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The Horndeski action is the most general one involving a metric and a scalar field that leads to second-

order field equations in four dimensions. Being the natural extension of the well-known scalar-tensor

theories, its structure and properties are worth analyzing along the experience accumulated in the latter

context. Here, we argue that disformal transformations play, for the Horndeski theory, a similar role to that

of conformal transformations for scalar-tensor theories a là Brans–Dicke. We identify the most general

transformation preserving second-order field equations and discuss the issue of viable frames for this kind

of theory, in particular, the possibility to cast the action in the so-called Einstein frame. Interestingly, we

find that only for a subset of the Horndeski Lagrangian such a frame exists. Finally, we investigate the

transformation properties of such frames under field redefinitions and frame transformations and their

reciprocal relationship.
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I. INTRODUCTION

There are very few theories that can rival general rela-
tivity (GR) for elegance, simplicity, and longevity. This
pillar of modern physics, thanks to its remarkable agree-
ment with experiments, is nowadays unanimously consid-
ered as the standard model of classical gravitational
interactions [1,2]. It might seem then that the growing
attention that in the last years has been devoted to gener-
alized theories of gravitation is a preposterous attitude.
There are, however, very good reasons to not be satisfied
with the present state of affairs.

On the theoretical side, GR remains poorly understood
in its foundations: we can construct very many alternative
theories of gravitation, but we do lack an axiomatic deri-
vation of such theories and hence an authentic understand-
ing of their reciprocal relation. Moreover, generalized
theories of gravitation can be as well considered as differ-
ent effective actions induced by physics beyond the Planck
energy, and, as such, their study as alternative models of
gravitation could provide some insight on the long-
standing problem of building a quantum gravity theory.

On the experimental side, we do lack severe experimen-
tal constraints on GR from galactic scales upward. Of
course, we do know from both cosmology and astrophysics
that GR plus a cosmological constant so far provides a very
good description of the observed Universe [3]. However,
this comes at the price of accepting that 95% of the energy/
matter content of the Universe is of unknown nature.
Indeed, dark matter and dark energy have been among
the most pressing motivations for the recent outburst of
attention toward alternative theories, to name a few, fðRÞ
theories of gravity [4], generalized scalar-tensor theories

[5], Tensor-Vector-Scalar theories [6], and modified new-
tonian dynamics [7–9] (see also Ref. [10] and references
therein for a thorough presentation).
In particular, generalized Brans–Dicke scalar-tensor

theories have acquired, since their initial proposal more
than half a century ago [11], a most relevant role as the
standard alternative theories of gravitation. The investiga-
tion of formal aspects of these theories has played a fun-
damental role for several theoretical and observational
issues in gravitation. In particular, scalar-tensor theories
have represented an ideal setting for understanding the
thorny issue of the different representations of a given
gravitational theory. For example, it has been realized
that a whole class of higher-curvature theories, fðRÞ theo-
ries, can be recast as special cases of scalar-tensor theories
(with the number of scalars related to the order of the initial
field equations). Even more interestingly, the invariance of
the action of generalized scalar-tensor theories under
metric conformal transformations and redefinitions of the
scalar field can be used to relate several equivalent frames,
for example, trading off a space-time varying gravitational
constant (i.e., a nonminimal coupling) for a GR-like gravi-
tational sector (i.e., minimally coupled) associated to a
matter action with field-dependent mass and coupling
constants.
It is worth stressing that such features are not only

theoretically interesting but are also relevant for the actual
observational tests of the theory, so much so that the
question of whether conformally related frames are physi-
cally distinguishable is still an open issue in the literature
(see, e.g., Ref. [12]). Furthermore, these kinds of inves-
tigations become even more important as one moves fur-
ther away from GR into more general theories.
Further generalizations of the scalar-tensor theories have

been extensively investigated in the contexts of cosmology
[13], dark energy (DE) [14–16] , and Inflationary models
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[17,18] and have indeed provided very efficient frameworks
for explaining (in a alternative ways with respect to GR) the
observed properties of the Universe.

An extension of the scalar-tensor theories framework
that has attracted a lot of interest is represented by the
Horndeski action [19], recently rediscovered in the con-
text of the covariant Galileon theory [20]. This action
provides the most general Lagrangian for a metric and a
scalar field that gives second-order field equations and as
such is a well-motivated effective field theory. This class
of scalar-tensor theories has been extensively investigated
since it includes, as subcases, basically all known models
of DE and single scalar field inflation. However, this
generality comes at a dear price. In fact, the physics
derived from the full action is rather obscure, and the
theory has been investigated only in a few regimes or for
particular models, like the Friedman-Lamaitre-Robertson-
Walker universe, so that a systematic investigation is still
missing (see, however, Refs. [21,22] for a first attempt in
this direction and Refs. [23,24] for a method to derive
constraints in the context of DE models).

Given the above-mentioned fruitful interplay between
scalar-tensor theories and conformal transformations, one
may wonder whether a generalization along this line might
help shed some light on the properties and structure of the
Horndeski theory. This is the main motivation of the
present work. As we shall see in what follows, simple
conformal transformations are not enough for this task,
due to the more complicated structure of the Horndeski
actions, and the use of generalized metric transformation
will be required.

An example of such a generalized metric transformation
is given by disformally related metrics. These were pro-
posed in Ref. [25] and applied first in the context of
relativistic extensions of modified newtonian dynamics-
like theories [26] in order to account for measured light
deflection by galaxies. Later, they found applications in
varying speed-of-light models [27], dark energy models
[21,28–30], inflation [31], and modified dark matter mod-
els [32,33]. More recently, empirical tests of these ideas
have been proposed in laboratory experiments [34] as well
as in cosmological observations [35–37], signaling the
important role that disformal transformation is playing in
contemporary cosmology and gravitation theory.

The paper is organized as follows. In Sec. II we briefly
introduce the Horndeski action and the disformal trans-
formations, discussing the most general set of transforma-
tions that leave the action invariant. In Sec. III we discuss
some specific cases of disformal transformations and iden-
tify the subset of Horndeski actions admitting an Einstein
frame. In Sec. IV we discuss in more detail the issue of
disformal frames and their properties under field redefini-
tions and metric transformations, providing some explicit
examples and discussing their reciprocal relationship.
Finally, in Sec. V we draw our conclusions.

II. HORNDESKI ACTION AND DISFORMAL
TRANSFORMATIONS

The Horndeski Lagrangian [19] is the most general
Lagrangian that involves a metric and a scalar field that
gives second-order field equations in both fields in four
dimensions. Recently generalized to arbitrary dimensions
by Deffayet et al. in Ref. [20], it is the natural extension of
scalar-tensor theories a là Brans–Dicke.
Horndeski theory remained a sort of theoretical curiosity

for more than thirty years, but it was recently rediscovered
as a powerful tool in cosmology. In fact, its generality
(within the bound of second-order field equations) made
of it an ideal metatheory for scalar-tensor models of dark
energy and dark matter. However, up to now, no structural
analysis analogous to the one carried out for standard
scalar-tensor theories was performed. In particular, there
is no obvious extension of the concept of equivalent frames
and no principle to fix the shape of the free parameter
functions. To address these points, after briefly reviewing
the Horndeski action and disformal transformations, we
shall discuss here the behavior of this theory under such an
extended class of metric transformations.

A. Horndeski Lagrangian

The Horndeski action, rephrased in the modern language
of Galileons [38],1 can be written as

L ¼ X
i

Li; (1)

where

L2 ¼ Kð�;XÞ; (2)

L3 ¼ G3ð�;XÞh�; (3)

L4 ¼ G4ð�;XÞRþ�G4;Xð�;XÞ½ðh�Þ2 � ðr�r��Þ2�;
(4)

L5 ¼G5ð�;XÞG��r�r��

þG5;X

6
½ðh�Þ3 � 3ðh�Þðr�r��Þ2 þ 2ðr�r��Þ3�;

(5)

where X ¼ r��r��=2, ðr�r��Þ2 ¼ r�r��r�r��

and ðr�r��Þ3 ¼ r�r��r�r��r�r��, while Gi;X ¼
@Gi=@X, R is the Ricci scalar, and G�� is the Einstein

tensor. The coefficient function G4 has the dimensions
of a mass square, and it plays the role of a varying gravi-
tation constant, while G5 has those of a mass to the fourth
power. The field � is taken to have mass dimension 1. As

1Notice that we have a different sign convention with respect
to Ref. [38] due to the different definition of the function
X � r��r��=2.

DARIO BETTONI AND STEFANO LIBERATI PHYSICAL REVIEW D 88, 084020 (2013)

084020-2



said, this gravitational action is the most general one that can
be built with a metric and a scalar field, providing second-
order field equations in four dimensions. Notice that, despite
the presence of second-order derivatives in the action, no new
degree of freedom is introduced, thus evading Ostrogradski’s
theorem,which states that such extra degrees of freedoms lead
to classical instabilities [39]. We will not discuss here the
equations of motion, referring the interested reader to
Refs. [20,40] for a general analysis. Let us instead focus our
attention on some important properties of this Lagrangian.

First of all notice that, beyond the usual conformal
nonminimal coupling, there is another source that couples
the Einstein tensor to second-order derivatives of the field.
This represents a novelty as, contrary to what happens for
the coupling to the Ricci scalar, in this case, we have a
direction-dependent coupling. Second, all the sub-
Lagrangians give second-order field equations indepen-
dently so that one could, in principle, neglect some of
them without spoiling the second-order nature of the field
equations. However, as is shown in Appendix C, eventu-
ally, neglected terms can always be generated through
redefinitions of the field variables. Finally, we notice that,
compared with the standard scalar-tensor theories action,
the nonminimal coupling (NMC) coefficients now depend
also on the kinetic term.

Given that this model is a generalization of standard, one
may wonder whether suitable metric transformations can
be introduced also in this case, leaving the action invariant
and linking alternative frames. It not hard to realize that
simple conformal transformations have limited power in
this sense. In standard scalar-tensor theories , these trans-
formations allow us to replace by constants some of the
field-dependent coefficients. However, the various terms
appearing in the Horndeski action [Kð�;XÞ; Gið�;XÞ] are
also dependent on the kinetic term X, and hence more
general transformations are clearly needed.

The most natural extension of the conformal transfor-
mation in this sense would be Að�Þ ! Að�;XÞ. However,
even if this can remove the nonminimal coupling in theL4,
it is basically ineffective on the the nonminimal coupling
provided by L5. Moreover, this generalized conformal
transformation contains derivatives of the field, and hence
one must be careful that those do not end up introducing
higher derivatives in the equations of motion. In this sense,
the next natural candidate for a suitable set of metric
transformations is then represented by the disformal ones.

B. Disformal transformations

Disformal transformations are defined by the relation2

�g�� ¼ Að�;XÞg�� þ Bð�;XÞ����; (6)

where the disformal functions A and B now depend on both
the scalar field� and its kinetic term X and where we have
defined for convenience �� ¼ r��. We can classify the

properties of this generalization in two main categories:
first, the new functions do not simply depend on the local
value of the field but also on the metric itself, hidden inside
the definition of the kinetic term; second, we have a trans-
lation along the lines of variation of the field, which means
that the new metric will also depend on the way the field is
changing through space-time.
When dealing with metric transformations, one has to

ensure that the new metric is still a good one. We can
formally define the goodness of a metric transformation
with a set of properties: it must preserve a Lorentzian
signature, it must be causal, and it has to be invertible,
with a nonzero volume element. All these properties di-
rectly translate into constraints on the two free functions A
and B, which we are going to discuss one by one.
Lorentzian signature Consider a frame in which

�� ¼ ð�0; ~0Þ. Then, the Lorentzian requirement can be

translated into

�g00 ¼ Að�;XÞg00 þ Bð�;XÞ�0�0 < 0: (7)

This constraint must hold true for all values of the field and
its derivative. Given that we cannot exclude that for some
values of the field variables the function B can be zero, a
first requirement is that A > 0. This is the usual require-
ment made also for standard scalar-tensor theories. Then,
by multiplying Eq. (7) with g00, we found that the condi-
tion to be fulfilled for preventing �g00 from sign inversion is

Að�;XÞ þ 2Bð�;XÞX > 0: (8)

As a consequence, to have this relation to hold true for all
values of X, it is necessary to have some kinetic depen-
dence at least in one of the two disformal functions. This
result was first derived in Ref. [41] (see also the original
paper by Bekenstein [25]). However, in Ref. [21] it was
argued that the dynamics of the scalar field can be such
that it is possible to keep the metric Lorentzian even with
no X dependences in the disformal functions A and B. For
example, this can happen when the scalar fields enters a
slow-roll phase, e.g., when thought to be the field respon-
sible for dark energy. However, this subject is not yet fully
understood, and, being not mandatory for our purposes in
this investigation, in the following, we will assume that
both metrics are Lorentzian for all the values of the scalar
field and its kinetic term.
Causal behavior The disformal metric can have, de-

pending on the sign of the B function, light cones wider
or narrower than those of the metric g. This may lead one
to think that particles moving along one metric may show
superluminal or acausal behavior. However, the require-
ment of the invariance of the squared line element and
recalling that physical particles satisfies ds2 < 0 is enough

2More general formulations may be possible, for example,
including higher derivatives of the scalar field or by adding
vector fields [25].
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to ensure causal behavior. This objection has been dis-
cussed in some details in Ref. [42].

Invertible We also must be sure that an inverse of the
metric and the volume element are never singular. The
inverse disformal metric is given by

�g��¼ 1

Að�;XÞg
��� Bð�;XÞ=Að�;XÞ

Að�;XÞþ2Bð�;XÞXr��r��; (9)

while the volume element is given by
ffiffiffiffiffiffiffi� �g

p ¼ Að�Þ2 �
ð1þ 2XB=AÞ1=2 ffiffiffiffiffiffiffi�g

p
. The constraints derived from these

requirements are weaker than those already obtained;
hence, there are no new potential issues.

From this analysis we learn that the extension of con-
formal transformations to disformal ones is well posed,
even if all previous points deserve a deeper analysis,
which, in any case, is beyond the scope of the present
paper and is left for further studies.

Disformal metrics seem to be good candidates for our
purposes as they possess, beyond a purely conformal term,
another one that is a deformation of the metric along the
direction of variation of the field, and indeed disformal
transformations have for the Horndeski action a role very
similar to that of conformal transformations for standard
scalar-tensor theories.

C. Invariance of the Horndeski Lagrangian under
disformal transformations

The ability of the Horndeski action to give second-order
field equations resides in a fine cancelation between higher
derivatives coming from NMC terms and those produced
from derivative counterterms, which requires the coeffi-
cient functions of the second field derivatives inL4 andL5

to be proportional to the derivative of Gi with respect
to X [43].

It is easy to see that this requirement already reduces the
freedom in the disformal functions A and B. In fact, any
kinetic dependence of these two terms would lead unavoid-
ably to the breaking of the Horndeski structure, i.e., to
higher-order equations of motion. We prove this through
some examples in Appendix A, while, here, we give a first
principle argument as to why one should expect this to
happen. The ability of the Horndeski action to give second
-order field equations lies on the antisymmetric structure of
second derivative terms, as was made clear in Ref. [20].
Consider the L4 part of the Lagrangian. This can be
rewritten in the form

L4 ¼ ðg��g�� � g��g��Þ½G4ð�;XÞR����

�G4;Xð�;XÞr�r��r�r���; (10)

where the antisymmetric structure is made clear. Given that
we have to preserve this structure in order to keep the
equations of motion second order, any transformation op-
erated on the fundamental variables ’ and g�� has to be

necessarily reabsorbed into the coefficient function G4 and

its derivative modulo a surface term. However, any kinetic
dependence in the disformal functions will spoil this struc-
ture. In fact, consider the transformation property of the
second derivatives of the scalar field under the conformal
transformation ĝ�� ¼ AðXÞg��:

r�r�� ! r�r��þ A;X

A
½g���

���r�r��

þ����
�r�r������

�r�r���: (11)

When inserted in Eq. (10), among other terms, the follow-
ing one is generated:

� 4G4;X

�
A;X

A

�
2
��������r�r��r�r��; (12)

which is clearly symmetric in the four indices and hence
will produce higher than second derivatives in the equa-
tions of motion. One may wonder whether there may be
counterterms coming from curvature that eliminate this,
but, as shown in the Appendix, this is not the case. This
result may seem an artifact of the transformation used. In
this sense, it has been recently shown how, in some specific
cases, such higher-than-second derivatives can be elimi-
nated in the equations of motion using a hidden dynamical
constraint [44]. However, further analysis is required to see
whether this result can be generalized to the full Horndeski
action.
We hence conclude that, in order to be sure to preserve

second-order field equations, we have to restrict our analy-
sis to the following class of disformal transformations3:

�g�� ¼ Að�Þg�� þ Bð�Þ����: (13)

In Appendix C we show that this transformation preserves
the antisymmetric structure of the Horndeski action as its
effects happen to simply renormalize the coefficient func-
tions K and Gis. We refer the reader to this Appendix
for the detailed transformation properties, while here we
discuss the meaning of this and analyze some relevant
subcases. As a concluding remark, let us add that the
Horndeski action is clearly also invariant under the field
rescaling � ! sð�Þ� (this is explicitly discussed
Appendix D, in which we consider the effects of this
transformation on the Horndeski coefficient functions).
This property will play an important role later on in our
discussion when we shall deal with the equivalence of
disformal frames.

III. SPECIAL CASES

The structural invariance of the action under disformal
transformations translates into the statement that such

3Even though we do not provide a formal proof that this
relation is the most general that leaves the Horndeski action
invariant, we notice that more general transformations, despite
being possible, have to introduce higher derivatives of the scalar
field [44].
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transformations represent a symmetry of the Horndeski
action so that all the functions are defined modulo a
conformal and a disformal transformation. This reminds
us very closely of the case of standard scalar-tensor theo-
ries in which invariance under conformal transformations
is used to reduce the number of free functions that defines
the theory. However, the generalization of this reasoning to
the case of the Horndeski theory is not straightforward.
In fact, the subset of disformal transformations (13) does
not allow for kinetic term dependent coefficients; conse-
quently, one cannot generically rescale the functions
ðKð�;XÞ; Gið�;XÞ characterizing the Horndeski action.
The next two subsections are devoted to analyze this issue
further. We will study the transformation properties of the
Horndeski action under pure conformal and disformal
transformations separately, and, in particular, we will pro-
vide the subclass of Horndeski theories that admits a
representation in which all NMC terms are eliminated
via a disformal transformation.

A. Purely conformal transformations

Let us first consider the effects of conformal transfor-
mations �g�� ¼ Að�Þg�� on the Horndeski action (1), ex-

tending the well-known results for these transformations in
scalar-tensor theories to this more general class of actions.
The transformed Lagrangian coefficient functions read

�Kð�;XÞ¼A2Kð�;XCÞþ2XG3AA
0þ3X

G4A
0½1�2A�
A

þ6G5X
2A0

A

�
A00

A
�A02

A2

�
�2XH5;�þ2G5;XX

3

A3
A02;

(14)

�G3ð�;XÞ ¼ AG3ð�;XCÞ� 2G4;XA
0 þX

�
�2Hh;��G5A

02

2A2

þ 2G5A
00

A
þG5;XXA

02

A2

�
�H5 (15)

�G4ð�;XÞ ¼ Að�ÞG4ð�;XCÞ;
�G5ð�;XÞ ¼ G5ð�;XCÞ;

(16)

where

XC ¼ X=Að�Þ; Hh ¼ G5

A0

A
; (17)

H5 ¼
Z

dX

�
Hh;� þG5A

00

A
þ 5G5

2

A02

A2
þ 2G5;X

A0

A

�
: (18)

The effects of the transformation are manifolds. First,
notice that there is a hierarchical propagation of terms
from higher derivatives Lagrangians toward lower ones;
that is to sayLi generates terms that contribute to all Lj<i

so that, even if in the original Lagrangian some terms were
neglected, they will inevitably appear after a conformal

transformation. A special case is represented by the L5

Lagrangian that cannot be generated this way. Second, the
conformal NMC G4ð�;XÞ, is modified by a multiplicative
factor while the NMC with the Einstein tensor is unaf-
fected apart from a redefinition of the kinetic term inside
G5ð�;XÞ.
Given that, in general, all the coefficient functions de-

pend on both the scalar field and its kinetic term, it is clear
that using only a conformal transformation we shall not be
able to eliminate nonminimal couplings for any choice of
the conformal factor Að�Þ. Even in the special case in
which the coefficient functions depend only on the field
and not on its derivatives, we are able to set at most
G4ð�Þ ¼ 1 while retaining the generalized NMC between
the Einstein tensor and the field derivatives (5), given that
part of the Lagrangian is not affected by conformal trans-
formations; see Eq. (16).
Notice that, even if we were to take G5ð�;XÞ to be a

function of the scalar field only, we would not be able to
eliminate it. In fact, we then have the relation

G5ð�ÞG��r�r��

¼ G5;�XR�G5;�½ðh�Þ2 � ðr�r��Þ2�
�G5;��½2Xh������r�r���; (19)

that shows how, in this case,L5 is a contribution to theL4

(as well as to L3 and L2) that depends explicitly on the
kinetic term and cannot be eliminated by a simple confor-
mal transformation.

B. Purely disformal transformations

We turn our attention now to the case of a pure disformal
transformation, i.e., when the conformal factor Að�Þ is set
to 1 while the disformal function Bð�Þ is left unspecified.
Given that we are mainly interested in the effects of trans-
formations on the NMC terms, we will report here only the
relevant coefficient functions. The remaining ones can be
easily derived from the equations in Appendix C, and the
discussion of the effects of the disformal transformation on
them is analogous to that for conformal transformation.
In the case under consideration, we have that the trans-

formed NMC coefficient functions read

�G4ð�;XÞ ¼ ð1þ 2XBÞ1=2G4ð�;XDÞ

þG5ð�;XDÞB0ð�ÞX2

ð1þ 2XBÞ3=2 �HR;�ð�;XÞX; (20)

�G5ð�;XÞ ¼ G5ð�;XDÞ
ð1þ 2XBÞ1=2 þHRð�;XÞ; (21)

where

XD ¼ X=ð1þ 2BXÞ;

HRð�;XÞ ¼ B
Z

dX
G5ð�;XDÞ

ð1þ 2XBÞ3=2 :
(22)
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Here, we notice that the effects of the disformal trans-
formation are richer than those of the conformal one. In
fact, besides a conformal modification ofG4, we have other
contributions to L4, and, in this case, G5 is modified as
well. In particular, the modified coefficient functions re-
ceive corrections that depend on the kinetic term, but, as
can be seen from Eqs. (20) and (21), even in this case, one
cannot generically eliminate the NMC.

Let us focus on this last point and study which con-
straints can be imposed on the coefficient functions of the
Hornedski action so as to be able to eliminate all the NMC,
i.e., to use the disformal transformation to obtain �G4 ¼ 1
and �G5 ¼ 0. The latter condition is satisfied if

G5ð�;XDÞ
ð1þ 2XBÞ1=2 þ B

Z G5ð�;XDÞ
ð1þ 2XBÞ3=2 dX ¼ 0

)
Z

dX

�
G5;Xð�;XDÞ
ð1þ 2XBÞ1=2

�
¼ 0: (23)

In general, if G5 ¼ G5ð�Þ, the above constraint is auto-
matically satisfied. We cannot exclude the existence of
other solutions in which an X dependence is also allowed,
for example, if the integrand function is fast oscillating.
However, these will depend on the specific model chosen
and would need to be investigated case by case. Finally,
notice that this constraint is not influenced by the freedom
in rescaling the scalar field.

To have no conformal coupling to gravity, we have to
impose

1 ¼ ð1þ 2XBÞ1=2G4ð�;XDÞ þ
G5;�ð�;XDÞX
ð1þ 2XBÞ1=2 � ~G5X;

(24)

where

~G5ð�;XÞ ¼
Z

dX
G5;Xð�;XDÞ
ð1þ 2BXÞ1=2 : (25)

This allows us to find the form of the untransformed
function G4 in terms of the transformed variable XD.
Inverting relation (22),4 we can find the form of the func-
tion in terms of the untransformed variable X that is needed
to satisfy the requirement, namely,

G4ð�;XÞ ¼ ð1� 2Bð�ÞXÞ1=2 �G5;�ð�ÞX
þ ~G5;�ð�;XÞX; (26)

with

~G5ð�;XÞ ¼
Z

dXð1� 2BXÞ1=2G5;Xð�;XÞ: (27)

Given that we want both constraints to be satisfied at the
same time, we have then

G5 ¼ Gð�Þ and

G4ð�;XÞ ¼ ð1� 2Bð�ÞXÞ1=2 �G5;�ð�ÞX;
(28)

which fixes once and for all the functional dependence of
the G4ð�;XÞ function on the kinetic term.
We conclude that the Lagrangian

SNMC ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½G4ð�;XÞR
�G4;X½ðh�Þ2 � ðr�r��Þ2�
þG5ð�ÞG��r�r���; (29)

where G4 is given by Eq. (28), is the only one that admits a
disformal map able to eliminate all the NMC terms in the
context of Horndeski theory.
However, it is worth noticing that, inserting Eqs. (19)

and (28) in Eq. (29), all the terms depending on G5ð�Þ end
up cancelling. Hence, if the function G5 depends only on
the scalar field, we conclude that the existence of a dis-
formal metric able to cancel all NMC requires the absence
of L5.

5 We are hence left with the action

SNMC ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½GEð�;XÞR
�GE;X½ðh�Þ2 � ðr�r��Þ2��; (30)

where

GE ¼ ð1� 2Bð�ÞXÞ1=2: (31)

While we have considered here a special subset of the
�-dependent disformal transformations (13), we can easily
extend our conclusions to transformations including a con-
formal factor Að�Þ. Indeed, in this case, the most general
action allowing for a full elimination of the NMC would be
the same as Eq. (30) modulo a conformal rescaling of the
GEð�;XÞ function.
As a final remark, it is perhaps worth is to stress that,

as noted in Ref. [21], the nonrelativistic limit of the
action (30) corresponds to the quartic covariant term of
the Galileon action with the appropriate nonminimal cou-
pling to yield second-order field equations [45].

IV. DISFORMAL FRAMES

The invariance of an action under metric transformations
implies the possibility to fix some of the free functions
characterizing the theory, similarly to what is done when
choosing a gauge. Consequently, the number of the inde-
pendent functions is reduced. In our specific case, the
Horndeski action (5) is invariant under both purely confor-
mal and disformal transformations. This freedom allows us

4This can always be done, as the Jacobian of the transforma-
tion dXD

dX ¼ ð1þ 2BXÞ�2 is never singular.

5It may seem that a constant G5 could be included without
spoiling our request of no NMC. However, in this case, L5

reduces to a surface term and hence does not contribute to the
dynamics.
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to define an infinite set of equivalent frames defined by
different fixings of two of the free functions in the action
(see Refs. [46,47] for a similar reasoning in standard
scalar-tensor theories).

Among all these equivalent representations of the
theory, two are the most relevant as they correspond to
somewhat opposite situations: the Einstein and Jordan
frames. For the sake of clarity, we provide here generalized
definitions relevant for the Horndeski actions under con-
sideration here.

Jordan Frame In the Jordan frame, the Lagrangian of the
gravitational sector includes a nonminimally coupled sca-
lar field; meanwhile, all the matter fields follow the geo-
desics of the gravitational metric (the stress-energy tensor
of the matter fields is covariantly conserved with respect to
the gravitational metric).

Einstein Frame In the Einstein frame, the gravitational
dynamics is described by the standard Einstein–Hilbert
Lagrangian (plus possibly a cosmological constant).
However, matter fields are coupled to the gravitational
metric via some function of the scalar field and its deriva-
tives. They hence move on geodesics that can be different
from the one determined by the metric defining the Ricci
scalar. Moreover, the gravitational equations in the absence
of matter do not reduce to R ¼ 0, as in GR but, in general,
will retain the scalar field as a possible source.

We now proceed to recall the issue of frames and their
equivalence in standard scalar-tensor theories and then
extend this to the case of the Horndeski action.

A. Scalar-tensor theories and conformal
transformations

Scalar-tensor theories of gravity [5,10,13] represent
one of the simplest and most studied extensions of GR,
in which a scalar degree of freedom is added to the
Lagrangian besides the metric and matter fields. A minimal
prescription for generalizing GR is to promote the gravi-
tational constant to a scalar field that must be provided with
its own dynamics in order to preserve diffeomorphism
invariance. Furthermore, the Einstein equivalence princi-
ple (EEP) allows such a scalar field to also mediate the
coupling of the matter to the metric (albeit in a universal
way). This reasoning then leads to the action

S ¼
Z

d4x

�
Gð�ÞR� fð�Þ

2
r��r��� Vð�Þ

�

þ Sm½e2�ð�Þg; c �; (32)

where the four functions Gð�Þ, fð�Þ, Vð�Þ, and �ð�Þ are
general functions of their argument. We will not enter into
the details of the applications of this theory, referring to
the above-cited papers and to references therein for details,
but we will focus on some more formal properties of this
action.

First of all, the above-mentioned free functions in the
action are actually redundant for fixing a particular action

[46,47]. Indeed, the invariance of action (32) under the
conformal transformations �g�� ¼ �2ð�Þg�� and the sca-

lar field redefinitions �� ¼ Fð�Þ imply the possibility to
freely choose two out of the four functions. Hence, imple-
mentations of Eq. (32), differing only for the fixing of two
of the four coefficient functions, are indeed just different
representations of the same physical theory [46].
For this class of theories, the Einstein frame is defined

by the choice Gð�Þ ¼ 1 and fð�Þ ¼ 1 so that gravity is
described by the standard Einstein–Hilbert action; the
scalar field has a canonical kinetic term, while matter fields
follow the geodesics of a physical metric conformally
related to the gravitational one. The Jordan frame is instead
obtained choosing �ð�Þ ¼ 0 and Að�Þ ¼ �. In this case,
we have that all fields follow the same metric, but now the
scalar field is nonminimally coupled to curvature, and it
may possess a nonstandard kinetic term. The fact that the
above two frames are picked up from Eq. (32) by just fixing
two of the four coefficient functions implies their mathe-
matical equivalence (i.e., a varying gravitational coupling
in the Jordan frame is translated into field-dependent
matter masses and couplings when the action is in the
Einstein frame).
The lesson that we want to capture with this short

introduction is that, when dealing with generalized actions
like Eq. (32), one has to pay attention to their symmetries
in order to correctly identify the set of equivalent frames
(i.e., different representations of the same theory), which
one can alternatively use for more conveniently dealing
with different physical issues.
This considerations become even more important as

further modifications of gravity are introduced and com-
plicated terms are added. In what follows, we shall first
investigate the issue for that class of Horndeski actions,
admitting an Einstein frame (as this frame is often adopted
for physical investigations). Later, we shall extend the
discussion to more general actions.

B. Horndeski action and the Einstein frame

InSec. III,wederived themost general action in the Jordan
frame for which all NMCcan be eliminated via the disformal
transformation (13). However, the discussion of the possible
equivalence of frames requires us to include also the action
for matter fields with possible generalized coupling to the
metric. This leads to the completion of Eq. (30),

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½Gð�;XÞRþ�G;X ð�;XÞ½ðh�Þ2

� ðr�r��Þ2� þ Kð�;XÞ þG3ð�;XÞh��
þ Sm½ �g; c �; (33)

where

Gð�;XÞ ¼ Cð�Þ2
�
1� 2

Dð�Þ
Cð�Þ X

�
1=2

; (34)
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Sm is the total matter action defined in terms of the physical
metric

�g�� ¼ e�ð�Þg�� þ �ð�Þ����; (35)

and c stands generically for matter fields.
In the action appear six free functions, four related to

the field-metric couplings, Cð�Þ, Dð�Þ, �ð�Þ, and �ð�Þ,
and two defining the minimally coupled scalar field
Lagrangian, Kð�;XÞ and G3ð�;XÞ. Thanks to the invari-
ance under both conformal and disformal transformations,
we can fix two out of the four metric functionsCð�Þ,Dð�Þ,
�ð�Þ, and �ð�Þ with the appropriate choice of the func-
tions Að�Þ and Bð�Þ appearing in the disformal transfor-
mation (13). In principle, we could act on Kð�;XÞ and
G3ð�;XÞ, but, given their generic dependence on the
kinetic term, Eq. (13) is not effective for fixing them.
Hence, with a general disformal transformation (13), we
can define a Jordan and an Einstein frame in the same sense
as it can be done for standard scalar-tensor theories.

However, we can also use the invariance of theHorndeski
action under field rescaling to further constrain the number
of independent functions [as in the case of action (32)]. In
fact, as shown in Appendix D, we can always rescale the
field � by a function, provided that this does not lead to a
constant. This amounts to saying that we can fix onemore of
the free functions �ð�Þ,�ð�Þ,Cð�Þ, andDð�Þ to arbitrary
values so that the Einstein and Jordan frames defined above
represent a class of equivalent theories that can be further
fixed with a field redefinition. We conclude that implemen-
tations of Eq. (33), which differ only by the fixing of three
out of six functions, are nothing but equivalent representa-
tions of the same physical theory.

It is worth noticing that the invariance under two metric
transformations allows the definition of more physically
interesting equivalent frames with respect to standard
scalar-tensor theories. In fact, we can actually define the
following four equivalent frames, all obtained from the
action (33) with different fixing of the free functions:

Jordan Frame The Jordan frame is defined by the action

SJ¼
Z
d4x

ffiffiffiffiffiffiffi�g
p ½GJð�;XÞRþ�GJ;X½ðh�Þ2�ðr�r��Þ2�

þþKð�;XÞþG3ð�;XÞh��þSm½g;c �; (36)

where we have fixed � ¼ 1 and � ¼ 1 so that matter is
minimally coupled to the metric that defines the curvature
terms appearing in the action. As a consequence a confor-
mal nonminimal coupling term, described by the presence

of the function GJ ¼ Cð�Þ2ð1� 2Dð�ÞXÞ1=2, is present
and can be further constrained with a field redefinition.

Einstein Frame The Einstein frame is given by the action

SE ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½Rþ Kð�;XÞ þG3ð�;XÞh��
þ Sm½ �g; c �; (37)

where theNMChas been eliminated by the fixingCð�Þ ¼ 1
and Dð� ¼ 0Þ in the action (33), but now matter feels a
physical metric related via a disformal transformation to

that defining curvature terms, i.e., �g�� ¼ e�ð�Þg�� þ
�ð�Þ����. Again, we can fix one of the two functions

� and � via a field rescaling.
Galileon Frame This frame is given by the action

SG¼
Z
d4x

ffiffiffiffiffiffiffi�g
p ½GGð�;XÞR�GG;X½ðh�Þ2�ðr�r��Þ2�

þKð�;XÞþG3ð�;XÞh��þSm½ �g;c �; (38)

where

GG ¼ ð1� 2Dð�ÞXÞ1=2; �g�� ¼ e�ð�Þg��; (39)

which amounts to the choice Cð�Þ ¼ 1 and �ð�Þ ¼ 1. In
this case, we have both NMC and matter fields feeling a
physical metric that is now conformally related to the
gravitational one.
Disformal Frame This frame is given by the action

SD ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½GGð�;XÞRþ Kð�;XÞ þG3ð�;XÞh��
þ Sm½ �g; c �; (40)

where

GG ¼ Cð�Þ2; �g�� ¼ g�� þ �ð�Þ����; (41)

which amounts to the choice D ¼ 0 and � ¼ 1.
It is worth stressing here that the last two frames, which

can be seen as some sorts of intermediate frames between
the Jordan and Einstein ones, can actually reduce to the
latter for suitable choices of the rescaling of the field,
as can be seen from the last columns of Table I. This is a
consequence of the fact that we have four free metric
functions, �ð�Þ, �ð�Þ, Cð�Þ, and Dð�Þ, three of which
can be arbitrarily fixed, and hence some overlap is expected.
As a final remark, while all these equivalent frames are

connected by disformal transformations and field rescal-
ing, one has to also be careful about accordingly rescaling
also the so-far neglected functionsKð�;XÞ andGið�;XÞ in
order to preserve the equivalence of frames.
The above-mentioned frames were first proposed in

Ref. [21] and partially discussed in Ref. [45], in which it
was pointed out how disformal transformations relate
them, albeit no discussion about their actual equivalence
was provided. Here, we have rederived the same results in a
different way, and, in addition, we have proven the frames’
equivalence. This has relevant consequences; for example,
it implies that not only Dirac-Born-Infeld Galileon models
with a nonminimally coupled scalar field can be cast via a
disformal transformation into the simpler Einstein frame
but also guarantees the equivalence of these representa-
tions. Furthermore, the equivalence of the frames allows us
to claim the equivalence of many apparently unrelated
models as those reported in Ref. [28], given that we can
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move from one to the other through appropriately chosen
disformal transformations and field redefinitions.

C. More general disformal frames

We have seen in the previous section that the require-
ment of an Einstein frame strongly constrains the shape
of the Horndeski Lagrangian with a specific form for
G4ð�;XÞ and forcing G5ð�;XÞ ¼ 0. However, there is no
real physical need to have an Einstein frame so that one
may wonder about the existence of more general
Lagrangians that do not posses an Einstein frame but that
show in any case interesting properties under disformal
transformation. We list and analyze here some examples.

Disformal matterWhen we add the matter Lagrangian to
the full Horndeski action, the EEP allows matter fields to
be coupled to a metric that is disformally related to the one
defining the Horndeski action,

S ¼ SH½g;�� þ Sm½ �g; c �; (42)

where SH is the full Horndeski action (1), c collectively

defines matter fields, and where �g�� ¼ e�ð�Þg�� þ
�ð�Þ����. Thanks to the invariance of the full

Horndeski action under disformal transformations and field
rescaling, we are free to fix both �ð�Þ and �ð�Þ in such a
way that, after the transformation, matter propagates along
the geodesics defined by the metric g�� that appears in the

Horndeski action. These transformations will, of course,
affect the Horndeski Lagrangian, but only in the shape of
its coefficient functions, not in its structure. Hence, a
Horndeski theory in which matter propagates on the metric

�g�� ¼ e�ð�Þg�� þ �ð�Þ���� is equivalent to another

Horndeski theory, with redefined coefficient functions, in
which matter propagates along the same metric g�� that

enters the Horndeski action.
This fact is not particularly surprising, but it is nonetheless
interesting as it shows how, without any assumption on the
shape of the Horndeski action, we can see that apparently

different matter behaviors are in fact different representa-
tions of the same theory.
Einstein coupling Another possible extension is to in-

clude theL5 Lagrangian while keeping the requirement of
having a frame with no conformal coupling to gravity.
Using the relations derived in Appendix C, we see that
this requirements translate into a condition on the initial
shape of the G4ð�;XÞ function

G4ð�;XÞ ¼ ð1� 2Bð�ÞXÞ1=2 �G5;�ð�;XÞX
þ ~G5;�ð�;XÞX; (43)

where

~G5ð�;XÞ ¼
Z

dXð1� 2BXÞ1=2G5;Xð�;XÞ: (44)

With this requirement, we can consider the action

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p ½G4ð�;XÞR�G4;Xð�;XÞ½ðh�Þ2

�ðr�r��Þ2�þKð�;XÞþG3ð�;XÞh��
þ
Z
d4x

ffiffiffiffiffiffiffi�g
p �

G5ð�;XÞG��r�r���1

6
ððh�Þ3

�3h�ðr�r��Þ2þ2ðr�r��Þ3Þ
�
þSm½~g;c �; (45)

whereG4ð�;XÞ is given by the previous expressions, while
G5ð�;XÞ is left totally free. With the disformal transfor-
mation (13), we can eliminate the conformal coupling to
gravity, leaving only a NMC via the Einstein tensor and
matter fields propagating along disformal geodesics.
We conclude this section recalling that the invariance of

the Horndeski action under disformal transformations and
field rescaling holds true for the full Horndeski theory (1).
Possible restrictions on the shape and functional depen-
dencies of the free functions of the theory are to be ascribed
only to physical motivations, e.g., the requirement of an
Einstein frame, or to classification aims, e.g., identifying

TABLE I. Disformal frames obtained for different fixings of the Horndeski coefficient functions of Eq. (33). The first two columns
show the results of the fixing after a disformal transformation, while the last two show the effects of the further freedom associated
with the invariance under field rescaling (there are two possibilities in each slot in this case, as one can alternatively rescale the metric
or the field � derivative terms). � is a dimensional constant introduced to keep track of the dimensions of the coefficient functions,
while ’ð�Þ is the rescaled conformal function.

Disformal transformation Field rescaling

Frame Matter metric NMC function Matter metric NMC function

Jordan frame g�� Cð�Þ2ð1þ 2Dð�ÞXÞ1=2 g�� ð1� 2Dð�ÞXÞ1=2
g�� Cð�Þ2ð1� 2�XÞ1=2

Einstein frame e�ð�Þg�� þ �ð�Þ���� 1
’ð�Þg�� þ �ð�Þ���� 1

e�ð�Þg�� þ����� 1

Galileon frame e�ð�Þg�� ð1� 2Dð�ÞXÞ1=2 ’ð�Þg�� ð1� 2Dð�ÞXÞ1=2
e�ð�Þg�� ð1� 2�XÞ1=2

Disformal frame g�� þ �ð�Þ���� Cð�Þ2 g�� þ����� Cð�Þ2
g�� þ �ð�Þ���� 1

DISFORMAL INVARIANCE OF SECOND ORDER SCALAR- . . . PHYSICAL REVIEW D 88, 084020 (2013)

084020-9



equivalent models, but not to constraints imposed by the
invariance itself.

V. CONCLUSIONS

The gravitational interaction has been the first one
studied in a systematic way, and its modern formulation
is encoded in the theory of general relativity. Despite its
successes, GR is nowadays challenged both at the theoreti-
cal and experimental level, leading to several proposals for
alternative theories of gravity. However, the lack of an
axiomatic procedure for the construction of such theories
and the limited regime for which we have highly constrain-
ing observational data make it hard to reduce the number of
alternative theories and to find their mutual relations.

A major tool in physics is represented by symmetries.
This is a clean and precise way to order models, find their
simplest formulations, and identify the minimal set of
degrees of freedom required to fully define a theory. In
the context of standard scalar-tensor theories, this has been
systematically investigated, and the discovery of the in-
variance of such theories under conformal metric trans-
formations and field rescaling has made it possible to
identify the minimal number of functions required to de-
scribe the theory and shown the mutual relations between
apparently different representations.

Along this line of reasoning, we have investigated in
this paper the symmetries of the Horndeski action and
found that it is invariant under a more general metric
transformation than a conformal one, the so-called disfor-
mal transformation, as well as under field rescalings. These
transformations contain free functions and hence can, in
principle, be used to constrain the coefficient functions that
define the Horndeski action. However, we have shown that
the most general disformal transformation (6) cannot be
used for this purpose, as the Horndeski action is not
invariant under transformations induced by it. We have
hence circumscribed our investigation to a subset of dis-
formal transformations (13), in which the two free func-
tions needed to define it only depend on the scalar field. We
have shown that the Horndeski action is actually invariant
under such a class of disformal transformations, albeit the
generality of the Horndeski action does not allow for an
efficient fixing of the coefficient functions.

For this reason, we looked to the constraints that one
has to impose on the Horndeski coefficient functions in
order to have a theory that admits an Einstein frame. We
discovered that this is a quite constraining request, as, in
fact, the full Horndeski action is reduced to the action (33),
in which only a conformal nonminimal coupling is present.
This allowed us to investigate the existence of equivalent
frames, in an analogous way to what is done for standard
scalar-tensor theories. We found that, apart from the well-
known Einstein and Jordan frames, the invariance under
disformal transformations allows for the definition of
two more equivalent frames: the so-called Galileon and

disformal frames. We further extend our analysis to frames
that do not admit an Einstein frame and showed that, even
without this requirement, one can find physically relevant
frames connected by disformal transformations.
In conclusion, with this work, we have found a new

class of scalar-tensor theories of gravity that admits dis-
formally equivalent frames, which are related by disformal
transformation and field rescaling, thus generalizing the
previous results obtained in the context of standard scalar-
tensor theories. This may have important consequences in
cosmological context as it may allow us to identify a large
class of models in different representations of the same
theory. We hope that these issues will be further investi-
gated in the near future.
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APPENDIX A: KEEPING SECOND-ORDER
FIELD EQUATIONS

In this section we show how a metric transformation
induced by the general disformal relation (6) spoils the
property of the Horndeski action of producing second-
order field equations.6

Our proof consists of a direct calculation of the mod-
ifications that the disformal transformation has onto a
particular term of the full Lagrangian, namely, L4, when
the disformal functions depend only on the kinetic term
of the scalar field �. Despite the fact that this does not
represent a formal proof of our statement, it is nonetheless
general enough to discard any kinetic term dependence in
the disformal transformation if second-order field equa-
tions are to be preserved. We leave the formal proof of this
for further work, but we stress that the result obtained here
holds in general. Our calculations make use of Ref. [20], in
which a general procedure on how to build actions for a
metric and a scalar field that keep the equation of motion
second order was put forward. We will shortly review it for
what concerns us, referring the interested reader to the
original paper.7

In flat space-times, consider the Lagrangian

L ¼ T �1...�n�1...�n

ð2nÞ r�1
r�1

� . . .r�n
r�n

�; (A1)

where

6We want to stress that this result holds on both curved
backgrounds as well as on flat backgrounds with the exception
that, on flat space-times, there exist subcases that give second-
order field equations even after a disformal transformation.

7Notice that, in our work, we have the following correspond-
ences: � ! �, �� ! ��, ��� ! r�r��, and X ! 2X.
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T ¼ T ð�;��Þ; L ¼ Lð�;��;r�r��Þ; (A2)

then, the following lemma holds.
Lemma 1.—A sufficient condition for the field equations

derived from the Lagrangian (A1) to remain second order
or less is that T �1...�n�1��n

ð2nÞ is totally antisymmetric in its

first indices �i as well as (separately) in its last indices �i.
Notice that this is a sufficient condition. However, the

opposite statement has been proven, and a uniqueness
condition exists so that the condition is both necessary
and sufficient.

When one moves to curved space-times and covarian-
tizes, promoting partial derivatives to covariant derivatives,
third-order derivatives of the metric are produced. It has
been shown that adding a suitable finite number of non-
minimally coupled terms to the Lagrangian is enough to
eliminate the higher-than-second derivatives from the
equations of motion in both the scalar field and in the
metric. As a final result, the authors of Ref. [20] gave
the form of the Lagrangian that preserves the second-order
equations,

Lnffg ¼
Xbn=2c
p¼0

Cn;pLn;pffg; (A3)

where bn=2c indicates the integer part, while the graph
bracket indicates that L is a functional of f, which is, in
general, different for any n and for which

Ln;pffg ¼ P
�1...�n�1����n

ðpÞ r�1
RðpÞSðq�n�2pÞ; (A4)

RðpÞ ¼
Yp
i¼1

R�2i�1�2i�2i�1�2i
; (A5)

Sðq�n�2pÞ ¼
Yq�1

i¼0

r�n�i
r�n�i

�; (A6)

while

P
�1...�n�1...�n

ðpÞ ¼
Z X

X0

dX1 � � �
Z Xp�1

X0

dXpT
�1...�n�1...�n

ð2nÞ ð�;X1Þ;

(A7)

while the coefficients are given by

Cn;p ¼
�
� 1

8

�
p n!

ðn� 2pÞ!p! : (A8)

Using the Lagrangian (A1) and the rules reported above,
it is possible to construct all covariant theories that give
second-order field equations, and, in particular, in four
dimensions, we have that the Horndeski action is a linear
combination of the following terms:

L0;0 ¼ Xf0ð�;XÞ; C0;0 ¼ 1; (A9)

L1;0 ¼ Xf1ð�;XÞA��
2 r�r��; C1;0 ¼ 1; (A10)

L2;0 ¼ Xf2ð�;XÞA�1�2�1�2

4 r�1
r�2

�r�2
r�2

�;

C2;0 ¼ 1;
(A11)

L3;0 ¼ Xf3ð�;XÞA�1�2�3�1�2�3

6

�r�1
r�2

�r�2
r�2

�r�3
r�3

�;

C3;0 ¼ 1;

(A12)

L2;1 ¼ P
�1�2�1�2

ð1Þ R�1�2�1�2
;

Pð1Þ ¼
Z

dX1A
�1�2�1�2

4 X1fð2Þð�;X1Þ;

C2;1 ¼ � 1

4
;

(A13)

L3;1 ¼ P�1�2�3�1�2�3

ð1Þ R�1�2�1�2
r�3

r�3
�;

Pð1Þ ¼
Z

dX1A
�1�2�3�1�2�3

6 X1fð3Þð�;X1Þ;

C3;1 ¼ � 3

4
;

(A14)

where we have redefined the form function T 2nð�;XÞ ¼
Xfnð�; 2XÞA2n in such a way as to separate the field
dependences ð�;XÞ from the structure term Aðg��;��Þ.
Notice that the terms (2, 0) and (2, 1) as well as (3, 0) and
(3, 1) are coupled terms for which joint presence is
required in order to cancel the unwanted higher-order
derivatives. The Horndeski action can be rephrased in these
terms with the following identifications8:

Kð�;XÞ ¼ Xfð0Þð�;XÞ; (A15)

G3ð�;XÞ ¼ Xfð1Þð�;XÞ; A��
ð2Þ ¼ g��; (A16)

G4ð�;XÞ ¼
Z
½X1fð2Þð�;X1ÞdX1�; (A17)

A����
ð4Þ ¼ g��g�� � g��g��; (A18)

G5ð�;XÞ ¼
Z
½X1fð3Þð�;X1ÞdX1�; (A19)

A����	�
ð6Þ ¼g��½g��g�	�g�	g���þg��½�g��g�	

þg�	g���þg��½g��g�	�g�	g���: (A20)

To prove our statement, we need to show how a kinetic-
dependent metric transformation spoils the antisymmetric

8Notice that, compared with the convention used in the defi-
nition of the kinetic term X in Ref. [20], there are factors 1=2 that
have been reabsorbed into the definition of the function fðnÞ.
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structure of the model. Before entering the calculations, we
note that the effects of a disformal metric transformation
on the coefficient functions fðnÞ only redefines its func-

tional dependence, while the structure functions A are
again only redefined with no modifications on their anti-
symmetric structure. Hence, to check the breaking of
the antisymmetric structure, we only need to compute the
effects of metric transformations on second covariant de-
rivatives of the field and on the Riemann tensor. To do this
in a simple way, we will look at the effects of the kinetic
dependence of the disformal functions AðXÞ and BðXÞ by
applying separately a conformal transformation and a
purely disformal one on the terms corresponding to L4 in
the rephrased Horndeski action (A14).

1. Conformal transformation

Consider a conformal transformation of the kind

�g�� ¼ AðXÞg��: (A21)

After the conformal transformation (A21) is performed,
the original L4 Lagrangian is mapped into

A2G4R� A2G4;X½ðh�Þ2 � ðr�r��Þ2�
� 6AA0G4ðr�r��Þ2 � 6AA0G4�

�hr��

� 2AA0G4;X

�
h�þ A0

A
����r�r��

�
����r�r��

þ����r�r��r�r��½�4AA0G4;X

þ AA02X � 6A00AG4�: (A22)

From this expression, it is clear that the first two terms
are not dangerous, as they have the same structure as

those in the original Lagrangian. To better understand the
others, we proceed in rewriting them in the form
A����r�r��r�r��. Any antisymmetry violating

term will then directly lead to higher derivatives in the
equations of motion. After some manipulation, we arrive at
the expression

�½�6AA0G4ðg��g��Þþ ð�2G4;XAA
0 þ 6A02G4þAA00G4

þAA0G4;XÞg������þð�4G4;XAA
0 þ 4G4;XA

02X

� 6AA00G4Þg������� 2G4;XA
02���������

�r�r��r�r��; (A23)

where the symbol � indicates that only the dangerous
terms have been considered, and notice that we have added
a surface term to rewrite the third-order derivative. As can
be easily seen, antisymmetry breaking terms have appeared
in the Lagrangian. We can then conclude that the general-
ized conformal transformation (A21) spoils the antisym-
metric structure of the Horndeski action and hence gives
equation of motion for the fields that are higher than
second order.

2. Disformal transformations

Consider now a metric transformation of the form

�g�� ¼ g�� þ BðXÞ����: (A24)

Using the same procedure of the previous section, we can
write the transformed L4 part of the Lagrangian and
see whether or not it is possible to recover the antisym-
metric structure. The dangerous terms of the transformed
Lagrangian read

�
�
g������

�
2G4;X

ð1þ 2XBÞ1=2 ðB
0X þ BÞ � 2G4

ð1þ 2XBÞ3=2 ðB
2 � B0ð1þ BXÞÞ � 2

G4

ð1þ 2XBÞ1=2 R���� � G4B
0

ð1þ 2XBÞ1=2

þ
�

2B0G4

ð1þ 2XBÞ1=2 þ
2XB00G4

ð1þ 2XBÞ1=2 þ
2B0G4;X

ð1þ 2XBÞ1=2 �
2B0G4

ð1þ 2XBÞ3=2 ðB
0X þ BÞ

��

þ g������

�
� G4;X

ð1þ 2XBÞ1=2 ðB� 2XB0ð�1X2B0ÞÞ þ G4

ð1þ 2XBÞ3=2 ðB
2 � B0 þ B02X2 � XB00ð1þ 2XBÞÞ

þ G4B
0

ð1þ 2XBÞ1=2 � 2
G4;XB

0X
ð1þ 2XBÞ1=2 � 2

G4B
0

ð1þ 2XBÞ1=2
�
þ��������

�
G4;XB

0

ð1þ 2XBÞ1=2 ð1� 2X2B0Þ

þ G4

ð1þ 2XBÞ3=2 ð�XB02 þ B00ð1þ 2XBÞ � BB0Þ � G4;XB
0

ð1þ 2XBÞ1=2 �
G4B

00

ð1þ 2XBÞ1=2

þ G4B
0

ð1þ 2XBÞ3=2 ðB
0Xþ BÞ

�
r�r�r��r��; (A25)

which, again, contains terms that are not antisymmetric in
the couples ð�;�Þ and ð�;�Þ, hence giving rise to higher
derivatives in the equations of motion.

In conclusion, even if a formal proof of this result
would be desirable, our result clearly states that, if

one wants to preserve second-order field equations,
then the most general disformal transformation that
can be used is the one reported in Eq. (13), in which
the disformal functions A and B only depend on the
scalar field �.
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APPENDIX B: TRANSFORMATION PROPERTIES
OF GEOMETRICAL QUANTITIES

We provide here the transformation rules for geometric
quantities when the metric undergoes a disformal trans-
formation of the kind

�g�� ¼ Að�Þg�� þ Bð�Þ����; (B1)

where both metrics g and �g are well-defined metrics that
can be equally used to raise and lower indices. The trans-
formed inverse is

�g�� ¼ 1

Að�Þg
�� � Bð�Þ

Að�Þ2ð1þ 2XB=AÞ�
���; (B2)

while the volume element changes (see Appendix C of

Ref. [48]) as
ffiffiffiffiffiffiffi� �g

p ¼ Að�Þ2ð1þ 2XB=AÞ1=2 ffiffiffiffiffiffiffi�g
p

.

From these definitions, one can express all the barred
curvature quantities in the function of the unbarred metric
and the scalar field �. We list these below.
Connection coefficient

���
�� ¼ ��

��þ B

Að1þ 2XB=AÞ�
�r�r��þ A0

2A
ð
�

���þ
�
���Þþ 1

2

��

A2ð1þ 2XB=AÞ ð�AA0g��þðAB0 � 2A0BÞ����Þ:
(B3)

Ricci tensor

�R�� ¼ R�� þ ½ABð1þ 2XB=AÞh�� B2��r�X � AA0ð1þ 2XB=AÞ þ ðAB0 � A0BÞX�
A2ð1þ 2XB=AÞ2 r�r��

þ ½�A2A0ð1þ 2XB=AÞh�þ AA0B��r�X � 2A0X2ðA0B� AB0Þ � 2A2A00Xð1þ 2XB=AÞ�
2A3ð1þ 2XB=AÞ2 g��

þ
�
3A2A02 þ 6A02B2X2 þ 2A0A2B0X þ ðA3B0 � 4AA0B2XÞh�� 2A3A00

2A4ð1þ 2XB=AÞ2

þ 2ABðA0Br�r�X þ 5A02X þ 3A0B0X2Þ � 6A00BX2

2A4ð1þ 2XB=AÞ2
�
����

þ
��2ABð1þ 2XB=AÞR�����

��� � 2ABð1þ 2XB=AÞr�r��r�r��þ 2B2r�Xr�X

2A2ð1þ 2XB=AÞ2

þ ðA0B� AB0Þð��r�Xþ����Þ ������
��r�X þ 2�����h�ðA0 � B0XÞ þ 10XA00�����

2A2ð1þ 2XB=AÞ2
�
: (B4)

Ricci scalar

�R ¼ R� 2B

A2ð1þ 2XB=AÞR���
��� þ B

A2ð1þ 2XB=AÞ ½ðh�Þ2 � ðr�r��Þ2�

þ 2B

A3ð1þ 2XB=AÞ2 ½r
�Xr�X ���r�Xh�� � 8A0BXþ Að3A0 � 2B0XÞ

A3ð1þ 2XB=AÞ2 h�

þ 4A0B� AB0

A3ð1þ 2XB=AÞ2 �
�r�Xþ 3A0XðA0 þ 2B0XÞ

A2ð1þ 2XB=AÞ2 �
6A00X

A2ð1þ 2XB=AÞ : (B5)

Notice that both functions A and B are intended as general
functions of the scalar field �.

APPENDIX C: TRANSFORMATION PROPERTIES
OF THE HORNDESKI ACTION UNDER
DISFORMAL TRANSFORMATIONS

We explored the consequences on the Horndeski
action when the metric is transformed via a disformal
transformation,

�g�� ¼ Að�Þg�� þ Bð�Þ����; (C1)

through a direct calculation. Our results show that, after this
transformation is performed, the new action can be recast
into the same initial Horndeski form given that all the effect
of the transformation are absorbed into the rescaling of the
free coefficient functions. As a consequence, we can say
that the Horndeski action is formally invariant under this
class of disformal transformation. We report below the
transformations properties of the Horndeski Lagrangian
coefficient functions. The new Lagrangian is

�L ¼ X
i

�Li; (C2)
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where

�L2 ¼ �Kð�;XÞ; (C3)

�L3 ¼ �G3ð�;XÞh�; (C4)

�L4 ¼ �G4ð�;XÞR� �G4;Xð�;XÞ½ðh�Þ2 � ðr�r��Þ2�; (C5)

�L5 ¼ �G5ð�;XÞG��r�r��þ
�G5;Xð�;XÞ

6
½ðh�Þ3 � 3ðh�Þðr�r��Þ2 þ 2ðr�r��Þ3�; (C6)

where

�Kð�;XÞ ¼ ð1þ 2XB=AÞ1=2Kð�;XDÞ þ 2X

�
G3ð�;XDÞAA0

ð1þ 2XB=AÞ1=2 þ
G3ð�;XDÞðA0BÞX
ð1þ 2XB=AÞ3=2 þH3;�ð�;XÞ

�

þ 3X
G4ð�;XDÞ½A0 þ 2A0B0X � 2AA0 � 4A0BX�

Að1þ 2XB=AÞ3=2 þ 12X
G4;Xð�;XDÞX½A02BX � AA0B0X�

A2ð1þ 2XB=AÞ1=2

� 2XH4;�ð�;XÞ 3G5ð�;XDÞX2A0

A4ð1þ 2XB=AÞ5=2 ½�A02BX þ 2A2A00ð1þ 2XB=AÞ � Að2A02 þ 3A0B0XÞ�

� 2XH5;�ð�;XÞ þ 2G5;Xð�;XDÞX3

A4ð1þ 2XB=AÞ3=2 ðA
03BX þ AA0ðA0 þ 3B0XÞÞ; (C7)

�G3ð�;XÞ ¼
�

AG3ð�;XDÞ
ð1þ 2XB=AÞ1=2 þH3ð�;XÞ

�
þ

�
G4ð�;XDÞð4AA0Bþ ABB0X þ A0B2XÞ

A2ð1þ 2XB=AÞ3=2

þ BG4;�ð�;XDÞ
ð1þ 2XB=AÞ1=2 þ

G4;XðAA0BX � 2A2A0 þ 2A2B0XÞ
A2ð1þ 2XB=AÞ1=2 �H4ð�;XÞ

�

þ
�
X

�
�2ðHh;�ð�;XÞ �HR;��ð�;XÞÞ þ G5ð�;XDÞ

A3ð1þ 2XB=AÞ5=2
�
5A02BX� A

�
A02

2
þ 6A0B0X

��

þ 2G5ð�;XDÞ
Að1þ 2XB=AÞ3=2 A

00 G5;XXA
0

A3ð1þ 2XB=AÞ3=2 ðAA
0 � 2A0BX þ 4AB0XÞ

�
�H5ð�;XÞ

�
; (C8)

�G4ð�;XÞ ¼ Að1þ 2XB=AÞ1=2G4ð�;XDÞ �
�

G5ð�;XDÞX2

A2ð1þ 2XB=AÞ3=2 ðA
0B� AB0Þ þHR;�ð�;XÞX

�
; (C9)

�G5ð�;XÞ ¼ G5ð�;XDÞ
ð1þ 2XB=AÞ1=2 þHRð�;XÞ; (C10)

where the explicit form of the functions Hi are

H4ð�;XÞ ¼
Z

dX

�
G4ð�;XDÞð4AA0Bþ ABB0X þ A0B2XÞ

A2ð1þ 2XB=AÞ3=2
�
; H3ð�;XÞ ¼ B

Z
dX

G3ð�;XDÞ
ð1þ 2XB=AÞ3=2 ; (C11)

H5ð�;XÞ ¼
Z

dX

�
Hh;�ð�;XÞ �HR;��ð�;XÞ þ G5ð�;XDÞ

2A3ð1þ 2XB=AÞ5=2 ð�5A0BX� 2A2A00ð1þ 2XB=AÞ

þ Að5A02 þ 6A0B0XÞÞ þ G5;Xð�;XDÞ
A2ð1þ 2XB=AÞ3=2 ð�A0BX þ 2AðA0 þ B0XÞÞ

�
; (C12)

Hhð�;XÞ ¼ G5ð�;XDÞAA
0 þ ðAB0 � A0BÞX

A2ð1þ 2XB=AÞ3=2 ; HRð�;XÞ ¼ B

A

Z
dX

G5ð�;XDÞ
ð1þ 2XB=AÞ3=2 ; (C13)

while XD ¼ X=½Að1þ 2BX=AÞ�, and, again, the functions
A and B depend on the scalar field �. The most relevant
conclusion is that the effect of the disformal transformation
on the Horndeski action can be recast into renormalization

of the coefficient functions, exactly as in the case of
conformal transformations for standard scalar-tensor theo-
ries, which, we stress, are a subcase of our result. Then,
notice that, if one starts with a only a subset of the
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Lagrangians, a disformal transformation will in general
produce contributions at all sub-Lagrangians in a hierarch-
ical way. Said in other words, the corrections propagate
from higher derivatives down to lower-derivative terms.

APPENDIX D: INVARIANCE UNDER
FIELD RESCALING

Besides the previously analyzed invariance under dis-
formal transformation, it can be proven that the Horndeski
action is also invariant under the rescaling of the scalar
field

� ¼ sðc Þc : (D1)

In fact, the effects of this transformation can be again
reabsorbed into redefinitions of the Horndeski coefficient
functions, which become

�Kðc ; �XÞ ¼ Kðc ; �XÞ þ 2YG3ðc ; �XÞð2s0 þ c s00Þ
þ �2YH4;c ðc ; �XÞ þ 2YHh;c ; (D2)

�G3ðc ; �XÞ ¼ ðs0c þ sÞG3ðc ; �XÞ � ð4YG4;Yðc ; �XÞ

þ �2G4ðc ; �XÞÞ 2s
0 þ s00c
sþ c s0

þ 2YH5;c �Hh;

(D3)

�G4ðc ; �XÞ ¼ G4ðc ; �XÞ � Yð2s0 þ c s00ÞG5ðc ; �XÞ; (D4)

�G5ðc ; �XÞ ¼ ð2s0 þ s00c ÞG5ðc ; �XÞ; (D5)

where

H4ðc ; �XÞ ¼ G4ðc ; �XÞ 2s
0 þ s00c
sþ c s0

; (D6)

H5ðc ; �XÞ ¼ ð2s0 þ c s00ÞG5

2s0 þ s00c
sþ c s0

; (D7)

Hhðc ; �XÞ ¼
Z

d �XH5;c ðc ; �XÞ; (D8)

where �X ¼ ðs0ðc Þc þ sðc ÞÞ2Y, with Y ¼ c �c �=2, and

where a prime denotes the derivative with respect to c .
The field transformation is, in principle, arbitrary.

However, as can be seen from, e.g., the �G3 coefficient,
infinities may be generated if sþ c s0 ¼ 0. This amounts
to saying that the solution sðc Þ ¼ c�1 is excluded from
the set of admissible rescaling. This fact is in some sense
obvious because it is equivalent to the limit of having no
scalar field. A second remark concerns the possibility to
eliminate the NMC with the Einstein tensor with a field
redefinition. In fact, the transformed G5 coefficient is
proportional to 2s0ðc Þ þ c s00ðc Þ. This equation can be
integrated once giving sðc Þ ¼ �c s0ðc Þ, for which the
solution is excluded by the previous requirement. We con-
clude that it is not possible to eliminate the NMC with the
Einstein tensor with a field redefinition.
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