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We present dynamical properties of linear waves and null geodesics valid for Kerr and Kerr–de Sitter

black holes and their stationary perturbations. The two are intimately linked by the geometric optics

approximation. For the null geodesic flow the key property is the r-normal hyperbolicity of the trapped set

and for linear waves it is the distribution of quasinormal modes: the exact quantization conditions do not

hold for perturbations but the bounds on decay rates and the statistics of frequencies are still valid.
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I. INTRODUCTION

The Kerr solutions [1] to Einstein equations are consid-
ered as physically relevant models of rotating black holes.
The Kerr metrics depend on two parameters: mass M
and rotational parameter a; the special case a ¼ 0 is the
Schwarzschild metric. The Kerr–de Sitter solutions de-
scribe rotating black holes in the case of positive cosmo-
logical constant, �> 0—see (1) below for the formula
for the metric and Fig. 1 for the plot of admissible values
of the parameters. Because of the observed cosmic accel-
eration [2], the current cosmological �CDM model
assumes �> 0. As explained below, �> 0 makes the
study of the topic of this article, quasinormal modes for
black holes (QNMs), mathematically more tractable while
not affecting the description of the physical phenomenon
of ringdown [3].

The classical dynamics of Kerr black holes is concerned
with the behavior of null geodesics of the corresponding
metric, that is, the trajectories of photons in the gravitation
field of the black hole. The key dynamical object is the
trapped set, consisting of all null geodesics in phase space
(position and momentum space) which never cross the
event horizon of the black hole or escape to infinity. In
other words, this is the set where the strength of gravita-
tional fields forces photons to travel on bounded orbits.

In the case of a Schwarzschild black hole (a ¼ 0) the
time slice of the trapped set is just the phase space of a
sphere (mathematically, the cotangent bundle of a sphere)
called the photon sphere: along the photon sphere, all
photons travel on closed orbits. A traveler who crosses
the photon sphere, although still visible to outsiders, is
forced to cross the black hole horizon eventually. In the
case of nonzero angular momentum (a � 0) the trapped set
is no longer the phase space or cotangent bundle of a
smooth spatial set; instead it becomes a nontrivial object
in the phase space. The photons are trapped because of the
strength of the gravitational field but most of them (that is, a
set of full measure) no longer travel along closed orbits—
see Fig. 2 for a visualization of the trapped set and (2) for the
analytic description. Although the trapped set is no longer

the phase space of a spatial object, it remains a smooth five-
dimensional manifold. The symplectic form on the phase
space of a time slice [see (3)] restricts to a nondegenerate
form on the trapped set. Thatmeans that the time slice of the
trapped set is a smooth symplectic manifold.
A remarkable feature of the geodesic flow on

Kerr(–de Sitter) metrics is its complete integrability [4]
in the sense of Liouville-Arnold [5]: there exist action
variables which define invariant tori on which the motion
is linear.
In this article we describe another important feature of

the dynamics: r-normal hyperbolicity. It means that the
flow is hyperbolic in directions normal to the trapped set in
ways r-fold stronger than the flow on the trapped set—see
(4) for a mathematical definition. This property, unlike
complete integrability, is known to be stable under pertur-
bations [6]: a small Cr (r times differentiable) stationary
perturbation of the metric will destroy complete integra-
bility but will preserve Cr structure of the trapped set and
r-normal hyperbolicity. For Kerr black holes the condition
holds for each r and hence regular perturbations will
maintain the regular structure of the trapped set of light
trajectories [7,8].

FIG. 1. Numerically computed admissible range of parameters
for the subextremal Kerr–de Sitter black hole (light shaded) [30]
and the range to which our results apply (dark shaded). QNMs
are defined and discrete for parameters below the dashed line,
ð1� �Þ3 ¼ 9�M2; see [8], Sec. 3.2.
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The classical dynamical features are crucial for the
behavior of gravitational waves emitted by black holes,
especially during the ringdown phase, when a black hole
spacetime settles down after a large cosmic event such as
a binary black hole merger. Gravitational waves are ex-
pected to be observable by the existing detectors, once
they are running at full capacity, and to provide informa-
tion about the parameters of astrophysical black holes.
During the ringdown phase, the behavior of gravitational
waves is driven by the linearized system [3] and is much
simpler to simulate numerically than the merger phase
[9–11]. At ringdown, gravitational waves have a fixed set
of complex frequencies, known as quasinormal modes
(QNMs) [3] and depending only on the parameters of
the black hole, rather than the specifics of the event.
The simplest model of ringdown is obtained by solving
the linear scalar wave equation for the Kerr(–de Sitter)

black hole spacetimes, and in that case quasinormal modes
can be rigorously defined. More complicated linearizations
have also been studied [3,12] but we concentrate on the
simplest setting here. On the relevant time and space length
scales, the value of the cosmological constant � does not
have a physical effect on the ringdown since gravitational
waves are generated in a neighborhood of the black hole
but �> 0 makes the mathematical definition of QNMs
much easier by eliminating the polynomial falloff for
waves [3], Sec. 5.1.
In a more general physical or geometric context of

scattering theory, quasinormal modes, also known as reso-
nances, replace bound states (eigenvalues), for systems
which allow escape of energy [13] and simultaneously
describe oscillations (real parts of the mode) and decay
(imaginary parts). They appear in expansions of waves—
see (6) below, just as waves in bounded regions are
expanded using eigenvalues. This dynamical interpretation
immediately suggests that the distribution of QNMs is
related to the trapping on the classical level—see [14,15]
for a discussion and recent experimental results in the
setting of microwave billiards.
The relation between dynamics and distribution of

QNMs and resonances has been particularly well studied
in problems where a reduction to one dimension is pos-
sible. More generally, complete integrability allows quan-
tization rules which can be used to describe resonances in
the semiclassical or high energy limit. In the setting of
black holes this goes back to [16].
For Schwarzschild black holes the Regge–Wheeler

reduction [see (7) below] produces a one-dimensional
potential similar to the Eckart barrier potential cosh�2x

for which resonances are given by� ffiffiffi
3

p
=2� iðnþ 1=2Þ—

see [17] for a review in the context of chemistry, [18] for
a mathematical discussion in the Schwarzschild case,
and [19] for a general study of Pöschl-Teller potentials.
Putting together different angular momenta produces an
(approximate) lattice of resonances.
When a � 0, that is, in the genuine Kerr case, the degen-

erate QNMs split in a way similar to the Zeeman effect.
They have been recently studied usingWKBmethods based
on the completely integrable structure [20–23] and the
Zeeman-like splitting has been rigorously confirmed.
The point of this article is to describe recent mathemati-

cal results [7,8,18,20,21,24,25] which apply to stationary
perturbations of Kerr metrics and do not depend on the
completely integrable structure. They are based on the use
of the r-normal hyperbolicity of the trapped set and show
that many features of QNMs studied using WKB methods
available in the completely integrable case persist for
perturbations. The r-normal hyperbolicity of black hole
dynamics [7] has not been discussed in the physics
literature but the importance of normal hyperbolicity
in molecular dynamics has been explored [26]. It would
be interesting to consider the stability of r-normally

FIG. 2. Visualization of the trapped set for different values
of a, with � ¼ 0. The figures show the four-dimensional set
K \ f�t ¼ 1g (K is the five-dimensional trapped set) projected to
the coordinates ðx; y; zÞ ¼ ð�’; �; ��Þ. For a ¼ 0 this corre-

sponds to the visualization of the phase space of the 2-sphere:
the sphere is parametrized by the coordinates 0 � � � �, 0 �
’< 2�, ( sin� cos’, sin� sin’, cos�). The conjugate coordi-
nates are denoted �� and �’ and the restriction to �t ¼ 1 means

that �2
� þ sin�2��2

’ ¼ 27M2. The vertical singular interval in

front corresponds to � ¼ 0, with the symmetrical interval in the
back corresponding to � ¼ �: the coordinates ð�; ’Þ on the sphere
are singular at that point. The structure of K becomes more
interesting when a > 0 as shown in the three examples. The
additional coordinate, not shown in the figures, r is a function of
�’ and �t only.When a ¼ 0, we have r ¼ 3M, but r gets larger to

the left (�’ > 0) and smaller to the right (�’ < 0) when a > 0.

When a ¼ 1 we see the flattening in the ð�; ��Þ plane at extremal
values of �’: the trapped set touches the event horizon r ¼ 1

which results in lack of decay, and some QNMs have null imagi-
nary parts [22,23]. Dynamically and invariantly this corresponds
to the vanishing expansion rates—see Fig. 4.
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hyperbolic dynamics under more general, nonstationary,
perturbations.

In particular, we showhowdynamical features (such as the
maximal and minimal expansion rates) and statistical prop-
erties of the distribution of QNMs depend on a ¼ J=Mc, the
rescaled angular momentum. For the exact Kerr (or Kerr–
de Sitter) black hole the counting law for QNMs and their
maximal and minimal decay rates determine the mass and
the angular momentum. For the perturbed case, they deter-
mine stable features such as the symplectic volume of the
trapped set and classical decay rates.

The presentation is organized as follows: in Sec. II we
discuss classical dynamics and define r-normal hyperbol-
icity in a precise way; in Sec. III we describe the challenges
of rigorously defining of QNMs for Kerr and Kerr–de Sitter
black holes. The difficulties come from the presence of the
ergosphere which obstruct standard methods for defining
resonances (lack of coercivity or ellipticity of the station-
ary wave equation) and from the ‘‘size’’ of infinity in the
Kerr (� ¼ 0) case. In Sec. IV we present the quantitative
results about the distribution of QNMs valid for perturba-
tions of Kerr black hole: bounds on imaginary parts of the
modes (11), the counting law (12), and the consequences
for solutions of the wave equation (13). The strongest
results are subject to a pinching condition (10) which is
valid for all but rapidly rotating rotating black holes. The
results presented here and some of the figures have ap-
peared in works aimed at the mathematical audience [8]
and this is an attempt to relate them to an active field of
research in physics.

II. THE TRAPPED SET OF NULL GEODESICS

We are interested in null geodesics and the wave equation
hgu ¼ 0, where g is the Kerr(–de Sitter) metric [1,4,7,8].

The Kerr–de Sitter metric is a generalization of Kerr to the
case of a positive cosmological constant�. For a black hole
of mass M> 0 (for �> 0 there is no unique definition of
global mass; here we treat M simply as a parameter of the
metric), rotating with speed a the space slice is

X ¼ ðrþ; rCÞ � S2;

where rC <1when�> 0, and rC ¼ 1 when� ¼ 0. The
behavior of hg for r near rC is dramatically different in the

two cases: for�> 0 the metric is asymptotically hyperbolic
in the sense of non-Euclidean geometry (infinity is large in
the sense that the volume of balls grows exponentially in
radius) and for � ¼ 0 it is asymptotically Euclidean (infin-
ity is small in the sense that the volume of balls grows
polynomially). For solutions to the wave equation that
produces differences in long time decay and in the behavior
at low energies [27–29]. The surface r ¼ rþ is the event
horizon of the black hole. When �> 0, r ¼ rC is the
cosmological horizon. While the two horizons have differ-
ent physical interpretations, their mathematical roles in the
study of wave decay and QNMs are remarkably similar.

The geodesic flow can be considered as a flow on the
phase space (the position-momentum space) ofR� X, that
in mathematical terms on the cotangent bundle T�ðR� XÞ.
We denote the coordinates on R� X by ðt; r; �; ’Þ (see
Fig. 2) and write ð�t; �r; ��; �’Þ for the corresponding

conjugate (momentum) variables. The flow is given by
the classical Hamiltonian flow [5] for the Hamiltonian G,

_t ¼ @�t
G; _r ¼ @�r

G; _� ¼ @��
G;

_’ ¼ @�’
G; _�t ¼ �@tG; _�r ¼ �@rG;

_�� ¼ �@�G; _�’ ¼ �@’G;

where

G ¼ ��2ðGr þG�Þ; �2 ¼ r2 þ a2cos 2�;

Gr ¼ �r�
2
r � ð1þ �Þ2

�r

ððr2 þ a2Þ�t þ a�’Þ2;

G� ¼ ���
2
� þ

ð1þ �Þ2
��sin

2�
ðasin 2��t þ �’Þ2;

� ¼ �a2

3
; �r ¼ ðr2 þ a2Þ

�
1��r2

3

�
� 2Mr;

�� ¼ 1þ �cos 2�: (1)

The function G is the dual metric to the semi-Riemannian
Kerr(–de Sitter) metric g (see for example [8], Sec. 3.1, for
the formulas for g). It is also the principal symbol ofhg in

the sense that

hg ¼ Gðt; r; �; ’; @t=i; @r=i; @�=i; @’=iÞ; i ¼ ffiffiffiffiffiffiffi�1
p

;

modulo a first order differential operator. The limiting radii
rþ, rC solve �r ¼ 0.
The trapped set consists of null geodesics that stay away

from r ¼ rþ, r ¼ rC for all times. The variables ð�; ��Þ
evolve according to the Hamiltonian flow ofG�, and �t, �’

are conserved. The trapping depends on the evolution of
ðr; �rÞ according to the flow of Gr, which is essentially the
one-dimensional motion for a barrier top potential [18].
Under the assumptions that either a ¼ 0, 9�M2 < 1 or
� ¼ 0, jaj<M, and for nearby values of M, �, a [8],
Prop. 3.2, [30] the trapped set K is given by

K ¼ fG ¼ 0; �r ¼ 0; @rGr ¼ 0; � � 0g: (2)

For a ¼ 0, @rGr ¼ 0 gives r ¼ 3M, the radius of the
photon sphere. For a � 0, a more careful analysis is
required, but K is still a smooth submanifold of the char-
acteristic set fG ¼ 0g. Moreover, it is symplectic in the
sense that the spatial symplectic form �,

� ¼ d�r ^ drþ d�� ^ d�þ d�’ ^ d’; (3)

is nondegenerate on the surfaces K \ ft ¼ constg.
Let Cþ � fG ¼ 0g be the positive light cone and

’t: Cþ ! Cþ
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the geodesic flow parametrized by t. The r-normal hyper-
bolicity condition asserts the existence of a Cr (r-times
differentiable) splitting

TKCþ ¼ TK �Vþ �V�;

invariant under the flow and such that for some constants
� > 0, C> 0,

sup
ðx;�Þ2K

jd’�tjV�j � Ce��t;

sup
ðx;�Þ2K

jd’�tjTKj � Ce�jtj=r; t 	 0:
(4)

This means that the maximal expansion rates (Lyapunov
exponents) on the trapped set are r-fold dominated by
the expansion and contraction rates in the directions trans-
versal to the trapped set. As shown in [6,24], Sec. 5.2,
r-normal hyperbolicity is stable under perturbations: when
G� is a time-independent (that is, stationary) Hamiltonian
such that G� is close to G in Cr near K, the flow for G� is
r-normally hyperbolic in the sense that the trapped set K�

has Cr regularity and is symplectic and (4) holds. For Kerr
(–de Sitter) metrics the flow is r-normally hyperbolic for
all r as shown in [7,8,25], essentially because the flow onK
is completely integrable.

Key dynamical quantities are the minimal and maximal
expansion rates 0< �min � �max, characterized by in-
equalities true for all " > 0, a constant C" depending on ",

C�1
" e�ð�maxþ"Þt � jd’tjV�j � C"e

�ð�min�"Þt;

t > 0. For Kerr(–de Sitter) metrics, the quantities �min,
�max are obtained by taking the minimum and maximum
of averages of the local expansion rate

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�r@

2
rG

q
=j@�tGj;

on the Liouville tori [5] of the flow of G� on the trapped
set.

III. DEFINITION AND DISCRETENESS
OF QUASINORMAL MODES

The scattering resonances, called QNMs in the context
of black holes [12], replace eigenmodes when one switches
from closed systems to open systems—see [14] for a recent
experimental discussion. They are the frequencies ! of
oscillating solutions to the wave equation

hgðe�i!tvðr; �; ’ÞÞ ¼ 0; (5)

which continue smoothly across the event horizons.
Solutions to hgu ¼ 0 are expected to have expansions

uðt; r; �; ’Þ 
X
k

e�it!kukðr; �; ’Þ (6)

valid in a suitable sense [21,31]. The fact that QNMs !k

form a discrete set in the lower half plane is nontrivial but it
is now rigorously known in the case of Kerr–de Sitter and
its perturbations [18,20,25,31,32].
In the simpler Schwarzschild–de Sitter case we indicate

the reason for discreteness of the set of QNMs as follows.
Equation (5) can be rewritten as Pð!Þv ¼ 0, where Pð!Þ
is obtained from ��2hg by replacing @t with �i!. The

operator Pð!Þ is spherically symmetric; its restriction to
the space or spherical harmonics with eigenvalue ‘ð‘þ 1Þ,
written in the Regge-Wheeler coordinate x [20], Sec. 4, is
the Schrödinger operator

P‘ð!Þ ¼ �@2x þ!2V1ðxÞ þ ‘ð‘þ 1ÞV2ðxÞ; (7)

where the potentials V1 and V2 are real analytic (their
Taylor series converge to their values) and satisfy

V1ðxÞ ¼ �V2� þOðe�A�jxjÞ; V2ðxÞ ¼ Oðe�A�jxjÞ;

FIG. 3 (color online). The dependence of �max and �min on the
parameters M and a in the case of � ¼ 0. The dashed line
indicates the range of validity of the pinching condition needed
for the Weyl law (12).

FIG. 4. The pointwise expansion rates � on Liouville tori
�’=ðM�tÞ ¼ const, for � ¼ �=2. When a approaches 1, � ¼ 0

for some values of �’ which shows that there is no gap and

QNMs can be arbitrarily close the real axis [22,23].
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as x ! �1; here A� > 0, V� ¼ r2�, and Vþ ¼ r2C. (When

� ¼ 0 then V2 
 x�2 as x ! þ1 and that creates prob-
lems at low energies [27,28]. More precisely, it is expected
that due to the slow decay of the potential, the resolvent is
not holomorphic in a neighborhood of zero and even in
simplest cases such as Schwarzschild, there is no mathe-
matical argument excluding the possibility of accumula-
tion of QNMs at zero.) A number! 2 C is a QNM if there
exists an angular momentum ‘ and a nonzero solution vðxÞ
to the equation P‘ð!Þv ¼ 0 satisfying the outgoing con-
dition: near x ¼ �1, e�iV�!xvðxÞ is a smooth function

of e�A�jxj. The outgoing condition follows naturally from
the requirement that e�i!tvðxÞ extends smoothly past the
event horizon of the black hole. For fixed ‘, it follows
by standard one-dimensional methods that the set of all
corresponding ! is discrete.

Showing that as ‘ ! 1, quasinormal modes correspond-
ing to different values of‘ do not accumulate ismore delicate:
we need to know that if j!j � R and ‘ is large enough
depending on R, then ! cannot be a QNM corresponding to
‘. Assume the contrary and let vðxÞ be the corresponding
solution to the equation P‘ð!Þv ¼ 0. We fix large X > 0
independently of ‘, to be chosen later. The potential V2 is
everywhere positive; therefore for ‘ large enough depending
on R, X, Reð!2V1ðxÞ þ ‘ð‘þ 1ÞV2ðxÞÞ> 0 for x 2
½�X; X�. If v satisfied a Dirichlet or Neumann boundary
condition at �X, then integration by parts would give the
impossible statement that v ¼ 0 on ½�X; X�, finishing
the proof:

0 ¼ Re
Z X

�X
�v � P‘ð!Þvdx

¼ �Reðv0 �vÞjX�X

þ
Z X

�X
jv0j2 þ Reð!2V1 þ ‘ð‘þ 1ÞV2Þjvj2dx ¼ 0;

and the terms under the integral are all non-negative. This
argument works also forv’s satisfying the defining properties
of the QNMs, as described below. For Kerr–de Sitter black
holes a separation procedure is still possible but it does not
work for stationary perturbations. Nevertheless in both cases
the discreteness of QNMs remains valid [24,25].

To indicate how this works for resonant states which
not satisfy a boundary condition at �X (after all, this
‘‘boundary’’ is completely artificial), we follow [20],
Sec. 6. It suffices to prove the boundary inequalities

�Reðv0ð�XÞvð�XÞÞ< 0: (8)

To prove (8), we cannot use integration by parts on the
whole R, since v does not lie in L2ðRÞ and moreover
the real part of our potential may become negative as
x ! �1. We instead use the methods of complex analysis
and real analyticity of V1, V2.

The characterization of v as a mode can be strengthened

to say that e�iV�!xvðxÞ is a real analytic function of e�A�jxj

(it has a convergent Taylor series in that variable), which
means that for X large enough, we can extend vðxÞ to a
holomorphic function in fjRezj 	 Xg, and this extension

is Floquet periodic: vðzþ 2�i=A�Þ ¼ e�2�V�!=A�vðzÞ,
�Rez 	 X. Now, consider the restriction of u to the ver-
tical lines fRez ¼ �Xg, w�ðyÞ :¼ vð�X þ iyÞ, y 2 R,
and note that it solves the differential equation

ð@2y þ!2V1ð�Xþ iyÞ þ ‘ð‘þ 1ÞV2ð�X þ iyÞÞw� ¼ 0:

(9)

The key difference between (9) and the equationP‘ð!Þv ¼ 0
is that the potentialV2ð�Xþ iyÞ is no longer real valued. For
instance, if V2 were equal to e�A�jxj, then V2ð�X þ iyÞ
would equal e�XA�e�iA�y, only taking real values when
y 2 �A�1� Z. This means that Eq. (9) is elliptic (in the semi-
classical sense, where we treat @y as having same order as ‘)

except at a discrete set of points in the phase space T�R.
Further analysis shows that w�ðyÞ is concentrated in phase

space near y 2 2�A�1� Z, 	 ¼ �‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2ð�XÞp

, in particular
implying

jð@y � i‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2ð�XÞ

q
Þw�ð0Þj � C‘1=4jw�ð0Þj;

and (8) follows from Cauchy-Riemann equations, since
vð�XÞ ¼ w�ð0Þ and v0ð�XÞ ¼ �iw0�ð0Þ.

IV. DISTRIBUTION OF QUASINORMAL MODES

The distribution of QNMs !k can now be studied in
the more general stable setting of r-normally hyperbolic
trapped sets. Three fundamental issues are
(a) distribution of decay rates, that is of the imaginary

parts of QNMs;
(b) asymptotics of the counting function;
(c) expansion of waves in terms of QNMs.
(a).—We can bound the decay rates from below when-

ever the trapped set is normally hyperbolic, without requir-
ing the stronger r-normal hyperbolicity assumption. The
bound [33] is given by Im!k <�ð�min � "Þ=2, for any
" > 0, once the frequency (the real part of !k) is large
enough. In the case of r-normal hyperbolicity and under
the pinching condition

�max < 2�min ; (10)

we get more detailed information [24]: there are addition-
ally no QNMs with

�ð�min � "Þ< Im!k <�ð�max þ "Þ=2: (11)

That means that the modes with least decay are confined
to a band shown in Fig. 6. In the completely integrable
case this follows from WKB constructions [20–23]—see
Fig. 6—but this structure persists under perturbations.
Figure 5 shows the accuracy of the estimate (11) for
the numerically computed QNMs of exact Kerr black
holes [9]. For a recent experimental investigation of the
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distribution of decay rates and the relation to classical
dynamics (more precisely, the topological pressure and
classical escape rates) see [15].

The condition (10) is called pinching because it pinches
the ratio of the maximal and the minimal transversal
expansion rates. In the absence of this condition, the
gap (11) between the first band of QNMs and the faster
decaying bands disappears, making it difficult to obtain a
counting asymptotics (12). Physically, (10) could inter-
preted as the requirement that there be no interaction
between QNMs from different bands.

(b).—The relation between the density of high energy
states and phase space volumes defined by the classical

Hamiltonian is one of the basic principles of quantum
mechanics or spectral theory. It states that for closed

systems the number, NĤð
Þ, of energy levels of Ĥ, a
quantization of H (for instance the Dirichlet Laplacian
on a bounded domain), below energy 
2 (we think of 

as frequency which is natural when considering QNMs)
satisfies the Weyl law

NĤð
Þ 
 ð2�Þ� dimXvolT�XðH � 
2Þ 
 CĤ

� dimX:

Here volT�X denotes the phase space volume calculated
using the volume �dimX=ðdimXÞ! obtained from the sym-
plectic form � [see (3)].
For open systems QNMs replace real energy levels and

the counting becomes much more tricky [14]. In the case
of exact Kerr(–de Sitter) black holes the WKB construc-
tions can be used to show that the number, NQNMð
Þ, of
QNMs with

j!kj � 
; Im!k 	 �ð�min � "Þ
satisfies the asymptotic law NQNMð
Þ 
 c
2. The constant

c has a geometric interpretation: in a scattering problem
the total phase space T�X (the cotangent bundle of X) is
replaced by the trapped set [34], and c corresponds to the
symplectic volume of the trapped set.
The same law is proved [8] for perturbations of Kerr–

de Sitter, using completely different ideas based on
r-normal hyperbolicity rather than symmetries of the
metric and separation of variables. Under the assumptions
of r-normal hyperbolicity (4) and pinching (10), we
have

NQNMð
Þ 
 
2

ð2�Þ2 volðK \ f�2
t � 1g \ ft ¼ 0gÞ; (12)

where the volume is taken using the symplectic form on
K \ ft ¼ constg [8], Theorem 3. We note that just
as dimX ¼ 1

2 dimT�X in the exponent of the Weyl law,

here

2 ¼ 1

2
dim ðK \ ft ¼ constgÞ;

that is, the effective phase space is now the trapped set. For
exact Kerr(–de Sitter) metrics with several values of � the
volume as function of a is shown in Fig. 7. The volume is
finite provided that ð1��a2=3Þ3 > 9�M2; see Fig. 1.
We should stress that normally hyperbolic behavior

(unlike r-normal hyperbolicity) is often unstable under
perturbations as shown by examples of hyperbolic quo-
tients where a small perturbation can change the dimension
of the trapped set (Fig. 1 in [35]), leading to a fractal Weyl
law, that is a law in which the exponent 2 changes to half
of the fractal dimension of the trapped set—see [14] for
recent experiments on that.
(c).—The expansion (6) is rigorously established for

slowly rotating black holes [21,31] and heuristically it is

FIG. 6 (color online). A schematic comparison between QNMs
in a completely integrable case and in the general r-normally
hyperbolic case. The former lie on a fuzzy lattice and are well
approximated by WKB construction based on quantization con-
ditions [20–23]. When trapping is r-normally hyperbolic and the
pinching condition �max < 2�min holds, quasinormal modes are
still localized to a strip with dynamically determined bounds, and
their statistics are given by the Weyl law (12).

FIG. 5. A log-log plot of relative errors jmin jIm!kð‘Þj��min =2j
min jIm!kð‘Þj and

jmax jIm!kð‘Þj��max =2j
max jIm!kð‘Þj where !kð‘Þ are the numerically computed

resonances in the first band corresponding to the angular
momentum ‘ [9] and �min , �max are minimal and maximal
expansion rates. The agreement is remarkable when ‘ increases.
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one of the motivations for studying quasinormal
modes [12]. For rapidly rotating black holes, or for their
perturbations satisfying (10) a more robust version can be
formulated using projector onto the states associated to
quasinormal modes in the first band shown in Fig. 6. The
solution to the wave equation hgu ¼ 0 with initial data

localized near frequency 
  1 can be decomposed as

u ¼ uQNM þ uDEC;

where, for 0 � t � T log
,

hguQNMðtÞ; hguDECðtÞ ¼ Oð
�1Þ;
that is, we have rapid decay (faster than any negative
power) when the frequency 
 is large. This means that
both terms solve the wave equation approximately at high
energies times bounded logarithmically in 
. We then
have, again for 0 � t � T log
,

kuQNMðtÞkE � Ce�ð�min�"Þt=2kuQNMð0ÞkE ;
kuQNMðtÞkE 	 C�1e�ð�maxþ"Þt=2kuQNMð0ÞkE;
kuQNMð0ÞkE � C

ffiffiffiffi



p kuð0ÞkE;
kuDECðtÞkE � C
e�ð�min�"Þtkuð0ÞkE ;

(13)

where strictly speaking errors Oð
�1Þkuð0ÞkE should be
added to the right-hand sides. The norm k � kE is the
standard energy norm in any sufficiently large compact

subset of X [in the case of exact Kerr–de Sitter, we can take
ðrþ þ �; rC � �Þ � S2]—see [8], Theorem 2. The term
uQNMðtÞ corresponds to the part of the solution dominated

by the QNMs in the first band and it has the natural decay
properties dictated by the imaginary parts of these QNMs.
In fact, uQNMðtÞ can be physically interpreted as the radia-

tion coming from light rays traveling along the trapped set.
The directions in which such a light ray radiates towards
infinity can be described in terms of the geometry of
the flow, and the amplitude of the radiated waves can be
calculated using the global dynamics of the flow near the
trapped set [24], Sec. 8.5.

V. CONCLUSIONS

We have shown that for Kerr–de Sitter metrics and their
perturbations quasinormal modes are rigorously defined
and form a discrete set in the lower half plane, provided
that the parameters of the black hole satisfy

ð1��a2=3Þ3 > 9�M2 > 0;

see Fig. 1. This is due to the size of infinity when �> 0
and the compactness of the trapped set at finite energies.
If one neglects the issues of long time decay and of

behavior at low energies, then the results are also valid in
the case of � ¼ 0. On the length scales involved in the
ringdown phenomenon, which in principle would lead to
the detection of black hole parameters through QNMs, the
(small) value of � is not relevant but �> 0 is a more
convenient mathematical model.
The main dynamical feature of the set on which photons

are trapped (the trapped set) is its r-normal hyperbolicity
for any r—see (4). Because of the stability of this property
the main features of the distribution of quasinormal modes
are preserved for perturbations: the decay rates are
bounded from below in terms of the minimal expansion
rate [Im!k � �ð�min � "Þ=2] and under the pinching con-
ditions, the least decaying modes are confined to a strip
where they satisfy a counting law (12)—see Fig. 6.
The r-normal hyperbolicity is valid for all rotating black

holes but the pinching condition (10) needed for the finer
results (12) and (13) fails in the case of very fast rotation—
see Fig. 3.
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FIG. 7 (color online). Numerically computed constant in (12),
volðK \ f�2

t � 1g \ ft ¼ 0gÞ=4�2, for � ¼ 0, 0.01, 0.02, 0.03
and M ¼ 1. The vertical line shows the value of a at which
the pinching condition (10) fails for� ¼ 0. For smaller values of
a the Weyl law (12) holds. We note that as a increases the QNMs
split (see Fig. 6) and hence we do expect the counting function to
decrease, in agreement with the behavior of the volume. From
the volume and the gap giving the decay rate one can read off a
and M.
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