exerting (30) and (31) and the symmetries of 9j’s:
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With the remaining summands of H one can proceed similarly if the basis of the intertwiner is changed before the trace is
evaluated such that is always assigned to the edge facing the loop. The full amplitude is then given by

(41)

where

Hij;x
ab;yðk;m1Þ ¼ �ði; j; kÞ 8i

N2
m�l

2
p

~X
z1 ;m2

m322Nþ1

X
z2

ð�Þm1þz1þxþiþaþ2j

�
m m1 m2

x z1 k

�
Vx
z2ði; jjz1;m2Þ

8><
>:
m2 z1 z2

m1 k y

m m m3

9>=
>;
8><
>:

i j z2

a b y

m m m3

9>=
>;:

and Hij;x
ab;y ¼ Hji;x

ba;y.
This concludes the discussion of the action of the Euclidean constraint on trivalent vertices, invariant as well as variant

ones. The matrix elements for higher valent nodes can be in principle obtained by analogous methods (see e.g. [27] for
four-valent vertices).

V. MATRIX ELEMENTS OF T̂

Having all the necessary tools at hand we can now proceed to calculate the matrix elements of
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T̂ / �ijkTrm½hsi½hs�1
i
; K̂�hsj½hs�1

j
; K̂�hsk½hs�1

k
; V̂��:

Because the volume and therefore also the extrinsic curvature K̂ ¼ i
l2p�

½V̂; Ĥ� of a gauge-invariant trivalent node is zero, the
only nonvanishing contribution of T̂ on such nodes is proportional to11

�ijkTrm½hsiK̂hs�1
i
hsj½hs�1

j
; K̂�hskV̂hs�1

k
�:

The only unknown part in this expression is the extrinsic curvature that will be discussed next before evaluating the full
trace in Secs. VB and VC.

A. Extrinsic curvature of gauge-variant trivalent nodes

As the extrinsic curvature is linear in Ĥ, its action on a trivalent (variant) vertex decomposes into a sum,

K̂ ¼ i

l2p�
ðK̂ð�ijÞ þ K̂ð�jkÞ þ K̂ð�kiÞÞ; (42)

of the three contributions, K̂ð�ijÞ :¼ 4i
N2

m�l
2
p
½V̂;Trm½ðh�ij

� h�ji
ÞhskVhs�1

k
�, associated to the loops �ij. By combining the

results of Secs. III C and IVB one finds immediately

K
jijj;c1
ab;c2

ðjk;m1Þ ¼
X
x;y

dyH
jijj;x

a b;y ðjk;m1Þ
�
1

dc2
Vy
c2ða; b; jk;m1Þ�x;c1 � Vc1

x ðji; jjjjk;m1Þ�y;c2

�
;

for

(43)

and the full extrinsic curvature is given by

(44)

Note, due to the symmetries of volume and Euclidean constraint K
jijj;c1
a b;c2

¼ ð�Þc1�c2K
jjji;c1
b a;c2

.

11This is not true in general.
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B. Matrix elements of Trm½hsiK̂hs�1
i
hsjK̂hs�1

j
hskVhs�1

k
�

The missing link to write down the complete action of T̂ on trivalent invariant nodes are the contributions

Trm½hsiK̂hs�1
i
hsj K̂hs�1

j
hskVhs�1

k
� and Trm½hsiK̂hs�1

i
K̂hskVhs�1

k
�. The latter contribution is analyzed in the succeeding

section while here the action of the first trace is evaluated. The term hskV̂hs�1
k

is just the same as for the Euclidean

Hamiltonian. Therefore,

(45)

Before acting with K̂ the dashed legmmust be erased from the diagram and moved to the appropriate place. This can
be done simultaneously via Eqs. (26)–(28) so that K̂ acts on the above expression by

In the next step hs�1
i
hsj is added. For the third term this is straightforward: hsj transforms b1 into a dashed line and hs�1

i
can

be coupled as usual via (21) resulting in

(46)

The most efficient way to proceed with the other two terms is to couple hsj via (17) and then use (25). This yields
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(47)

for the first term and

(48)

for the second term. Since the newly created nodes are coplanar, V̂ as well as K̂ are vanishing on them no matter if they are
gauge invariant or not. Therefore it suffices to calculate Tr½hsi K̂ 
 
 
 on the inner parts. Instead of considering the full
diagram (47) it suffices to evaluate Tr½hsiK̂ 
 
 
 on

Inserting (44) and contracting with the last holonomy hsi results in

for this node. Finally, all dashed parts of the graphics can be erased due to Eqs. (25) and (23). The other summands, (46)
and (48), can be treated along the same lines. Except that in these cases the inner parts are of the same type as the node
shown on the right-hand side of (45). Consequently, they have to be manipulated again to remove the dashed line m and
move to the right place before acting with K̂. The final result of this computation is
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C. Computation of Trm½hsiK̂hs�1
i
K̂hskVhs�1

k
�

As before hskV̂hs�1
k

produces a double noninvariant node transforming in the representation H �
m �H m

where * denotes the adjoint. In contrast to the above, the extrinsic curvature K̂ is directly acting on this
node. Therefore, it is advisable to introduce an artificial coupling as was done for the
volume:

Recall that m and m1 are purely internal so that the curvature operator only registers a trivalent node
transforming in spin m1 and the previous results (44) can be employed. Thus hs�1

i
K̂ transforms the above expression

into

MATRIX ELEMENTS OF LORENTZIAN HAMILTONIAN . . . PHYSICAL REVIEW D 88, 084043 (2013)

084043-19



The link m1 can be decoupled and parts of the internal lines can be removed:

The rest of the calculation is completely equivalent to the one in the previous section. With all other terms one can proceed
similarly, resulting in
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D. Contraction with �

To obtain the full action of T̂ on a trivalent (invariant) node, both trace contributions as computed in the previous
sections must be summed up and contracted with the � tensor. For the Euclidean constraint this antisymmetric contraction
could be nicely absorbed in the loop trick (36) and lead to major simplifications. Unfortunately, this does not happen for the
remaining part of the scalar constraint. Since both, volume and extrinsic curvature, depend on whether one couples first
holonomy hk or hi, this contraction is not simplifying but complicating matters. Yet, since we used an abstract calculus to
evaluate the trace parts we are free to switch edges and nodes in the most advantageous position as long as the changes in
(abstract) orientation and ordering are respected. For example:
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The trace can now be evaluated as above treating i as j and j as i. Finally the edges should be flipped back:

where we used Vjk
c2 ðji; jjjc1;mÞ ¼ ð�Þjk�c2Vjk

c2 ðjj; jijc1;mÞ, Ka1jj;c3
a2b1;c4

¼ ð�Þc3�c4 , and

Note, that here the sign generated by the first switch of the
edges is canceled by the one originating from restoring the
old orientations. This is a generic property and applies to
all terms of the full expression. Only signs arising from
volume and extrinsic curvature remain. The matrix ele-
ments corresponding to cyclic permutations of ði; j; kÞ are
simply obtained by exchanging the labels ðji; a:Þ by ðjj; b:Þ,
ðjj; b:Þ by ðjk; c:Þ, and so forth.

The second contribution Tr½hsiK̂hs�1
i
K̂hskV̂hs�1

k
� can

be treated along the same lines. The value of

Tr½hsjK̂hs�1
j
K̂hsk V̂hs�1

k
� can be calculated by first flipping

the edges so that i can be treated as j and vice versa and
afterwards restoring the original orientation.

VI. CONCLUSION AND OUTLOOK

In this article we derived for the first time an explicit
formula for the matrix elements of the full Hamiltonian
constraint in LQG including the Lorentzian part. As we

already pointed out, this constraint plays a major role in
any canonical quantization program for GR based on
real Ashtekar-Barbero variables so that the methods
developed in the course of the calculation are also of
interest in these approaches, e.g. the master constraint
approach. On the other hand, the tools developed to
compute the action of the curvature [especially the
loop trick (36)] or extrinsic curvature can be easily
adapted to models with nongraph-changing operators,
as the extended master constraint ansatz or AQG, by
extending the loops involved in the regularization in
such a way that no new links are created.
By exploiting several new recoupling identities, we

significantly simplified the matrix element so that the
recoupling part is totally captured in 6j and 9j symbols
for which symmetry properties and explicit formulas are
well known. The final expression still depends on the
volume but can be easily implemented on a computer for
further investigations. We also expect to get interesting
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insight from a large j expansion or the application in
symmetry reduced models. Of special interest would be,
for example, the recently introduced model [41,42] that
keeps the original SU(2) structure of the theory but has a
diagonal volume operator so that it may be possible to
give an analytical closed formula for the whole con-
straint within this Ansatz. Finally the presented analysis
opens the way for a comparison with the covariant
approach, because the spin-foam vertex amplitudes are
expected to be annihilated by the Hamiltonian constraint
[27]. As the matching between the canonical and cova-
riant kinematics [43] led to the upgrade of the old
Barret-Crane model [44] to the new EPRL-model [45],
the matching with the dynamical constraint is expected
to shed new light onto the canonical-covariant joint
theory.
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APPENDIX A: MORE ON 3j’S, 6j’S, AND 9j’S

For self-containedness some important properties of nj
symbols are listed here. Introductions to recoupling theory
can be found in various textbooks on quantum mechanics
and quantum angular momentum, e.g. [40]. For an exten-
sive list of properties of nj symbols, see e.g. [46]

3j-Symbols Relation to Clebsh-Gordan coefficients:

ha; �;b; �jc; �i ¼ ð�Þb�aþ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cþ 1

p a b c

� � ��

 !

where jb; �; a; �i ¼ jb;�i � ja;�i
Compatibility criteria
If one (or several) of the following rules is violated, then

a b c

� � �

 !

is vanishing:
(i) a; b; c 2 1

2N; a� � 2 N;�a � � � a; . . .

(ii) �þ �þ � ¼ 0
(iii) aþ bþ c 2 N, ja� bj � c � aþ b (triangle inequality)

Symmetries

a b c

� � �

 !
¼ ð�Þaþbþc

a b c

�� �� ��

 !
¼ ð�Þaþbþc

b a c

� � �

 !
¼ b c a

� � �

 !

6j symbols Definition in terms of 3j’s

�
j1 j2 j3

j4 j5 j6

�
¼ X


1;...;
6

ð�Þ
P

6
i¼1

ðji�
iÞ j1 j2 j3


1 
2 �
3

 !
j1 j5 j6

�
1 
5 
6

 !

� j4 j5 j3


4 �
5 
3

 !
j4 j2 j6

�
4 �
2 �
6

 !

Symmetries

�
a b c
d e f

�
¼
�
b a c
e d f

�
¼
�
b c a
e f d

�
¼
�
d e c
a b f

�
¼
�
d b f
a e c

�
¼
�
a e f
d b c

�
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Compatibility

�
a b c

d e f

�
¼ 0

unless the triangle inequalities hold for fa; b; cg, fa; e; fg, fd; b; fg, and fd; e; cg
Orthogonality X

x

dx

�
a b x

d e c

��
a b x

d e c0

�
¼ �c;c0

1

dc

if the compatibility requirements are fulfilled, with dx ¼ 2xþ 1, dc ¼ 2cþ 1 the dimensions of the representations.

9j symbols Definition by 3j’s

8>>><
>>>:
j1 j2 j3

j4 j5 j6

j7 j8 j9

9>>>=
>>>; ¼ X


1;...;
9

ð�Þ
P

9
i
ðji�
iÞ j1 j2 j3


1 
2 
3

 !
j4 j5 j6


4 
5 
6

 !
j7 j8 j9


7 
8 
9

 !

� j1 j4 j7

�
1 �
4 �
7

 !
j2 j6 j8

�
2 �
6 �
8

 !
j3 j6 j9

�
3 �
6 �
9

 !

Definition by 6j0s

8><
>:
a f r

d q e

p c b

9>=
>; :¼ X

x

dxð�1Þ2x
�
a b x

c d p

��
c d x

e f q

��
e f x

a b r

�

Symmetries

8><
>:
a f r

d q e

p c b

9>=
>; ¼ ð�ÞS

8><
>:
d q e

a f r

p c b

9>=
>; ¼ ð�ÞS

8><
>:
a f r

p c b

d q e

9>=
>;

¼ ð�ÞS
8><
>:
f a r

q d e

c p b

9>=
>; ¼ ð�ÞS

8><
>:
a r f

d e q

p b c

9>=
>;

where S ¼ aþ bþ cþ dþ eþ fþ pþ qþ r.

APPENDIX B: VOLUME

For the sake of completeness thevolumeoperator is briefly
reviewed and the graphical framework for computing the
action is discussed here, closely following [29,32]. Thereby
we restrict our attention to the Ashtekar-Lewandowski vol-
ume [31], which was also analyzed in greater detail in [34].

1. General properties

Let Ts be a cylindric function on a spin network s and let
V ð�Þ denote the set of nodes of the underlying graph �.

The volume operator V̂ acts on Ts by

V̂Ts ¼
X

v2V ð�Þ
V̂vTs; (B1)

where

V̂ v ¼ l3p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�������� i

16 
 3!
X

eI\eJ\eK¼v

�ðeI; eJ; eKÞW½IJK�
��������

s
: (B2)

The sum extends over all triples ðeI; eJ; eKÞ of edges adjacent
to the vertexv, lp denotes the Planck length, and �ðeI; eJ; eKÞ
is determined by the orientation of the tangents _eI at v, i.e.
�ðeI; eJ; eKÞ ¼ sgn½det ð _eI; _eJ; _eKÞ�. The grasping operator
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W½IJK� :¼ �ijkX
i
IX

j
JX

k
K (B3)

depends on the right invariant vector fields (of SU(2))

Xi
I
:¼ �iTr

�
ðheI�iÞT @

@heI

�
(B4)

along the edge eI at v. Here, eI was chosen to be outgoing
from v, �i are the Pauli matrices, and T denotes the trans-
pose. The matrix elements ½�i�AB with spinorial indices A,
B ¼ 0, 1 and vector indices i ¼ 1, 2, 3 are natural inter-
twiners of spin and vector representation [i.e. ð1; 1=2; 1=2Þ].
Thus, Xi

I inserts an intertwiner ½�i�AB at an edge labeled by
the fundamental representation. Since an irrep l is the
completely symmetrized tensor product of 2l fundamental
representations this can be immediately generalized to
edges labeled by l. Similarly � is a vector invariant inter-
twining (1, 1, 1). Following the spirit of the graphical
calculus, W½IJK� can be visualized by

(B5)

where each handle grasps an edge e at v. Note, this
grasping depends on the orientation of e. Yet, we want to
use 3j symbols rather then the invariants � and �. These
differ from the corresponding 3j’s by a normalization con-
stant. The 3j’s are normalized to onewhile Tr½�2� ¼ 3! andP

iTrl½ð�iÞ2� ¼ 4½lðlþ 1Þð2lþ 1Þ�whereTrl indicates that
the trace is evaluated in spin l. Thus,

ffiffiffiffiffi
3!

p
in (B5) stems from

the normalization of �. Each grasp of an edge colored by l

gives additionally a factor Nl :¼ �i2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þð2lþ 1Þp

, in
particular,

(B6)

When using this formalism,12 one should keep in mind that
the right invariant vector fields are derivative operators and
hence only act on true holonomies. On the other hand W
cannot change the graph itself but only alter the inter-
twiners. Consequently, the links in (B5) are only added at
the vertex (in a dashed environment) and can be erased
again by pure recoupling theory.

2. Trivalent nodes

The computational effort to determine the matrix
elements of the volume operator is increasingly heavy as
the valency of the nodes grows. Therefore we only discuss
the case of a trivalent node

(B7)

transforming in spin m. On a trivalent node V̂v reduces to
l3p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiWijk�j

q
and the grasping yields

(B8)

In the second step a resolution of the identity in the intertwiner space was inserted (see Sec. III B). A careful evaluation by
the usual methods reveals that

(B9)

The 6j in this equation is only nonzero if ðx; y; 1Þ obey the triangle inequality, i.e. if jx� yj � 1. But for x ¼ y the 9j
symbol is vanishing since it is antisymmetric when switching the first and last columns. On the other hand, the 6j and the 9j
are symmetric under the exchange of x and y for y ¼ x� 1. Thus, if we work with rescaled nodes jvxiN ¼ ffiffiffiffiffi

dx
p jvxi, then

12This was developed first in [32]. However, they used another calculus based on Temperley-Lieb algebras which yields different
normalizations.
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Ŵ ½IJK�jvxiN ¼X
y

~Wx
yjvyiN

yields an antisymmetric matrix ~W, which has only subdiagonal and superdiagonal nonzero entries:

~Wx
y ¼ �y;x�1

ffiffiffiffiffi
3!

p ffiffiffiffiffiffiffiffiffiffi
dxdy

q
NjkNjiNjjð�Þxþjk�m

�
jk jk 1

x y m

�8>>><
>>>:
ji 1 ji

x 1 y

jj 1 jj

9>>>=
>>>;: (B10)

Fortunately, this matrix is diagonalizable so that the square root of W has a well-defined meaning. Suppose U is the
(unitary) map that maps fjvxiNg to the eigenbasis of ~W, then the matrix elements of the volume [compare with (32)] are
finally given by

Vx
yðji; jjjjk;mÞ ¼ l3p

4

ffiffiffiffiffi
dy
dx

s
½U�1�xw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ji½ ~WD�wzj

q
Uz

y� (B11)

where ~WD ¼ U ~WU�1 is the diagonalized matrix. For small m the intertwiner space is low dimensional and this
diagonalization does not cause problems:

m ¼ 0: For m ¼ 0 the intertwiner space is one dimensional and therefore V annihilates gauge-
invariant trivalent nodes.

m ¼ 1
2 : Here, the intertwiner space is two-dimensional and it is not hard to check that V is

diagonal with matrix elements

Vx
y

�
ji; jj; jkj 12

�
¼ �x

y

l3p
4

2
6664
����������������
i
ffiffiffiffiffi
3!

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
djkþ1

2
djk�1

2

q
NjkNjiNjj

8<
: jk jk 1

jk þ 1
2 jk � 1

2
1
2

9=
;

�

8>>><
>>>:

ji 1 ji

jk þ 1
2 1 jk � 1

2

jj 1 jj

9>>>=
>>>;

����������������

3
7775

�1
2

:

m ¼ 1: For m ¼ 1 ~W is a 3� 3 matrix but does not have full rank. Nevertheless, it is diagonal-
izable when applying first a similarity transformation S (see [34]):

~W ¼
0 w1 0

�w1 0 w2

0 �w2 0

0
BB@

1
CCA!S

0 1
w1

2 0

�w1 0 0

0 � w2

w1
0

0
BB@

1
CCA!U 


�i 0 0

0 i 0

0 0 0

0
BB@

1
CCA

! V ¼ l3p
4

jw1j2

 0 � jw1w2j2




ffiffiffiffiffiffiffiffiffiffi
2jkþ3
2jk�1

q
0 
 0

jw1w2j2



ffiffiffiffiffiffiffiffiffiffi
2jk�1
2jkþ3

q jw2j
jw1j

jw2j2



0
BBBB@

1
CCCCA

where
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w1 ¼ ð�Þ2ðjk�1Þ ffiffiffiffiffi
3!

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
djk�1djk

q
NjkNjiNjj

� jk jk 1

jk � 1 jk
1
2

�8>>><
>>>:

ji 1 ji

jk � 1 1 jk

jj 1 jj

9>>>=
>>>;

w2 ¼ ð�Þ2jk�1
ffiffiffiffiffi
3!

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
djkþ1djk

q
NjkNjiNjj

� jk jk 1

jk þ 1 jk
1
2

�8>>><
>>>:

ji 1 ji

jk þ 1 1 jk

jj 1 jj

9>>>=
>>>;

and 
2 ¼ jw1j2 þ jw2j2.
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