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We set up in detail the general formalism to model polytropic general relativistic stars with anisotropic

pressure. We shall consider two different possible polytropic equations, all of which yield the same

Lane-Emden equation in the Newtonian limit. A heuristic model based on an ansatz to obtain anisotropic

matter solutions from known solutions for isotropic matter is adopted to illustrate the effects of the

pressure anisotropy on the structure of the star. In this context, the Tolman mass, which is a measure of

the active gravitational mass, is invoked to explain some features of the models. Prospective extensions of

the proposed approach are pointed out.
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I. INTRODUCTION

The polytropic equations of state have a long and a
venerable history, they were introduced in the context of
Newtonian gravity, in order to deal with a variety of
astrophysical problems (see Refs. [1–6] and references
therein), their great success stemming mainly from the
simplicity of the equation of state and the ensuing main
equation (Lane-Emden).

The theory of polytropes is based on the polytropic
equation of state, which in the Newtonian case reads

P ¼ K��
0 ¼ K�1þ1=n

0 ; (1)

where P and �0 denote the isotropic pressure and the mass
(baryonic) density, respectively. Constants K, �, and n
are usually called the polytropic constant, polytropic
exponent, and polytropic index, respectively.

The polytropic equation of state may be used to model
two very different types of situations, namely:

(i) When the polytropic constant K is fixed and can
be calculated from natural constants. This is the
case of a completely degenerate gas in the nonrela-
tivistic (� ¼ 5=3; n ¼ 3=2) and relativistic limit
(� ¼ 4=3; n ¼ 3). Polytropes of this kind are par-
ticularly useful to model compact objects such as
white dwarfs, and they lead in a rather simple way to
the Chandrasekhar mass limit.

(ii) When K is a free parameter, as, for example, in the
case of isothermal ideal gas, or in a completely
convective star. Models related to isothermal
ideal gas are relevant in the so-called Schönberg-
Chandrasekhar limit (see Ref. [3] for details).

However, in some cases the object under study may
be compact enough as to require the use of general rela-
tivity (e.g., neutron stars). In the context of this theory,
polytropic equations of state have also been widely used
(see Refs. [7–15] and references therein).
Both in the Newtonian and in the general-relativistic re-

gime, the fluid under consideration is generally assumed to be
endowedwith isotropic pressure (Pascal principle). However,
in a recent work [16] we have extended the framework used
to deal with Newtonian polytropic equations of state to the
case of anisotropic fluids (principal stresses unequal).
The motivation to undertake such an endeavor was based

on the fact that the local anisotropy of pressure may be
caused by a large variety of physical phenomena of
the kind we expect to find in compact objects (see
Refs. [17–25] and references therein for an extensive
discussion on this point).
Among all possible sources of anisotropy, there are two

particularly related to our primary interest. The first one is
the intense magnetic field observed in compact objects such
as white dwarfs, neutron stars, or magnetized strange quark
stars (see, for example, Refs. [26–30] and references
therein). Indeed, it is a well-established fact that a magnetic
field acting on a Fermi gas produces pressure anisotropy
(see Refs. [31–34] and references therein). In someway, the
magnetic field can be addressed as a fluid anisotropy.
Another source of anisotropy expected to be present in

neutron stars and, in general, in highly dense matter, is the
viscosity (see [35–42] and references therein).
An alternative approach to anisotropy comes from kinetic

theory using the spherically symmetric Einstein-Vlasov
equations, which admits a very rich class of static solutions,
none of them isotropic (Refs. [43–45] and references
therein). The advantages or disadvantages of either approach
are related to the specific problem under consideration.
Based in all the arguments above, it is our main purpose

in this paper to develop the general formalism to describe
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polytropes in the presence of pressure anisotropy, within
the context of general relativity.

For the sake of completeness, we shall first review very
briefly the theory of polytropes for a perfect (isotropic)
general relativistic fluid. In this latter case there exist two
possible versions of the polytropic equation of state leading
to the same Newtonian limit.

Next, we shall display the general formalism for aniso-
tropic fluids. In this case, we shall consider the same two
possible polytropic equations of state of the isotropic case,
but now applied to the radial pressure alone. Both cases
share the same Newtonian limit.

In order to integrate the obtained system of equations we
need to provide further information about the anisotropy
inherent to the problem under consideration. For doing
that, we shall assume an ansatz, allowing us to specific
modeling. For these models we shall also calculate the
Tolman mass, whose behavior allows one to understand
some of their peculiar features. As we shall see below, our
method links our models continually with the isotropic
case (see Sec. IV), thereby allowing us to bring out the
influence of anisotropy on the structure of the object.
However, it should be stressed that the above-mentioned
models are presented with the sole purpose to illustrate the
method, the natural way to obtain models, which consists
in providing the specific information about the kind of
anisotropy present in each specific problem. Finally,
we shall conclude with a summary of results and some
possible extensions of our formalism.

II. THE GENERAL RELATIVISTIC POLYTROPE
FOR A PERFECT FLUID

A. The field equations

We consider spherically symmetric static distributions
of fluid, bounded by a spherical surface �. The line
element is given in Schwarzschild-like coordinates by

ds2 ¼ e�dt2 � e�dr2 � r2ðd�2 þ sin 2�d�2Þ; (2)

where � and � are functions of r. We number the coor-
dinates: x0 ¼ t; x1 ¼ r; x2 ¼ �; x3 ¼ �. We use geometric
units and therefore we have c ¼ G ¼ 1. The metric (2)
has to satisfy Einstein field equations which in our case
read [18]

� ¼ � 1

8�

�
� 1

r2
þ e��

�
1

r2
� �0

r

��
; (3)

P ¼ � 1

8�

�
1

r2
� e��

�
1

r2
þ �0

r

��
; (4)

P ¼ 1

8�

�
e��

4

�
2�00 þ �02 � �0�0 þ 2

�0 � �0

r

��
; (5)

where prime denotes derivative with respect to r, P is the
isotropic pressure, and � is the energy density.

At the outside of the fluid distribution, the spacetime is
that of Schwarzschild, given by

ds2 ¼
�
1� 2M

r

�
dt2 �

�
1� 2M

r

��1
dr2

� r2ðd�2 þ sin 2�d�2Þ: (6)

In order to match smoothly the two metrics above on the
boundary surface r ¼ r�, we must require the continuity of
the first and the second fundamental form across that
surface (Darmois conditions). Then it follows

e�� ¼ 1� 2M

r�
; (7)

e��� ¼ 1� 2M

r�
; (8)

P� ¼ 0; (9)

where the subscript � indicates that the quantity is
evaluated at the boundary surface �.
Next, it will be useful to calculate the radial component

of the conservation law,

T
�
�;� ¼ 0; (10)

where

T�� ¼ ð�þ PÞu�u� � Pg��; (11)

with

u� ¼ ðe��=2; 0; 0; 0Þ; (12)

where u� denotes the four velocity of the fluid.
After simple calculations we get

P0 ¼ ��0

2
ð�þ PÞ; (13)

or using

�0 ¼ 2ðmþ 4�Pr3Þ
rðr� 2mÞ ; (14)

we may also write

P0 ¼ � ðmþ 4�Pr3Þ
rðr� 2mÞ ð�þ PÞ; (15)

which is the well-known Tolman-Oppenheimer-Volkoff
(TOV) equation, and where the mass function mðrÞ, as
usual, is defined by

e�� ¼ 1� 2m=r: (16)

B. The relativistic polytrope

As mentioned in the Introduction, the Newtonian poly-
trope is characterized by (1). However, when considering
the polytropic equation of state within the context of
general relativity, two different possibilities arise, leading
to the same equation (1) in the Newtonian limit, namely.
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1. Case I

In this case the original polytropic equation of state, (1),
is conserved, see for example [8,9,14].

Now, the first and the second law of thermodynamics
may be written as

d

�
�þ P

N

�
� dP

N
¼ Td

�
	

N

�
; (17)

where T denotes denote temperature, 	 is entropy per unit
of proper volume, and N is the particle density, such that

�0 ¼ Nm0: (18)

Then for an adiabatic process it follows

d

�
�

N

�
þ Pd

�
1

N

�
¼ 0; (19)

which together with (1) leads to

K���2
0 ¼ dð�=�0Þ

d�0

; (20)

with

� ¼ 1þ 1=n: (21)

If � � 1, (20) may be easily integrated to give

� ¼ C�0 þ P=ð�� 1Þ; (22)

where C is a constant of integration. In the nonrelativistic
limit we should have � ! �0, and therefore C ¼ 1.

Thus, the polytropic equation of state amounts to

� ¼ �0 þ P=ð�� 1Þ: (23)

It is worth noticing that the familiar ‘‘barotropic’’ equation
of state,

� ¼ P=ð�� 1Þ; (24)

is a particular case of (22) with C ¼ 0.
In the very special case � ¼ 1, one obtains

K��1
0 ¼ dð�=�0Þ

d�0

; (25)

whose solution is

� ¼ P log�0 þ �0C; (26)

or, if putting C ¼ 1 from the nonrelativistic limit

� ¼ P log�0 þ �0: (27)

From now on we shall only consider the � � 1 case.
Next, let us introduce the following variables:


¼Pc=�c; r¼�=A; A2¼4��c=
ðnþ1Þ; (28)

c n
0 ¼ �0=�0c; vð�Þ ¼ mðrÞA3=ð4��cÞ; (29)

where subscript c indicates that the quantity is evaluated at
the center. It is worth noticing that some of the variables
defined above differ from those used in [8].
Then the Tolman-Oppenheimer-Volkoff equation (15)

becomes

�2 dc 0

d�

�
1� 2ðnþ 1Þ
v=�

ð1� n
Þ þ ðnþ 1Þ
c 0

�
þ vþ 
�3c nþ1

0 ¼ 0;

(30)

and from the definition of mass function (16) and Eq. (3),
we have

m0 ¼ 4�r2� (31)

or

dv

d�
¼ �2c n

0ð1� n
þ n
c 0Þ: (32)

Once again, recall that our definitions (28) and (29)
differ from Eqs. (15)–(18) in [8], therefore (30) and (32)
also differ in form from Eqs. (19) and (20) in [8], although,
of course they are absolutely equivalent.
The boundary of the surface of the sphere is defined by

� ¼ �n such that c 0ð�nÞ ¼ 0 and the following boundary
conditions apply:

c 0ð� ¼ 0Þ ¼ 1; vð� ¼ 0Þ ¼ 0: (33)

Combining (30) and (32) we obtain the generalized
Lane-Emden equation for this case, which reads

a
d2c 0

d�2
þ 2

�

dc 0

d�

�
a� 
�ðnþ 1Þ

�
�
�c n

0ðb� 
c 0Þ � v

�2
� a

2b

dc 0

d�
� b�c n

0

2

��

þ bc n
0ð3
c 0 þ b� 
c 0Þ ¼ 0; (34)

where

a � 1� 2ðnþ 1Þ
v=�
and

b � ð1� n
Þ þ ðnþ 1Þ
c 0:

In the Newtonian limit (
 ! 0), (34) becomes

d2c 0

d�2
þ 2

�

dc 0

d�
þ c n

0 ¼ 0; (35)

which is the classical Lane-Emden equation.

2. Case II

Another possibility consists in assuming that the relativ-
istic polytrope is defined by

P ¼ K�1þ1=n; (36)

instead of (1), see for example [7,11,15].
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In this case one obtains from (19) and (36)

� ¼ �0

ð1� K�1=n
0 Þn : (37)

Using (36) and (28) it can be easily demonstrated that if 

is small enough, (37) becomes

� � �0ð1þ nK�1=n
0 Þ; (38)

where only terms linear in 
 have been kept. It should
be observed that (38) and (23) are identical, implying
that both cases, I and II, differ in terms of order 
2

and higher (obviously they coincide in the Newtonian
limit).

Then introducing

c n ¼ �=�c; (39)

we obtain for the TOV equation

�2 dc

d�

�
1� 2ðnþ 1Þ
v=�

1þ 
c

�
þ vþ 
�3c nþ1 ¼ 0; (40)

and from (31)

dv

d�
¼ �2c n: (41)

From the two equations above, we can obtain the
generalized Lane-Emden equation for this case, which
reads

a
d2c

d�2
þ 2

�

dc

d�

�
a� 
�2ðnþ 1Þc n þ vðnþ 1Þ


�

� dc

d�

�a


2c
þ �2
cðnþ 1Þc n

2

�

þ cc n þ 3
cc ðnþ1Þ ¼ 0; (42)

where c � 1þ 
c .
Once again, in the Newtonian limit (
 ! 0), the Lane-

Emden equation (35) is recovered in this case too, as it
should be. Obviously equations of state in both cases
differ from each other, especially in the highly relativ-
istic regime, and therefore resulting models will also
differ.

We shall next generalize the scheme above for the case
when the pressure is no longer isotropic.

III. THE POLYTROPE FORANISOTROPIC FLUIDS

If we allow the principal stresses to be unequal, then
the energy-momentum tensor in the canonical form
reads

T
�
� ¼ �u�u� � Ph

�
� þ�

�
� ; (43)

where P is the isotropic pressure, and ��� the

anisotropic pressure tensor, with

h�� ¼ ��
� � u�u�; ��

� ¼ �

�
s�s� þ 1

3
h��

�
; (44)

and s� is defined as

s� ¼ ð0; e��
2; 0; 0Þ; (45)

with the properties s�u� ¼ 0, s�s� ¼ �1.

It is immediate to see that

� ¼ T
u

u; (46)

P ¼ � 1

3
h
T
; �
 ¼ h�
h�ðT�� þ Ph��Þ: (47)

For our purposes in this work, it would be more conve-
nient to introduce the following two auxiliary variables
(Pr and P?) by

Pr ¼ s
sT
; P? ¼ K
KT
; (48)

where K
 is a unit spacelike vector (orthogonal to u


and s
).
In terms of the above variables, we have

� ¼ Pr � P?; P ¼ Pr þ 2P?
3

; (49)

from where the physical meaning of Pr and P? becomes
evident, and the energy momentum can be written under
the form

T�� ¼ ð� þ P?Þu�u� � P?g�� þ ðPr � P?Þs�s�:
(50)

From these last expressions it a simple matter to prove
that the hydrostatic equilibrium equation now reads

P0
r ¼ ��0

2
ð�þ PrÞ þ 2ðP? � PrÞ

r
; (51)

where Pr and P? will be hereafter called the radial and
tangential pressures, respectively. This is the generalized
Tolman-Oppenheimer-Volkoff equation for anisotropic
matter. Alternatively, using

�0 ¼ 2
mþ 4�Prr

3

rðr� 2mÞ ; (52)

we may write

P0
r ¼ �ðmþ 4�Prr

3Þ
rðr� 2mÞ ð�þ PrÞ þ 2ðP? � PrÞ

r
: (53)

Based on the considerations of the previous section, we
shall consider the following two cases to extend the
polytropic equation of state to anisotropic matter.
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(1)

Pr ¼ K��
0 ¼ K�1þ1=n

0 : (54)

(2)

Pr ¼ K�� ¼ K�1þ1=n: (55)

We shall next proceed to analyze each case in detail.

A. Case I

Assuming (54), then with the help of (17) we obtain

� ¼ �0 þ Pr=ð�� 1Þ: (56)

Then repeating the same procedure as in the isotropic case
we get

�2 dc 0

d�

�
1� 2ðnþ 1Þ
v=�

ð1� n
Þ þ ðnþ 1Þ
c 0

�
þ vþ 
�3c nþ1

0

þ 2�c�n
0 �

Prcðnþ 1Þ
�

1� 2
ðnþ 1Þv=�
ð1� n
Þ þ ðnþ 1Þ
c 0

�
¼ 0; (57)

where now 
 ¼ Pcr=�c and � ¼ �� ¼ P? � Pr.
On the other hand, we obtain from the mass function

definition (16) the same equation (32) as in the isotropic
case.
Combining (57) and (32) we are led to the generalized

Lane-Emden equation for this case:

a
d2c 0

d�2
þ 2

�

dc 0

d�

�
a� 
�ðnþ 1Þ

�
�c n

0ðb� 
c 0Þ � v

�2
� a

2b

dc 0

d�
� b�c n

0

2

�

� �2

ðnþ 1ÞPrc

�
c�n

0 �
a

b

��ðnþ 1Þ

b

þ n

c 0

��
þ bc n

0ð3
c 0 þ b� 
c 0Þ

þ 2

ðnþ 1ÞPrc

�
c�n

0 ��
a

b

��
1

�

d�

d�
þ 1

�
þ 2ðnþ 1Þ


a

�
��c n

0½1þ n
ðc 0 � 1Þ� þ v

�2

��
¼ 0: (58)

It is a simple matter to check that the equation above reduces to Eq. (20) in [16] in the Newtonian limit (taking care of the
changes in notation).

B. Case II

In this case the assumed equation of state is (55), then the TOV equation becomes

�2 dc

d�

�
1� 2ðnþ 1Þ
v=�

1þ 
c

�
þ vþ 
�3c nþ1 þ 2�c�n�

Prcðnþ 1Þ
�
1� 2
ðnþ 1Þv=�

1þ 
c

�
¼ 0; (59)

and from the definition of the mass function (16), we obtain (41).
Once again, the combination of (59) and (41) leads to the generalized Lane-Emden equation for this case which reads

a
d2c

d�2
þ 2

�

dc

d�

�
a� 
�2ðnþ 1Þc n þ vðnþ 1Þ


�
� dc

d�

�a


2c
þ �2
cðnþ 1Þc n

2
� �2

ð1þ nÞPrc

�
��n�

a

c

��
n

c
þ 


c

��

þ cc n þ 3
cc ðnþ1Þ þ 2

ð1þ nÞPrc

�
c�n��

a

c

��
1

�

d�

d�
þ 1

�
þ 2ðnþ 1Þ


a

�
��c n þ v

�2

��
¼ 0: (60)

In the Newtonian limit we recover Eq. (20) in [16].

As mentioned before, it is obvious that in order to

proceed further with the modeling of a compact object,

we need to prescribe the specific anisotropy of the problem

(�). Such information, of course, depends on the specific

physical problem under consideration. Here we shall not

follow that direction; instead, we shall assume an ansatz

already used in the modeling of relativistic anisotropic

stars [46,47], whose main virtue (besides its simplicity) is

the fact that the obtained models are continuously con-

nected with the isotropic case, thus allowing one to com-

pare both cases, and thereby to illustrate the influence of

the anisotropy on the structure of the object.

IV. MODELING ANISOTROPIC POLYTROPES

In order to obtain specific models to illustrate our
method, we shall here adopt the heuristic procedure used
in Ref. [46], which allows one to obtain solutions for
anisotropic matter from known solutions for isotropic mat-
ter. The procedure mentioned above may be summarized as
follows (see [46]) for details:
(i) Let

� ¼ CfðPr; rÞð�þ PrÞrN; (61)

where C is a parameter which measures the anisot-
ropy, and the function f and the number N are to be
specific for each model.
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(ii) Assume

fðPr; rÞrN�1 ¼ �0

2
: (62)

(iii) With the assumption above, (51) becomes

dPr

dr
¼ �hð�þ PrÞ�

0

2
; (63)

where h ¼ 1� 2C. For simplicity, we assume h to
be constant throughout the sphere, which of course
does not imply the constancy of either pressure.

Then we obtain for case I the following two equations:

�2 dc 0

d�

�
1� 2ðnþ 1Þ
v=�

ð1� n
Þ þ ðnþ 1Þ
c 0

�
þ hðvþ 
�3c nþ1

0 Þ
¼ 0; (64)

and

dv

d�
¼ �2c n

0ð1� n
þ n
c 0Þ; (65)

whereas for case II, the corresponding equations read

�2 dc

d�

�
1� 2ðnþ 1Þ
v=�

1þ 
c

�
þ hðvþ 
�3c nþ1Þ ¼ 0;

(66)

and

dv

d�
¼ �2c n: (67)

The above equations shall be integrated numerically,
with the corresponding boundary conditions.

It will be useful to calculate the Tolman mass, which is a
measure of the active gravitational mass (see [48] and
references therein), defined by

mT ¼ 1

2
r2eð���Þ=2�0: (68)

Alternatively we can calculate the Tolman mass from the
expression [17]

mT ¼ eð�þ�Þ=2ðmþ 4�Prr
3Þ: (69)

The functions �, m, and Pr in the above expression are
obtained directly by integration of (64) and (65) for case I,
and (66) and (67) for case II. Thus, we only need an
expression for �, which can be obtained as follows, for
either case. Let us first consider case I. Then from (54),
(29), and (56), we may write

Pr ¼ K�1þ1=n
0c c ðnþ1Þ

0 (70)

and

� ¼ �0cc
n
0ð1þ nk�1=n

0c c 0Þ; (71)

with the help of these two expressions we may write
Eq. (63) in the form

2ðnþ 1Þdc 0 þ hd�½1þ c 0ðnþ 1Þ� ¼ 0; (72)

where the parameter  � K�1=n
0c is related to 
 by

 ¼ 


1� n

: (73)

Equation (72) can be easily integrated to obtain

e� ¼ C

½1þ ðnþ 1Þc 0�2=h
; (74)

where C is a constant of integration. Next, using the fact
that at the center (r ¼ 0) c 0 ¼ 1, we may write (74) as

e� ¼ e�c
½1þ ðnþ 1Þ�2=h

½1þ ðnþ 1Þc 0�2=h
: (75)

Finally, using (7) and the fact that the radial pressure
vanishes at the boundary surface we obtain

e� ¼
�
1� 2M

r�

�
½1þ ðnþ 1Þc 0��2=h: (76)

Thus, the (dimensionless) Tolman mass can bewritten as

vT ¼ ðvþ 
�3c 1þn
0 Þða�=aÞ1=2

�
�

1� n


1� n
þ 
ð1þ nÞc 0

�
1=h

; (77)

where

vT ¼ mTA
3

4��c

:

For case II, we follow a similar procedure. Thus, using
(55) and (39), we transform (63) into

2ðnþ 1Þ
dc þ hð1þ 
c Þd� ¼ 0; (78)

which after integration produces

e� ¼
�
1� 2M

r�

�
ð1þ 
c Þ�2ðnþ1Þ=h; (79)

where boundary conditions have been used. In this case the
Tolman mass reduces to

vT ¼ ðvþ 
�3c 1þnÞða�=aÞ1=2ð1þ 
c Þ�ð1þnÞ=h: (80)

In order to see how the Tolman mass distributes through
the sphere in the process of contraction (slow and adia-
batic), it would be convenient to introduce the following
dimensionless variables:

x¼ r

r�
¼�

~A
; y¼M

r�
; ~m¼m

M
; ~A¼ r�A: (81)

In terms of the above variables the Tolman mass for the two
cases I and II reads
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vT ¼ ðvþ 
x3 ~A3c 1þn
0 Þ

�
xð1� 2yÞ

x� 2
ðnþ 1Þv= ~A
�
1=2

�
�

1� n


1� n
þ 
ð1þ nÞc 0

�
1=h

(82)

and

vT ¼ ðvþ 
x3 ~A3c 1þnÞ

�
�

xð1� 2yÞ
x� 2
ðnþ 1Þv= ~A

�
1=2½1þ 
c ��ð1þnÞ=h; (83)

respectively. Observe that ~A ¼ ��, therefore

y ¼ 
ðnþ 1Þv�

��

: (84)

This means that y is not independent of the anisotropy
parameter h. In other words, y is constant for a given pair
ðn;
Þ if v�=�� ¼ constant, and this is possible only
for each h. One potential at the surface y corresponds
univocally to each anisotropic and relativistic polytrope.

The full set of equations deployed above has been
integrated for both cases (I and II), and a wide range of
values of different parameters. In what follows we analyze
the most relevant results obtained from a selection of the
whole set of obtained models.

In case I, Fig. 1 shows the integration of (64) and (65) for
the values of the parameters indicated in the figure legend.
However as mentioned there, the ensuing qualitative be-
havior, namely, larger values of c 0 for smaller values of h
(everywhere throughout the sphere), is maintained for a
wide range of values of the triplet ð
; n; hÞ. There exists
though, some range of values of the parameters, for which
such a behavior is disrupted, as indicated in Fig. 2, where
c 0 close to the boundary surface is larger for h ¼ 1 than
for h ¼ 0:5. We shall comment further on this ‘‘anomaly’’
later on.

In the Newtonian polytropes there exist bounded
configurations for a specific range of the parameter n,
whereas for the general relativistic polytropes of an iso-
tropic fluid, bounded configurations are also restricted by
the value of the parameter 
. In our case, as it should be
expected, the existence of bounded configurations is re-
stricted by the triplet ð
; n; hÞ, as indicated in Figs. 3 and 4.

Finally, always for case I, in Fig. 5 we plot the total mass
function (v�) as a function of the relativistic parameter

 for different values of h, and n ¼ 2. The exhibited
behavior, larger values of v� for smaller values of h, is
representative for a wide range of ðn; hÞ.

Case II is described by the integration of (66) and (67).
Results are exhibited in Figs. 6–10, and besides quantita-
tive differences, the analysis of these figures is essentially
the same as in case I.

Next, we have plotted the ‘‘surface potential’’ (y) for
both cases, in Figs. 11 and 14. This is a relevant variable
since it measures the compactness of the configuration. For
case I (Fig. 11) we observe that the degree of compactness
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FIG. 1. c 0 as a function of � for 
 ¼ 0:1, n ¼ 1 and h ¼ 0:5
(curve a); h ¼ 1:0 (curve b); h ¼ 1:5 (curve c). For a wide range
of ð
; n; hÞ this figure is qualitatively representative.
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in some sector close to the surface ��.
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monotonically decreases with h. For case II (Fig. 14) the
situation is essentially the same (decreasing of y with
increasing h), except for some range of values of h in the
ultrarelativistic case and n ¼ 2 (curve d). At any rate,
maximal values of y correspond to minimal values of h
in the four curves.
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FIG. 4. Case I: Duplets ðh; nÞ for different 
 of bounded
sources contained in Fig. 3, which show anomalous behavior
like in Fig. 2. To find this subset of anomalous models, we do a
search of parameters for which the behavior appears at least in
some interior point of the distribution.
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(curve a); h ¼ 1:0 (curve b); h ¼ 1:5 (curve c). In this case the
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 is 0.27 to get a bounded source. For a wide
range of ðn; hÞ this figure is qualitatively representative.
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FIG. 3. Case I: Duplets ð
; nÞ for bounded sources with h: 0.5
1.0; 1.5. Clearly h > 1 favors the bounded configurations
whereas h < 1 does not.
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It should be emphasized that the relationship between
the maximal values of y (maximal surface redshift) and the
local anisotropy of pressure has been discussed in great
detail in the past (see [49–55] and references therein). The
explanation for such interest is easily understood, if we
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FIG. 8. Case II: Duplets ð
; nÞ for bounded sources with h: 0.5;
1.0; 1.5. Clearly h > 1 favors the bounded configurations
whereas h < 1 does not. Below n ¼ 2 (not shown) all the
sources are bounded too.
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 of bounded
sources contained in Fig. 8, which show anomalous behavior
like in Fig. 7. To find this subset of anomalous models, we do a
search of parameters for which the behavior appears at least in
some interior point of the distribution.
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recall that the surface redshift is an observable variable,
which thereby might provide information about the struc-
ture of the source, in particular about its degree of anisot-
ropy. As mentioned before each anisotropic polytropic

model is characterized by a unique y [see (84)]. The
polytropic models favoring higher redshifts are clearly
exhibited in Figs. 11 and 14.
The correspondence mentioned above, between y and h,

suggests an increasing of the stability of the models with a
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FIG. 11. Case I: Potential at the surface y as a function of the
anisotropy parameter, h for pairs ðn;
Þ: (1.0,0.1) (curve a);
(0.5,1) (curve b).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

v
T
/v

Σ

x

a

b

c

d

e

FIG. 12. Case I: vT=v� as a function of x for n ¼ 1, 
 ¼ 0:1,
and different values of hðyÞ: 0:15ð� 0:41Þ (curve a); 0:3ð� 0:31Þ
(curve b); 0:5ð� 0:23Þ (curve c), 1:0ð� 0:13Þ (curve d),
1:5ð� 0:1Þ (curve e). Values of y are read off Fig. 11. The value
of h ¼ 0:1 corresponds to y ¼ 0:448ð>4=9Þ.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

v T
/v

Σ

x

abc

FIG. 13. Case I: vT=v� as a function of x for n ¼ 0:5, 
 ¼
1:0, and different values of hðyÞ: 0:5ð� 0:42Þ (curve a),
1:0ð� 0:34Þ (curve b), 1:5ð� 0:28Þ (curve c). Values of y are
read off Fig. 11.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

y

h

a

b

c

d

FIG. 14. Case II: Potential at the surface y as a function of the
anisotropy parameter, h for pairs ðn; 
Þ: (1.0,0.1) (curve a);
(2.0,0.1) (curve b), (1.0,1.0) (curve c), (2.0,1.0) (curve d).

L. HERRERA AND W. BARRETO PHYSICAL REVIEW D 88, 084022 (2013)

084022-10



decreasing h, except for the cases where such a correspon-
dence is broken. In order to delve deeper into this interest-
ing feature of the models, we have investigated the
behavior of the Tolman mass within the sphere.

Figure 12 displays the Tolman mass (normalized by the
total mass), for case I, as function of x for the selection of
values of the parameters indicated in the legend. As we
move from the less compact configuration (curve e) to the
more compact one (curve a), the Tolman mass tends to
concentrate on the outer regions of the sphere. This behav-
ior persists for a wide range of values of the parameters
(see Fig. 13). Now in order to better understand this effect,
we recall that we can regard the slow, adiabatic evolution
of a sphere, as a sequence of spheres in equilibrium. Thus
in the process of contraction we move from e to a, i.e.,
the system shifts to more compact configurations with
smaller values of h and with the Tolman mass decreasing
in the inner regions. In other words as the sphere gets
more compact, equilibrium configurations correspond to
smaller values of h, which in turn produce a sharper
effect of migration of Tolman mass towards the boundary
surface. In terms of stability, and keeping in mind the
physical meaning of the Tolman mass, it may be said
that more stable configurations correspond to smaller
values of h, since these are associated to a sharper reduc-
tion of the active gravitational mass in the inner regions,
thereby providing a clear physical picture of the described
scenario. It is worth mentioning that this effect was ob-
served some years ago [56] in the case of the Florides
solution [57].

For case II the situation is essentially the same, as shown
in Fig. 15, although with an important difference. Indeed,
for the values of the parameters considered in Fig. 15 and
for a wide range of values, the behavior of the Tolman mass
is basically the same as in case I. However for the values of
Fig. 16 we observe a deviation from that behavior, in a
small region close to the boundary surface, where the
Tolman mass is larger for smaller values of h (curve a),
than for larger ones (curves b and c). Again, speaking in
terms of stability, it appears that for the case of Fig. 16, the
stability is enhanced by decreasing of h, in the inner
regions of the sphere, while the opposite seems to happen
in the outer layers. An extreme example of the effect
mentioned above is shown in Fig. 17. As we can see, curve
a corresponding to the minimal value of h, describes a
configuration with the maximal value of the Tolman mass
inside the sphere. As the adiabatic collapse proceeds, we
move into curve c corresponding to the maximal value of h,
and from thereof, to curve b corresponding to the isotropic
case. Thus, the less stable configuration in this example is
that corresponding to a. On the other hand case b is more
stable than c in some inner region, while the opposite
happens in the outer layers.

So, it appears that the stability of the ‘‘core’’ and the
‘‘envelope’’ may respond differently to different degrees of

anisotropy (different h). This fact was already pointed out,
and discussed in some detail for the Bowers-Liang solution
[58], in [59]. Here we have arrived at the same result by
analyzing the behavior of the Tolman mass, whereas in
[59] such a peculiar effect was obtained by studying the
behavior of the adiabatic index.
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Finally, the following two comments are in order:
(i) For both cases I and II we have found that for some

selection of values of the parameters, the behavior of
functions c 0 and c , close to the boundary surface,
deviates from the ‘‘standard’’ behavior depicted in
Figs. 1 and 6. This ‘‘anomalous’’ behavior is shown
in Figs. 2 and 7. On the other hand, another anoma-
lous behavior in the stability (Tolman mass) was
found for case II, close to the boundary (in some
range of values of the parameters). Both behaviors
occur for similar values of the parameters. However,
while the former appears in both cases, the latter was
only found for case II. Therefore the possible link
between both kinds of anomalous behaviors, if any,
has not been established.

(ii) The fact that some features of our models (e.g., the
different stability response to different degrees of
anisotropy) are shared by a completely different
kind of anisotropic models, suggests that such
features might be common to all, or at least to a
wide family of, anisotropic compact stars.

V. CONCLUSIONS

Wehave presented the general framework for themodeling
of general relativistic polytropes in the presence of aniso-
tropic pressure. As mentioned in the Introduction, we under-
took this task, motivated on the one hand by the conspicuous
presence of such an anisotropy in compact objects and its
influence on their structure, and on the other by the fact that
polytropes represent fluid systems with a wide range of
applications in astrophysics (e.g., Fermi fluids).

Thus, we have identified two possible polytropic equa-
tions of state. For each case we have found the full set of
equations, which become the generalized Lane-Emden
equation for the anisotropic matter in the Newtonian limit.
As it should be expected (since an additional variable is

introduced), the above-mentioned set of equations requires
additional information to be integrated. This information
should be provided through the specific description of the
anisotropy present in each problem. However, in order to
illustrate our formalism we have proceeded to adopt a
specific ansatz in order to integrate the system for both
cases. The motivation for such a choice was already ex-
plained, however it should be emphasized that the main
reason to present such models was not to describe any
specific astrophysical scenario, but to convince the reader
that the formalism works.
Nevertheless the obtained models exhibit some interest-

ing features which deserve to be commented. We did so in
the previous section with the help of the Tolman mass
concept. Particularly interesting is the fact that some of
the more relevant features of the models are present in
models not related in any way to the ansatz used here.
At this point, we envisage two possible lines of research

to apply the formalism presented in Sec. III, namely:
(i) to identify the � associated to a specific astrophysical

problem from purely physics considerations and then
proceed to integrate the corresponding set of equations;

(ii) to introduce a heuristic ansatz (different from the
one assumed here) allowing to integrate the system
(64) and (65) or (66) and (67). One example of
which, could be the method proposed by Lake to
obtain anisotropic solutions to Einstein equations
from isotropic Newtonian solutions [60].

Also, among the many unanswered questions, related to
the issue considered here, two are called particularly to our
attention, namely:
(i) is there a link between the two anomalous behaviors

described in the previous section?
(ii) is the different response of the stability, to different

degrees of anisotropy, somehow related to the pos-
sible ‘‘cracking’’ of the configurations as described
in [25,61] (and references therein)?

Finally,wewant to stress that allwe have donehere requires
spherical symmetry, at least as an approximation. It is possible
that this symmetry can be broken by a strong magnetic
field, rendering the distribution anisotropic and nonspher-
ical. In such a case, of course, the method presented here
does not apply, or eventually applies only approximatively.
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