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We consider the double-scaling limit in matrix models for two-dimensional quantum gravity, and

establish the nonperturbative functional renormalization group as a novel technique to compute the

corresponding interacting fixed point of the renormalization group flow. We explicitly evaluate critical

exponents and compare them to the exact results. The functional renormalization group method allows a

generalization to tensor models for higher-dimensional quantum gravity and to group field theories. As a

simple example of how this method works for such models, we compute the leading-order beta function

for a colored matrix model that is inspired by recent developments in tensor models.
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I. INTRODUCTION

In path-integral approaches to quantum gravity, the sum
over geometric (and topological) configurations can be
tackled by the introduction of an (unphysical) discretiza-
tion in order to explicitly construct all configurations that
contribute to the expectation value of a given quantity. The
partition function then becomes a sum over discretized
random surfaces, either of fixed topology, or possibly
even involving a summation over topologies. Quantum
gravity corresponds to the continuum limit, at which the
discretization scale is taken to zero. This idea underlies
causal and Euclidean dynamical triangulations [1–3], as
well as the more recently developed tensor models [4,5]
and group field theories [6–9]. The first successful imple-
mentation of this idea goes back to the partition function
for two-dimensional Euclidean quantum gravity, which
includes an integral over two-dimensional geometries and
a sum over topologies:

Z� X
topologies

Z
Dg��e

��Aþ��; (1)

where g�� is the metric and A ¼ R ffiffiffi
g

p
is the surface area.

� denotes the cosmological constant and � is related to
the Newton coupling. � ¼ 1

4�

R ffiffiffi
g

p
R ¼ 2� 2h is the

Euler character and h denotes the number of handles of
the surface. The quantum theory is nontrivial because the
partition function involves a sum over topologies, despite
the fact that the scalar curvature term

R ffiffiffi
g

p
R is topological,

and therefore does not contribute to the equations of
motion. We can approximate the surfaces that are being
summed over by discrete triangulations, or more general
‘‘polygonizations,’’ so that Z corresponds to the sum
over random polygonizations of different topologies. The

integral over the geometry was first treated as a sum over
discretized randomly triangulated surfaces in [10]. In a
next step, we use a matrix integral as the generating func-
tional for the random triangulations, which allows us to
take the continuum limit of the sum over triangulations.
This step makes use of the fact that the dual to a Feynman
graph of the matrix model with trivalent vertices corre-
sponds to a random triangulation. Using N � N Hermitian
matrices �, the partition function ZN generates Feynman
diagrams which are dual to triangulations, as we are using a
trivalent vertex ��3:

ZN ¼
Z

d�e
�1

2 Tr�
2þ gffiffi

N
p Tr�3:

(2)

This model automatically has a UðNÞ symmetry.
Alternatively, we could use a �4 interaction corresponding
to a four-valent vertex and thus a ‘‘squarulation’’ of the
surface. In that case, the model would exhibit an additional
Z2 symmetry � ! ��. Since both connected as well as
nonconnected triangulations are generated by the matrix
model partition function, the generating functional of
connected correlators, i.e., the free energy, N2ZðN; gÞ ¼
lnZN , will correspond to the 2d gravity partition function Z
in the continuum limit. The continuum limit is reached by
taking g ! gc. hAi diverges at this critical value of the
coupling. Thus the area of the individual triangles can be
taken to zero to give a continuum surfacewithfinite area. The
correspondence between g ! gc and the continuum limit
can also be understood, as the perturbation series diverges in
this limit. Accordingly the generating functional is domi-
nated by diagrams with a diverging number of vertices,
which implies that the dual triangulations approach a con-
tinuum surface. The large-N expansion allows one to sort the
contributions by the genus of the triangulated surface, as the
generating functional can be decomposed into the contribu-
tions from surfaces with genus h as follows:

Z ¼ X
h
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In the limit N ! 1, the limit g ! gc thus only takes
into account planar (i.e., spherical) surfaces. To retain the
contribution from higher-genus surfaces, the limitsN ! 1
and g ! gc have to be taken simultaneously: As each Zh

diverges as g ! gc, the N
�2h suppression can be compen-

sated in this limit, as

Zh � ðgc � gÞð2��strÞð2�2hÞ=2; (4)

where �str is a critical exponent. Continuum Liouville theory
predicts �str ¼ �1=2 for the case of pure gravity [11].

Accordingly, the so-called double-scaling limit, in
which g ! gc and N ! 1 while one fixes

Nðg� gcÞð2��strÞ=2 ¼ const; (5)

retains contributions from all surfaces with higher genus
to the generating functional [12–14]. In this limit, the
average number of building blocks in triangulations of
any genus h diverges, while the ‘‘lattice spacing’’ of the
random discretized surface is taken to zero. For reviews see
[11,15–17]. For this work, it will be crucial that Eq. (5) can
be understood as a particular scaling of g with N in the
vicinity of a critical point gc. In other words, the double-
scaling limit can be understood as a fixed point of the
renormalization group flow with N.

We follow [18] and assume that the partition function
satisfies a Callan-Symanzik-type equation�

N
@

@N
þ �g

@

@g
þ �ðgÞ

�
ZðN; gÞ ¼ rðgÞ; (6)

where �g ¼ N@NgðNÞ. At a fixed point g ¼ g�, where
�gjg¼g� ¼ 0, the singular part of the partition function

will accordingly satisfy a scaling relation of the form

ZðN; gÞ ¼ ðgc � gÞ�1fððgc � gÞN 2
�1Þ: (7)

Here we have to identify

�1 ¼ 2

�0ðg�Þ ; (8)

and �str ¼ 2� �1. Accordingly the pure gravity case re-
quires �0ðg�Þ ¼ 4=5. For the generalization to an effective
action containing further operators, �0ðg�Þ has to be re-
placed by the relevant critical exponent and the correspond-
ing fixed point can only exhibit one relevant direction.

In this paper we will set up a renormalization group flow
in the Wilsonian sense, integrating out matrix entries by
going from N ! N þ �N. As in the standard effective
field theory setting, this process will generate further op-
erators in the effective action for the low-N degrees of
freedom. The UðNÞ symmetry of the N � N Hermitian
matrix model will restrict the new operators to be of the
form Tr�i

1 � � � � � Tr�in .
Note that the double-scaling limit corresponds to an

interacting fixed point g� � 0. The fact that only one

coupling needs to be tuned corresponds to this fixed point
only having one ultraviolet-relevant direction.
This approach has mainly been developed to understand

string theory coupled to matter with central charge c > 1,
see, e.g., [19–22]. Here, our motivation comes from an-
other direction, namely the generalization of matrix
models to higher-dimensional models of discrete random
surfaces, i.e., nonstring theory models for d ¼ 3, 4 dimen-
sional quantum gravity. We are interested in developing a
technique that can be generalized to the type of tensor
models that is currently investigated in the context of
quantum gravity models in more than two dimensions.
The analogy to matrix models is as follows: In the same
way in which matrix models generate triangulations of
two-dimensional surfaces, models using three-rank or
four-rank tensors yield three- or four-dimensional simpli-
cial geometries, respectively [23–25]. In these models, the
continuum limit again corresponds to the large-N limit,
and a large-N expansion exists for the class of colored
tensor models [26–29]. The double-scaling limit in such
models is the subject of current research [30,31]. The
method that we introduce in this paper will allow one to
investigate whether a double-scaling limit exists and what
its universality class is. As we will show using a colored
matrix model, our method is extendible to the case of
colored tensor models, which are of particular interest, as
they triangulate less singular spaces [32] and admit a 1=N
expansion.
These colored tensor models are closely related to group

field theory [7–9]. There, a quantum field theory is con-
structed where the field is a map from a group manifold to
the real (or complex) numbers, thus incorporating the spin-
foam amplitudes of covariant loop quantum gravity into a
tensor model. Using the generalization of a Fourier trans-
form on the group manifold, these models can be mapped
to tensor models. Here, the physical interpretation of the
dual to a Feynman graph is again a triangulation. The
theory can then have (at least) two interesting phases:
One corresponds to a pregeometric phase in terms of
disconnected building blocks (similar to a gaseous phase).
A second phase corresponds to a condensation of these
fundamental building blocks into a continuous spacetime.
For a second-order phase transition between these phases,
the universal critical exponents correspond to those arising
at a fixed point of the renormalization group. Thus the
search for (non) interacting fixed points in these models is
of interest to determine whether such phase transitions
occur. Such a phase transition can then either be interpreted
as a point to take the continuum limit, as in the case of
CDTs [3], or as a physical phase transition, in which case
the building blocks are interpreted as fundamental physical
building blocks, in contrast to being a regularization as in
the first case.
This paper is structured as follows: In Sec. II we review

the renormalization group setup put forward in [18] that
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consists in integrating out matrix entries explicitly. We
then introduce the functional renormalization group and
the Wetterich equation for matrix models. We show how to
define the canonical scaling dimensionality of the cou-
plings with N, and then derive nonperturbative � func-
tions. We prove an equation for the � functions in a
truncation involving single-trace terms to arbitrarily high
order. We show that our novel method employing the
functional renormalization group can reproduce the results
obtained in [18,33]. We also demonstrate how to include
multitrace operators in the renormalization group flow. We
then show how to treat a colored matrix model, and derive
� functions in a simple approximation in Sec. III. Before
concluding in Sec. V, we describe the general recipe of how
to apply the functional renormalization group in matrix and
tensor models in Sec. IV.

II. HERMITIAN MATRIX MODEL

A. Explicit integration over matrix entries

In the following, we will focus on the matrix model with
a �4 interaction corresponding to a ‘‘squarulation’’ of the
surface. The continuum limit is universal and independent
of the choice of polygons used to construct the discrete
simplicial geometry. The additional Z2 symmetry of this
model restricts the operators that are generated by the
renormalization group flow. To derive the � functions for
the Hermitian matrix model, it has been suggested in [18]
to explicitly integrate out the (N þ 1)th row and column in
the path integral over ðN þ 1Þ � ðN þ 1Þ matrices. Let us
briefly review the technique and the results of [18,33], see
also [20,21]. We consider the action

SNþ1½�Nþ1� ¼ ðN þ 1ÞTr
�
�2

Nþ1

2
þ g4

4
�4

Nþ1 þ
g6
6
�6

Nþ1

�
;

(9)

which has a Z2 symmetry under�Nþ1 ! ��Nþ1. We then
parametrize the matrix �Nþ1 by the matrix �N and a
complex N-component vector v for the (N þ 1)th column
and its complex conjugate v� for the (N þ 1)th row. The
last diagonal entry in �Nþ1 is denoted by a complex
number 	. We now explicitly integrate out the vector v
in the path integral, which yields an effective action for
�N. In this step, we will only perform the Gaussian integral
over v, and neglect 	, which is appropriate in the large-N
limit. Reexponentiating the determinant, and expanding
the logarithm, we obtain

S0½�N� ¼ ðN þ 1ÞTr
�
1

2
�2

N þ g4
4
�4

N þ g6
6
�6

N

�

þ gTrð�2
NÞ �

g24
2

Trð�4
NÞ þ g6 Trð�4

NÞ: (10)

In order to recover the canonical normalization of the
quadratic term in �N , we perform a rescaling

�N ¼ 
�0
N; (11)

with


 ¼ 1� 2g4 þ 1

2N
þO

�
1

N2

�
: (12)

It is then straightforward to read off the relation between
the couplings g04 and g4

Ng04
4

¼ ðN þ 1Þ g4
4

4: (13)

With the definition

g4 � g04 ¼
1

N
�ðgÞ; (14)

we then obtain the following � functions, where terms
Oð1NÞ are neglected:

�g4 ¼ g4 þ 6g24 � 4g6;

�g6 ¼ �g6ð1� 3ð1þ 2g4ÞÞ þ 6g4g6 � 6g34:
(15)

For g6 ¼ 0 this is the result obtained in [18] (note that our
definition of the � function differs by a sign) and extended
to higher order in the couplings and to include further
couplings in [33]. We obtain

g4� ¼ �0:1057; g6� ¼ �0:0097: (16)

For the critical exponents,1 generally defined by

�i ¼ �eig

�
@�gi

@gj

���������gk¼gk�
; (20)

we obtain

1These determine whether a coupling must be tuned in order to
reach a particular fixed point: From Eq. (20) we can deduce the
solution to the linearized flow around the fixed point

�gi ðfgngÞ ¼
X
j

@�gi

@gj

��������gn¼gn�
ðgj � gj�Þ þOððgj � gj�Þ2Þ: (17)

The solution to this linearized equation reads

giðNÞ ¼ gi� þ
X
I

CIV
I
i

�
N

N0

���I
; (18)

where

� @�gi

@gj

��������gn¼gn�
VI ¼ �IVI: (19)

Herein, CI is a constant of integration and N0 is a reference
‘‘scale.’’ The VI are the eigenvectors and ��I the eigenvalues of
the stability matrix, which is defined by Eq. (17). The additional
negative sign in �I is useful, because then �I equals the canonical
dimensionality at a noninteracting fixed point. In order to ap-
proach the fixed point in the IR, observe that the CI are arbitrary
for irrelevant directions where �I < 0. In contrast, a relevant
direction with �I > 0 corresponds to a parameter that needs to be
tuned in order to ensure that the fixed point is reached in the IR.
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�1 ¼ 1; �2 ¼ �1:46: (21)

Let us discuss the significance of this result: As expected,
the fixed point has one relevant direction, as only g4 needs
to be tuned in the double-scaling limit. We observe that g6,
although itself an irrelevant coupling, yields a significant
contribution to �g4 , and improves g4� from the value�1=6

which is the fixed-point value for g6 ¼ 0.
The exact value gc ¼ �1=12 is approximated by our

result, and at a first glance, the value of � does not seem to
be too different from the exact value � ¼ �0:8. In fact, this
value can be traced to the ‘‘canonical dimensionality’’ of
the coupling, which yields the term �g in the � function:
In order to obtain a nontrivial fixed point in

�g ¼ gð1þ cgÞ; (22)

where c is a constant, g� ¼ � 1
c . Then,

� ¼ �@g�gjg¼g� ¼ �ð1þ cg�Þ � g�c ¼ 1: (23)

Accordingly we observe that at this order, the value of the
critical exponent is determined by the dimensionality, and
does not depend on the fixed-point value at all.

In the following, we will introduce a method that gen-
eralizes the idea to integrate out matrix entries, such that it
applies beyond the perturbative regime, and can be gener-
alized directly to higher-dimensional tensor models. We
will set up a nonperturbative renormalization group equa-
tion that allows us to determine the scaling of couplings
with the matrix size N.

To that end, let us first introduce the notion of scaling
dimensionality in these models.

B. Canonical scaling dimensionality

As this model does not have a natural notion of
momentum—it can be viewed as a zero-dimensional field
theory in this sense—there is no standard canonical dimen-
sionality of the couplings. Spacetime, and the attribution of
momentum dimensions as familiar from high-energy phys-
ics, only emerges in the continuum limit. Nevertheless,
couplings have an inherent dimensionality that determines
their behavior under rescalings in N, just as the canonical
dimensionality in standard quantum field theories deter-
mines the canonical scaling under standard scale trans-
formations. Note that a consistent assignment of scaling
dimensionality is crucial to obtain the continuum limit, as
otherwise no 1

N expansion of the beta functions is possible.

From the expression Eq. (15), one can distinguish two
types of contributions to the � function: There are contri-
butions proportional to one power of the coupling itself, or
higher powers of the coupling and higher-order couplings.
The same structure appears in � functions in high-energy
physics. There it is clear that a loop diagram that yields the
contribution of quantum fluctuations to the� function of gi
cannot be proportional to one power of gi only. Instead it
arises from the canonical dimensionality (and is therefore

absent, e.g., in QCD in d ¼ 4.) In the same way, this type
of contribution reflects the scaling dimensionality of the
matrix model couplings under a rescaling in N.
The canonical scaling dimensionality of the couplings is

determined in the following way: Considering only single-
trace terms, the action can be written as

�S ¼ Z�

2
Trð�2Þ þX

i

�gi Trð�iÞ; (24)

where Z� is a wave-function renormalization. In order to

establish the contact to the generating functional for 2d

quantum gravity, a rescaling of the fields � ! ffiffiffiffi
N

p
� and

couplings is useful, such that

S ¼ N

�
Z�

2
Trð�2Þ þX

i

~gi Trð�iÞ
�
; (25)

as then each Feynman diagram is weighted by a factor N�,
where � is the Euler character of the surface associated to
the diagram. This holds, as in the above parametrization,
each vertex contributes a factor N, each propagator a N�1

and each face, i.e., each closed loop, N due to the associ-
ated index summation. Thus each diagram contributes with
NV�EþF, where V, E and F count the number of vertices,
edges and faces, respectively. As V � Eþ F ¼ �, the
identification N ¼ e� then allows us to make contact
with the generating functional for 2d quantum gravity,
cf. Eq. (1). We therefore read off the following relation
between ~gi and �gi:

�giN
i�2
2 ¼ ~gi: (26)

This analysis agrees with the corresponding terms in the
perturbative � function in [18,33], cf. Eq. (15).
We observe that even the coupling with the lowest

number of fields g4 is power-counting irrelevant, as it has
dimensionality�1. We conclude that quantum fluctuations
will be responsible for a shift towards relevance at the fixed
point corresponding to the double-scaling limit.
To assign canonical dimensionality to terms with several

traces, such as �gi;j Tr�
i Tr�j, we demand that each addi-

tional trace should be suppressed by a factor 1
N . This

assignment cancels the additional factor of N that is asso-
ciated with the additional trace.
Accordingly this yields

�gi;jN
iþj
2 ¼ ~gi;j: (27)

At the same order in �, a double-trace term accordingly is
shifted by one into irrelevance in comparison to the corre-
sponding single-trace operator. This is consistent with the
expectation that only one coupling should be tuned in
the double-scaling limit. For the single-trace operators,
the coupling g4 of dimensionality �1 is shifted into rele-
vance, but not the coupling g6 of dimensionality �2,
cf. Eq. (21). The assignment of dimensionality �2 to the
first two-trace operator ðTr�2Þ2 already suggests that it will
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not be shifted into relevance, if we assume that the con-
tribution of quantum fluctuations to the scaling of different
operators is of similar size.

Let us note that our assignment of scaling dimension-
ality is supported by two important facts: This assignment
allows us to obtain a 1=N expansion of the beta functions,
in which the leading coefficient is OðN0Þ, and therefore a
sensible N ! 1 limit exists. Furthermore, the correspond-
ing contributions in the beta function are precisely of the
same form as those obtained by explicitly integrating over
matrix entries as in [18,33].

If we further rescale the kinetic term to its canonical
coefficient 1=2, the renormalized dimensionless couplings
gi are then given by

gi ¼ ~gi

Zi=2
�

¼ �giN
i�2
2

Zi=2
�

; gi;j ¼
�gi;jN

iþj
2

Z
iþj
2

�

: (28)

Accordingly, the � functions will take the following
form:

�gi ¼
i� 2

2
gi þ i

2
�gi þ � � � ; (29)

where � ¼ �@t lnZ� and further terms are induced by

quantum fluctuations. This form agrees with the � func-
tions that can be derived by explicit integration over matrix
entries, cf. [18,33]. Let us now introduce a novel tool to
perform this integration and derive the nonperturbative
form of the � functions.

At this point is useful to comment on the universality of
the fixed-point values: As is well known, for a dimension-
less coupling, the one-loop and two-loop coefficients of the
� function are universal, but higher orders are not. For
dimensionful couplings, such as all couplings in our case,
even the one-loop coefficient is nonuniversal. This implies
that fixed-point values will not be universal, either. In
contrast, the critical exponents are universal. Accordingly
a comparison of g� to gc is less meaningful than the
comparison of the critical exponents with the exact result.

C. Setup of the flow equation

To generalize the perturbative setting of integrating
over matrix entries, we use the framework of the non-
perturbative functional renormalization group, [34], for
reviews see [35–42].

Our approach here is closely related to similar develop-
ments in [43], where the functional renormalization group
was used to demonstrate the property of asymptotic safety
in the Grosse-Wulkenhaar model [44,45]. A main differ-
ence to the present setting is the absence of a nontrivial
kinetic term in our case, and the implications for the
canonical dimensionality and the implementation of the
matrix cutoff in the following. Note that this approach
crucially differs from former applications of the functional
renormalization group to matrix models in the context of

condensed-matter models, see, e.g., [35]: There, quantum
fluctuations of matrix-valued fields that are function on
spacetime are integrated out according to their momentum.
To derive the change of the generating functional under

an integration of matrix entries between N and N þ �N,
we follow the usual steps in setting up a flowing effective

action: We consider the generating functional Z ¼R
� d�e�S½��þJ��, where � is a UV cutoff on N and J is

a source. We then define an N-dependent generating func-
tional, where N will be an infrared cutoff on the matrix
size; i.e., we will integrate out matrix entries above N, but
not below. We introduce a ‘‘masslike’’ regulator function

�SN½�� ¼ 1

2
�abRNða; bÞabcd�cd; (30)

where we now explicitly indicate the matrix indices
a; b; . . . for clarity. The function RNða; bÞ can have any
form compatible with the following three requirements:

lim
a=N!0;c=N!0

RNða; bÞabcd > 0; (31)

lim
N=a!0;N=a!0

RNða; bÞabcd ¼ 0 (32)

lim
N!�!1

RNða; bÞabcd ! 1: (33)

Introducing this mass-type term into the generating
functional

ZN ¼
Z
�
d�e�S½����SN½��þJ�� (34)

yields a suppression of the matrix entries in the block
a; b ¼ 1; . . . ; N, cf. Eq. (31). In contrast, the ‘‘UV’’
matrix entries with indices a, b > N are integrated
out. Thus the generating functional ZN contains the
effect of ‘‘UV’’ quantum fluctuations above N. Taking
the limit N ! 0, the suppression term should approach
zero, such that all matrix entries are integrated out in
this limit, cf. Eq. (32). This is a direct generalization of
the idea put forward in [18] to integrate the (N þ 1)th
row and column of the matrices explicitly.
We now define an N-dependent flowing action by a

modified Legendre transform

�N½’� ¼ sup
J
ðJ’� lnZNÞ ��SN½’�: (35)

The divergence of �SN for N ! � ! 1, cf. Eq. (33),
ensures that �N!� ’ Sbare, as it enforces a saddle-point
evaluation of the path integral. For N ! 0, �N ! �, which
is the full effective action and contains the effect of all
quantum fluctuations.
It is now straightforward to derive an equation encoding

the change of �N under a change of N, which is the
Wetterich equation for the matrix model case:
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@t�N ¼ 1

2
trð�ð2Þ

N þ RNÞ�1@tRN; (36)

where t ¼ lnN. �ð2Þ
N denotes the second functional deriva-

tive with respect to the degrees of freedom, in this case the

entries of matrices. ð�ð2Þ
N þ RNÞ�1 is nothing but the regu-

larized, nonperturbative field-dependent propagator of the
theory. Accordingly the operator trace tr in the Wetterich
equation yields a one-loop form, cf. Fig. 1. It is important
to realize that the derivation of the Wetterich equation
does not rely on the existence of a small parameter. It is
therefore applicable in the nonperturbative regime. As a
technical advantage, it takes a one-loop form, while the
presence of the full propagator includes nonperturbative
effects in this setting.

In order to obtain the� function of a particular coupling,
it is necessary to project the flowing action onto that
coupling, by taking appropriate derivatives with respect
to �. If the same projection prescription is applied to the
Wetterich equation, this yields the � function of the cor-
responding coupling. Diagrammatically, the derivatives
with respect to � generate vertices with a coupling to

an external �, as @
@� ð�ð2Þ

N Þ�1 ¼ �ð�ð2Þ
N Þ�1ð @

@��
ð2Þ
N Þð�ð2Þ

N Þ�1,

cf. Fig. 2.
Thus the contributions to the � function of a particular

coupling with n powers of � consist of all one-loop dia-
grams with n external �’s and therefore up to n vertices.

The main difference between the matrix model and the
usual setting for quantum field theories on a spacetime is
the lack of a kinetic operator, and the nonstandard assign-
ment of canonical dimensionality.

As quantum fluctuations generate all operators that are
compatible with the symmetries, �N will contain further
operators beyond those in the bare action. We thus have to
consider the renormalization group flow in the typically
infinite-dimensional theory space of all couplings compat-
ible with the symmetries of the model. While the Wetterich
equation is exact, in practice its solution requires a trunca-
tion of �N , which implies an approximative result. In the
present setting, the effective action can be expanded in
terms of multiple traces of 
 ¼ �2 containing operators

such as Tr�n and Tr�n Tr�m, which yield a basis
for theory space. Additionally, operators of the form
Tr�n Tr�m, with n and m uneven, also exist. In our case,
the Z2 symmetry restricts the class of allowed operators to
those with even powers in the field. Note that the introduc-
tion of the regulator into the generating functional breaks
the Uð�Þ symmetry of the matrix model, as matrix entries
below N acquire a mass-type term, while those aboveN do
not. This implies that further terms will be generated that
go beyond that theory space, very much in the same way as
the flow equation generates, e.g., a gluon mass term in the
flow for non-Abelian gauge theories, see, e.g., [38]. Here,
we will only consider the flow of operators that are permit-
ted by the original symmetry.2

To project onto the couplings of the corresponding
operators, we will use the P�1F expansion of the flow

equation: We split �ð2Þ
N þ RN ¼ PN þF N, where all field-

dependent terms enter the fluctuation matrix F N . We can
then expand the right-hand side of the flow equation as
follows:

@t�N ¼1

2
trf½�ð2Þ

N þRN��1ð@tRNÞg

¼1

2
tr~@t lnPNþ1

2

X1
n¼1

ð�1Þn�1

n
tr~@tðP�1

N F NÞn; (37)

where the derivative ~@t in the second line by definition
acts only on the N dependence of the regulator, ~@t ¼
tr@tRN

�
�RN

. As each power of F N contains a dependence

on the matrix �, this expansion corresponds to an expan-
sion in the number of vertices. To project, e.g., on the
running of g4, we need only up to the second order of
the P�1F expansion, as a tadpole vertex �g6 and a
two-vertex diagram with vertices �g4 are the only

FIG. 1. The two matrix indices generate a ‘‘ribbon graph’’
with double lines. The crossed circle denotes the regulator
insertion @tRN , while the double line denotes the full, field-
dependent propagator.

FIG. 2. The derivative of the Wetterich equation generates ver-
tices with a coupling to external fields. As an example, we show
the effect of the first two derivatives, which generate a tadpole
diagram and a two-vertex diagram, both contributing to the flow
of the wave-function renormalization. For the Z2-symmetric
matrixmodel that we consider here, whereTr�3 is not an operator
in the action, the two-vertex diagram vanishes.

2In principle, the renormalization group flow of the Hermitian
matrix model could be derived after diagonalizing the action.
This would however require a technically involved treatment of
the Vandermonde determinant, see [11,15].
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one-loop diagrams that can contribute to the running of the
�4 term. (If our action contained terms ��3, three-vertex
and four-vertex diagrams would also contribute.)

We will now explain how to apply this equation in a
concrete case and show that the perturbative results by
[18,33] can be reproduced. As a first step, we use that
any Hermitian matrix � can be decomposed into a real
symmetric matrix A and a real antisymmetric matrix B by

�ab ¼ Aab þ iBab; (38)

and decompose all terms tr�n accordingly. For the projec-
tion onto the invariants tr�i . . . tr�j we can then use di-
agonal matrices of the form

Aij ¼ a�ij: (39)

Different orders in � are then distinguished by powers of
a. Operators with the same number of fields but different

numbers of traces are distinguished by powers of N. �ð2Þ
then takes the form of a matrix in field space, with entries

�ð2Þ
AA, �

ð2Þ
AB, �

ð2Þ
BA and �ð2Þ

BB, where we can set B ¼ 0 after

taking the derivative. The inverse propagator matrix then
takes a very simple form: Due to the antisymmetry, any
term with an odd number of B’s vanishes. The two off-

diagonal terms �ð2Þ
AB and �ð2Þ

AB are also zero, since they

contain only terms with odd numbers of Bs. �ð2Þ
BB is nonzero

but does not contain any powers of B. This diagonal
structure greatly simplifies the evaluation of the operator
trace.

For the derivatives we use that

�

�Aab

Acd ¼ 1

2
ð�ad�bc þ �ac�bdÞ; (40)

�

�Bab

Bcd ¼ � 1

2
ð�ad�bc � �ac�bdÞ: (41)

The propagators for the two matrix modes are then
given by

P�1
AA abcd ¼

1

Z�ð1þ RNða; cÞÞ ð�ad�bc þ �ac�bdÞ; (42)

P�1
BB abcd ¼ � 1

Z�ð1þ RNða; cÞÞ ð�ad�bc � �ac�bdÞ; (43)

where Z� is a wave-function renormalization.

It is important to realize that the derivative of tr�n

generates two very different types of terms, only one of
which generates nonzero contributions to �gi : As an

example, consider

�

�Aab

�

�Acd

�g4
4

TrA4 ¼ �g4
2
ðAcnAna�bd þ AcnAnb�ad

þ AdnAna�bc þ AdnAnb�ac

þ AbdAca þ AbcAdaÞ; (44)

where we use a summation convention for indices that
occur twice.
Contracting this expression with the propagator and

taking the operator trace, there will be a term ��aa and a
term that does not involve a Kronecker delta anymore:

trP�1
AA abcd

�
�

�Aab

�

�Acd

�g4
4

TrA4

�

¼ �g4
1

Z�ð1þ RNða; bÞÞAanAna�bb

þ �g4
1

Z�ð1þ RNða; aÞÞAanAna

þ �g4
2

1

Z�ð1þ RNða; bÞÞAabAba

þ �g4
2

1

Z�ð1þ RNða; bÞÞAaaAbb: (45)

The terms which are generated correspond to Trð�2Þ and
ðTrð�ÞÞ2, since these are the only two terms at Oð�2Þ. The
two terms can be clearly distinguished above: The first
term will be�Tr�2, as will be the second and third terms.
The fourth one is clearly �ðTrð�ÞÞ2. Inserting our choice
of projection Eq. (39) after this identification, we obtain a
scaling �N2 for the first term and a scaling �N for the
second and third, and �N2 for the fourth one. Going over
to the dimensionless coupling g4, each term receives an
additional power ofN�1. To project onto the dimensionless
coupling of Trð�2Þ, we require a scaling �N. Therefore,
only the first term will yield a contribution at OðN0Þ,
whereas the second and third ones will be suppressed by
1
N . To project onto the dimensionful coupling of ðTrð�ÞÞ2,
we require a scaling �N, since the coupling has dimen-
sionality �1, and a factor N2 arises from the two traces.
Thus the third term gives a OðN0Þ contribution to the flow
of this coupling.
We use a regulator that is inspired by Litim’s optimized

cutoff [46] and takes the form

RNða; bÞabcd ¼ Z�PA=B abcd

�
2N

aþ b
� 1

�
�

�
1� aþ b

2N

�
;

(46)

where PA abcd ¼ 1
2 ð�ad�bc þ �ac�bdÞ for the A mode and

PB abcd ¼ � 1
2 ð�ad�bc � �ac�bdÞ for the B mode. The fac-

tor of 2 in the argument of the shape function accounts for
the fact that both matrix indices a, b will run up to N. Here
one can observe a major difference to settings with a non-
trivial kinetic term, where the corresponding operator
would multiply the shape function on the rhs of Eq. (46)
to define the regulator. We then have that
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@tRNða; bÞabcd
¼ PA=B abcd

��
@tZ�

�
2N

aþ b
� 1

�

þ Z�

2N

aþ b

�
�

�
1� aþ b

2N

�
þ Z�

�
2N

aþ b
� 1

�

� �

�
1� aþ b

2N

�
aþ b

2N

�
; (47)

where the � distribution in the second line does not con-
tribute to sums/integrals over a, b due to the factor in front.
For this choice of cutoff we have that

X
a

X
b

ðP�1
ab Þn@tRN � N2 4ð2þ n� �Þ

2þ 3nþ n2
ð1þOð1=NÞÞ:

(48)

Here we have approximated the sum by an integral, which
is correct at leading order in 1

N . We are now in a position to

derive the � functions with the Wetterich equation.

D. � functions and fixed-point analysis

Let us first analyze a simple truncation of the effective
action, which reads

�N ¼ Z�

2
Trð�2Þ þ �g4

4
Trð�4Þ þ �g6

6
Trð�6Þ: (49)

Using the methods outlined above, we can derive a set of �
functions, which read

� :¼ �@t lnZ� ¼ 2g4
1

3
ð4� �Þ; (50)

�g ¼ g4 þ 2�g4 þ 4g24
1

5
ð5� �Þ � 4g6

1

3
ð4� �Þ; (51)

�g6 ¼ 2g6 þ 3�g6 þ 12g4g6
1

5
ð5� �Þ � 6g34

2

15
ð6� �Þ;

(52)

where the factors of � on the right-hand side arise from
the use of an RG-adjusted regulator, i.e., RN � Z�, and

accordingly @tRN � �þ � � � Diagrammatically, the flow
equation for these � functions is shown in Figs. 2 and 3.
Similar diagrams with six external matrices yield the
flow of g6.

The anomalous dimension clearly depends on the
coupling in a nonperturbative way, as the solution of
Eq. (50) reads

� ¼ 8g4
3þ 2g4

: (53)

We find, apart from the Gaussian fixed point, the fixed
point corresponding to the double-scaling limit at

g4� ¼ �0:072; g6� ¼ �0:004: (54)

The critical exponents defined by

�I ¼ �eig

�
@�gi

@gj

���������gk¼gk�
(55)

are given by

�1 ¼ 1:046; �2 ¼ �1:080: (56)

As expected, we obtain one UV-relevant direction, which
corresponds to the coupling that has to be tuned in order
to reach the double-scaling limit. The exact results are
given by

gc ¼ � 1

12
; � ¼ �0:8: (57)

To check whether our truncation approaches these ex-
act results, let us consider the smaller truncation with
g6 ¼ 0. Then the fixed-point value and critical exponent
are given by

g4� ¼ �0:101; � ¼ 1:066: (58)

We observe that the full result is approached closer in
the larger truncation, as expected. We also observe that the
nonperturbative information encoded in the structure of
� through Eq. (53) leads to a smaller value for g4� in
comparison to the results in [33], where g4� ¼ �0:103,
g6� ¼ �0:005. Let us note again, that the nonuniversality
of g4� implies that only the comparison of the critical
exponents is physically meaningful.
As a next step, we will include further single-trace

operators to study the convergence of the critical exponent
under extensions of the truncation.

E. Single-trace truncation

The single-trace operator truncation, i.e., an Ansatz for
the effective action of the form

�½�� ¼ TrVð�2Þ ¼ Z�

2
Trð�2Þ þ X

n�2

�g2n
2n

Trð�2nÞ (59)

can be seen as an analogue of the local potential approxi-
mation. It shares three features in particular with the local
potential approximation: (1) it is a truncation containing
an infinite number of couplings �g2n, (2) it contains the
interesting couplings g2 ¼ Z�, g4 and contains the most

FIG. 3. A diagram �g24 and a tadpole diagram �g6 contribute
to �g4 .
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relevant coupling at each power of �, as further traces
decrease the canonical dimensionality, in the same way
that further derivatives in a standard Quantum Field Theory
(QFT) decrease the canonical dimensionality, and (3) one
can find a closed expression for the beta functions in the
limit N ! 1:

�¼g4½ _RP2�
�2n¼ðð1þ�Þn�1Þg2nþ2n

X
i;n¼P

i
imi

ð�1Þ
P

i
mi

h
_RP1þP

i
mi

i

�
P

imi

m1;m2;...

 !Y
i

gmi

2ðiþ1Þ; (60)

where themi are positive integers and
P

imi corresponds to
the order of the P�1F expansion and denotes the number
of vertices in the diagram. By _RPn we denote P�n@tRN .

The bracket denotes the multinomial coefficient
ðP

i
miÞ!

m1!m2!...
.

This factor arises, as in the P�1F expansion to order n, a
contribution proportional to more than one coupling arises
several times. For instance, a contribution �gigj, i � j

comes with a factor of 2, as either one of the factors F can
be either�gi or�gj. In this expression, the factors

1
n from

the P�1F expansion [cf. Eq. (37)] cancel against a factor
n when the ~@t derivative acts on P�n. The validity of (61)
can be seen in a vertex expansion for the single-trace
truncation (59), which starts with the F term

Fabcd ¼ X
n�1

�g2nð�acð�2Þn�1
db þ � � � þ ð�2Þn�1

ac �dbÞ; (61)

where the ellipsis denotes the summands without any �.
The contribution of any trace that does not contract a
complete sequence of �’s is suppressed by 1=N and is
thus suppressed in the limit N ! 1. Consequently, there
are only two products in ðFnÞabcd that are not suppressed in
the limit N ! 1, namely the one contracting solely over
the initial � and the one contracting over the final �. These
terms yield the same field monomial and hence produce a
factor of 2 that cancels the 1

2 from the rhs of the flow

equation, cf. Eq. (37). Consequently, Eq. (60) for� follows
from the fact that the only summand in (61) that contains
at most two fields is the term containing a single g4.
Moreover, using the reciprocal power series formula

�
1þ X

n�1

ngn

��1 ¼ X1
n¼0

n
X

n¼P
i
imi

ð�1Þ
P

i
mi

�
P

i mi

m1; m2; . . .

 !Y
i

gmi

i ; (62)

and dimensionless couplings g2n ¼ Nn�1Z�n
� �g2n, one

finds Eq. (61) directly from the vertex expansion.

Let us use (60) and (61) to investigate the effect of
increasing the number of single-trace operators in the
truncation on the numerical values of the non-Gaussian
fixed point. The explicit expressions for the first beta
functions are

�4 ¼ ð1þ 2�Þg4 þ 4ð�½ _RP2�g6 þ ½ _RP3�g24Þ; (63)

�6 ¼ð2þ3�Þg6þ6ð�½ _RP2�g8þ2½ _RP3�g4g6�½ _RP4�g34Þ;
(64)

�8 ¼ ð3þ 4�Þg8 þ 8ð�½ _RP2�g10 þ ½ _RP3�ðg26 þ 2g8g4Þ
� 3½ _RP4�g24g6 þ ½ _RP5�g44Þ; (65)

�10 ¼ ð4þ 5�Þg10 þ 10ð�½ _RP2�g12
þ 2½ _RP3�ðg4g10 þ g6g8Þ � 3½ _RP4�ðg24g8 þ g4g

2
6Þ

þ 4½ _RP5�g34g6 � ½ _RP6�g54Þ; (66)

�12 ¼ ð5þ 6�Þg12þ 12ð�½ _RP2�g14
þ½ _RP3�ð2g4g12þ 2g6g10þg28Þ
� ½ _RP4�ðg36þ 3g24g10þ 6g4g6g8Þ
þ ½ _RP5�ð6g24g26þ 4g34g8Þ� 5½ _RP6�g44g6þ½ _RP7�g64Þ;

(67)

�14 ¼ ð6þ 7�Þg14þ 14ð�½ _RP2�g16
þ 2½ _RP3�ðg4g14þg6g12þg8g10Þ
� 3½ _RP4�ðg24g12þ 2g4g6g10þg4g

2
8þg26g8Þ

þ 4½ _RP5�ðg34g10þ 3g24g6g8þg4g
3
6Þ

� 5½ _RP6�ðg44g8þ 2g34g
2
6Þþ 6½ _RP7�g54g6�½ _RP8�g74Þ:

(68)

The factors _RPn are dependent on the choice of regulator
and defined by Eq. (48) for our choice of shape function.
We find a noninteracting Gaussian fixed point with canoni-
cal critical exponents and several interacting fixed points,
of which the only one with only one relevant direction is
the one of interest for the double-scaling limit. The nu-
merical values g�2n for the couplings at that particular
non-Gaussian fixed point and the critical exponents �i
are given in Table I.
It turns out that in each order in the expansion there is

only one positive critical exponent, �1, which means in
particular that increasing the truncation does not introduce
new relevant directions. We also observe that the irrelevant
critical exponents approach the values �i ¼ di þ 1, where
di is the canonical dimensionality of the couplings in
the truncation. At the same time, the eigenvectors of the
stability matrix do not directly correspond to the couplings
gi but to superpositions of them. To increasing order in the
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truncation, we observe an apparent convergence of the
eigenvalues: We observe that the positive critical exponent
approaches smaller values. As the difference in the values
between subsequent truncation orders becomes smaller
in every step, an extrapolation of � for truncation order
n ! 1 yields � > 1. We conclude that operators are still
missing from this truncation. Very much in analogy to the
critical exponents for the Wilson-Fisher fixed point, further
operators at each order in the fields are missing: For the
Wilson-Fisher fixed point, next-to-next-to-leading order in
the derivative expansion is necessary for accurate critical
exponents [47,48]. In our case, the missing operators at a
given power of the fields are multitrace operators. We will
demonstrate how to include these in the following. Let us
briefly explain why we take into account operators that are
power-counting irrelevant, cf. Eq. (27), and that we expect
to remain irrelevant, as the double-scaling limit corre-
sponds to only one relevant direction. At an interacting
fixed point, both irrelevant and relevant couplings take
nonzero values. Accordingly, nonvanishing contributions
from the fluctuation of irrelevant operators couple into the
flow of relevant couplings. Thus the fixed-point values and
critical exponents of a relevant direction receive nonvan-
ishing contributions from irrelevant couplings. Therefore
the (ir) relevance of a coupling is not a criterion to distin-
guish whether this coupling yields large corrections to �
functions at an interacting fixed point.

F. Double-trace operators and the RG flow

We observe that operators of the form Tr�2 Tr�i couple
directly into the flow of gi by a tadpole diagram. This can
be seen as follows: In order to contribute to �gi , the

corresponding diagram must come with an overall factor

of N
�iþ2
2 . For the above operator, the tadpole diagram

contributes with a factor of N2 from the evaluation of the
trace. This can be seen directly, as the second variation
of Tr�2 Tr�i contains terms of the form Tr�iPA=B abcd.

After contracting this with the propagator, Tr�i can be
pulled out of the trace, and a trace over PA=B abcd remains,

which is �N2, cf. Eq. (48). Going over to the dimension-

less coupling g2;i yields another factor of N
�i�2
2 , thus con-

tributing to @tgi.
We conclude that operators with n� 1 traces are gener-

ated from n-trace operators of the formTr�2 Tr�i . . . Tr�j.

The contribution of further nþ 1 trace operators not con-
taining a term Tr�2 is suppressed by 1

N .

We thus extend our truncation by the two two-trace
operators that couple directly into �g4 and � and consider

�N ¼ Z�

2
Trð�2Þ þ �g4

4
Trð�4Þ þ �g6

6
Trð�6Þ

þ �g2;2
4

ðTrð�2ÞÞ2 þ �g2;4
2

Trð�2ÞTrð�4Þ: (69)

For this truncation we obtain the following beta
functions:

� ¼ ð2gþ g2;2Þ½ _RP2�; (70)

�g ¼ gþ 2�gþ 4g2½ _RP3� � 4g6½ _RP2� � 2g2;4½ _RP2�;
(71)

�g2;2 ¼ 2g2;2 þ 2�g2;2 þ 8gg2;2½ _RP3� þ 2g22;2½ _RP3�
� 8g2;4½ _RP2� � 2g6½ _RP2� þ 6g2½ _RP3�; (72)

�g6 ¼ 2g6 þ 3�g6 þ 12gg6½ _RP3� � 6g3½ _RP4�; (73)

�g2;4 ¼ 3g2;4 þ 3�g2;4 þ 4g2;2g6½ _RP3�
þ 12gg2;4½ _RP3�@tRþ 2g2;2g2;4½ _RP3�@tR
� 12g3½ _RP4�@tRþ 12gg6½ _RP3� � 6g2g2;2½ _RP4�:

(74)

Using the regulator Eq. (46) and employing Eq. (48) we
obtain several interacting fixed points and the noninteract-
ing Gaussian fixed point. For the fixed point with only one
relevant direction we get the following values:

g� ¼ �0:056; g6� ¼ �0:0015; g2;2� ¼ �0:058;

g2;4� ¼ �0:0027; �1 ¼ 1:21; �2 ¼ �0:69;

�3 ¼ �1:01; �4 ¼ �1:88: (75)

These values should be compared to the perturbative
result, where g� ¼ �0:101 and �1 ¼ 1:22 [33]. The non-
perturbative effects constitute a slight improvement over
the perturbative ones.
We expect an improvement of the critical exponents at

higher orders of the truncation, when further double-trace

TABLE I. Critical exponents �i and fixed-point values at OðnÞ in the P�1F expansion.

nmax �1 �2 �3 �4 �5 �6 g�4 g�6 � 103 g�8 � 104 g�10 � 105 g�12 � 105 g�14 � 106

2 1.066 �0:1005
3 1.046 �1:080 �0:0722 �3:8
4 1.036 �1:053 �2:14 �0:0563 �4:6 �3:6
5 1.029 �1:037 �2:115 �3:171 �0:0461 �4:7 �5:4 �5
6 1.025 �1:027 �2:10 �3:137 �4:197 �0:0390 �4:5 �6:2 �8 �1
7 1.022 �1:020 �2:093 �3:110 �4:172 �5:213 �0:0338 �4:2 �6:5 �10 �1 �1:5
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operators and also triple-trace operators, which couple into
the flow of the double-trace ones, are taken into account.
As the goal of the present work is to establish the func-
tional RG as a novel tool, we do not embark on an extended
study here to attain quantitative precision. The satisfactory
agreement of the results obtained with our method with
those in the perturbative study show that our method
works well.

G. Equivalence of the even Hermitian matrix model
with a real matrix model

A first step from the even Hermitian matrix model
towards tensor models is to consider a real matrix model
that is invariant under a pair of orthogonal transformations

� ! OT
1�O2; (76)

where O1 and O2 are arbitrary orthogonal matrices. The
invariants of this model are sums and products of traces of
arbitrary powers of 
 ¼ �T�. This gives the following
theory space:

�½�� ¼ Z�

2
Trð
Þ

þX
i�1

X
n1;...;ni�0

�gn1;...;ni Trð
n1Þ . . . Trð
niÞ: (77)

Our explicit calculations of the truncations presented in
this paper for the Hermitian model show that the large-N
limit of the beta functions of this model coincides with the
large-N limit of the beta functions of the Z2-symmetric
Hermitian matrix model if we identify operators of the two
models using the correspondence

�T�ðreal biorthogonalÞ $ �2ðZ2-symmetric HermitianÞ:
(78)

III. COLORED MATRIX MODEL

We will now consider a colored matrix model inspired
by the colored tensor models of [26] to demonstrate how
the Wetterich equation works in this case.

Consider a real N � N matrix model with three colors,
i.e., the fundamental degrees of freedom are�i with i ¼ 1,
2, 3, and triorthogonal invariance, i.e., invariance under

�i ! OT
i �iOðiþ1Þmod 3; (79)

where Oi 2 OðNÞ. This model has bilinear invariants of
the form

xðiÞ ¼ Trð�T
i �iÞ; (80)

a trilinear invariant of the form

s ¼ Trð�1�2�3Þ; (81)

and higher invariants. These higher invariants are traces of
strings of �i . . .’s satisfying the rules
(1) to the right of �i is either �ðiþ1Þmod 3 or �

T
i ;

(2) the beginning of a string ending with �i is either
�ðiþ1ÞÞmod 3 or �

T
i .

Cyclicity and invariance of the trace under transposition
imply that two invariants which are only cyclic permuta-
tions or transposition of each other represent the same
invariant. To have a representation of the invariants we
define the map �ð�T

i Þ ¼ i� 1 and �ð�iÞ ¼ iþ 2, so we
associate to each string of � . . .�’s an integer with base-
six representation �ð�Þ . . .�ð�Þ. Then for each invariant
we take the representative string with the smallest associ-
ated integer. This leads to the following Ansatz for the
vertex expansion:

�k½�� ¼ X1
n¼1

X
i1;...;in2I

X1
j1;...;jn¼1

gj1...jni1...in
TrðSi1Þj1 . . . TrðSi1Þj1 ;

(82)

where I denotes the set of minima over permutations of
base-six digits of an integer and Si the string associated to
the integer i.
Our Ansatz for the canonical dimensionality of the cou-

plings again follows from Eq. (28). Let us consider the
following truncation:

�N ¼ Z�

2

X3
i¼1

Trð�T
i �iÞ þ gTrð�1�2�3 þ�T

1�
T
3�

T
2 Þ:

(83)

The inverse propagator is given by

Pij
abcd ¼ Z��ac�bd�ij; (84)

i.e., it is diagonal in the colors. The fluctuation matrix F
takes a particularly simple form, with only off-diagonal
entries and F 12 ��3 etc. The anomalous dimension is
then calculated from a two-vertex diagram �g2 and reads

� ¼ 8g2ð1� �=3Þ: (85)

Interestingly, we observe that there is no contribution �g3

to �g, as the corresponding three-vertex diagram is sup-

pressed by 1
N . Accordingly, the � function at this order

reads

�g ¼ 1

2
gþ 3�g ¼ g

�
1

2
þ 242

g2

3þ 8g2

�
: (86)

Within this perturbative expansion, the model only admits
a UV-repulsive Gaussian fixed point. The critical exponent
at this fixed point is � ¼ �1=2, thus the fixed point is
UV repulsive. Such a behavior is well known in quantum
electrodynamics, which has a similar UV-repulsive
Gaussian fixed point and exhibits a Landau pole and a
triviality problem. At higher order in the couplings, the
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operator Trð�1�2�3�1�
T
1 Þ can generate a further contri-

bution. This is expected to shift the Gaussian fixed point to
become an interacting fixed point and imply a correction to
the critical exponent arising from quantum fluctuations.

A similar effect occurs in colored tensor models in
higher dimensions, since for instance the bare action trun-

cation
Z�

2
��ðiÞ�ðiÞ þ gð�ð1Þ�ð2Þ�ð3Þ�ð4Þ þ H:c:Þ cannot pro-

duce the interaction term at one loop. The renormaliztion
of g has to be mediated through effective operators.

IV. RECIPE

The purpose of this paper is in part to establish the
functional renormalization group equation as a useful
tool in the study of models that are technically similar to
modern tensor models. It is useful, for this wider purpose,
to extract a recipe for the treatment of matrix models that
can serve as the starting point for generalizations. In par-
ticular, the generalization to tensor models with a ‘‘trivial’’
kinetic term, similar to the Hermitian matrix model, is
straightforward, as only the number of indices changes.

A. Theory space and truncations

The first step in the setup of a flow equation is the
specification of a theory space. The theory space is the
space of all operators compatible with the symmetries. As
long as the choice of regulator does not break the symme-
tries, no operators beyond this theory space can be gener-
ated by the flow equation. To define the theory space one
often starts from a bare, i.e., microscopic, action S½�� that
one would like to have in the theory space and specifies the
field content of this bare action and its linearly realized
symmetries that can be implemented as symmetries of the
regulator.3

In the present paper, we are concerned with matrix
models, so the field content is a multiplet of matrices
�I

ab with possible restrictions on the matrices, e.g., real,

real symmetric or Hermitian. The linearly realized sym-
metries can be, e.g., Z2 invariance under �I

ab ! ��I
ab or

invariance under ‘‘internal’’ transformations �I
ab ! MI

J�
J
ab

or ‘‘local’’ symmetries �I
ab ! TI

ac�
I
cdR

I
db. The Ansatz for

the effective average action is then a functional �k½�I� that is
invariant under these symmetries and can bewritten as a sum
of basis operators in theory space, with scale-dependent run-
ning couplings as prefactors.

For instance the Z2-symmetric Hermitian matrix model
considered in this paper leads to the following Ansatz for
the effective average action:

�k½�� ¼ FkðTrð�2Þ;Trð�4Þ; . . .Þ; (87)

where the field content is given by a single Hermitian
matrix �.
The theory space for tensor models is constructed in

complete analogy: One specifies a set of tensors �I
a1...an ,

which do not have to all be of the same rank or type and a set
of linearly realized symmetries,which leads to anAnsatz for
the effective average action analogous to Eq. (87).
It is generally unfeasible to treat the entire theory space

as it is infinite dimensional. Thus one is forced to make
more restrictive Ansätze for the effective average action,
i.e., specify truncations, which are generally not preserved
by the flow equation. Hence the quantum fluctuations of
operators within the truncation generate nonvanishing
flows for operators outside the truncation and conversely
not all contributions to the running of operators within the
truncation are necessarily included. To devise a good trun-
cation, one should include the operators that carry the main
contribution to the running of the couplings of interest.
Note that even infinite-dimensional truncations of the
Wetterich equation can be treated, see, e.g., [49–51] for
examples in gauge theories and gravity. Pure matrix mod-
els offer a good way to study the accuracy of a truncation,
because, in a vertex expansion, there is only a finite number
of operators that can contribute to the running of any given
operator in the truncation. This means that one can enlarge
any finite truncation to a larger finite truncation that con-
tains all operators that can contribute to the running of the
original truncation and study the effect of the new opera-
tors. For example, in the case of the Hermitian matrix
model one can start with the bare action as the first trunca-
tion of the effective action

�ð0Þ
k ½�� ¼ Z�

2
Trð�2Þ þ g4

4
Trð�4Þ: (88)

We now use that in the vertex expansion the running of an
operator with n �’s and m traces can only be influenced
by operators with up to nþ 2 �’s. Furthermore the only
operator with more than m traces that can influence the
running of an operator O½�� with m traces in the large-N
limit is O½��Trð�2Þ. To include all these operators, we
enlarge the truncation (88) to

�ð1Þ
k ½�� ¼ �ð0Þ½�� þ g6

6
Trð�4Þ þ g2;2

4
ðTrð�2ÞÞ2

þ g2;4
2

Trð�2ÞTrð�4Þ: (89)

The feature that only a finite number of operators can
contribute to the running of a given operator is a conse-
quence of the vertex expansion and the fact that a pure
matrix model does not, by definition, contain any analogue
of ‘‘derivative’’ operators, which would be given by con-
stant matrices whose powers could appear anywhere
within a trace. The feature thus generalizes to pure tensor
models that admit an analogous vertex expansion. In the
case where derivatives exist, an expansion in the number
of derivatives often works very well and can yield

3Symmetries that are not linearly realized or cannot be im-
plemented in the regulator will not become symmetries of the
effective average action, but rather lead to Ward identities that
are very hard to solve in practice.
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quantitatively precise results from the flow equation al-
ready at low order in the derivative expansion, see, e.g.,
for the case of the Wilson-Fisher fixed point in three-
dimensional scalar models [47,48].

B. Canonical dimension

Pure matrix models lack the usual dimensions of mo-
menta, since these models do not, by definition, posses any
analogue of derivative operators. We are however in par-
ticular interested in scaling properties of a matrix model
with N-dependent bare action S when the matrix size N is
increased. If one now chooses an appropriate regulator and
inserts the bare action into the flow equation then one will
in general generate an infinite number of new operators on
the rhs of the flow equation. The coefficient of an operator
O½�� on the rhs of the flow equation will appear with a
leading power Na. Thus, if we want to take a sensible
N ! 1 limit, we have to scale the bare coupling that
corresponds toO½�� at least withNa. One then has to iterate
the procedure until one has found a consistent scaling for all
bare couplings. This iteration of course requires the use of
the scaling bound found from the rhs of the previous itera-
tion step on the lhs of the flow equation. The iteration stops
when the scaling of the entire theory space on the lhs of the
flow equation is consistent with the scaling on the rhs. For
instance, in the case of the Z2-symmetric Hermitian matrix
model, we found that the scaling

�g2n1;...;2niN
2�iþPi

k¼1
nk ¼ g2n1;...2ni (90)

allows one to take the limit N ! 1 and yields the scalings
for g2 and g4 that were desired from the point of view of
random discretizations.

The procedure we outlined here can in principle be
applied to pure tensor models as well. The iteration proce-
dure is however technically more complicated, because in
colored models many operators are not generated from a
bare action at one loop, and thus not directly generated on
the rhs of a bare action truncation.

C. Choice of regulator

There is no natural discrimination between IR and UV
degrees of freedom in a pure matrix model. In fact, e.g., the
unitary symmetry of the Hermitian matrix model implies
that all degrees of freedom should be treated on the same
footing, very similar to gauge theories, where the gauge
transformation mixes UVand IR degrees of freedom. This
is a linear symmetry generated infinitesimally by

G�ab ! �þ ½H;��ab; (91)

where H is a Hermitian generator. This linear symmetry
can be implemented in the flow equation if we use a scale-
independent mass term as an IR regulator, which sup-
presses all degrees of freedom with the same strength.
This is problematic in an infinite matrix model, where we

should rather implement a cutoff that depends on matrix
size, so we can use the flow equation to study the behavior
of the model when the matrix size is increased. This can be
done using Eq. (30).
The dependence of Ra;b on the matrix indices a, b breaks

the unitary symmetry of the system and modifies the
associated Ward identity [52,53] to a complicated non-
linear expression

G� ¼ 1

2
tr

�
GR

�ð2Þ þ R

�
; (92)

which tells us that we should not construct our theory space
using field monomials that are invariant under unitary
transformations. Instead we should work with truncations
that additionally involve index-dependent operators and (at
least approximately) solve the modified Ward identities.
This is however practically unfeasible. Moreover, our
direct calculations in the Hermitian matrix model, in which
we ignored this issue, show good agreement with exact
results. So it seems that the modification to the Ward
identity can be neglected for first investigations.
The requirements Eqs. (31)–(33) that a valid choice of

regulator has to satisfy can be generalized to tensor models.
Using an IR suppression term

�NS ¼ 1

2

X
ai;bi

�a1...akRNða1; . . . ; akÞa1...akb1...bk�b1...bk ; (93)

with analogous requirements for �NS.

D. Vertex expansion

An important tool in the calculations in this paper is the
vertex expansion, which is a standard technique in one-
loop calculations. In its simplest form, it can be viewed as a

consequence of the fact that �ð2Þ½�� þ R can be written as

a sum of a field-independent term P :¼ �ð2Þ½� � 0� þ R

and a field-dependent termF ½�� ¼ �ð2Þ½�� � �ð2Þ [��0].
The expansion of the rhs of the flow equation around � � 0
is thus given by Eq. (37).
This is particularly useful for the derivation of the run-

ning of operators that are polynomials in the fields, if, as

we assume throughout, �ð2Þ½�� admits a Taylor expansion
around � � 0. The summands in the vertex expansion are

ð�1Þnþ1 _Rab;cdP�1
cd;r1s1

F ½��r1s2;r2s2 . . .
� P�1

cd;rnsn
F ½��rnsn;tuP�1

tu;ab: (94)

In an approximation that ignores index-dependent opera-
tors, one can ignore the commutators ½P ;F � and the
summands in the vertex expansion simplify to

ð�1Þnþ1ð _RðP�1Þnþ1Þab;cdðF n½��Þcd;ab: (95)

If we now insert field configurations �ab ¼ ��ab, then
the effect of ð _RðP�1Þnþ1Þab;cd is to cut off the trace
ðF n½��Þab;ab and to multiply it with numerical factor
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½ _RPnþ1� :¼ ð _RðP�1Þnþ1Þab;ab. Denoting the cutoff trace
by ½F n½���N allows us to denote the summands in the
vertex expansion in a very simple manner,

ð�1Þnþ1½ _RPnþ1�½F n½���N: (96)

Practically, one can directly calculate the sum [ _RPnþ1] (at
least in a 1=N expansion). The derivation of ½Fn½���N on
the other hand can be performed directly.

One can of course enlarge the theory space and include
index-dependent operators generated by _R and P . In this
case, one expresses _Rab;cdPcd;r1s1F½��r1s2;r2s2 . . .Pcd;rnsn

F½��rnsn;tuPtu;ab directly in terms of matrix traces with
insertions of linear operators that produce the index
dependence. This omits the approximation described
so far.

The vertex expansion can be straightforwardly general-
ized to tensor models, provided one has an invertible
quadratic term. The only change that occurs in this case
is that the number of indices increases, in particular one
proceeds as above but using _Ra1...an;b1...bn , Pa1...an;b1...bn and
F½��a1...an;b1...bn , whose products produce contraction pat-
terns among the fields �a1...an that are more general than
matrix traces.

E. Extraction of beta functions

Using the vertex expansion as we described it in the
approximation leading to Eq. (96), it is straightforward to
extract beta functions by simply regarding the cutoff traces
as matrix traces. The left- and right-hand sides of the flow
equation are then both expanded in terms of products of
traces of field products of the form Trð�n1Þ . . . Trð�nkÞ, so
one can read off the beta functions for the bare couplings
and one obtains the beta functions in the standard way
normalizing the bare couplings with the cutoff times
canonical dimension and the appropriate power of the
wave-function normalization giving beta functions of the
form of Eq. (29). The application to tensor models is
straightforward once the canonical dimension and wave-
function normalization are determined in the model.

V. CONCLUSIONS

We establish the nonperturbative functional renormal-
ization group as a novel method to study the continuum
limit of matrix models for quantum gravity and extract a
recipe for the generalization to tensor models. Building on
the insight in [18], where the double-scaling limit implies a
renormalization group flow of the couplings with the ma-
trix size N, we implement a Wilsonian integration over
matrix entries. We set up a functional renormalization
group equation generalizing the Wetterich equation to
this new setting. As these models do not have a
Laplacian, the usual integration over fluctuations fields
sorted by the eigenvalue of the kinetic term is replaced

by an integration over matrix size N, with N playing the
role of the momentum cutoff k in standard QFTs. We
establish a method to determine the canonical dimension-
ality of couplings, i.e., their canonical scaling with N.
As in the standard Wilsonian renormalization group

flow, further matrix operators are generated in the effective
action, beyond those present in the microscopic action. We
establish an expansion in the power of the matrix and the
number of traces—analogous to the derivative expansion
in a standard quantum field theory—as a useful expansion
for the renormalization group flow.
We show the validity of our method by explicitly repro-

ducing the leading-order results in [18], and then extend
the truncation of the operator space to include double-trace
operators. Here we show how the RG flow of nþ 1 trace
operators is connected to that of n trace operators. We
include up to two-trace operators of order �6 in our
truncation, and evaluate the nonperturbative beta functions
for the corresponding five running couplings. We obtain
results which compare well with the explicit integration
over matrix entries in [18,33].
As a next step, we discuss how to extend this method to

tensor models. There, fixed points of the renormalization
group flow again correspond to points at which the con-
tinuum limit can be taken. They can also be interpreted in a
more direct physical sense as second-order phase transi-
tions from a pregeometric to a geometric phase. In both
cases, the universality class shows how physical quantities
will scale in the vicinity of the fixed point. In particular, it
is interesting to know how many relevant couplings exist,
as these correspond to couplings that need to be tuned in
order to reach the continuum limit.
We then study a colored matrix model as a toy model for

colored tensor models, and show how to obtain the RG
flow. We observe that within a truncation containing only
one interaction term, the only contribution to the beta
function of the corresponding coupling arises from canoni-
cal scaling and from a nontrivial anomalous dimension. At
that order, the particular model shows only a UV-repulsive
Gaussian fixed point.
Our method works in the perturbative regime to show

the property in asymptotic freedom as discovered in sev-
eral tensor models [54–56], but also goes beyond and could
show whether some of these models are actually asymp-
totically safe [57] and whether these models possess an
interacting fixed point. This nonperturbative notion of
renormalizability is a direct extension of asymptotic free-
dom and has been studied in the context of the Standard
Model [58,59] and particularly a local continuum quantum
field theory setting for quantum gravity [60,61]. At the
corresponding interacting fixed point, the continuum limit
of tensor models could potentially yield a phase with an
extended semiclassical geometry.
We provide a general recipe of how to apply the func-

tional renormalization group to a matrix or tensor model,
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which can provide a basis for future research on the
continuum limit in these models.
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