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We compute the mutual information of two Hawking particles emitted consecutively by an evaporating

black hole. Following Page, we find that the mutual information is of order e�S where S is the entropy of

the black hole. We speculate on implications for black hole unitarity, in particular on a possible failure of

locality at large distances.
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Hawking’s discovery that black holes emit thermal
radiation [1] is one of the few tangible results in
quantum gravity, and the resulting conflict with unitarity
[2] has driven much of the research in the field. See [3]
for a review. The goal of the present paper is to obtain
new insight into this issue, from a computation of the
mutual information carried by successive Hawking
particles.

Consider two successive Hawking particles emitted
by an evaporating black hole, as shown in Fig. 1.
Motivated by the AdS/CFT correspondence we assume
that a conventional quantum mechanical description of
this process is available. In particular we assume there is
an underlying Hilbert space with unitary time evolution
that describes the microscopic degrees of freedom. In this
fine-grained description there is no tension with unitarity:
the two Hawking particles are correlated due to their
shared history, in which they both interacted with the
microscopic black hole degrees of freedom. In this
fine-grained description, Hawking radiation from a black
hole is no different from the blackbody radiation emitted
by any other hot macroscopic object.

However for a black hole we would like to consider a
coarse-grained description, in which the black hole is
characterized just by its macroscopic thermodynamic
properties such as energy and entropy. It seems reason-
able that this coarse-graining gives rise to the usual
notion of a semiclassical spacetime. That is, only in a
coarse-grained description could one hope to describe
the black hole using the usual Schwarzschild metric, and
could one hope to describe Hawking radiation using
effective field theory on the Schwarzschild background.
In support of this view, note that the usual black hole
metric only captures macroscopic properties such as
mass or charge. Also Hawking’s calculation, carried
out in this context, shows that a black hole emits un-
correlated thermal radiation. This behavior is expected
in a coarse-grained description of blackbody radiation,
since such radiation is completely characterized by a

macroscopic quantity, namely the temperature of the
black hole.
In this setting, to understand unitarity, the main

challenge is identifying which properties of the
coarse-grained description deviate most significantly
from the underlying microscopic description. Given
some underlying microscopic theory, what modification
to the coarse-grained description is most appropriate for
restoring unitarity?
To sharpen our discussion we consider the correlation

between the two successive Hawking particles a and b
shown in Fig. 1. We have in mind two particles that are
emitted almost simultaneously from well-separated points
on the horizon, so that the separation between a and b is
large and spacelike. The correlation can be measured by
the mutual information

Iab ¼ Sa þ Sb � Sab (1)

where Sa is the entropy of particle a, Sb is the entropy of
particle b, and Sab is the entropy of both. According to
Hawking’s calculation a and b are uncorrelated and the
mutual information vanishes. Under seemingly reasonable
assumptions this will remain true even in the presence of
interactions [3]. But if the entire system (including the
black hole) is in a random pure state, the true correlation
between a and b can be obtained from the fundamental
work of Page [4]. Page considers a Hilbert space of dimen-
sion m entangled with another Hilbert space of dimension
n � m, and shows that in a random pure state the average
entropy is

Sm;n ¼
Xmn

k¼nþ1

1

k
�m� 1

2n
: (2)
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FIG. 1. Successive Hawking particles emitted by a black hole.
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For large n the sum can be estimated using the Euler-
Maclaurin formula, which gives

Sm;n ¼ logm�m2 � 1

2mn
þOð1=n2Þ: (3)

To apply this to the situation at hand, let Na be the
dimension of the Hilbert space of particle a, let Nb be
the dimension of the Hilbert space of particle b, and let
Nbh ¼ eS be the dimension of the Hilbert space of the
black hole. For particle a, for example, we have a Hilbert
space of dimension Na entangled with a Hilbert space of
dimension NbNbh. Thus

Sa¼SNa;NbNbh
Sb¼SNb;NaNbh

Sab¼SNaNb;Nbh
: (4)

Using (1) and (3) we find that for large Nbh, the mutual
information in the Hawking particles a and b is

Iab ¼ ðN2
a � 1ÞðN2

b � 1Þ
2NaNbNbh

þOð1=N2
bhÞ: (5)

This is our main result. It shows that the mutual informa-
tion carried by two successive Hawking particles is of
order e�S. For example if each Hawking particle could
carry one bit of information then Na ¼ Nb ¼ 2 and Iab �
9
8 e

�S, while if each Hawking particle could carry a large

amount of information then Iab � 1
2NaNbe

�S.

As we discussed above, the usual semiclassical picture
of gravity must be modified in order to reproduce these
correlations. Roughly speaking the possible modifications
fall into three categories.

(1) Modify the interior
It could be that microscopic quantum gravity effects
become important at or inside the (stretched) hori-
zon of the black hole, invalidating the use of the
classical Schwarzschild geometry in this region and
generating correlations between outgoing Hawking
particles. However outside the horizon semiclassical
gravity and effective field theory could be valid.
Proposals of this type include fuzzballs [5,6] and
firewalls [7,8].

(2) Modify the exterior
It could be that effective field theory is not trust-
worthy, even at macroscopic distances outside
the black hole. For example, it could be that the
underlying theory of quantum gravity leads to
violations of locality over large distances, in a way
that generates correlations and restores unitarity.
Some models with nonlocality have been discussed
in [9–11].

(3) Modify both
Perhaps both the interior region of the black hole
and the rules of effective field theory outside
the black hole receive important corrections due to
microscopic quantum gravity effects.

Unfortunately, just from considerations of unitarity, there
is no clear way to decide between these possibilities.

But since most models discussed in the literature take other
approaches, let us indulge in a little speculation about the
possibility of nonlocality outside the horizon.
A key principle in local field theory is microcausality,

that is, the property that field operators commute at
spacelike separation. If we are prepared to give up on
locality outside the horizon, it could be that spacelike
separated field operators no longer commute. We have
in mind that the resulting nonlocality extends over
macroscopic distances, and would thus fall into the
category of modifying the exterior of the black hole.
But we must admit that in order to restore unitarity,
nonlocality which extends to the stretched horizon could
do the job.
In fact, AdS/CFT may provide some motivation for the

radical idea of nonlocality over macroscopic distances.
Order by order in the 1=N expansion of the conformal
field theory (CFT) one can construct CFT operators which
mimic local field operators in the bulk [12,13]. The
algorithm involves starting from a single primary field
and adding an infinite tower of higher dimension opera-
tors. In the 1=N expansion one can show that the resulting
CFT operators commute whenever the bulk points are
spacelike separated.1 But at finite N it seems unlikely
that the higher dimension operators required for bulk
locality could exist. Instead it is more likely that bulk
observables will fail to commute at spacelike separation,
even over macroscopic distances, by an amount which is
nonperturbatively small in the 1=N expansion.
As a toy model for this idea, consider a pair of indepen-

dent harmonic oscillators characterized by

½�̂; �̂y� ¼ ½�̂; �̂y� ¼ 1 (6)

with all other commutators vanishing. We think of these
oscillators as representing two independent degrees of
freedom in some underlying microscopic description
(‘‘the boundary’’). Suppose these boundary operators can
be mapped to bulk operators which describe the Hawking
particles shown in Fig. 1. We assume a boundary-to-bulk
map depending on two parameters � and �, explicitly
given by

â ¼ �̂ cosh ð�þ�Þ þ �̂y sinh ð�þ�Þ (7)

b̂ ¼ �̂ cosh ð���Þ þ �̂y sinh ð���Þ (8)

ây ¼ �̂y cosh ð�þ�Þ þ �̂ sinh ð�þ�Þ (9)

b̂y ¼ �̂y cosh ð���Þ þ �̂ sinh ð���Þ: (10)

1In fact bulk microcausality can be taken as a guiding principle
for the construction of bulk observables [12]. The procedure is
simplest for bulk scalars, but it works for gauge fields as well
[14].

NORIHIRO IIZUKA AND DANIEL KABAT PHYSICAL REVIEW D 88, 084010 (2013)

084010-2



This map can be thought of as a Bogoliubov transformation

�̂0 ¼ �̂ cosh �þ �̂y sinh� (11)

�̂0 ¼ �̂ cosh �þ �̂y sinh � (12)

followed by setting

â ¼ �̂0 cosh�þ �̂0y sinh� (13)

b̂ ¼ �̂0 cosh�� �̂0y sinh�: (14)

The Bogoliubov transformation (11) and (12) preserves the
canonical commutation relations. But this is not true of the
transformation (13) and (14), due to the relative � sign
which appears in (14). Rather the combined map leads to
bulk commutators

½â; ây� ¼ ½b̂; b̂y� ¼ 1 (15)

½ây; b̂y� ¼ ½b̂; â� ¼ sinh 2� (16)

with all other commutators vanishing. Note that � drops
out of the commutation relations. This is expected since �
in (11) and (12) parametrizes a Bogoliubov transformation
between the bulk and boundary degrees of freedom, which
by definition is a transformation that preserves the
commutators. Having nonzero �, on the other hand, leads

to a nonzero commutator between â and b̂. We think of this
as representing a bulk commutator which is nonzero at
spacelike separation. This is a drastic modification to local
field theory—a risky game to play—and it is not clear
whether a consistent theory can be constructed along these
lines. But let us proceed, and explore the consequences of
noncommutativity.

One can start from the microscopic vacuum

�̂j0; 0i ¼ �̂j0; 0i ¼ 0 (17)

and build a Fock space

jn�; n�i ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�!n�!

p ð�̂yÞn�ð�̂yÞn� j0; 0i: (18)

If one only acts on the vacuum with operators of type a one
never notices the noncommutativity (likewise for type b).
But suppose the Hawking particles shown in Fig. 1 corre-
spond to a two-particle state (which we have not bothered
to normalize)

jc i � âyb̂yj0; 0i � sinh ð�þ�Þj0; 0i
þ cosh ð�þ�Þj1; 1i: (19)

In general this state is entangled. To see this we split the
Hilbert space into � and � oscillators,H ¼ H � �H �.

The choice of splitting is somewhat arbitrary, and leads to a
freedom that we discuss in more detail below. Given the
splitting, we construct the density matrix �̂ ¼ jc ihc j and

trace over H � to obtain the reduced density matrix for

particle a2:

�̂a ¼ �h0j�̂j0i� þ �h1j�̂j1i�: (20)

Properly normalized, this procedure gives

�̂a ¼ 1

1þ �2þ
ð�2þj0ih0j þ j1ih1jÞ (21)

where �þ is defined by �þ ¼ tanh ð�þ�Þ. The associated
entropy is

Sa ¼ �Tr�̂a log �̂a ¼ � �2þ
1þ �2þ

log�2þ þ log ð1þ �2þÞ:

(22)

The mutual information between a and b is Iab ¼ Sa þ
Sb � Sab. But Sb ¼ Sa, while the combined system is in a
pure state with Sab ¼ 0. So the mutual information is
simply twice the result (22),

Iab ¼ � 2�2þ
1þ �2þ

log�2þ þ 2 log ð1þ �2þÞ: (23)

Of course this result depends on how we decide to split the
Hilbert space. In other words, it depends on what we decide
to trace over in constructing �̂a. But the freedom to choose
a splitting can be absorbed into a shift of the Bogoliubov
parameter �. More precisely � parametrizes the freedom to
split the Hilbert space into H �0 �H �0 , where �0 and �0

are the independent oscillators defined in (11) and (12).3

One can use this freedom to set �þ� ¼ 0, which
makes the mutual information in the state (19) vanish.
But even if the mutual information in this particular state
vanishes, there will still be other states that carry mutual
information. For example the state

jc i ¼ b̂yâyj0; 0i (24)

has mutual information which can be obtained from (23)
by replacing �þ ! �� � tanh ð���Þ, namely

Iab ¼ � 2�2�
1þ �2�

log�2� þ 2 log ð1þ �2�Þ: (25)

In attempting to make both (23) and (25) small the best one
can do is set � ¼ 0. Then (23) and (25) are equal, and at
leading order for small � the mutual information in either

of the states âyb̂yj0i or b̂yâyj0i is

2A word on notation: the density matrix we are constructing
depends on both our choice of state âyb̂yj0; 0i and on our
splitting of the Hilbert space H � �H �. The notation �̂a
emphasizes the former over the latter.

3Note that standard field theory does not have this freedom. In
standard field theory operators commute at spacelike separation,
so one can unambiguously associate a factor of the Hilbert space
with any given spatial region. Then for a given region there is no
freedom in deciding what to trace over when computing entropy
of entanglement.
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Iab � 2�2ð1� log�2Þ: (26)

This toy model suggests that two operators which have a
commutator that is Oð�Þ as in (16) typically produce
entangled states with a mutual information that is Oð�2Þ
as in (26). Since we know how much mutual information is
present in Hawking radiation, we can estimate how big
commutators must be at spacelike separation. Our results
suggest that two field operators should have a commutator

of order e�S=2 in the presence of a black hole, in order to
account for the mutual information Iab � e�S carried by
two successive Hawking particles. (More precisely, we

have in mind that matrix elements of the commutator in
a typical state of the black hole plus Hawking radiation

should be of order e�S=2.) In the context of AdS/CFT black
hole entropy is OðN2Þ, so this effect is nonperturbatively
small in the 1=N expansion of the CFT.
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