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We study the field equations of extensions of general relativity formulated within a metric-affine

formalism setting torsion to zero (Palatini approach). We find that different (second-order) dynamical

equations arise depending on whether torsion is set to zero (i) a priori or (ii) a posteriori, i.e., before or

after considering variations of the action. Considering a generic family of Ricci-squared theories, we show

that in both cases the connection can be decomposed as the sum of a Levi-Cività connection and terms

depending on a vector field. However, while in case (i) this vector field is related to the symmetric part of

the connection, in (ii) it comes from the torsion part and, therefore, it vanishes once torsion is completely

removed. Moreover, the vanishing of this torsion-related vector field immediately implies the vanishing of

the antisymmetric part of the Ricci tensor, which therefore plays no role in the dynamics. Related to this,

we find that the Levi-Cività part of the connection is due to the existence of an invariant volume associated

with an auxiliary metric h��, which is algebraically related with the physical metric g��.
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I. INTRODUCTION

The relation between gravitation and geometry was
established long ago by Einstein. He constructed his theory
of general relativity (GR) using elements from Riemannian
geometry and assuming that the metric tensor is enough to
fully characterize the space-time geometry. His theory
turned out to be in excellent agreement with observations
and still remains valid today [1]. Nonetheless, there exist
deep theoretical reasons to believe that the theory must be
modified at high energies, where the quantum gravitational
degrees of freedom are expected to become non-negligible
[2,3]. Observations of the large scale structure and dynam-
ics of the Universe [4,5] have been interpreted as an
indication that the infrared sector of the theory might
also need some kind of modification [6–9]. Einstein’s
theory could thus be seen as an approximation valid within
a certain range of energies or length scales.

Phenomenological extensions of GR designed to address
some of the above questions have followed different ave-
nues, but most of them implicitly adopt the view that
geometry is a matter of metrics. However, affine connec-
tions play a fundamental role in the implementation of
general covariance and in the definition of curvature and
torsion, which are tensorial quantities that provide an
objective measure of the geometric properties of a mani-
fold, regardless of the existence of a metric. Therefore,
from a purely geometric perspective, one can consider a
much wider framework in the important task of exploring
the dynamics of geometric theories of gravity. Since there
is no a priori reason, except tradition or convention, to

constrain the connection to be exactly defined by the
Christoffel symbols of the metric at all energies and/or
length scales, it seems natural to relax that constraint and
explore its physical and technical implications.
Relaxing the metric constraints on the connection has

allowed researchers to make important progress in differ-
ent directions. The first example was provided by Cartan,
who found a fully covariant and geometric representation
of Newtonian gravity in a purely affine context (without the
need for a metric) [10]. Cartan also considered the role of
torsion, the antisymmetric part of the connection, in GR.
His original idea was further developed by Sciama and
Kibble, yielding a theory in which the curvature of the
metric is sourced by the energy-momentum of the matter
sources, whereas the torsion is sourced by their spin
[11,12]. The theory is experimentally as viable as GR
[13] but has interesting new effects at high energies, being
able to avoid the big bang singularity [14–17]. Moreover,
torsion effects may become important in particle physics
[18] and cosmology [19–22] and in electroweak interac-
tions [23]. In the context of extra dimensions a theory with
torsion has been shown to be able to generate dynamical
field equations in four dimensions different from those of
GR [24]. Torsion-based fðTÞ gravities supporting black
hole and brane solutions have also been examined in the
literature [25–27]. In a more fundamental string theory
framework, it is well known that the Kalb-Ramond field
strength acts like a torsion in many situations [2], which
may allow the experimental probing of some foundational
aspects of the theory [13]. The effects of torsion have been
explored in different string scenarios [28–31].
The exploration of the role played by connections needs

not be restricted to the exploration of torsion effects.
Symmetric connections are also relevant on their own. In

*gonzalo.olmo@csic.es
†drubiera@fisica.ufpb.br

PHYSICAL REVIEW D 88, 084030 (2013)

1550-7998=2013=88(8)=084030(11) 084030-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.084030


particular, the original Hamiltonian formulation of GR by
Arnowitt, Deser, and Misner [32] was possible thanks to
the use of the Palatini representation of the theory, where
the metric and a symmetric connection are regarded as
independent degrees of freedom. A related representation
of classical GR with a symmetric connection, the
Holst action [33], is also crucial for the nonperturbative
quantization of the theory [34–36].

Beyond GR, the Palatini approach [37] has received
increasing attention in the context of the cosmic speedup
problem and in applications to quantum gravity phenome-
nology [38], the early universe, and black holes. It has been
found, for instance, that fðRÞ theories formulated à la
Palatini naturally lead at late times to accelerating solu-
tions. The reason is found in the fact that the field equations
in vacuum are exactly equivalent to those of GR with a
cosmological constant (GRþ�), whose value depends on
the particular fðRÞ Lagrangian [39]. This contrasts with the
usual metric formulation of such theories [40], where a
dynamical scalar degree of freedom is associated with the
fðRÞ function and, therefore, the solutions of the theory in
vacuum are those of a scalar-tensor theory rather than
GRþ�. On the other hand, the Palatini formulation
of quadratic gravity, Rþ aR2 þ bR��R

��, for suitable

choices of the parameters (b > 0) also leads to nonsingular
solutions in the early universe, with the big bang replaced
by a big bounce in isotropic and anisotropic scenarios
[41,42]. In that theory, charged black holes develop a
nontrivial topological structure with the central singularity
replaced by a wormhole, being certain configurations com-
pletely regular and possessing solitonic properties [43–45],
with interesting implications for the existence of black hole
remnants and the dark matter problem [46–48]. In vacuum
this Palatini theory is also equivalent to GR and no new
dynamical degrees of freedom are present, which confirms
the absence of ghosts and other instabilities that plague the
standard metric formulation of the quadratic theory [49,50]
and is in agreement with the observed universality
of Einstein’s equations in Palatini theories of gravity
[51,52]. In addition, the field equations in the Palatini
approach are always second order, as opposed to the metric
formulation of these theories.

Despite their appealing properties, Palatini theories have
also been criticized in the literature on grounds of the
Cauchy problem [53,54] and on the existence of curvature
divergences in the outermost regions of spherical systems
with particular polytropic equations of state [55,56] (see
also [57–59]). However, using a Hamiltonian approach
[60] it has been shown that the initial value problem is as
well formulated as in GR (because only up to second-order
time derivatives appear) and that erroneous manipulations
invalidate the conclusions of [54]. The existence of surface
singularities in spherical systems is also far from being a
fundamental problem for these theories because it only
affects particular equations of state whose derivatives

diverge as the pressure tends to zero. For sufficiently
smooth equations of state, which are necessary to account
for electrostatic effects and other phenomena not captured
by the mere statistical properties of the matter distribution
[61], the solutions are completely regular. Moreover, ele-
mentary objects with electric charge [43], such as electrons
or protons, do not exhibit such pathologies, which seem to
be an artifact of the approximations employed in the
description of statistical/macroscopic systems.
Though much progress has been made in the Palatini

approach and its applications in the past years, some basic
aspects of this formulation are still poorly understood. In
particular, in this work we consider the role of torsion in
the derivation of the field equations and put forward the
importance of invariant volumes in metric-affine theories
to deal with the connection equations. To be precise, since
in the Palatini approach one assumes that the connection is
symmetric, i.e., it is torsionless, one may wonder if setting
the torsion to zero a priori or a posteriori matters. In other
words, are the field equations the same if (i) one sets the
torsion to zero before performing the variation of the action
or if (ii) it is set to zero after obtaining the equations?
Focusing, in particular, on theories with Ricci-squared
corrections, we will see that there is a difference, that
assuming vanishing torsion a priori is, in general, not
equivalent to setting it to zero a posteriori. We will also
show that it is possible to associate the symmetric part of
the connection (or a part of it) with an invariant volume,
which allows us to obtain explicit (formal) solutions for
the connection and facilitates the consideration of these
theories in physical applications.
The paper is organized as follows: In Sec. II we derive

the field equations both for a symmetric connection and for
connections with torsion. In Sec. III we consider the par-
ticular case of Ricci-squared theories. First we assume the
connection to be symmetric a priori, and we obtain and
discuss the field equations, finding that the symmetric and
antisymmetric parts of the Ricci tensor are directly coupled
to each other. Next we consider the presence of torsion and
show that the symmetric and antisymmetric objects are not
directly coupled, being (a part of) the torsion tensor, the
field that mediates their interaction. In both cases, the
connection equations can be partially solved introducing
a metric h��, related to the physical metric g�� by ele-

mentary algebraic transformations, but while in the former
a dynamical vector field arises, in the latter it is absent once
torsion is completely removed. In Sec. IV we study the
conditions for the existence of a well defined volume
invariant, and we conclude in Sec. V with some comments
and future prospects.

II. FIELD EQUATIONS

In this section we derive the field equations correspond-
ing to a generic Palatini theory in which the connection
appears through the Riemann tensor suitably contracted
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with the metric and/or with itself. We will first derive the
field equations assuming that the torsion is set to zero
a priori; i.e., we assume a symmetric connection. Then
we will consider the more general case, in which there are
no a priori constraints on the connection, i.e., ��

�� � ��
��

and, therefore, torsion is possible. The generic action that
we consider can be written as follows [62,63]:

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðg��; R
�
���Þ þ Sm½g��; c �; (1)

where f is some function of its arguments, Sm is the matter
action, c represents collectively the matter fields, �2 is a
constant with suitable dimensions (if f ¼ R, then �2 ¼
8�G), and the Riemann curvature tensor is defined as
follows:

R�
��� ¼ @��

�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��: (2)

From this definition, it is manifest that the only symmetry
of the curvature tensor is R�

��� ¼ �R�
���; i.e., it is

antisymmetric in its last two indices. We assume a sym-
metric metric tensor g�� ¼ g�� and the usual definitions

for the Ricci tensor R�� � R	
�	� and the Ricci scalar R �

g��R��. Note that since we are working in the Palatini

formalism, no a priori relation between the metric and the
connection is assumed. Thus the variation of the action (1)
with respect to the metric and the connection can be
expressed as


S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ��

@f

@g�� �
f

2
g��

�

g��

þ P�
���
R�

���

�
þ 
Sm; (3)

where we have used the notation P�
��� � @f

@R�
���

. The

general form of 
R�
��� is given by


R�
��� ¼ r�ð
��

��Þ � r�ð
��
��Þ þ 2S���
�

�
��; (4)

where S��� � ð��
�� � ��

��Þ=2 represents the torsion tensor,
the antisymmetric part of the connection. It is at this
point where one must decide whether to consider a purely
symmetric connection or if a torsion part is allowed. In the
following subsections we consider these two cases
separately.

A. Symmetric connections

In general, a connection ��
�� can be decomposed into its

symmetric and antisymmetric parts as ��
�� ¼ C�

�� þ S���,

where C�
�� ¼ C�

��. Assuming that S��� is zero a priori, the

variation of the Riemann tensor becomes


R�
��� ¼ r�ð
��

��Þ � r�ð
��
��Þ; (5)

where 
��
�� ¼ 
C�

�� andr� � rC
�; i.e., it is the covariant

derivative associated with the symmetric connection C�
��.

To put the 
R�
��� term in (3) in suitable form, we need to

note that

I� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
P�

���r�
�
�
��

¼
Z

d4x½r�ð ffiffiffiffiffiffiffi�g
p

J�Þ � 
��
��r�ð ffiffiffiffiffiffiffi�g

p
P�

���Þ�; (6)

where J� � P�
���
��

��. As is well known (see [10],

Chap. 21, and [64]), the covariant derivative of a tensor
density is, in general, given by r�

ffiffiffiffiffiffiffi�g
p ¼ @�

ffiffiffiffiffiffiffi�g
p �

��
��

ffiffiffiffiffiffiffi�g
p

, from which we find that r�ð ffiffiffiffiffiffiffi�g
p

J�Þ ¼
@�ð ffiffiffiffiffiffiffi�g

p
J�Þ. With this result, (6) can be cast as

I� ¼
Z

d4x½@�ð ffiffiffiffiffiffiffi�g
p

J�Þ � 
��
��r�ð ffiffiffiffiffiffiffi�g

p
P�

���Þ�: (7)

Using this, (3) becomes


S ¼ 1

2�2

Z
d4x

� ffiffiffiffiffiffiffi�g
p �

@f

@g�� �
f

2
g��

�

g��

þ @�ð ffiffiffiffiffiffiffi�g
p

J�Þ � 2r�ð ffiffiffiffiffiffiffi�g
p

P�
�½���Þ
��

��

�
þ 
Sm;

(8)

where P�
�½��� ¼ ðP�

��� � P�
���Þ=2. Now, to make

explicit the fact that the metric and the connection are
symmetric, this last expression can be rewritten as


S¼ 1

2�2

Z
d4x

� ffiffiffiffiffiffiffi�g
p �

@f

@gð��Þ�
f

2
g��

�

g��þ@�ð ffiffiffiffiffiffiffi�g

p
J�Þ

�r�½ ffiffiffiffiffiffiffi�g
p ðP�

�½���þP�
�½���Þ�
C�

��

�
þ
Sm: (9)

We thus find that the field equations can be written as
follows:

�2T�� ¼ @f

@gð��Þ �
f

2
g��; (10)

�2H�
�� ¼ � 1ffiffiffiffiffiffiffi�g

p rC
�½ ffiffiffiffiffiffiffi�g
p ðP�

�½��� þ P�
�½���Þ�; (11)

where T�� � � 2ffiffiffiffiffi�g
p 
Sm


g�� is the energy-momentum tensor

of the matter, and H�
�� � � 1ffiffiffiffiffi�g

p 
Sm

��

��
represents the cou-

pling of matter to the connection. For simplicity, from now
on we will assume that H�

�� ¼ 0.

B. Connections with torsion

When the connection is not symmetric, one finds
that r�ð ffiffiffiffiffiffiffi�g

p
J�Þ ¼ @�ð ffiffiffiffiffiffiffi�g

p
J�Þ þ 2S���

ffiffiffiffiffiffiffi�g
p

J�. This

implies that (6) turns into

I� ¼
Z

d4x½@�ð ffiffiffiffiffiffiffi�g
p

J�Þ � 
��
��fr�ð ffiffiffiffiffiffiffi�g

p
P�

���Þ
� 2S���

ffiffiffiffiffiffiffi�g
p

P�
���g�; (12)
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which, as compared to (7), picks up a new term in the
torsion S���. Using this result, (3) becomes


S¼ 1

2�2

Z
d4x

� ffiffiffiffiffiffiffi�g
p �

@f

@g���
f

2
g��

�

g��þ@�ð ffiffiffiffiffiffiffi�g

p
J�Þ

þ
�
� 1ffiffiffiffiffiffiffi�g
p r�ð ffiffiffiffiffiffiffi�g

p
P�

�½���ÞþS��	P�
��	

þ2S���P�
�½���

�
2

ffiffiffiffiffiffiffi�g
p


��
��

�
þ
Sm: (13)

Since the variations 
��
�� and 
��

�� are now independent,

we thus find that the field equations can be written as
follows:

�2T�� ¼ @f

@gð��Þ �
f

2
g��; (14)

�2H�
�� ¼ � 1ffiffiffiffiffiffiffi�g

p r�ð ffiffiffiffiffiffiffi�g
p

P�
�½���Þ þ S��	P�

��	

þ 2S���P�
�½���; (15)

where from now on we assume also that H�
�� ¼ 0.

To compare (11) with (15) it is convenient to split the
connection into its symmetric and antisymmetric parts,1

leading to r�A� ¼ @�A� � C�
��A� � S���A� ¼ rC

�A� �
S���A� and r�

ffiffiffiffiffiffiffi�g
p ¼ rC

�
ffiffiffiffiffiffiffi�g

p � S���
ffiffiffiffiffiffiffi�g

p
. By doing

this, (15) becomes

�2H�
�� ¼ � 1ffiffiffiffiffiffiffi�g

p rC
�ð ffiffiffiffiffiffiffi�g
p

P�
�½���Þ þ S���P�

�½���

� S���P�
�½���: (16)

Setting the torsion to zero in this expression and comparing
with (11), it is easy to see that the field equations in these
torsionless theories are different in general. The equiva-

lence is limited to those Lagrangians satisfying P�
�½��� ¼

P�
�½���. To see the effects of this difference in detail, we

consider next some illustrative examples.

III. RICCI-SQUARED THEORIES

We now consider a particular family of theories in which
the Lagrangian is defined using invariants constructed only
with the metric and the Ricci tensor or some parts of it.
This will allow us to make contact with relevant literature
and obtain some new results.

Using the decomposition ��
�� ¼ C�

�� þ S���, the

Riemann tensor can be expressed as

R�
���ð�Þ ¼ R�

���ðCÞ þ r�S
�
�� �r�S

�
��

þ S���S
�
�� � S���S

�
��: (17)

From the definition (2), we define the Ricci tensor as

R�� � R�
��� ¼ @��

�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��;

(18)

which can be recast as R��ð�Þ ¼ B��ðCÞ þ���ðSÞ,
where [65]

B�� ¼ @�C
�
�� � @�C

�
�� þ C�

��C
�
�� � C�

��C
�
��; (19)

��� ¼ rC
�S

�
�� �rC

�S
�
�� þ S���S

�
�� � S���S

�
��: (20)

From the above definitions one also finds that

B½��� ¼ 1

2
½r�C

�
�� �r�C

�
���; (21)

which indicates that the antisymmetric part of B��, which

has been constructed with the symmetric part of the con-
nection, is not zero in general (even in the torsionless case,
where B�� coincides with R��). Also, the symmetric part

of ��� is not zero in general. Therefore, the most general

action constructed only with the building blocks of the
Ricci tensor and its contractions up to second order can
be written as a functional of the scalars g��Bð��Þ,
g���ð��Þ, Bð��ÞBð��Þ, �ð��Þ�ð��Þ, Bð��Þ�ð��Þ,
B½���B½���, �½����½���, B½����½���, and of the contrac-

tions of the dual tensors B�½���B�
½���, ��½�����

½���,
B�½�����

½���, where all the indices are raised with the

metric.
We will first consider the field equations of theories

constructed with some of the above invariants in the tor-
sionless case (assuming that the torsion is zero a priori)
and then will consider their form when torsion is allowed.

A. Spaces with a symmetric connection

If the connection is assumed symmetric a priori, the
objects that can appear in the action are just g��Bð��Þ,
Bð��ÞBð��Þ, B½���B½���, and B�½���B�

½���. We will refer to

these theories generically as fðB;QS;QA;Q
�
AÞ, where B �

g��Bð��Þ, QS ¼ Bð��ÞBð��Þ, QA ¼ B½���B½���, and Q�
A ¼

B�½���B�
½���. Since in the literature only theories of the

type fðB;QS;QAÞ have been considered, for the moment
we shall restrict our attention to this family (for simplicity,
we will also assume that the matter is not coupled to the
connection). In this case we find

P�
��� ¼ 


�
� ½fBg�� þ 2fQS

Bð��Þ þ 2fQA
B½����

� 

�
�M��; (22)

which inserted in the field equations (10) and (11) yields

fBBð��Þ þ 2g��½fQS
Bð��ÞBð��Þ þ fQA

B½���B½���� � f

2
g��

¼ �2T��; (23)

1Note that even though the connection is not a tensor, the
difference between any two connections is a tensor, so we shall
refer to S��� as the torsion tensor.
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rC
�

� ffiffiffiffiffiffiffi�g
p �


�
�Mð��Þ � 1

2
ð
�

�M
�� þ
�

�M��Þ
��

¼ 0: (24)

Since M�� ¼ Mð��Þ þM½���, tracing over the indices �
and � in (24), one finds that

rC
� ½

ffiffiffiffiffiffiffi�g
p

M½���� ¼ 3

5
rC

� ½
ffiffiffiffiffiffiffi�g

p
Mð��Þ�: (25)

Using this result, (24) can be written as

rC
�

� ffiffiffiffiffiffiffi�g
p �


�
�M

ð��Þ � 1

5
f
�

�M
ð��Þ þ 
�

�Mð��Þg
��

¼ 0:

(26)

This equation can be formally solved in general for

theories of the form fðB;QS;QAÞ ¼ ~fðB;QSÞ þ f̂ðQAÞ
by means of elementary algebraic manipulations. Key
elements in the derivation are the following:

(1) Denote P�
� � Bð��Þg�� and F�� � B½��� ¼

1
2 ½@�C� � @�C�� (because there is no torsion),

where C� � C�
��. Raise one index in (23) with the

metric, and bring all the F�� terms to the right-hand

side to get

~fBP�
� þ 2~fQS

P�
�P�

� �
~f

2

�

� ¼ �2T�
� þ ��

�;

(27)

where

��
� � 2

�
f̂QA

F�
�F�

� � f̂

4

�

�

�
: (28)

Since B � P�
� and QS � ½P2���, (27) can be seen

as a quadratic matrix equation implying that P�
� is

an algebraic function of the elements on the right-
hand side of (27), which can be seen as the matter
sources. Note, in this sense, that ��

� is formally

identical to the stress-energy tensor of a nonlinear
theory of electrodynamics with F�� playing the role

of the field strength tensor,2 and that it does not
depend on C�

��.

(2) DecomposeMð��Þ ¼ ~fBg
��þ2~fQS

Bð��Þ asMð��Þ ¼
g����

�, with

��
� ¼ ~fB
�

� þ 2~fQS
P�

�: (29)

Assume that ��
� is invertible (which is true for

models sufficiently close to GR). The invertibility

of ��
� implies that Mð��Þ is also invertible. Denote

as W�� � ½��1���g�� the inverse of Mð��Þ, which
is also a symmetric tensor.

(3) Introduce the vectors l� � @� ln
ffiffiffiffiffiffiffi�g

p
and �� �

@� ln
ffiffiffiffiffiffiffiffiffiffiffi
det �

p
. Note that l� is the gradient of a scalar

function and that in GR it coincides with C�
��. In the

(more general) case considered here, we will see
that C

�
�� may also pick up a pure vector contribu-

tion; i.e., it is not just given by the gradient of

a scalar. Now use the relation W��@�M
ð��Þ ¼

2ð�� � l�Þ, which is analogous to g��@�g
�� ¼

�2l�, to show that @�M
ð��Þ þ C�

�	M
ð�	Þ ¼ ð4l� �

5C� þ 5��ÞMð��Þ.
(4) Expand (26) and use the above notation and results

to obtain

@�M
ð��Þ þC�

��M
ð��Þ þC�

��M
ð��Þ

¼��ð
�
�Mð��Þ þ
�

�Mð��ÞÞ���M
ð��Þ; (30)

where �� � ðl� � C�Þ, and �� � �� þ��.
From (30) it is easy to show that

C�
�� ¼ M�	

2
½@�W	� þ @�W	� � @	W���

� 1

2
½
�

��� þ 
�
��� �W��M

ð�	Þð2�	 þ�	Þ�:
(31)

Given the form of this solution, it is natural to introduce an
auxiliary metric h�� and its inverse (this is just a choice of

the conformal representative),

h�� � ð
ffiffiffiffiffiffiffiffiffiffiffi
det�

p
ÞW��; h�� ¼ Mð��Þ=

ffiffiffiffiffiffiffiffiffiffiffi
det �

p
; (32)

in terms of which (31) takes the form

C�
�� ¼ L�

��ðhÞ � 1

2
½
�

��� þ 
�
��� � 3h��h

�	�	�; (33)

where L�
��ðhÞ represents the Christoffel symbols of

h��. With this notation, we also find that �� �
@� ln

ffiffiffiffiffiffiffi�h
p � C�. Note that ��

� in Eq. (29), which is a
function of the matter sources and the field �� [see the
discussion following (27)], determines the relative defor-
mation between the metrics g�� and h��. This deformation

extends the idea of conformal and disformal transforma-
tions to a more general scenario. Similar deformation
matrices have been considered in the literature in an
heuristic manner (see [66] for details and references),
which contrasts with the naturalness of our approach.
The above manipulations and definitions allow us to

rewrite (24) in a more convenient form starting with its
representation given in (27). It is easy to see that (27) can
be written as

P�
���

� ¼ �2T�
� þ ��

� þ
~f

2

�

�: (34)

Since P�
���

� � Rð��Þh��
ffiffiffiffiffiffiffiffiffiffiffi
det �

p
, we finally get

2Note in passing that if we include a Q�
A piece in the

Lagrangian density, a contribution 2f̂Q�
A
F�

�F�
�� to ��

� would
also appear in (28), thus completing the typical form of the
stress-energy tensor of a nonlinear theory of electrodynamics.
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Rð��ÞðCÞ ¼
�
�2T�

� þ ��
� þ

~f

2

�

�

�
h��ffiffiffiffiffiffiffiffiffiffiffi
det �

p : (35)

Using (33) to construct Rð��ÞðCÞ, we find

Rð��ÞðCÞ � R��ðhÞ � 3

2
����; (36)

where R��ðhÞ represents the Ricci tensor of the metric

h��, which is symmetric by construction [because

L�
�	ðhÞ ¼ @	 ln

ffiffiffiffiffiffiffi�h
p

and, therefore, R½��� ¼ 1
2½@�L�

��ðhÞ�
@�L

�
��ðhÞ�¼0]. This allows one to express (35) as

R�
�ðhÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

det�
p

�
�2T�

�þ��
�þ

~f

2

�

�

�
þ 3

2
����h

��:

(37)

The above equation can also be written in terms of the
metric g�� only. Since the difference between any two

connections is a tensor, one finds that 0 ¼ rh
�h�� ¼

rg
�h�� � X�

��h�� � X�
��h��, where X�

�� is a tensor and

rh
� represents the covariant derivative associated with the

Levi-Cività connection of the metric h��, i.e., rh
�A� ¼

@�A� � L�
��ðhÞA�. Straightforward manipulations allow

one to obtain an explicit expression for X�
��, which

becomes

X�
�� ¼ h�	

2
½rg

�h	� þrg
�h	� �rg

	h���: (38)

With this expression, one can rewrite R��ðhÞ as
R��ðhÞ¼R��ðgÞþrL

�X
�
���rL

�X
�
��þX�

��X
�
���X�

��X
�
��:

(39)

In many cases of interest, however, it is possible and much
more convenient to work directly with h�� [41,43–48].

Equation (25) governing the behavior of the antisym-
metric part of the Ricci tensor can be written as

@�½ ffiffiffiffiffiffiffi�g
p

f̂QA
F��� ¼ 3

10

ffiffiffiffiffiffiffi�h
p

�	h
	� ¼ 3

10

ffiffiffiffiffiffiffi�g
p

����
�;

(40)

where F�� ¼ g��g�	F�	, and F�	¼ 1
2½@�C	�@	C��¼

1
2½@��	�@	���, because the difference between C	 and

�	 is the gradient of a scalar.

If we particularize our general fðB;QS;QAÞ Lagrangian
to the simple case fðB;QS;QAÞ ¼ Bþ �QA, we recover a

case studied in [67] (see also [68,69]). In this case f̂QA
¼

�, and from (29) one finds that ��
� ¼ 
�

�, which implies
h�� ¼ g��. Elementary manipulations allow one to show

that the theory is equivalent to the Einstein-Proca system,

with �� � @� ln
ffiffiffiffiffiffiffi�h

p � C
	
	� playing the role of the

(Proca) vector potential.

Our results allow one to study generalizations of the
Einstein-Proca system to the case of nonlinear Proca

Lagrangians, f̂QA
� const, and beyond, with ��

� � 
�
�.

It is important to note that, regardless of the particular
Lagrangian chosen, the vector and metric field equations
are always second order (though nonlinear in general).
This can be explicitly seen from (40), which governs the
vector field, and from (37) together with the relations (32)
and (39), which specify the algebraic relation between h��

and g�� and which do not contain higher than second-order

derivatives of either of these metrics.

B. Spaces with a nonsymmetric connection

We now consider a general family of Ricci-squared
theories but assume that the connection is made symmetric
a posteriori; i.e., torsion is allowed by construction but is
set to zero after performing the variation of the action.
To proceed, we shall closely follow the derivation per-

formed in [62,63]. Now the theory under analysis is

fðR;QS;QAÞ with R � g��Rð��Þ, QS ¼ Rð��ÞRð��Þ, and

QA ¼ R½���R½���, where we have replaced B�� tensors

by the R�� ones, as compared to the previous subsection,

to take into account that they include now a torsion con-
tribution (for simplicity we shall neglect the Q�

A piece here
as well). Thus M�� in (22) now becomes

P�
��� ¼ 


�
� ½fRg�� þ 2fQS

Rð��Þ þ 2fQA
R½����

� 

�
�M��: (41)

Towork out in this case the equation for the connection, we
insert (41) in (16), and tracing over � and � we obtain

rC
� ½ ffiffiffiffiffiffiffi�g
p

M��� ¼ ð2 ffiffiffiffiffiffiffi�g
p

=3Þ½S���M�� þ ð3=2ÞS���M���;
with this we can rewrite the connection equation (16) as

1ffiffiffiffiffiffiffi�g
p rC

�½ ffiffiffiffiffiffiffi�g
p

M��� ¼ S���M
�� � S���M

�� � S���M
��

þ 2

3

�
�S

�
��M

�� (42)

whose symmetric and antisymmetric components are,
respectively,

1ffiffiffiffiffiffiffi�g
p rC

�½ ffiffiffiffiffiffiffi�g
p

Mð��Þ�¼S���M
½��� �S���M

½��� �S���M
ð��Þ

þS���
3

ð
�
�M

��þ
�
�M��Þ; (43)

1ffiffiffiffiffiffiffi�g
p rC

�½ ffiffiffiffiffiffiffi�g
p

M½���� ¼ S���M
ð��Þ �S���M

ð��Þ �S���M
½���

þS���
3

ð
�
�M

���
�
�M��Þ: (44)

Before setting the torsion to zero and comparing with the
results of the previous subsection, we carry out a few
additional manipulations to simplify the structure of these
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equations, which will bring new insights on the coupling
between the symmetric and antisymmetric parts of M��.

We thus introduce a new connection ~��
�� such that

��
�� ¼ ~��

�� � 2

3

�
�S

�
��: (45)

This change implies that ~S��� � ~��
½��� satisfies ~S��� ¼ 0.

The symmetric and antisymmetric components of ~��
�� are

related to those of ��
�� by

C�
�� ¼ ~C�

�� � 1

3
ð
�

�S� þ 
�
�S�Þ; (46)

S��� ¼ ~S��� � 1

3
ð
�

�S� � 
�
�S�Þ; (47)

where S� ¼ S���, which is in general nonvanishing, as

opposed to ~S� ¼ ~S��� ¼ 0, as easily seen from (47). The

relation of the Ricci tensor in the connections ��
�� and ~C�

��

becomes (from now on we denote ~r� � r ~C
�)

R��ð�Þ ¼ R��ð ~CÞ þ 1

3
½~r�S� � ~r�S�� þ ~r�

~S��� � ~S��� ~S
�
��;

(48)

which in terms of the symmetric and antisymmetric
components reads

Rð��Þð�Þ ¼ Rð��Þð ~CÞ � ~S��� ~S
�
��; (49)

R½���ð�Þ ¼ R½���ð ~CÞ þ 1

3
½~r�S� � ~r�S�� þ ~r�

~S���: (50)

Let us recall that from (21) and (46) we have

R½���ð ~CÞ ¼ 1

2
½~r�

~C� � ~r�
~C��; (51)

where ~C� ¼ ~C�
��. This equation simply tells us that in the

connection ~C�
�� the antisymmetric part of the Ricci tensor

can be expressed as the rotational of the vector ~C�.

Collecting all these results, the symmetric and antisym-
metric parts of the connection equation (42) become

1ffiffiffiffiffiffiffi�g
p ~r�½ ffiffiffiffiffiffiffi�g

p
Mð��Þ� ¼ �ðþÞ���	

� M½�	�; (52)

1ffiffiffiffiffiffiffi�g
p ~r�½ ffiffiffiffiffiffiffi�g

p
M½���� ¼ �ð�Þ���	

� Mð�	Þ; (53)

where Mð��Þ ¼ fRg
�� þ 2fQS

Rð��Þð�Þ and M½��� ¼
2fQA

R½���ð�Þ and we have defined the objects

�ð�Þ���	
� ¼ ½~S���g�� � ~S���g

���g�	: (54)

These equations clearly show that the symmetric and anti-
symmetric parts of M�� are not directly coupled, which

contrasts with (25). Instead, they couple to each other via

torsion, through the traceless tensor ~S���.

1. Torsionless scenario

In general, when the tensor ~S��� vanishes, we find that

�ð�Þ���	
� ¼ 0, which implies the decoupling between

Mð��Þ and M½���. This choice still leaves unspecified a
part of the torsion tensor, S��� ¼ 1

3 ð
�
�S� � 
�

�S�Þ, which
is determined by a vector and needs not be zero. From (49)
and (50) we see that in this case

Rð��Þð�Þ ¼ Rð��Þð ~CÞ; (55)

R½���ð�Þ ¼ R½���ð ~CÞ þ 1

3
½~r�S� � ~r�S��

¼ 1

2
½~r��� � ~r���� ¼ 1

2
½@��� � @����;

(56)

where�� � ~C� � 2
3S�, and the last result follows because

~C�
�� is a symmetric connection.

Since the connection does not appear explicitly in the
expression of F�� � R½���ð�Þ, the metric variation of these

theories can be manipulated in the same way as in the
previous subsection. Starting with the analogous of (23),

fRRð��Þ þ 2g��½fQS
Rð��ÞRð��Þ þ fQA

F��F��� � f

2
g��

¼ �2T��; (57)

the F��-dependent terms can be transferred to the right-

hand side of the field equations [we may assume, as before,

that the Lagrangian can be written as fðR;QS;QAÞ ¼
~fðR;QSÞ þ f̂ðQAÞ, though this aspect is not essential for
what follows]. Then one index is raised with g�� and the
resulting algebraic quadratic equation for the matrix P�

�

can be (formally) solved by means of algebraic manipula-
tions, which implies that the tensor ��

� defined in (29)
(with the notational replacement B ! R) is just a function
of the matter sources and the field F��. Using the

definitions

h�� ¼ g����
�=

ffiffiffiffiffiffiffiffiffiffiffi
det�

p
; h�� � ð

ffiffiffiffiffiffiffiffiffiffiffi
det�

p
Þ½��1���g��;

(58)

and taking into account (55), we find that (57) can be
expressed as

Rð��Þð ~CÞ ¼
�
�2T�

� þ ��
� þ

~f

2

�

�

�
h��ffiffiffiffiffiffiffiffiffiffiffi
det�

p ; (59)

where ��
� is defined exactly as in (28). On the other hand,

(52) and (53) turn into
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~r�½
ffiffiffiffiffiffiffi�h

p
h��� ¼ 0; (60)

~r�½ ffiffiffiffiffiffiffi�g
p

f̂QA
F½���� ¼ 0: (61)

It is easy to verify that (60) implies that ~C�
�� is given by the

Christoffel symbols of h��, i.e., ~C�
�� ¼ L�

��ðhÞ. As a

result, the connection ��
�� can be written as

��
�� ¼ L�

��ðhÞ � 2

3

�
�S�: (62)

The fact that ~C�
�� is metric compatible implies that

R½���ð ~CÞ ¼ 0 because ~C� � ~C�
�� ¼ @� ln

ffiffiffiffiffiffiffi�h
p

. A direct

consequence of this is that F�� � 1
2 ½@��� � @���� ¼

� 1
3 ½@�S� � @�S��. This means that in the completely

torsionless case F�� � 0, i.e., the Ricci tensor of the

connection is totally symmetric, and the antisymmetric
part plays no role in the dynamics (note that in that case
��

� � 0). The field equations for these torsionless

theories, therefore, boil down to the following:

R�
�ðhÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

det�
p

�
�2T�

� þ
~f

2

�

�

�
; (63)

and should be compared with Eqs. (37) and (40) corre-
sponding to the a priori torsionless case. Equation (63)
must be supplemented with the field equations for the
matter sources. Examples with perfect fluids, scalar fields,
and electromagnetic fields have been considered in
[38,41,43–46].

Before concluding this section, we note that (57) can be
written as (recall that P�

� � Rð��Þg��)

2fQS

�
P̂þ fR

4fQS

Î

�
2 ¼

�
f2R
8fQS

þ f

2
þ �2T̂

�
Î; (64)

where the hat represents a matrix. In vacuum, T̂ ¼ 0,

implies that P̂ can be written as P̂ ¼ �ðRvac; Qvac
S ÞÎ, where

the explicit form of �ðRvac; Qvac
S Þ can be found straightfor-

wardly from (64) but is unessential for the current
discussion. The point is that the relations Rvac ¼ P�

� ¼
4�ðRvac; Qvac

S Þ and Qvac
S ¼ ½P2��� ¼ 4�2ðRvac; Qvac

S Þ im-

ply that the values of Rvac and Qvac
S are constant and in the

relation Qvac
S ¼ ðRvacÞ2=4. In addition, P̂ ¼ �ðRvac; Qvac

S ÞÎ
also implies that h�� and g�� are related by a constant

conformal factor [see Eqs. (29) and (58)]. As a result, (63)

tells us that R��ðhÞ ¼ Cvach�� $ R��ðgÞ ¼ ~Cvacg��, with

Cvac and ~Cvac constant (and identical in an appropriate
system of units), which confirms that the vacuum equations
coincide with the vacuum Einstein equations with a cos-
mological constant (whose magnitude depends on the par-
ticular gravity Lagrangian). This shows that Palatini
fðR;QS;QAÞ theories with vanishing torsion a posteriori
recover the usual Einstein–de Sitter equations in vacuum.

These theories, therefore, do not introduce any new
propagating degrees of freedom besides the standard mass-
less spin-2 gravitons and are free from the ghostlike
instabilities present in the (higher-derivative) metric
formulation of these same theories.

IV. CONNECTIONS WITH AN
INVARIANT VOLUME

In the previous section we have seen that in theories with
a symmetric connection (regardless of whether this condi-
tion is imposed a priori or a posteriori) the existence of an
auxiliary metric h�� capturing an important part of the

connection is always present. In this section we comment
on this important aspect to explain the reasons for its
existence and role.
The conditions for a symmetric connection to be

Riemannian, i.e., to be the Levi-Cività connection of a
metric, have been studied in the literature [70–74]. These
conditions are intimately related to the existence of a
conserved volume, i.e., of a scalar density such that

r�

ffiffiffiffiffiffiffi�h
p ¼ 0. It seems to be well established that a neces-

sary and sufficient condition for a symmetric connection to
have an invariant volume is that R�

��� ¼ 0, which, accord-

ing to our definition (2), is equivalent to R½��� ¼ 0. This

condition can be understood as follows. If for a given
symmetric connection C�

�� there exists a rank-two, non-

degenerate tensor h�� such that rC
�

ffiffiffiffiffiffiffi�h
p ¼ 0, one has that

rC
�

ffiffiffiffiffiffiffi�h
p ¼ @�

ffiffiffiffiffiffiffi�h
p � C�

��

ffiffiffiffiffiffiffi�h
p ¼ 0 or, equivalently, that

C� � C�
�� ¼ @� ln

ffiffiffiffiffiffiffi�h
p

. Since C� is the gradient of a
scalar, it follows from (21) that R½���ðCÞ ¼ 0. One should

note, in this sense, that for a given h�� any two connections

satisfying rC
�

ffiffiffiffiffiffiffi�h
p ¼ 0 ¼ rĈ

�

ffiffiffiffiffiffiffi�h
p

must be related by

C�
�� ¼ Ĉ�

�� þ 1

5
ð
�

�c � þ 
�
�c �Þ � h��c

�; (65)

where c � � h��c �. As can readily be verified, this is so

because C�
�� ¼ Ĉ�

��. Therefore, connections related in this

way possess the same invariant volume.
When R½���ðCÞ � 0, it is possible to introduce a new

(symmetric) connection ~C�
�� such that R½���ð ~CÞ ¼ 0. The

connection ~C�
�� is thus associated with a rank-two tensor.

This is achieved by defining

C�
�� ¼ ~C�

�� þ 
�
�’� þ 
�

�’�; (66)

where ’� is a vector field. From (66) we find that

R½���ðCÞ ¼ R½���ð ~CÞ þ 5

2
ð~r�’� � ~r�’�Þ; (67)

and comparing with (51) it is evident that in order to have

R½���ð ~CÞ ¼ 0 we must take ’� ¼ 1
5C�.
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We are now ready to understand the form of the con-
nection found in Sec. III A [see Eq. (33)]. Since for that
family of theories with an a priori symmetric connection
B½���ðCÞ � R½���ðCÞ � 0 in general, it is possible to

introduce another symmetric connection ~C�
�� such that

B½���ð ~CÞ ¼ 0. This connection must be related to C�
��

through a transformation of the form (66). However, the
last term in (33) prevents a simple and direct identification
of the vector ’� involved in the transformation. We must,

therefore, take care of that term first by considering

another symmetric connection of the form (65), Ĉ�
��,

which leaves invariant the same volume. We thus see that
the identification c � ¼ � 3

2�� leads us to ’� ¼ � 1
5��,

with ~C�
�� ¼ L�

��ðhÞ.
The case of Sec. III B is much more direct, because when

the connection is made symmetric by setting the torsion to
zero, we find R½���ðCÞ ¼ 0 and the existence of an invari-

ant volume is automatically guaranteed, as it follows from
(56) and (60).

We would like to mention here that the existence of
invariant volumes at each space-time point associated
with the connection might be of physical relevance in
high-energy scenarios. In fact, it has been suggested that
such structures could be a manifestation, in the classical
continuum limit, of a more fundamental discrete quantum
structure of space-time itself [75,76]. The crucial role
played by the connection in the definition of such invariant
volumes suggests that the cellularmicroscopic structure of
space-time could be more closely related to the affine
properties of the manifold than to its chrono-geometric
properties. The consideration of independent metric and
affine structures in the study of quantum gravity phenome-
nology [38] is thus an aspect that should be further
explored.

V. SUMMARYAND CONCLUSIONS

In this work we have studied the field equations of a
rather general family of theories in which the gravity
Lagrangian is a functional of the metric and an indepen-
dent affine connection. We have shown that assuming the
connection to be symmetric (i) a priori or (ii) a posteriori
has a nontrivial impact on the resulting field equations,
which are different in general. For concreteness and to
make contact with existing literature, we have particular-
ized our analysis to Ricci-squared theories of the form

fðR;QS;QAÞ, where R ¼ g��R��, QS ¼ Rð��ÞRð��Þ, and
QA ¼ R½���R½���. We have been able to exactly solve for

the connection ��
�� in both cases, finding that it can be

decomposed into a Levi-Cività part plus other terms
determined by a vector degree of freedom [see Eqs. (33)
and (62)]. The Levi-Cività part is due to the existence of an
invariant volume associated with an auxiliary metric h��,

which is related with g�� via a deformation matrix ��
�

that depends algebraically on the matter sources [see (29)].
In case (i), the vector field is related to the contraction C�

�	

of the (symmetric) connection plus the gradient of a scalar

function,�	 � @	 ln
ffiffiffiffiffiffiffi�h

p � C�
�	, whereas in case (ii) it is

related to the contraction S��	 of the (antisymmetric) tor-

sion tensor plus a gradient,�� � @� ln
ffiffiffiffiffiffiffi�h

p � 2
3S�. Since

this vector is the origin of the antisymmetric part of the
Ricci tensor, case (i) introduces, in general, a dynamical
vector degree of freedom governed by (40). In case (ii),
however, setting the torsion to zero implies the vanishing of
S� and hence the vanishing of R½���. As a result, in case (ii)
the antisymmetric part of the Ricci tensor plays no role in
the dynamics when the connection is made symmetric,
which provides a solid justification for the choice R½��� ¼
0made in previous works [38,41,43–45,77]. In case (i), the
nonvanishing R½��� implies the existence of a dynamical

vector field, which allows one to generalize the well known
Einstein-Proca system to the case of nonlinear Proca
Lagrangians and beyond (see Sec. III A).
To conclude, we remark that two important lessons of

general interest follow from our analysis: (1) that if non-
linear curvature corrections appear in the theory, then the
consideration or not of torsion is crucial to correctly define
the theory and its field equations, and (2) that (a part of) the
connection in metric-affine theories with nonlinear curva-
ture corrections has associated an invariant volume which,
in general, does not coincide with that defined by the
metric appearing in the action. A detailed study of the
role of torsion in these theories is currently underway.
The potential relation between the existence of an invariant
volume and the lack of higher-order derivatives and ghosts
in these theories will also be explored elsewhere.
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