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We explore a class of compact charged spheres made of a charged perfect fluid with a polytropic

equation of state. The charge density is chosen to be proportional to the energy density. The study is

performed by solving the Tolman-Oppenheimer-Volkoff equation, which describes the hydrostatic

equilibrium. We show the dependence of the structure of the spheres for several characteristic values

of the polytropic exponent and for different values of the charge densities. We also study other physical

properties of the charged spheres, such as the total mass, total charge, radius and sound speed and their

dependence on the polytropic exponent. We find that for the polytropic exponent � ¼ 4=3 the

Chandrasekhar mass limit coincides with the Oppenheimer-Volkoff mass limit. We test the

Oppenheimer-Volkoff limit for such compact objects. We also analyze the Buchdahl limit for these

charged polytropic spheres, which happens in the limit of very high polytropic exponents, i.e., for a stiff

equation of state. It is found that this limit is extremal and it is a quasiblack hole.
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I. INTRODUCTION

A. Compact stars and the Tolman-Oppenheimer-
Volkoff equation and method

1. Compact stars and the Oppenheimer-Volkoff limit

Eddington, in discussing the internal constitution of
stars, understood that by carefully choosing the tempera-
ture distribution along a given star, the gas could be made
to obey a polytropic relation between its hydrostatic pres-
sure p and mass density �, namely, p ¼ !��, where! and
� are replaceable constants [1]. Following the tradition of
calling spherically symmetric star models gas spheres, he
called these particular models polytropic gas spheres. The
stars in question are stars like the Sun, supported against
gravitational collapse by matter and radiation pressure. By
obtaining a consistent picture, his initial model for the stars
was vindicated. On the other hand, when he and others
tried to discuss the structure of white dwarfs, stars with
much higher density and compact, they got it all wrong.

Chandrasekhar [2,3] showed then definitely that white
dwarfs are compact stars in which the pressure support
against collapse comes from the quantum degeneracy of
the electrons. The temperature throughout the star is neg-
ligible for its structure, and thus these stars, besides being
compact, are also cold. In turn, this means there is an
effective simple polytropic equation between pressure
and density. Moreover, as the configuration gets more
compact, the electrons get more and more relativistic and

the last equilibrium configuration is a star with a definite
mass shrunk to zero radius. This mass is called the
Chandrasekhar limit, generally taken as 1:44M� [2,3].
Now, any given mass in zero radius should be treated in

the context of general relativity. This was done by Tolman
[4] and Oppenheimer and Volkoff [5] who showed that
equilibrium configurations with neutrons, the neutron stars,
much more compact than white dwarfs, could also be
achieved, and that these neutron stars have again a mass
limit, called the Oppenheimer-Volkoff limit. Whereas the
Chandrasekhar limit appears within Newtonian gravitation
when joined to relativistic kinematic effects in the degener-
ate matter, the Oppenheimer-Volkoff limit is a pure general
relativistic limit. It appears because the pressure that sup-
ports the star also has an energy associated with it. When the
pressure is sufficiently large, as for instance in a very com-
pact neutron star, the pressure contribution to mass makes
the gravitational field large enough that it cannot be sup-
ported by the pressure itself. From then on, the star is
unstable to collapse, giving the Oppenheimer-Volkoff limit.
Through heuristic arguments, Landau had also found the
Chandrasekhar and the Oppenheimer-Volkoff limits [6].
The question of what happens to stars that get

more massive, or more compact, than allowed by the
Oppenheimer-Volkoff limit was answered by Oppenheimer
and Snyder [7] who showed that totally collapsed configu-
rations, black holes, form. These are objects with a central
singularity that somehowcontainswhatwas the star’smatter,
and with an event horizon from inside which, nothing can
escape.
The basic theory for white dwarfs, neutron stars and

black holes was thus laid down in the decade of 1930.
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2. The TOV equation and method and the structure
of compact stars

In their work, Tolman [4] and specially Oppenheimer
and Volkoff [5] devised a method to find solutions in a
consistent manner. The method is suited to numerical
integration. They managed to put the structure equation
for cold matter, i.e., matter with zero or negligible
temperature, as dp=dr ¼ �ðpþ �Þð4�prþm=r2Þ=
ð1� 2m=rÞ, where p ¼ pðrÞ is the pressure as a function
of the radius r, �ðrÞ is the energy density, and mðrÞ is the
mass function given by the equation dm=dr ¼ 4�r2�.
This equation for the pressure is the Tolman-
Oppenheimer-Volkoff (TOV) equation. To find pðrÞ an
equation of state of the form pðrÞ ¼ pð�ðrÞÞ should be
provided. One then gives the value zero for the central
mass [mðr ¼ 0Þ ¼ 0] so that there are no singularities
beforehand and some adequate value for the central pres-
sure. At the point along the radial direction where p ¼ 0
one finds the surface of the star, with radius R, and with a
given total mass M. This solution can then be joined into
the correct exterior vacuum solution, the Schwarzschild
solution, giving a full description of the star’s spacetime.
For a consistent procedure see, e.g., [8,9]. For an explana-
tion of the possible different equations of state see [10] (see
also [11] which in addition gives a general review on
relativistic star structure). A simple equation of state is
the polytropic one p ¼ !��, where ! is a constant and �
is the polytropic exponent, as proposed by Tooper [12] in a
general relativity setting, who also found solutions for
general relativistic compact stars. For instance the interior
Schwarzschild solution has � ! 1, and so the equation of
state for the matter is � ¼ const, with the pressure pðrÞ
adjusting itself to yield a static configuration. In [9]
the TOV method is used to find the exact interior
Schwarzschild solution by imposing the equation of state
� ¼ const in the TOV equation.

3. The Buchdahl limit

There is also an interesting and important limit in the
theory of compact stars. It is the Buchdahl limit [13], and it
is a limit of limits. The Buchdahl limit establishes that for a
perfect fluid sphere of radius R and massM, if R � 9

4M (or

R � 9
8 rþ, where rþ ¼ 2M is the gravitational radius), then

there is no equilibrium solution whatsoever. It means that,
independent of the equation of state, this limit is absolute.
It can be found by searching for the condition that yields an
infinite pressure at the star’s center. For instance, the
Schwarzschild interior solution, with constant energy den-
sity for the matter (the stiffest equation of state that one can
imagine), is a concrete example of the Buchdahl inequality.
Presumably, when the limit is violated, the object collapses
into a black hole.

Note the difference between the Oppenheimer-Volkoff
limit and the Buchdahl limit. The Oppenheimer-Volkoff
limit operates on a set of perfect fluid configurations whose

matter obeys a given equation of state, say p ¼ !��, with
! and � fixed, but whose central energy density is
increased from member to member of the set. It gives a
maximum mass, and through the radius-mass relation, a
minimum radius. For a neutron star the maximum mass is
of the order of M ’ 3M� and the corresponding minimum
radius is R ’ 1:7rþ. The Buchdahl limit operates on a set
of perfect fluid configurations, whose members have the
stiffest equation of state � ¼ const, for any constant,
and whose central pressure is increased from member
to member of the setup to infinity. This yields the limit
R � 9

8 rþ ¼ 1:125rþ.

4. In brief

Compact object is a term used to refer to astrophysical
objects whose nature is related to the existence of pressure
degeneracy to sustain the object against gravitational
collapse. Compact objects have in common the feature
that they are all small for their mass. White dwarfs [14],
neutron stars [15], and black holes [16–18] are well
documented and well known objects; see also [19].
Two important quantities in the study of compact objects

are the Oppenheimer-Volkoff mass limit and the Buchdahl
radius to mass limit.

B. Electric compact stars

1. Electric compact stars, the electric TOV equation
and the electric Oppenheimer-Volkoff limit

Given that compact objects exist, a natural question that
can be asked is, what is the maximum compactness that
such an object can stand? Perfect fluid matter fields with a
stiff equation of state cannot get more compact than the
Buchdahl limit. Is it the case that allowing for other kinds
of fields or even modifying somehow the gravitational field
into some extension of general relativity one can get frozen
stars, i.e., stars as compact as their own gravitational radii?
The simplest known field that can be added to a given

matter within the star is the electric field. By finding a
generalized TOVequation [20], one can seek for solutions
of electric charged compact objects. Imposing different
equations of state some of these solutions have indeed
been devised [21–26].
Among the several new properties of these electric

compact objects it was found that the Oppenheimer-
Volkoff limit, the mass limit that sets in when the gravita-
tional field due to the pressure overcomes its own support,
gets larger as the electric charge of the matter increases,
with the radius of the limiting configuration also increas-
ing; see e.g. [24].

2. The electric Buchdahl limit

The Buchdahl limit also gets modified when electric
charge is added to the matter particles. For charged
spheres, the analogue of the Buchdahl limit has been
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worked out first in [27]. A development was performed
in [28] and in [29] where a sharp bound for the star’s radius

R to mass M quotient, R=M, is given, namely, R=M �
ð1=3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=9þQ2=3R2
p Þ�2. Here it was considered that

the matter obeys the conditions pþ 2pT � �, p � 0 and
� � 0, where �, p, and pT are the energy density, the
radial pressure and the tangential pressure of the fluid,
respectively. Interestingly, for Q ¼ M this result admits
the extremal case R ¼ M solution. Since in this extremal
case the horizon radius rþ is rþ ¼ M, one finds that for a
star satisfying the extremal conditionQ ¼ M the Buchdahl
limit is such that the radius of the star is as compact as the
gravitational radius R ¼ rþ.

This is a remarkable result in many ways. Are there star
solutions that are as compact as their own gravitational
radii? Certainly there are.

3. Electric compact stars and other methods:
The Buchdahl and the quasiblack hole limits

The TOV equation is a synthetic method to encode and
analyze the structure of compact stars. It is most useful
when one needs to integrate Einstein equations numeri-
cally, but it is by no means the only method. In many
instances Einstein equations can be simplified due to sym-
metries or coincidences that are not displayed when use of
the TOV method is made. This is the case of some of the
works considered in this subsection.

By usingMajumdar-Papapetrou matter, i.e., pressureless
matter in which the energy density and the electric charge
density are equal in appropriate units, and joining it into an
extremal Reissner-Nordström solution, Bonnor previously
found that these objects could have a radius as near as one
wishes to their own gravitational radius [30,31] (see also
[32]). These star configurations are held against collapse
by electric repulsion. Such solutions were improved in [33]
where C1 charged matter also showed the transition to a
new gravitational field state at the gravitational radius of
the configuration. This new gravitational state of a compact
star is called a quasiblack hole and is the realization of
the Buchdahl limit found in [27,29] for electric configura-
tions. Quasiblack holes can also be considered the real
frozen stars, an alternative previous name given to black
holes [16].

The inclusion of pressure in the matter also enabled the
finding of exact electric star solutions in which quasiblack
holes, or frozen stars, appear as limiting configurations
[34]. Mention should be made of the works [22,23] where
consideration of an incompressible fluid in the presence of
electric charge, and using the TOV method, led to relativ-
istic charged sphere solutions, which taking the limit to the
black hole regime is still a compact star, i.e., a quasiblack
hole. Quasiblack holes also arise from Yang-Mills–Higgs
matter, Einstein-Cartan matter with spin and torsion, rotat-
ing disk matter systems, and simple shells of matter; see
[35] for a review.

The properties of these very peculiar compact objects
have been worked out in detail, e.g., in [36,37]; see also
[38]. They are objects on the limit of becoming extremal
black holes, but unlike a black hole, there is no collapse of
the progenitor star and the properties of matter inside the
star are relevant. The spacetime is regular throughout
although falling observers experience infinite tidal forces
and the inner and outer regions turn hermetic. For these
compact objects one can find a mass formula and their
entropy yields results that match those for pure black holes;
see [35].

4. Compact stars with fields different from electric
and in alternative theories of gravity

There are general relativistic compact objects other
than neutron stars, black holes and quasiblack holes. An
important class of such objects are the regular black holes,
i.e., objects that have all the properties of black holes but
do not show a singularity at their core. For an electric
realization of such objects see [39].
Of course, fields other than Maxwell and charged

matter can be put or added, giving rise to several different
compact objects such as gravastars, boson stars and also
regular black holes. In addition, theories of gravitation,
different from general relativity, can be used, giving rise to
compact objects displaying their own peculiarities showing
that the study of compact stars comprises one of the
fundamental subjects in any gravitational theory; for a
review see [40].

C. This work

Our aim here is to explore a particular class of spheri-
cally symmetric cold charged fluid spheres, i.e., cold
charged stars. We investigate electrically charged poly-
tropic spheres. Many features we have mentioned will
appear. The compact stars that will appear in this study
have an Oppenheimer-Volkoff limit, a Buchdahl limit
and a quasiblack hole limit.
The present paper is structured as follows. To properly

define the physical quantities of the model we write in
Sec. II the Einstein-Maxwell equations for a charged
perfect fluid. The explicit set of equations in the
case of spherical symmetry for a static spacetime in
Schwarzschild-like coordinates is given and put in the
TOV form. To close the system, an equation of state of
polytropic form and a charge density profile are defined.
Section III is devoted to reporting the general properties of
the spheres in terms of the polytropic exponent. The
Oppenheimer-Volkoff limit is analyzed as well as other
properties of the spheres, such as their radius to mass ratio.
In taking an infinite polytropic exponent, i.e., a stiff equa-
tion of state, one can find with care the Buchdahl and
quasiblack hole limits. A study of the dependence of the
speed of sound as a function of the polytropic index is also
performed. In Sec. IV we conclude.
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II. BASIC EQUATIONS, THE EQUATIONS
OF EQUILIBRIUM, AND THE

EQUATIONS OF STATE

A. Basic equations

For completeness we start by writing the Einstein-
Maxwell equations in the presence of charged matter,
c ¼ 1 ¼ G,

G�� ¼ 8�T��; (1)

r�F
�� ¼ 4�J�; (2)

where the Greek indices �, �, etc., run from 0 to 3; the
Einstein tensor is G�� ¼ R�� � 1

2g��R, with R�� and

g�� being, respectively, the Ricci and the metric tensors,

and R being the Ricci scalar. T�� stands for the energy-

momentum tensor, which, in the present study, is written as
T�� ¼ M�� þ E��.M�� stands for the energy-momentum

tensor of a perfect fluid that is given by

M�� ¼ pg�� þ ðpþ �ÞU�U�; (3)

where � is the energy density, p is the pressure, and U� is

the fluid’s four velocity. The choice of a perfect fluid
implies that the flow of matter is adiabatic, and so no
heat flow, radiation, or viscosity is present [8]. E�� is the

electromagnetic energy-momentum tensor,

4�E�� ¼ F�
�F�� � 1

4
g��F��F

��; (4)

where the Faraday-Maxwell strength tensor is

F�� ¼ r�A� �r�A�; (5)

with r� representing the covariant derivative, and A�

the electromagnetic gauge field. In addition, the electric
current density is written as

J� ¼ �eU
�; (6)

where �e is the electric charge density.

B. The equations of equilibrium

To describe a static fluid distribution with spherical
symmetry, the line element is assumed to be of the
following form:

ds2 ¼ �BðrÞdt2 þ AðrÞdr2 þ r2d�2 þ r2sin 2�d�2; (7)

where ðt; r; �;�Þ are the usual Schwarzschild-like coordi-
nates, with the metric functions AðrÞ and BðrÞ depending
on r alone.

Assuming that there is a static spherically symmetric
electric field implies that the only nonzero components of
the Maxwell strength tensor are Ftr ¼ �Frt, with Ftr

being a function of the radial coordinate r alone. The
other terms of the Maxwell tensor are identically zero.

Hence, the only nonvanishing component of the Maxwell
equation (2) is given by

dqðrÞ
dr

¼ 4��eðrÞr2
ffiffiffiffiffiffiffiffiffi
AðrÞ

p
; (8)

where qðrÞ ¼ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞp

FtrðrÞ is the total electric charge
inside a sphere of radial coordinate r, which does not
depend on the timelike coordinate t.
In the present case, considering the metric (7), the

nonzero components of the Einstein equation (1) are

d

dr
½rA�1ðrÞ� ¼ 1� 8�r2

�
�ðrÞ þ q2ðrÞ

8�r4

�
; (9)

rB�1ðrÞ
AðrÞ

dBðrÞ
dr

þ 1

AðrÞ ¼ 1þ 8�r2
�
pðrÞ � q2ðrÞ

8�r4

�
: (10)

As usual, we define a new quantity mðrÞ representing
the mass inside the shell of radial coordinate r in such a
way that

A�1ðrÞ ¼ 1� 2mðrÞ
r

þ q2ðrÞ
r2

: (11)

Now, replacing Eq. (11) into Eq. (9) it gives

dmðrÞ
dr

¼ 4�r2�ðrÞ þ qðrÞ
r

dqðrÞ
dr

; (12)

which represents the mass (energy) conservation, as
measured in the matter’s frame.
Moreover, from the Bianchi identities r�T

�� ¼ 0, it

follows that

dB

dr
¼ qB

2�r4ðpþ �Þ
�
dq

dr

�
� 2B

pþ �

�
dp

dr

�
; (13)

where, to shorten equations and simplify notation, we
dropped the function dependence, BðrÞ ¼ B, qðrÞ ¼ q,
and so on.
Finally, replacing Eq. (8) and the conservation equa-

tion (13) into Eq. (10) it yields

dp

dr
¼ �ðpþ �Þ ð4�rpþ m

r2
� q2

r3
Þ

ð1� 2m
r þ q2

r2
Þ

þ �e

ffiffiffiffi
A

p q

r2
; (14)

which is the TOV equation [4,5] modified to the study
of equilibrium of an electrically charged fluid; see [20]
(see also [24]).
It is clear that Eqs. (8), (11), (12), and (14) are not

enough to solve for the six variables qðrÞ, AðrÞ, mðrÞ,
�ðrÞ, pðrÞ and �eðrÞ, since there are 2 degrees of freedom.
The two missing equations (or constraints) are generally
obtained from a model of matter, in this case, of the
charged fluid. To complete this set of equations, it is
commonly considered an equation of state relating the
pressure with the energy density of the fluid. Moreover,
for the electrically charged fluid, a relation defining
the electric charge density is also needed; see below.
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The resulting set of equations constitute the complete set of
structure equations that, with some appropriate boundary
conditions, can be solved simultaneously.

The final step to set up the system is defining the
boundary conditions for the sought solutions. In the present
case, those are chosen at r ¼ 0, the center of the sphere,
and are mðr ¼ 0Þ ¼ 0, qðr ¼ 0Þ ¼ 0, pðr ¼ 0Þ ¼ pc,
�ðr ¼ 0Þ ¼ �c, �eðr ¼ 0Þ ¼ �ec. These boundary condi-
tions imply that Aðr ¼ 0Þ ¼ 1. The surface of the star
r ¼ R is found when pðRÞ ¼ 0. For the numerical calcu-
lations, the inputs in the system of equations are the central
energy density �c that through the equation of state yields
the central pressure pc, and the central charge density �ec.

The metric exterior to the sphere is given by Reissner-
Nordström metric

ds2 ¼ �
�
1� 2M

r
þQ2

r2

�
dT2 þ dr2

1� 2M
r þ Q2

r2

þ r2d�2;

(15)

with M and Q being, respectively, the total mass and the
total charge of the sphere. The time T is proportional to the
inner time t, and the radial coordinate r is identical to
the radial coordinate of the interior region. The full set of
boundary conditions at the surface of the star is BðRÞ ¼
1=AðRÞ ¼ 1� 2M=RþQ2=R2, mðRÞ ¼ M, qðRÞ ¼ Q,
besides pðRÞ ¼ 0, and so �ðRÞ ¼ 0 for a polytropic equa-
tion of state, which, together with a smooth charge density
profile, is equivalent to the full set of junction conditions
for boundary layers in general relativity in this particular
instance.

C. Equation of state and charge density relation

1. The equation of state

As mentioned above, to complete the set of equations it
is necessary to add two more relations to the charged fluid
system. Usually, an appropriate equation of state is fur-
nished. Among the simplest choices, a polytropic equation
of state is frequently used. For the purpose of the present
analysis, following Tooper [12], it is convenient to choose
the following polytropic relation:

p ¼ !��; (16)

where ! is the polytropic constant and we use the name
polytropic exponent for the parameter �.

Equation (16) is a good equation of state for a
Newtonian ideal fluid; indeed it is equivalent to that of a
nonrelativistic fluid for small pressures, when compared to
the energy density [10]. However, for high densities and
pressures, Eq. (16) violates causality conditions for any �.
To see that we consider the speed of sound cs within the
fluid. The square of the sound speed is c2s ¼ dp=d�, and so
the equation of state (16) gives c2s ¼ �p=�. On the basis of
this equality, we can determinate the value of the speed
of sound across a given star as a function of the radial

coordinate r. Moreover, we can see that for a sufficiently
large pressure the speed of sound becomes larger than the
speed of light. In considering large values of � here we will
find high pressures at the center violating causality and the
usual energy conditions. Even though this is a drawback, as
we will see it is interesting to analyze the regime of large
polytropic exponents and check the properties of the cor-
responding polytropic spheres. With these models in hand
we can then compare with other models of charged stars in
the literature. We can also verify how the speed of sound
depends on the polytropic exponent, central pressure,
charge fraction and other physical quantities of the model.
Furthermore, in investigating the dependence of the struc-
ture of the charged spheres on a gamut of different poly-
tropic exponents one can take the limit of very large �
when the fluid becomes incompressible and situations
similar to the Schwarzschild interior solution appear.
More specifically, as we shall see below, in the case of
uncharged or charged spheres the Buchdahl limit is ap-
proached for � ! 1. In addition, for very large � the
quasiblack hole limit is reached.

2. The charge density relation

To study the effects of the electric charge in the structure
of polytropic charged spheres we also need to define the
charge density profile. For simplicity, we assume that the
charge density is proportional to the energy density, see
[24] (see also [21,26]),

�e ¼ 	�; (17)

where 	 is the charge fraction and, in geometric units, is a
dimensionless constant.
As already mentioned, the effect of the electric charge in

the structure of the stars has been studied in previous works
considering several values of the charge fraction 	 for a
fixed equation of state, i.e., by taking Eq. (16) with fixed
� ¼ 5=3 [24]. In the present work we are interested in
studying all possible compact star solutions including their
extreme limits, such as quasiblack hole solutions. More
specifically, using the equation state (16), we consider
different charge amounts 	 and also different polytropic
exponents �. Therefore, given the value of the charge
fraction 	, the polytropic constant !, and the central
energy density (or the central pressure), we can analyze
the system as a function of �.

III. THE STRUCTURE OF
POLYTROPIC CHARGED STARS

WITH VARYING �, 0 < � <1
A. General remarks

We now present the structure of charged spheres made
up of polytropic fluids for various values of the polytropic
exponent � and charge fraction 	. We investigate the type
of compact objects that might arise from these solutions,
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and whether they have a quasiblack hole limit. In the
analysis we have found that such a regime is approached
in the limit � ! 1. To find the whole spectrum of objects
and in particular the quasiblack hole, we integrate the
system of equations considering many different values of
the polytropic exponent �. For the numerical integration
we rewrite Eqs. (8), (11), (12), (14), (16), and (17), as well
as the boundary conditions adopted in the center of the star,
in a dimensionless form (see the Appendix). The relevant
equations then take the form given by Eqs. (A5)–(A7). For
each given value of �, 	, and �c (or, equivalently, pc), the
resulting system of equations is numerically solved
through a fourth order Runge-Kutta method. The main
results are displayed now.

Since we analyze the limit of large polytropic exponents,
we plot the results in terms of tanh�, for � in the interval
½4=3; 17:1�. Hence, it is interesting to show explicitly the
values of tanh� as a function of �. This is done in Table I.

In presenting the numerical results we continue to put
c ¼ 1, and use G ¼ 7:42611� 10�28m=kg for the gravi-
tational constant.

B. Numerical input values

For a generic equation of state as (16) in a star, besides
the polytropic exponent �, there are two free parameters,
the polytropic constant ! and the central energy density
�c. On the other hand, to analyze the structure of charged
polytropic spheres for large values of the polytropic ex-
ponent one must be careful when choosing the normaliza-
tion factors for the numerical calculation, because the
convergence strongly depends on such a choice. Hence,
for convenience, and also for the sake of comparison with
the results in the literature, the central energy density of a
standard neutron star model, that is, �c � 1017 kg=m3 (see,
e.g., [15]), is a good reference value for our numerical
analysis. With this in mind and recalling that the equation
of state (16) is used, following [24] (see also Appendix) a
value of ! is picked up in order that for � ¼ 5=3 and a
suitably chosen central energy density, the solution is close
to the values for real neutron stars. In fact, it is convenient
to normalize the polytropic constant! in such a way that it
turns out a function of the polytropic exponent �, namely,
!¼ !ð�Þ ¼ 1:47518� 10�3ð1:78266� 1015 kg=m3Þ1��.
With such a choice, a natural normalization factor for the
numerical calculations related to the TOV equation would
be �0 ¼ 1:78266� 1015 kg=m3, corresponding to the
pressure p0 ¼ 2:62974� 1012 kg=m3, which is indepen-
dent of �. However, since we want to verify the limit of
arbitrarily large polytropic exponents (see below), it is

necessary to consider a normalization factor �0 not larger
than the central energy densities of interest. We then have
chosen to normalize quantities in terms of the central
energy density (see the Appendix).
We have made calculations for many different values of

the polytropic exponent �, the charge fraction 	, and the
central energy density �c. We are mostly interested here in
the effects of varying the exponent � in order to find, for
high values of �, the quasiblack hole limit. We then fix the
central energy density and vary � starting from the value
� ¼ 4=3, which corresponds to the usual relativistic ideal
fluid. Note that for large � the central pressure becomes
very large; see the equation of state (16).
We show below the results obtained for different

central energy densities and some different values of the
polytropic exponents. Since one of the goals is the search
for quasiblack holes, we have chosen a central energy
density 10 times larger than the normalization factor, �c ¼
10�0 ¼ 1:78266� 1016 kg=m3. For this value of central
energy density, the maximum value of the polytropic
exponent that produces good results is approximately
17.0667 (17.1, for short). For larger values, the conver-
gence is slow and the results present numerical instabil-
ities. In the case � ¼ 17:1we have that the central pressure
is about 15.8 orders of magnitude larger than the � ¼ 4=3

central pressure, i.e., pð�¼17:1Þ
c =pð�¼4=3Þ

c ¼ !ð�¼17:1Þ�17:1
c =

!ð�¼4=3Þ�4=3
c ’ 1:0� 1015:8. Since pð�¼17:1Þ

c is much larger

than pð�¼4=3Þ
c , in the numerical analysis we consider the

first value as satisfying the condition for the limit of
arbitrarily large pressure; we considered it as an infinite
central pressure.
As usual, the values of the massM, charge Q and radius

R of the star are found when the pressure at the surface of
the star is equal to zero pðr ¼ RÞ ¼ 0. Since this rarely is
the case, the numerical code is stopped when the pressure
becomes smaller than an appropriately chosen very small
value, or when it changes sign from positive to negative
values.

C. Radius of the spheres as a function of the mass for
a fixed polytropic exponent and different charge

fractions: The Oppenheimer-Volkoff limit

In Figs. 1 and 2 we plot the radius of the resulting
spheres as a function of the mass, normalized to the
Sun’s mass M�, for � ¼ 4=3 and � ¼ 5=3, respectively,
and for a few values of the charge fraction 	. The exponent
� ¼ 4=3 represents soft relativistic matter. Exponents like
� ¼ 5=3 or higher represent harder matter cores. The
considered central energy densities �c are in the interval
1:0� 1013 to 1:0� 1020 kg=m3. These graphs are to be
compared to the results of Ref. [24], where � ¼ 5=3 is
fixed and the maximum value of	 is about 0.96, while here
we show results for 	 up to 0.99. For a given charge
fraction, the usual behavior of the polytropic cold stars is
noticed, with the radius of the star decreasing with the mass

TABLE I. The hyperbolic tangent, tanh�, of the polytropic
exponent �.

� 4=3 5=3 2.0 3.0 5 17.1 1
tanh� 0.8701 0.9311 0.9640 0.9950 0.9999 1.000 1.000
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as the central energy density grows. Also, the spiraling
behavior of the curve R�M is observed for high central
densities (see, e.g., [17]).

In Fig. 1 for � ¼ 4=3, one can see the Chandrasekhar
mass limit appearing distinctly in the vertical lines of the
plots together with the Oppenheimer-Volkoff limit, the
points where the vertical lines turn to the left. Clearly,
the two mass limits coincide in this � ¼ 4=3 instance, as
perhaps could be expected following the heuristic argu-
ments given in [6]. Nonetheless it would be worth explor-
ing this coincidence. In addition to a mass limit, the
Oppenheimer-Volkoff limit also gives a minimum radius
for the star (the Chandrasekhar minimum radius is zero,

as it uses Newtonian gravitation rather than general
relativity).
In Fig. 2 for � ¼ 5=3, one can see the Oppenheimer-

Volkoff limit, the points where the inclined lines inflect to
the left. In this case, as for all � � 4=3 cases, there is no
Chandrasekhar limit.

D. Properties of the spheres as a function of the
polytropic exponent: Toward the Buchdahl limit

1. Radius of the spheres as a function
of the polytropic exponent

The dependence of the curve R�M on the polytropic
exponent can be seen in Fig. 3, where we plot the radius of
the resulting spheres as a function of the mass for 	 ¼ 0:5
and a few values of the polytropic exponent �. As in the
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FIG. 1 (color online). The radius of the charged polytropic
sphere as a function of the mass for � ¼ 4=3 and a few values of
charge fraction 	. The considered central energy densities are in
the interval 1:0� 1013 to 1:0� 1020 kg=m3. The Chandrasekhar
and Oppenheimer-Volkoff mass limits coincide in this � ¼ 4=3
case.
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FIG. 2 (color online). The radius of the charged polytropic
sphere as a function of the mass for � ¼ 5=3 and a few values of
charge fraction 	. The considered central energy densities
are in the interval 1:0� 1013 to 1:0� 1020 kg=m3. The
Oppenheimer-Volkoff mass limit appears clearly, and there is
no Chandrasekhar limit for � � 4=3.
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FIG. 3 (color online). Top: The radius of the charged
polytropic sphere as a function of the mass for 	 ¼ 0:5 and a
few values of the polytropic exponent �. The considered
central energy densities are in the interval 1:0� 1013 to
1:0� 1020 kg=m3. The curve for � ¼ 4=3 was interrupted at
the central energy density �c ¼ 1:72� 1015 kg=m3, and the
complete behavior of this curve can be seen in Fig. 1. Bottom:
Amplification of the region where the lines intersect. Note the
lines do not intersect at a point as could be inferred from the top
panel. The line � ¼ 4=3 is to the left of this bottom panel and
does not appear.
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case of Fig. 2, the considered central energy densities are in
the interval 1:0� 1013 to 1:0� 1020 kg=m3. These graphs
show results completely new, and we do not find a similar
analysis in the literature for comparison. Namely, as the
polytropic exponent increases, the inclination of the curve
R�M decreases, becoming approximately horizontal for
� around 2.0. This can be understood by taking into
account that a very large polytropic exponent implies an
approximately constant energy density, � ¼ �0, resulting
in a relation of the formM� 4��0R

3=3, which means that
the radius of the sphere increases with the mass and also
with the central energy density. It is interesting to say that
the general behavior of the curves for large � is indepen-
dent of 	, namely the dominant behavior of negative
dR=dM for small � (typically for � < 2:0) changes to
dR=dM > 0 for large �.

We plot the radius of the resulting spheres as a function
of the mass for � ¼ 17:0667 and a few values of the
charge fraction 	 in Fig. 4. Notice that the charge fraction
does not significantly change the results. Since for large
values of � the central pressure becomes very large, the
numerical calculations cannot be performed for large val-
ues of the central energy density, so that in this case the
considered values of �c are in the interval 2:0� 1015 to
2:4� 1016 kg=m3.

2. Mass of the spheres as a function
of the polytropic exponent

Figure 5 shows the total gravitational mass of the star as
a function of the polytropic exponent (in logarithmic scale)
for the central density �c ¼ 1:78266� 1016 kg=m3 and
for several values of the charge fraction 	. The values of
� considered are in the interval 4=3 � � � 17:0667. As
one may observe, the gravitational mass increases with �
in a rate that is larger for small charge fractions. For

instance, in the case 	 ¼ 0:5, the mass for � ¼ 4=3 is
approximately M ¼ 0:23M� while for � ¼ 17:1 it is M ¼
75:0M�. That is to say, the mass grows about 32,509%. On
the other hand, for 	 ¼ 0:99 the mass grows approxi-
mately 588%. The growth of the mass with � may be
understood by noticing that the central pressure increases
with �, so that the weight of more mass is supported
against collapse.
The dependence of the mass with 	 can also be seen in

Fig. 5. It increases monotonically with the charge fraction,
and strongly depends on � too. In fact, for � ¼ 4=3, the
mass of the star increases about 11,451%, from M ¼
0:23M� at 	 ¼ 0:5 to M ¼ 26:2M� at 	 ¼ 0:99. In turn,
for � ¼ 17:1 and in the same interval of 	 the mass varies
approximately 85.57%, from M ¼ 82:8M� to M ¼
153:65M�. This is shown explicitly in Fig. 6. Such a
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FIG. 5 (color online). The mass of the charged polytropic
sphere as a function of the polytropic exponent considering the
central energy density �c ¼ 1:78266� 1016 kg=m3 and a few
values of charge fraction 	.

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
0

25

50

75

100

125

150

175

200

225

250
R

[k
m

]

Log(M/M )

 α=0.99

 α=0.5

 α=0.9

 α=0.7

FIG. 4 (color online). The radius of the charged polytropic
sphere as a function of the mass for � ¼ 17:0667 and a few
values of charge fraction 	. The considered central energy
densities are in the interval 2:0� 1015 to 2:4� 1016 kg=m3.
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FIG. 6 (color online). The mass of the charged polytropic
sphere as a function of the charge fraction 	 considering the
central energy density �c ¼ 1:78266� 1016 kg=m3 and two
values of �.

ARBA~NIL, LEMOS, AND ZANCHIN PHYSICAL REVIEW D 88, 084023 (2013)

084023-8



behavior is also easily explained since the electric charge
acts as an effective pressure, helping the hydrodynamic
pressure to support collapse. Hence, the two effects of
increasing 	 and � act favorably to yield equilibrium
configurations with large masses.

The value 	 ¼ 0:99 is the maximum value of the charge
fraction for which we could find equilibrium solutions in
our numerical calculations for the largest value of � we
considered. However, for � close to 5=3 we can get results
even for 	 ¼ 0:9999 corresponding to spheres with very
large masses and radii.

3. The radius to mass ratio of the sphere as a
function of the polytropic exponent

The values of the ratio R=M as a function of the poly-
tropic exponent are shown in Fig. 7 in logarithmic scale. In
this figure, as in Fig. 5, it is considered the central energy
density �c ¼ 1:78266� 1016 kg=m3 and a few different
values of the charge fraction 	. The main feature to note is
that R=M decreases with increasing �, a common behavior
for all values of central energy densities we have inves-
tigated (even for those cases not shown in the figure). Note
that in the case without charge, 	 ¼ 0:0, and large poly-
tropic exponent, � ¼ 17:1, it is found that R=M ’ 2:27. If
one extrapolates to � ! 1, giving the Schwarzschild
interior solution, one finds the Buchdahl limit, R=M ¼
9=4 ¼ 2:25, as expected. This is shown more clearly
in Fig. 8 (see also Sec. III E 2). On the other hand, for
	 ¼ 0:99 and � ¼ 17:1 the ratio R=M is very close to
unity; see the discussion below.

It is seen that for charged stars (	 � 0:0) we obtain
solutions that violate the original (uncharged) Buchdahl
limit [13]; i.e., we find R=M < 9=4. Also, there are values
of R=M that are smaller than the bound for charged
objects established in [28], which take into account the

contributions of the electric charge. For instance, in the
case 	 ¼ 0:99 and � ’ 17:1, we find R=M � 1:03, while
the minimum value of R=M calculated from the results
obtained in [28], with our values for M and R, is R=M *
3:18. A possible explanation for such a different result is
that our equation of state for large � implies arbitrarily
large values of the central pressure, while in [28] it is
assumed that the physical quantities are well behaved
and finite.
As seen here, the combined conditions of a large charge

fraction and a high polytropic exponent imply that matter
can be compressed beyond the original Buchdahl limit, up
to the quasiblack hole limit; see below.

4. The charge of the sphere as a function of the
polytropic exponent

The behavior of the charge of the sphere as a function of
the polytropic exponent can be seen in Fig. 9, where we
plot the ratio Q=M versus the polytropic exponent in a
logarithmic scale for the same central density, �c ¼
1:78266� 1016 kg=m3, as in Fig. 7, and for different
values of charge fraction 	 as indicated. It is seen that
Q=M increases with the increasing of the polytropic ex-
ponent � for all 	. Moreover, the largest value Q=M �
0:999793 is found for the charge fraction 	 ¼ 0:99 and
� ¼ 17:0667. These are the largest values our numerical
code yield results without running into convergence trou-
bles. For intermediate values of 	, the results show an
unexpected dependence of the total amount of charge
upon the polytropic exponent. For a given charge fraction
	, the total charge jumps from approximately 	M for
� & 2:0 to approximately 1:3	M for � * 4:0. A possible
interpretation of this result is that fluid spheres made of
stiff matter (large dp=d�; see below) admit more charge
than those made of soft matter (small dp=d�).
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FIG. 7 (color online). Values of the ratio R=M against the
polytropic exponent � for a few values of the charge fraction
	. For large �, the curves for 	 ¼ 0:0 and for 	 ¼ 0:99
approach the Buchdahl limits R=M ¼ 9=4 and the quasiblack
hole limit R=M ¼ 1, respectively.
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FIG. 8 (color online). The ratio R=M as a function of the
polytropic exponent for �c ¼ 1:78266� 1016 kg=m3, 	 ¼ 0:0,
and 	 ¼ 0:99, showing the extreme limit in each case. For
	 ¼ 0 we get the Buchdahl limit, and for 	 ¼ 1 we get the
quasiblack hole limit.
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The dependence of the ratio Q=M as a function of the
charge fraction 	 for some values of the polytropic ex-
ponent � is shown in Fig. 10.

E. The infinite polytropic exponent limit and the
Buchdahl and quasiblack hole limits

1. Initial remarks

The numerical analysis we have performed indicates
that the quasiblack hole limit is not reached by polytropic
charged fluid spheres, using the polytropic equation of
state (16), with the polytropic exponent in the interval
4=3 � � � 2:0, and with smooth boundary conditions,
i.e., with finite central pressure and zero pressure at the
surface of the sphere.

However, previous results, and also some preliminary
numerical calculations using the present formulation,

suggest that the quasiblack hole limit can be found con-
sidering matter with an equation of state other than the
polytropic one. For instance, in the case of �ðrÞ ¼ const
[22,23] or constant total energy density [34], quasiblack
holes were modeled by charged matter. Moreover, in the
present framework we may get constant energy density in
the limit of very large polytropic exponents.
To investigate that limit normalized quantities are nec-

essary, as usual in numerical calculations. We call p0 a
particularly chosen value of the central pressure and con-
sidered it as the normalization factor for the pressure.
Hence, using Eq. (16) to write p0 ¼ w��

0 , we get

lim
�!1

p

p0

¼ lim
�!1

�
�

�0

�
� ¼

�1; if � > �0;

0; if � < �0

(18)

and

lim
�!1

�

�0

¼ lim
�!1

�
p

p0

�
1=� ¼ 1: (19)

The same holds for the charge density in case one uses
Eq. (17),

lim
�!1

�e

�0e

¼ lim
�!1

�

�0

¼ lim
�!1

�
p

p0

�
1=� ¼ 1: (20)

Therefore, if the central energy density �c is larger than the
normalization value �0, the central pressure of such a
sphere is infinite. On the other hand, if the central energy
density is smaller than �0, the central pressure vanishes and
then no equilibrium solution is found. Moreover, in such a
limit, independent of the value of pc, i.e., independent of
�c, the energy density � is a constant throughout the
charged fluid sphere. This is the analogue of the
Schwarzschild star, whose compactness is bounded by
the Buchdahl limit.
Figure 11 shows the relations �ðrÞ=�0 and pðrÞ=p0 in

terms of the radial coordinate for the charge fraction
	 ¼ 0:99, polytropic exponent � ¼ 17:0667 and central
energy density �c ¼ 1:78266� 1016 kg=m3. As it can be
noted, the pressure inside the sphere decreases very fast
with the radius. Starting with a very high value at r ¼ 0,
the pressure reaches its minimum value, ideally equal to
zero, at a value R of the radial coordinate, which is iden-
tified as the radius of the charged sphere. Following the
standard procedure, the numerical calculation is then
stopped at that point, r ¼ R, and the interior solution is
matched to the exterior Reissner-Nordström solution. If the
calculation is continued, the pressure would reach negative
values and we discard those solutions. On the other hand,
the energy density varies very slowly with the radial coor-
dinate, starting with �=�0 ¼ 10 at r ¼ 0 and decreasing
only 1 order of magnitude until very close to the surface of
the sphere. In comparison to the pressure variation, the
energy density is approximately a constant throughout the
sphere. It is important to mention that the initial values of
log ðp=p0Þ and log ð�=�0Þ differ by 16 (sixteen), and that
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FIG. 9 (color online). Values of the ratio Q=M as a function of
the polytropic exponent for different charge fractions 	 and
central energy density �c ¼ 1:78266� 1016 kg=m3.
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FIG. 10 (color online). Values of the ratio Q=M as a function
of the charge fraction for the polytropic exponent � ¼ 4=3 and
� ¼ 17:0667 and central energy density �c ¼ 1:78266�
1016 kg=m3. The curves for all � in the interval ½4=3; 17:0667�
are in between the two shown curves.
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due to this the behavior of the curve �ðrÞ=�0 is not fully
clearly seen in Fig. 11.

With total confidence, we may then extrapolate these
results and state that our numerical analysis confirms the
results for infinitely large polytropic exponents, as shown
by Eqs. (18) and (19). In such a limit the charged sphere
is similar to the Schwarzschild star in the sense that it has
a constant energy density. That peculiarity in the energy
density of the star, such as �ðrÞ ¼ const as in [22,23]
or total energy density equals a constant as in [34],
allows us to find quasiblack holes with pressure using
the hydrostatic equilibrium equation. Interestingly the
Schwarzschild interior solution has a constant energy
density and, numerically, the Buchdahl limit is attained
by taking the limit of infinite central pressure. Namely,
the Schwarzschild stars satisfy R=M > 9=4, with the
upper bound for the most compact Schwarzschild star,
the Buchdahl limit R=M ¼ 9=4, being found by taking
the limit pc ! 1 in the solution. We then expect to find
quasiblack holes in a similar situation, i.e., for static
charged fluid spheres with a polytropic equation of state
in the limit of a very large polytropic exponent. This was
investigated numerically, and the more important results
are presented in the next sections.

2. The Buchdahl limit

To see more clearly the extremely compact limit of the
objects studied in the present work we plot in Fig. 8 an
amplified version of Fig. 7, showing the limit of R=M for
large �. The aim of such a figure is to show the ratio R=M
for the uncharged case (	 ¼ 0:0) and for the largest con-
sidered charge fraction (	 ¼ 0:99) in the high polytropic
exponent regime.
In the uncharged case, 	 ¼ 0:0, the smallest value of

R=M we have found is approximately 2.27, which is very
close to the Buchdahl bound, R=M ¼ 9=4 ¼ 2:25 [13].
The Schwarzschild interior solution is probably the
simplest case where the Buchdahl bound can be verified.
In fact, if the central pressure is allowed to be infinite, then
the bound R=M ¼ 9=4 is reached. In such a limit, the
Schwarzschild interior solution corresponds to an incom-
pressible fluid (constant energy density) with a monotoni-
cally decreasing pressure whose central value is arbitrarily
large.
In the charged 	 ¼ 0:99 case, the numerical result is

also very close to the extremal bound of Andréasson for the
compactness of charged static spheres [29]. In fact, from
Table II one gets R=M ¼ 1:03 and R=Rþ ¼ 1:01, indicat-
ing that the radius of the charged sphere is really very close
to its own gravitational radius. This confirms the fact that
the analogue to the Buchdahl limit for charged static
spherical objects is the quasiblack hole limit, R=M ¼
Rþ=M ¼ Q=M ¼ 1 (see below).

3. The quasiblack hole limit

As shown in Figs. 7 and 9, there are values of	 and � for
which we find R=M � 1:02676 and Q=M � 0:999793; in
other words, R � M � Q, indicating that the quasiblack
hole limit is about to be reached. The best values we have
found, i.e., the ones whose corresponding solution is the
closest to the quasiblack hole solution, are obtained by
considering the charge fraction 	 ¼ 0:99 and the poly-
tropic exponent � ¼ 17:0667. For higher values of 	 or
�, our numerical code fails to converge. Therefore, the
values 	 ¼ 0:99 and � ¼ 17:0667 were chosen as best
values, and the other functions and properties of the cor-
responding solution were determined.
Following [36], given a static spherically symmetric

spacetime solution one has to check also the behavior of
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FIG. 11 (color online). The ratios �ðrÞ=�0 and pðrÞ=p0 versus
the radial coordinate for the central energy density �c ¼
1:78266� 1016 kg=m3, polytropic exponent � ¼ 17:0667 and
charge fraction 	 ¼ 0:99. The normalization factors used are
�0 ¼ 1:78266� 1015 kg=m3 and p0 ¼ 2:62974� 1012 kg=m3.

TABLE II. The obtained values of the mass, charge and radius of the charged star, in
geometric units, with the corresponding values of R=M, R=Rþ and R=R�, for several charge
fractions 	 in the case �c ¼ 1:78266� 1016 kg=m3 and � ¼ 17:0667.

	 M� 105 ½m� Q� 105 ½m� R� 105 ½m� R=M R=Rþ R=R�
1 0.50 1.22295 0.879711 2.32188 1.89859 1.12033 6.21802

2 0.70 1.47248 1.31759 2.33518 1.58588 1.09640 2.86491

3 0.90 1.92775 1.90301 2.34444 1.21615 1.04868 1.44728

4 0.99 2.27478 2.27431 2.33566 1.02676 1.00631 1.04807
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the metric functions in order to decide if the solution is
really a quasiblack hole or, at least, really close to one.
For that we have studied the behavior of AðrÞ and BðrÞ for
large � and large 	.

We plot the metric function A�1ðrÞ against the radial
coordinate in Fig. 12, for the charge fraction 	 ¼ 0:99,
polytropic exponents � ¼ 4=3 and � ¼ 17:0667, and cen-
tral density �c ¼ 10�0 ¼ 1:78266� 1016 kg=m3. Note
that A�1ðrÞ decreases monotonically with r, so that its
minimum value is found at the surface of the sphere. In
the case considered here, the minimum value of A�1ðrÞ
is 4:05648� 10�4, indicating that we are close to the
quasiblack hole limit for such a metric function, i.e.,
A�1ðr ¼ RÞ ¼ 
 at the surface of the object, r ¼ R.

In Fig. 13 we plot the metric function BðrÞ as a function
of the radial coordinate, for the charge fraction 	 ¼ 0:99,
polytropic exponents � ¼ 4=3 and � ¼ 17:0667, and cen-
tral density �c ¼ 10�0 ¼ 1:78266� 1016 kg=m3. Once
the values of M, Q and R are already known, this graphic
is drawn by solving the conservation equation (13), inte-
grating from the surface until the center of the sphere.

For these particular values of parameters, the metric func-
tion BðrÞ assumes very small values, increasing slowly

with the radial coordinate, to reach the largest value at

the surface of the star, where it equals the metric coefficient

A�1ðrÞ. The maximum value is BðrÞ ¼ 4:05648� 10�4 at

r ¼ R. As just said, this value is the same as the value

of A�1ðRÞ, because at the surface of the star one has

BðRÞ ¼ A�1ðRÞ ¼ 1� 2M
R þ Q2

R2 , which is due to the fact

that the interior solution is matched smoothly to the

Reissner-Nordström exterior solution. It is worth noticing

that the metric function BðrÞ is very small all along the

interior of the sphere, also indicating that the solution is

close to the quasiblack hole limit in which BðrÞ is vanish-
ingly small, BðrÞ ! 
 across the hole region inside matter.
The ratioQ=M as a function of the charge fraction	, for

the polytropic exponent � ¼ 17:0667, and for the central

density �c ¼ 1:78266� 1016 kg=m3 has been shown in

Fig. 9. As can be seen in that figure, the ratio Q=M
approaches 1 with the increasing charge fraction. For 	 ¼
0:99, the values of the charge and of the mass of the given
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FIG. 12 (color online). The metric function A�1ðrÞ as a func-
tion of the radial coordinate for � ¼ 4=3 (top) and � ¼ 17:0667
(bottom). In both cases 	 ¼ 0:99. The vertical dashed line
indicates the surface of the star.
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FIG. 13 (color online). The metric function BðrÞ as a function
of the radial coordinate for � ¼ 4=3 (top) and � ¼ 17:0667
(bottom). In both graphs we used 	 ¼ 0:99. The dashed vertical
line represents the surface of the sphere.
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star are very close to each other (Q � M), which implies

that R	 
 M	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p � M, where R	 are, respec-
tively, the event horizon and the Cauchy horizon of the
corresponding star, found as usual through the solutions of
the equation BðRÞ ¼ 0. Moreover, from the values of ratios
Q=M and R=M, for the charge fraction 	 ¼ 0:99 and
� ¼ 17:0667, we conclude that the radius of the charged
sphere is larger than the radius of the event horizon of the
corresponding Reissner-Nordström black hole, Rþ, indi-
cating that we have a static equilibrium configuration.
Also, since R=Rþ � 1, the boundary of the star approaches
its own gravitational radius, which, together with the other
properties found above, indicates that the quasiblack holes
limit is about to be reached; see also [22,23,34].

The values ofM, Q, R, R	 and their relations are shown
in Table II for the maximum 	 and � that permit good
numerical results, namely, 	 ¼ 0:99 and � ¼ 17:0667. We
obtainQ � M, in geometric units, and then R ’ Rþ ’ R�.
These results, together with the fact that BðrÞ � 
 for all
0 � r � R and A�1ðRÞ � 
 (small 
) guarantee that we are
close to the quasiblack hole limit (see [36] for a precise
definition of a quasiblack hole).

As is well known, similar extreme relations characteriz-
ing quasiblack holes, such as Rþ ’ R� ’ M ¼ Q, are
found in the case of charged dust stars, with zero interior
pressure (p ¼ 0). This follows mainly in charged systems
that satisfy the Majumdar-Papapetrou conditions; see, e.g.,
[35]. The present result is an additional example of quasi-
black holes with pressure, as the one found in Ref. [34] (see
also [37]).

F. Speed of sound within the fluid and
the causality condition

If one is interested in restricting the charged sphere
solutions to those that do not violate causality, the speed
of sound inside the fluid is an important property to
investigate.

The speed of sound is defined through the equation
c2s ¼ dp=d�. So from the equation of state (16) one finds

c2s ¼ dp

d�
¼ �

p

�
¼ !����1: (21)

As seen from Eq. (21), the speed of sound gets larger than
the speed of light if

!����1 > 1: (22)

For the charged polytropic fluid we are considering here,
the energy density �ðrÞ decreases toward the surface of the
star and so does the speed of sound. This is true for finite �.
In other words, for a given equilibrium solution, the speed
of sound is greatest at the center of the star. This has been
confirmed numerically for all values of the parameters
we have checked. Hence, to test the causality condition,
cs � 1, it is sufficient to determine the speed of sound at
the center of the star.

It is clear from Eq. (21) that, for relatively small energy
densities and small polytropic exponents, c2s is smaller than
unity. However, as the polytropic index grows, the fluid
gets stiffer and eventually becomes incompressible for
� ! 1. Hence, for given values of the polytropic constant
! and central energy density �c, there is a particular value
of � above which causality is violated. In the case of
Fig. 14 it is � ’ 3:3.
In the graphic of Fig. 14 we plot the speed of sound at the

center of the star (cs) as a function of the polytropic
exponent (�) for the central energy density �c ¼
1:78266� 1016 kg=m3. It is seen that for large values of
� the speed of sound exceeds the speed of light. This is
because as � grows very large, the value of �ðrÞ ap-
proaches a constant and dp=d� becomes arbitrarily large.
The speed of sound strongly depends on the central energy
density and increases with the exponent �. In the limit of a
very large � the charged spheres become incompressible
for which the sound speed cannot be defined by Eq. (21). In
such a limit, compact uncharged spheres can be found,
these being the interior Schwarzschild solution with the
most compact one given by the Buchdahl limit. In the
charged case the limiting � ! 1 solution is again a �ðrÞ ¼
const solution, and it yields the quasiblack hole limit.

IV. CONCLUSIONS

We have studied electrically charged polytropic spheres
in the context of the Einstein-Maxwell theory. The spheres
contain a spherically symmetric distribution of charged
perfect fluid, and the exterior spacetime is represented by
the Reissner-Nordström metric. The charge density �e and
the energy density � were assumed to have the relation
�e ¼ 	�, whereas the fluid assumes a polytropic equation
of state relating the pressure p and the energy density �
of the fluid, p ¼ !��, with ! and � being constants.
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FIG. 14 (color online). Speed of sound in the center of the star
against the polytropic exponent � for the central density �c ¼
1:78266� 1016 kg=m3. For � * 3:3 the speed of sound cs is
larger than the speed of light.
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The choice of parameter ! is such that, for � ¼ 5=3 and
appropriate central energy density �c, the system is close
to the realistic neutron stars. We have studied the
Oppenheimer-Volkoff limit, the Buchdahl limit and the
quasiblack hole limit.

We have analyzed the configurations for several �,
from � ¼ 4=3 to � reasonably high. Indeed, we have found
that for a central energy density that is 10 times larger
than the normalization factor the highest value of the
polytropic exponent that produced proper numerical
results is � ¼ 17:0667. In such a case, the numerical
results approached interesting limiting cases.

In the zero charge case, 	 ¼ 0:0, for all of the central
energy densities considered, in the limit of large polytropic
exponents we found solutions for stars that are very close
to the Buchdahl limit, R=M ¼ 9=4. The mass to radius
relation increases with the polytropic exponent attaining a
value very close to 9=4 for � ¼ 17:0667. In such a limit the
spheres are similar to the Schwarzschild star since they
have a constant energy density, the central pressure in this
limit being arbitrarily large.

For the charged case, for fixed finite �, and by varying
the central pressure we have not found quasiblack holes.
On the other hand, in the limit of very high �, and with the
central pressure tending to infinity, we have shown that the
quasiblack hole limit is reached. In fact, by increasing
the polytropic exponent and the charge fraction the relation
R=M approaches unity. The largest value of such a ratio is
found considering 	 ¼ 0:99 and � ¼ 17:0667, which
are the highest values for which our numerical code
furnished trustworthy results. For these values of 	 and
� we found also that Q ’ M, and so the radius of the
sphere is close to the corresponding horizon radius

R ’ Rþ ¼ Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
. In addition to this we verified

other properties of the charged spheres that indicate
beyond doubt the presence of quasiblack holes with
pressure.

The physical properties of charged spheres with other
choices of equations of state and other charge density
profiles should also be investigated, and we shall report
such analyses in a future work.
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APPENDIX: DIMENSIONLESS RELATIVISTIC
EQUATIONS OF A POLYTROPE

For the numerical calculations, the relativistic equations
of a polytrope must be written in dimensionless form. For
this, we introduce the dimensionless radial coordinate "
given by

" ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
4��c

p
; (A1)

and the new variables �ð"Þ, uð"Þ, and �ð"Þ defined by

�ð"Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
4��c

p
mðrÞ; (A2)

uð"Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4��c

p
"2

qðrÞ; (A3)

�ð"Þ ¼
�
�ðrÞ
�c

�
�
; (A4)

�c being the central energy density of the star. In terms of
the normalized energy density �, the pressure becomes
pðrÞ ¼ !�c

��ð"Þ. Considering the dimensionless varia-
bles u, �, �, and the relation (17), the relativistic equations
of a polytrope, Eqs. (8), (12), and (14) in a dimensionless
form are

du

d"
¼ � 2u

"
þ 	�1=�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�
" þ "2u2

q ; (A5)

d�

d"
¼ �1=�"2 þ 	"3�1=�uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�
" þ "2u2

q ; (A6)

d�

d"
¼ �"

�
�þ �1��

c

!
�1=�

��!���1
c �� u2 þ �

"3

1� 2�
" þ "2u2

�

þ 	�1��
c !�1u�1=�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

" þ "2u2
q : (A7)

This gives a set of three coupled differential equations,
(A5)–(A7), that are solved simultaneously to get the equi-
librium solutions. The boundary conditions adopted in the
center of the star, where " ¼ 0, are �ð0Þ ¼ 0, uð0Þ ¼ 0
and �ð0Þ ¼ 1. The maximum value of " is found when
�ð"Þ ¼ 0, and such a particular value of " is identified as
the radius of the polytropic sphere, " ¼ "s.
In the astrophysics of neutron stars, units appropriate to

nuclear physics [15] are usually used, so that, for units in
which the speed of light is set to unity (c ¼ 1), the pressurep
and energy density� are given inMeV=fm3, whereMeVis a
unit of energy equal to one million electron-volts, and fm,
fermi, or femtometer is a unit of length equal to 10�13

of the centimeter. Moreover, from the relation (17), the
charge density �e is also measured in MeV=fm3. The
reference energy density, �0, used as a normalization factor
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in the numerical calculations, is �0 ¼ 1:0 MeV=fm3.
Transforming to MKS units, which we use in this paper,
thismeans�0 ¼ 1:78266� 1015 kg=m3. The normalization
factor may be changed according to the region of the
central energy density in which one is interested, or depend-
ing on the equation of state of the fluid being used. We have
done both variations, but in this paper we report the
results obtained by using the TOV equation normalized
in terms of the central energy density �c, as given by
Eqs. (A1)–(A4).

In the present analysis, the polytropic constant !
is normalized in terms of the reference central energy
density �0 ¼ 1:0 MeV=fm3. The particular value ! ¼
1:47518� 10�3 ½fm3=MeV���1, which is equivalent

to ! ¼ 1:47518� 10�3ð1:78266� 1015Þ1��½m3

kg���1, was

chosen for the sake of comparison to the results of
previous works [24]. Notice that, with this choice, the
parameter ! results in being a function of the polytropic
exponent, ! ¼ !ð�Þ.

The integration of Eqs. (A5)–(A7) is stopped at the point
" where the pressure �ð"Þ reaches negative values, or
otherwise, when it gets smaller than an appropriate chosen
value, �ð"Þ � 0. The corresponding value of the radial
coordinate " ¼ "s is extracted, and the radius of the
sphere is obtained from the relation R ¼ "sffiffiffiffiffiffiffiffi

4��c

p . Then,

the physical quantities, mass M and charge Q, are

calculated, respectively, from M 
 mðRÞ ¼ �ð"sÞffiffiffiffiffiffiffiffi
4��c

p and

Q 
 qðRÞ ¼ "2suð"sÞffiffiffiffiffiffiffiffi
4��c

p .

After obtaining �ð"Þ and uð"Þ the metric functions Bð"Þ
and Að"Þ are determined from the relations

dBð"Þ
d"

¼ 2"Bð"Þ
�!���1

c �ð"Þ � u2ð"Þ þ �ð"Þ
"3

1� 2�ð"Þ
" þ "2u2ð"Þ

�
; (A8)

A�1ð"Þ ¼ 1� 2�ð"Þ
"

þ "2u2ð"Þ: (A9)
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Breach, New York, 1967).

[12] R. F. Tooper, Astrophys. J. 140, 434 (1964).
[13] H. A. Buchdahl, Phys. Rev. 116, 1027 (1959).
[14] S. Chandrasekhar, An Introduction to the Study of Stellar

Structure (University of Chicago Press, Chicago, 1939).
[15] N. K. Glendenning, Compact Stars: Nuclear Physics,

Particle Physics, and General Relativity (Springer-
Verlag, Heidelberg, 1996).

[16] Y. B. Zel’dovich and I. D. Novikov, Relativistic
Astrophysics 1: Stars and Relativity (University of
Chicago Press, Chicago, 1971) (translation from the
1967 Russian edition).

[17] C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[18] K. A. Bronnikov and S. G. Rubin, Black Holes, Cosmology
and Extra Dimensions (World Scientific, Singapore,
2013).

[19] W. Israel, in 300 Years of Gravitation, edited by S.W.
Hawking and W. Israel (Cambridge University Press,
Cambridge, England, 1987), p. 199.

[20] J. Bekenstein, Phys. Rev. D 4, 2185 (1971).
[21] J. L. Zhang, W.Y. Chau, and T.Y. Deng, Astrophys. Space

Sci. 88, 81 (1982).
[22] F. de Felice, Y.-Q. Yu, and J. Fang, Mon. Not. R. Astron.

Soc. 277, L17 (1995).
[23] F. de Felice, S.-M. Liu, and Y.-Q. Yu, Classical Quantum

Gravity 16, 2669 (1999);
[24] S. Ray, A. L. Espı́ndola, M. Malheiro, J. P. S. Lemos, and

V. T. Zanchin, Phys. Rev. D 68, 084004 (2003).
[25] C. Ghezzi, Phys. Rev. D 72, 104017 (2005).
[26] B. B. Siffert, J. R. de Mello, and M.O. Calvão, Braz. J.

Phys. 37, 2B (2007).
[27] Y.-Q. Yu and S.-M. Liu, Commun. Theor. Phys. 33, 571

(2000); arXiv:gr-qc/9904050.
[28] M.K. Mak, P. N. Dobson, and T. Harko, Europhys. Lett.

55, 310 (2001).
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