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Following theGazeau–Klauder approach, we construct generalized coherent states (GCS) as the quantum

simulator to examine the deformed quantum mechanics, which exhibits an intrinsic maximummomentum.

We study deformed harmonic oscillators and compute their probability distribution and entropy of states

exactly. Also, a particle in an infinite potential box is studied perturbatively. In particular, unlike usual

quantum mechanics, the present deformed case increases the entropy of the Planck scale quantum optical

system. Furthermore, for simplicity, we obtain the modified uncertainty principle (MUP) with the

perturbative treatment up to leading order. MUP turns out to increase generally. However, for certain values

of � (a parameter of GCS), it is possible that the MUP will vanish and hence will exhibit the classical

characteristic. This is interpreted as the manifestation of the intrinsic high-momentum cutoff at lower

momentum in a perturbative treatment. Although the GCS saturates the minimal uncertainty in a simulta-

neous measurement of physical position and momentum operators, thus constituting the squeezed states,

complete coherency is impossible in quantumgravitational physics. TheMandelQnumber is calculated, and

it is shown that the statistics can be Poissonian and super-/sub-Poissonian depending on �. The equation of

motion is studied, and both Ehrenfest’s theorem and the correspondence principle are recovered. Fractional

revival times are obtained through the autocorrelation, and they indicate that the superposition of a classical-

like subwave packet is natural inGCS.We also contrast our resultswith the string-motivated (Snyder) type of

deformed quantummechanics, which incorporates a minimum position uncertainty rather than a maximum

momentum. With the advances of quantum optics technology, it might be possible to realize some of these

distinguishing quantum-gravitational features within the domain of future experiments.
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I. INTRODUCTION

Modified quantum mechanical commutation relations
(MCRs) have been extensively studied as effective means
of encoding potential gravitational or stringy effects; see
Refs. [1–4] and the review [5] for a complete list of
references. It has also been suggested that the consequent
deformations of quantum mechanical spectra might be
detectable in future low-energy experiments [3,4,6].

While most of the studied MCRs incorporate a mini-
mum position uncertainty and usually lead to the concept
of a minimal length scale [1,3,4], there are others that
exhibit a maximummomentum [7–14] as in doubly special
relativity (DSR). In Ref. [14], we investigated in detail
large classes of deformed quantum mechanics of the latter
type. The DSR-motivated MCR is exactly realized in three
dimensions and is given by the commutation relation

½Xi; Pj� ¼ iℏfijðPÞ ¼ iℏð1� �PÞ
�
�ij � �

PiPj

P

�
(1)

½Xi; Xj� ¼ ½Pi; Pj� ¼ 0: (2)

Note that we have commutative geometry in this model. In
one-dimensional physical subspace, the relevant modified
Heisenberg quantum algebra is

½X; P� ¼ iℏfðPÞ; (3)

with fðPÞ ¼ 1 in usual quantum mechanics. The intrinsic
maximum momentum arises when fðPÞ has a singularity
[13,14] or a zero at some P ¼ P0 [7–12,14]. One effect of
maximum momentum is that the spectrum of bound states
terminates at finite energy even for potentials like the
harmonic oscillator [14]; this is in contrast to MCRs that
exhibit instead a minimum position uncertainty [1,3,4].
In Ref. [14], we focused on the class of MCRs defined by

fðPÞ ¼ 1� 2�Pþ q�2P2; (4)

where �> 0 and q are real parameters.1 Indeed, � is the

deformed parameter, � ¼ �0

Mplc
¼ �0LPl

ℏ , such that Mpl �
1019 GeV=c2 is the Planck mass and Lpl � 10�35 m is

the Planck length. The dimensionless parameter �0 is
usually assumed to be of order unity, which implies the
�-dependent terms are only important in the Planck re-
gime, i.e., when energy and momentum are comparable to
Planck energy (momentum) and the size is of the order of
the Planck length. This form of MCR leads to the DSR-
motivated modified uncertainty principle (MUP), which is
consistent with string theory inspired generalized uncer-
tainty principle (GUP) and results from black hole physics.

*phyccl@nus.edu.sg
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1Indeed, Eq. (4) with q ¼ 1 is the one-dimensional projection
of the exact three-dimensional commutation relation (1).
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For q � 1, Eq. (4) has a zero, and hence (in momentum
space) Eq. (3) implies an intrinsic maximum momentum.
For q > 1, there is no intrinsic maximum momentum but
rather a minimum position uncertainty. In the limits � ! 0
and q�2 ! ��2, Eq. (4) describes the Snyder (or string-
motivated) [1,2] and anti-Snyder [10] algebras. The first
case, with þ�2, allows for minimum position uncertainty,
while the ��2 case exhibits a maximum momentum.

The study of Eq. 3 in Ref. [14] used the momentum
representation P ¼ p and X ¼ XðpÞ, where p is the usual
canonical momentum satisfying the normal Heisenberg
algebra ½x; p� ¼ iℏ. In Ref. [15], we discussed certain
cases like a particle in a square well and scattering from
a potential barrier. There, it was much easier to use the
position representation P ¼ PðpÞ and X ¼ x, where the
functional form of the operator PðpÞ can be determined
exactly by Eq. (4) and the position representation of the
fundamental canonical operators ðx; pÞ. In this paper, we
use both the momentum and position representation inter-
changeably when constructing a generalized coherent state
(GCS) for a particle in deformed harmonic oscillators
(DHOs) and an infinite potential well.

In the next section, we review the main results of the
exact energy spectrum of a particle in DHO [14] and an
infinite potential well [15]. The bound states spectrum
terminates at finite energy due to implicit maximum mo-
mentum. This interesting feature also manifested in the
relativistic wave equation with MCR [16]. In Sec. III, we
review the formalism of generalized Heisenberg algebra
(GHA) [17] in constructing the so-called Gazeau–Klauder
coherent states (GKCSs) [18,19].

In Sec. IV, we explicitly construct the exact GCS for
q ¼ 1 DHO, which is parametrized by two real and posi-
tive parameters ðJ; �Þ. Since this model exhibits maximum
momentum, the general results and behaviors of the Planck
length quantum optical system are different as compared to
the stringy GUP case [20,21]. The entropy of the optical
system turns out to increase in the presence of the maxi-
mummomentum instead of decreasing (due to the minimal
length as in Ref. [20]). In Sec. V, we construct the GCS for
the q ¼ 1 infinite potential well using a perturbative ap-
proach. The main results are similar to the DHO case. For
comparison, we investigate the anti-Snyder model for an
infinite potential well, which also incorporates the maxi-
mum momentum cutoff. Since the characteristic function
has the similar form as the q ¼ 1 infinite potential well, we
conjecture that, indeed, the increasing of entropy of any
Planck length quantum optical system is the generic
feature of a theory with maximum momentum cutoff,
i.e., q ¼ 1 MCRs and the anti-Snyder model.

In Sec. VI, for simplicity, we calculate perturbatively the
MUP for q ¼ 1 DHO. The MUP predicts the deviation
from usual quantum mechanics in which the product of
physical momentum and position uncertainties is either
greater (or smaller) than ℏ=2, depending on �. This

scenario is in contrast to the string theory (Snyder) moti-
vated models, whereby, in the latter case, the uncertainties
are always increased due to a positive correction. This
signals that GCSs saturate the minimal uncertainty in
simultaneous measurement of X and P, thus behaving as
a squeezed type of coherent states. However, for certain
values of � such as sin� < 0, it is possible for the un-
certainties to vanish at certain mean energy J, which ex-
hibits a classical characteristic. We emphasized that this
result is only valid up to first-order perturbation even
through phenomenologically the perturbative/approximate
results are sufficient as one expects the deformed para-
meter alpha to be very small. We interpret these as the
effects of the intrinsic high-momentum cutoff at a lower-
momentum sector in a perturbative treatment. The full
exact treatment with an explicit maximum-momentum cut-
off shall be considered in a future study. We see that, at the
quantum level, gravitational-induced uncertainty destroys
complete coherency, and it is in principle impossible to
have a monochromatic light ray.
Furthermore, the Mandel Q parameter can be either

positive or negative with finite values of ð�; �Þ. This im-
plies that the photon statistics in the GCS can be either
Poissonian or super-/sub-Poissonian depending on values
of �. Thus, we can have both gravitational-induced photon
bunching/antibunching effects. Ehrenfest’s theorem and
corresponded principle are recovered up to first order in
perturbation. Fractional revival times are studied, and the
revival structure is shown to be similar to the stringy case
[22]. Finally, we conclude in Sec. VII.

II. MCRS WITH MAXIMUM MOMENTUM

Recall from Eqs. (3) and (4), for real momentum p, the
polynomial fðpÞ has roots at ð1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� q
p Þ=ð�qÞ. Thus, for

q > 1, the roots are away from the real line, and Eq. (3) is
well defined. However, for q ¼ 1, there is a doubly degen-
erate real root, and a momentum cutoff P< 1=ðq�Þ is
required. For q < 1, there are two real roots except at the
point q ¼ 0, where there is only a single real root at
1=ð2�Þ. As we studied in Ref. [14], the position and nature
of these roots determines the qualitatively different
features of the deformed spectrum.
We saw that an intrinsic maximum momentum of

Oð1=�Þ, which is favored by doubly special relativity
[7], can be realized with MCRs. Defining as usual ð�PÞ2 ¼
hP2i � hPi2, it follows that, for the subclass of MCR from
Eq. (4),

�X�P � 1

2
h½X; P�i � ℏ

2
ð1� 2�hPi þ q�2hP2iÞ: (5)

This can be written as the MCR-inspired GUP:

2�X

ℏ
� ð1� �hPiÞ2

�P
þ ðq� 1Þ�2hPi2

�P
þ q�2ð�PÞ: (6)
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For ðq� 1Þ> 0, the right side of Eq. (6) is positive and
increases when �P tends to zero or infinity. Thus, there
exists a subclass of the exactly realized MCRs for which
�X has a nonzero minimum; such a minimum position
uncertainty is usually associated with some fundamental
length scale [5] and originally motivated the search for
deformed Heisenberg algebras that would realize such
scenarios [1,12]. Simply on dimensional grounds,
ð�XÞmin �Oðℏ�Þ.

As discussed in Ref. [14], q ¼ 1 in Eq. (4) is an exact
MCR with maximum momentum cutoff Pmax ¼ 1=�. For
q � 1, the truncated versions of the MCRs displayed in
Eq. (4), q > 1 seems to allow for a minimum position
uncertainty but no intrinsic momentum cutoff, while for
q � 1, we have a maximum momentum cutoff but appar-
ently no minimum position uncertainty.

A. MCR and DHO

The Schrodinger equation for the harmonic oscillator
[14] with arbitrary q values in the momentum representa-
tion is

�
p2

ðmℏ!Þ2 �
�
fðpÞ @

@p

�
2
�
�ðpÞ ¼ 2E

mðℏ!Þ2 �ðpÞ: (7)

It is useful to change variables from p to a new variable
� in such a way that the equation takes the canonical
Schrodinger form. The change is defined by

fðpÞ @

@p
� @

@�
(8)

and results in the Schrodinger equation

�
� @2

@�2
þ Vð�Þ

�
�ð�Þ ¼ 2E

mðℏ!Þ2 �ð�Þ (9)

with positive potential

Vð�Þ � p2ð�Þ
ðmℏ!Þ2 : (10)

The function p2ð�Þ is determined by solving Eq. (8).
In this paper, we will focus on cases q � 1, which

show the maximum intrinsic momentum cutoff p < 1=�.
Particularly, q ¼ 1 is singled out for extra attention due to
the fact that it corresponds to the exactly realized MCRs
[14]. After solving the momentum function p2ð�Þ, the
Schrodinger equation is obtained as�

� @2

@�2
þð��1Þ2

�4�2

�
�ð�Þ¼��ð�Þ; 0<�<1; (11)

where the dimensionless parameters are defined as

� ¼ ffiffiffiffiffiffiffiffiffiffiffi
mℏ!

p
�; � ¼ 2E

ℏ!�2
: (12)

The above equation (11) can be solved exactly, and
the eigenfunctions can be obtained in terms of associated
Laguerre polynomial [14,23],

�ð2a�1Þ
n ð�Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knn!�

ðnþaÞ�½nþ2a�

s
e��=2�aLð2a�1Þ

n ð�Þ; (13)

where

�� 2kn�; a� 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=�4

p
2

; kn � 1

�4ðnþ aÞ :
(14)

Thus, the exact (or q ¼ 1) MCR-corrected energy
spectrum for simple harmonic oscillator (SHO) is given by

En ¼
Enð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �4

2

q
þ m�2

2 ½ðEnð0ÞÞ2 þ ðℏ!Þ2
4 �� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �4

2

q
þm�2Enð0Þ

�
2

; (15)

where the undeformed energy Enð0Þ ¼ ℏ!ðnþ 1=2Þ. The
energies reach Emax � 1=ð2m�2Þ as n ! 1, where we
have the intrinsic maximum energy cutoff in the spectrum.
For later convenience, we further define the scaled energy
spectrum as

~�n ¼ En

ℏ!
¼

ðnþ 1
2Þ
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �4

2

q
þ ðnþ 1

2Þ�2

�
þ �2

4

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �4

2

q
þ ðnþ 1

2Þ�2

�
2

: (16)

B. MCR and free particle in a square-well potential

Considering position representation and substituting
X ¼ x and P � FðpÞ in Eqs. (3) and (4) gives the differ-
ential equation

dF

dp
¼ ð1� 2�Fþ q�2F2Þ: (17)

Integrating the above, we get for q ¼ 0

P ¼ 1

2�
ð1� e�2�pÞ (18)

and for q ¼ 1

P ¼ p

1þ �p
: (19)

One can also verify by direct substitution in Eq. (3). The
momentum eigenvalue equation gives

Peikx ¼ �pe
ikx; (20)

which implies that �p ¼ 1
2� ð1� e�2�ℏkÞ for q ¼ 0.

Similarly for q ¼ 1, �p ¼ ℏk
1þ�ℏk . Both �p and k are real.

Next, we use the position representation to solve exactly
for the spectrum of the infinite well with walls located at
x ¼ ð0; LÞ. The general plane-wave solution is given by

c ðxÞ ¼ Aeik1x þ Beik2x: (21)
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Imposing the usual vanishing of the wave function at the
boundaries gives the quantization condition

k2 � k1 ¼ 2n	

L
; (22)

with n an integer and the corresponding eigenfunction

c nðxÞ ¼ iffiffiffiffiffiffi
2L

p ðeik1x � eik2xÞ: (23)

For q ¼ 0, the above expressions imply the exact energy
eigenvalues

En ¼ 	2ℏ2

2mL2

�
tanh ðn~�Þ

~�

�
2ðq ¼ 0MCRÞ; (24)

where we denote the dimensionless parameter ~� ¼
2	�ℏ=L. A perturbative expansion of Eq. (24) gives

E
pert
n ¼ n2	2ℏ2

2mL2
ð1� 2n2 ~�2=3Þ þOð~�4Þ: (25)

Similarly, for q ¼ 1, the exact eigenvalues are

En ¼ 2	2ℏ2

mL2

��1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðn~�Þ2p
n~�2

�
2ðq ¼ 1MCRÞ; (26)

and perturbative expansion of Eq. (26) gives

E
pert
n ¼ n2	2ℏ2

2mL2
ð1� n2 ~�2=2Þ þOð~�4Þ: (27)

Both perturbative energy (25) and (27) agree with the
semiclassical expressions [14,15].

On the other hand, for the Snyder/anti-Snyder cases, it is
easily shown that the exact bound state energies [15] in the
infinite well are

En ¼
tan 2

� ffiffiffi
�

p
n	

L

�
�

ðSnyderÞ;

EPert
n;S ¼ n2	2ℏ2

2mL2

�
1þ n2	2ℏ2

3mL2
�

�
þOð�2Þ (28)

En ¼
tanh 2

� ffiffiffi
�

p
n	

L

�
�

ðanti-SnyderÞ;

EPert
n;AS ¼

n2	2ℏ2

2mL2

�
1� n2	2ℏ2

3mL2
�

�
þOð�2Þ; (29)

which also agree perfectly with the corresponding semi-
classical results [15]. Note that the energies are limited
above for the anti-Snyder case but not for the Snyder case.

III. GENERALIZED COHERENT STATES

Coherent states (CSs) were first studied by Schrodinger
in 1926 in harmonic oscillator systems [24] and later by
Klauder and Glauber [18,19]. Glauber obtained these states
in the study of the electromagnetic correlation function and
realized the interesting feature that these states saturate the

Heisenberg uncertainty principle. Thus, CSs are consid-
ered quantum states with the closest behavior to the clas-
sical system and have many applications in theoretical and
mathematical physics [25].
In literature, there are two ways to construct the CSs.

The first is through Klauder’s approach by using the Fock
representation of ladder algebra, and the second is the
Perelomov–Gilmore approach [26] based on group
theoretic construction. In this paper, we follow Klauder’s
approach and use the GHA given by Ref. [17]. In this
version of GHA, the Hamiltonian J0, which is related to
the characteristic function fðxÞ of the physical system,
together with ladder operators [Ay being creation operator
and A ¼ ðAyÞy being the annihilation operator] play the
role of the generators of the algebra,

J0A
y ¼ AyfðJ0Þ AJ0 ¼ fðJ0ÞA

½Ay; A� ¼ J0 � fðJ0Þ: (30)

We see that these operators form a closed algebra, and
fðJ0Þ is the analytic function of J0, which is unique for
each type of GHA. The Casimir of this algebra is

C ¼ AyA� J0 ¼ AAy � fðJ0Þ: (31)

The vacuum of the generator J0 is defined by

J0j0i ¼ �0j0i; (32)

where �0 is the energy eigenvalue of the vacuum state.
In considering a general eigenket of J0, denoted by jmi, the
generators satisfy

Jmjmi ¼ �mj0i (33)

Ayjmi ¼ Nmjmþ 1i (34)

Ajmi ¼ Nm�1jm� 1i; (35)

where�m ¼ fðmÞð�0Þ is themth iteration of�0 under f and
N2

m ¼ �mþ1 � �0. In Ref. [17], it was shown that any
quantum system with its eigenenergy satisfying

~� nþ1 ¼ fð~�nÞ (36)

fulfils the criteria of GHA. Here, ~�nþ1 and ~�n are the
successive energy levels and fðxÞ is the characteristic
function of that particular quantum system. For example,
one can obtain the standard harmonic oscillator with linear
characteristic function fðxÞ ¼ xþ 1 and the q-deformed
oscillator with fðxÞ ¼ qxþ 1. In general, GHA may not
refer to the smooth deformation of Heisenberg algebra
[17]. Similar to Ref. [20], we see that both the
Hamiltonian of MCR-corrected DHOs and the infinite
potential box are examples of those quantum systems.
Klauder’s CSs are by construction the eigenstates of the

family of annihilation operators,

Að�Þ ¼ e�i�H=ðℏ!ÞAei�H=ðℏ!Þ (37)
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Að�Þjz; �i ¼ zjz; �i; (38)

where J � jzj2 is the average energy in the elementary
quantum unit of ℏ!. z is the complex eigenvalue of the
annihilation operators, whereas � is a real parameter asso-
ciated with a classical action angle variable [18].

The (temporally stable) GKCSs are defined as [18]

jJ; �i ¼ 1

NðJÞ
X
n�0

Jðn=2Þe�i��nffiffiffiffiffiffi
�n

p jni (39)

�n ¼ �1�2 . . . �n; (40)

where we have denoted �n ¼ ~�n � ~�0. For consistency, we
set �0 ¼ 1. Note that, to ensure that both ðJ; �Þ are action
angle variables, we need the GCS to satisfy

hJ; �jHjJ; �i ¼ ℏ!J: (41)

We have the time independent of expectation value (tem-
porally stable) of the Hamiltonian in the state with ðJ; �Þ.

The GCSs are said to be of Gazeau–Klauder type if they
satisfy the following conditions:

(I) normalizability:

hJ; �jJ; �i ¼ 1; (42)

(II) continuity in the label:

jJ � J0j ! 0; kjJ; �i � jJ0; �i k! 0; (43)

(III) completeness:Z
ðd2zÞwðz; �Þjz; �ihz; �j ¼ 1; (44)

where wðz; �Þ is the measure on the Hilbert space
spanned by jz; �i.

The normalization constant can be expressed in terms of
modified Bessel function

hJ; �jJ; �i ¼ 1 ) NðJÞ2 ¼ X1
n�0

Jn

�n

: (45)

Strictly speaking, the GCS exists only if the radius of
convergence

R ¼ lim
n!1 sup

ffiffiffiffiffiffi
�n

n
p

(46)

is nonzero [19]. In fact, different choices of �n and hence
the characteristic function fð~�nÞ give rise to many different
families of GCSs. On the other hand, the temporal stability
condition of the eigenstates can be obtained by

e�iHt=ℏjz; �i ¼ jz; �þ!ti: (47)

With all the formalism discussed, we consider some ex-
amples of GCSs, namely, q ¼ 1 DHO and infinite
potential, as well as the Snyder/anti-Snyder case in the
next section.

IV. GCS FOR MCR DEFORMED
HARMONIC OSCILLATOR

In this section, we construct the GCS for the exact (or
q ¼ 1) MCR-deformed harmonic oscillator. Recall that
from Eq. (16), the deformed energy spectra are

~�n ¼
ðnþ 1

2Þ
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �4

2

q
þ ðnþ 1

2Þ�2

�
þ �2

4

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �4

2

q
þ ðnþ 1

2Þ�2

�
2

:

From the formalism, the function �n can be obtained by

�n :¼
Yn
m¼1

�m ¼ Yn
m¼1

~�m� ~�0

¼ Yn
m¼1

2
4 4mð4�ðm�1Þ�4þm�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ�4Þp Þ

ð�2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ�4Þp Þðð2mþ1Þ�2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2þ�4Þp Þ2

3
5

¼ n!ð2
�1ÞnP½2ð
þ1Þ;n�
�2nð2
þ1ÞnðP½
þ 3

2 ;n�Þ2
(48)


 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ 1

�4

s
; (49)

where P½a; n� � ðaÞn is the Pochhammer symbol, which is
a compact way to express the factorial

ðaÞn :¼ ðaþ n� 1Þ!
ða� 1Þ! ; ðaÞ0 ¼ 1: (50)

Since we compute Eq. (48) by the exact full energy spec-
trum (16), we stress that it is an exact expression.2 Thus,
the exact GCS given in Eq. (39) can be written as

jJ;�i¼ 1

NðJÞ
X
n�0

�nð2
þ1Þn=2P½
þ 3
2 ;n�Jðn=2Þe�i��n

ð2
�1Þn=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!P½2ð
þ1Þ;n�p jni:

(54)

With the normalization condition of CS, i.e., hJ; �jJ; �i ¼
1, we obtain the normalization constant

2We only manage to express the characteristic function in a
closed form perturbatively. From Eq. (16), the perturbative
energy up to leading order is

~�n ¼ ðnþ 1=2Þ � ½3nðnþ 1Þ=2þ 1=4��2 þOð�4Þ; (51)

and it implies that

~�nþ1 � ~�n � 3ð1þ nÞ�2 þ 1 ¼ ~�n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 6�2~�n

q
þ 3

2
�2:

(52)

Hence, the characteristic function is

fðxÞ � xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 6�2x

p
þ 3

2
�2; (53)

which is unique for each class of GCSs.
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N2ðJÞ¼ 2F1

�

þ3

2
;
þ3

2
;2ð
þ1Þ;J�

2ð2
þ1Þ
2
�1

�
; (55)

where 2F1½a; b; c; d� is the generalized hypergeometric
function. In Fig. 1, we illustrate N�1ðJÞ for different values
of �. It is observed that, when � ! 0, we recover the

undeformed case as N�1ðJÞ ! e�J=4. Note that, from the
phenomenological point of view, the physically acceptable
range of the deformed parameter should be small, � 	 1.

A. Probability distribution and entropy of states

Let us consider a possible aspect of Planck scale quan-
tum optics. Indeed the GCSs we considered (39) as the
states of light fields can indeed be used as an approxima-
tion to describe the real laser with a possible nonlinear

interaction and a non-Poissonian statistic. Besides that,
they are stable in time evolution. In standard quantum
optics (i.e., � ¼ 0), the probability of detecting n random
photons is given by a Poissonian distribution [27],

Pðn; JÞ ¼ jhnjJij2 ¼ e�J=2

n!

�
J

2

�
n
; (56)

where we have previously defined J :¼hJ;�jAyAjJ;�i and
ðJ2Þ is the average photon number �n in usual CSs. For the

q¼1 MCR with maximum momentum,3 the probability
turns out to be

Pðn; J; �Þ
¼ jhnjJ; �ij2 ¼ 1

N2ðJÞ
�
Jn

�n

�

¼ Jn�2nð2
þ 1ÞnðP½
þ 3
2 ; n�Þ2ðP½2ð
þ 1Þ; n�Þ�1

2F1½
þ 3
2 ; 
þ 3

2 ; 2ð
þ 1Þ; J�2ð2
þ1Þ
2
�1 �n!ð2
� 1Þn

:

(57)

This expression contains the physical effects of MCRs
with the maximum momentum in contrast to the one with
minimal length in literature, i.e., Ref. [20].
It is straightforward to show that the deformed proba-

bility distribution satisfies the normalization condition,P1
n¼1 Pðn; J; �Þ ¼ 1. In Fig. 2, we show the overall behav-

ior of the probability distribution Pðn; J; �Þ for various
values of the MCR parameter. As shown, the probability
distribution tends to spread out in n when � increases. The
maximum probability occurs at the ~n, which increases with
� and is given by the root of expression

J~n�2~n ~
�~n�½
1 þ ~n�2ðH½~n� � 2H½
2 þ ~n� þH½
1þ
2�3
~
 þ ~n� þ ln ½ ~


J�2�Þ
2F1½
1; 
1;
1 þ
2;

J�2

~
 ��½~nþ 1��½
1�2�½
1 þ
2 þ n� ¼ 0; (58)

where we have defined

~
 ¼ 2
� 1

2
þ 1
; 
1 ¼ 3

2
þ
; 
2 ¼ 1

2
þ
: (59)

Here,H½p� is the pth harmonic number. For fixed J0s, the ~n
that gives the maximum probability increases with the
MCR deformation �.

Next, we define the Gibb entropy [28] of the system
(canonical ensemble) as the standard logarithmic measure
of the density of states in the phase space as

SðJ; �Þ :¼ �kB
X1
n¼0

Pðn; J; �Þ lnPðn; J; �Þ; (60)

2 4 6 8 10 12 14
J

0.2

0.4

0.6

0.8

1.0

1
N

FIG. 1 (color online). The normalization factor for the q ¼ 1
GCS (DHO). The blue line corresponds to � ¼ 0. Purple, gold,
and green lines are the deformed cases with � ¼ ð0:1; 0:3; 0:4Þ.

3Recall that q � 1 implicitly predicts the presence of maxi-
mum momentum, but without minimal length.

20 40 60 80
n

0.02

0.04

0.06

0.08

0.10

0.12

P
n

FIG. 2 (color online). The probability distribution for the q ¼
1 GCS (DHO). The blue line corresponds to � ¼ 0. Purple, gold,
and green lines are the deformed cases with � ¼ ð0:1; 0:15; 0:2Þ.
We set J ¼ 20. Notice that the peaks are shifting to larger ~n as �
increases.
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where kB is the Boltzmann constant. In Fig. 3, we show the
plots of entropy as a function of average energy J for
various values of �. As shown, for any fixed J, the entropy
increases as � increases. It also tends to the Poissonian
entropy as � ! 0, which is given by [28]

SPoiðJ; 0Þ :¼ kB

�
J

2

�
1� ln

J

2

�
þ e�J=2

X1
n¼0

ðJ2Þn ln n!
n!

�
: (61)

Since the entropy of the system increases with the defor-
mation parameter and deviates from the undeformed case,
it implies that the GCS tends to be ‘‘more quantum me-
chanical’’ as compared to CSs in usual quantum mechan-
ics. As we shall see in Sec. VI, the GCSs will still saturate
the modified uncertainty principle (93) but with a shifted
minimum. It is consistent that both the entropy in Fig. 3
and MUP show the increasing of quantum mechanical
behavior in the system considered.4

From another viewpoint, the MCRs we considered carry
the negative modification of the effective Planck constant5

on the right-hand side. Thus, the leading-order correction
from the right-hand side of MCRs is always negative and
smaller than ℏ. Thus, the effective size of the unit cell in
the phase space decreases. This implies that the total
number of accessible states and the entropy of the system
increase as compared to the undeformed case. This result is
different from the string theory motivated GUP case,
whereby it predicts a decrease in the system’s entropy
due to the consequence of the minimal length scale in the
theory.

As a conclusion, these exact results are interesting be-
cause they highlight clearly some key conceptual and
theoretical issues and illustrate some unique features of
the MCR deformed quantum mechanics on the quantum
optical behaviors.6

V. GCS FOR MCR DEFORMED INFINITE
POTENTIALWELL

Following the same formalism in Sec. IV, we construct
the GCS for the infinite potential well perturbatively.
Recall from Eq. (27) that the perturbative energy of the
q ¼ 1 infinite well is given by

�pertn ¼ n2	2ℏ2

2mL2
ð1� n2 ~�2=2Þ:

It implies that, up to Oð~�2Þ, we have

�nþ1 ¼ 	2ℏ2

2mL2
ð1þ ~�2=2Þ þ

ffiffiffi
2

p
	ℏffiffiffiffi
m

p
L
ð1� ~�2Þ ffiffiffiffiffi

�n
p

þ ð1� 3~�2Þ�n � 6
ffiffiffiffiffiffiffi
2m

p
	ℏ

L5=2
�3=2; (62)

which give us the characteristic function

fðxÞ ¼ 	2ℏ2

2mL2
ð1þ ~�2=2Þ þ

ffiffiffi
2

p
	ℏffiffiffiffi
m

p
L
ð1� ~�2Þ ffiffiffi

x
p

þ ð1� 3~�2Þx� 6
ffiffiffiffiffiffiffi
2m

p
	ℏ

L5=2
x3=2: (63)

The function �n is found to be

�n ¼
Yn
r¼1

r2	2ℏ2

2mL2
ð1� r2 ~�2=2Þ

¼
�
� 	2ℏ2

4mL2

�
n

0
@~�2nþ1ðn!Þ2�½�þ��½��� sin

� ffiffi
2

p
	
~�

�
ffiffiffi
2

p
	

1
A;
(64)

where �� ¼ nþ 1�
ffiffi
2

p
~� .

Thus, the perturbative GCS for the infinite potential well
is given by

jJ;�i¼ 1

NðJÞ
X
n�0

ffiffiffi
24

p ffiffiffiffi
	

p ð2L	ℏÞnmn=2Jðn=2Þe�i��n

ð�1Þn=2 ~�nþ1=2n!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�½�þ��½���sin

� ffiffi
2

p
	
~�

r �jni:
(65)

From normalization condition hJ; �jJ; �i ¼ 1, we obtain
the normalization constant

N2ðJÞ ¼ 0F3

�
; 1; ��; �þ;� 4mL2J

	2ℏ2 ~�2

�
; (66)

5 10 15
J

0.5

1.0

1.5

2.0

2.5

3.0

S J

k

FIG. 3 (color online). The entropy distribution for the q ¼ 1
GCS (DHO). The blue line corresponds to the � ! 0 limit.
Purple, gold, and green lines are the deformed cases with
� ¼ ð0:1; 0:15; 0:18Þ. Notice that the entropy is increased as �
increases.

4In Eq. (93), we see that the increasing of the MUP
ð�X�PÞmup > ℏ=2 is only true for certain values of � such as
sin� > 0. It is possible for the MUP to vanish at a certain class
of �.

5This is the main difference between DSR-motivated MCRs
and the string theory (Snyder) motivated GUP.

6Of course, to be consistent, these new features seen at high
momentum need to be further verified by a relativistic treatment.
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where again 0F3½; a; b; c; d� is the generalized hypergeo-

metric function and �� ¼ 1� ffiffiffi
2

p
=~�. In Fig. 4, we have

depicted N�1ðJÞ for different values of �. Notice that the
normalization function shares the same feature in both the
DHO and infinite potential cases.

The probability of detecting n random photons is modi-
fied to

Pðn;J;�Þ
¼ 1

N2ðJÞ
�
Jn

�n

�

¼ ð�1Þ�n
ffiffiffi
2

p
	ð2L	ℏÞ2nmnJn

0F3½;1;��;�þ;� 4mL2J
	2ℏ2 ~�2�~�2nþ1ðn!Þ2�½�þ��½���sinð

ffiffi
2

p
	
~� Þ

:

(67)

From Eq. (67), the Gibb entropy of the system is given by a
similar form (60). We plot the probability and generalized

entropy in Figs. 5 and 6, respectively. Note that the general
behaviors of the probability and entropy of the GCS
infinite potential are similar compared to the DHO case.
To further strengthen our claim on the role of the maxi-

mum momentum cutoff in increasing the entropy of the
GCS, we consider the anti-Snyder case, which also exhibits
the maximum momentum. From the perturbed energy (27)
and (29), it is easy to realize that the anti-Snyder case will
share the same characteristic function as the q ¼ 1 infinite
potential case. Hence, we conclude that the anti-Snyder
case gives the same physical prediction as the q ¼ 1
infinite potential and DHO.
In conclusion, the increasing of entropy in the Planck

scale quantum optics is the main consequence due to the
maximum momentum cutoff. Evidently, this feature was
obtained by the exact treatment of DHO in Sec. IV as well
as the perturbative treatment in Sec. V. In addition, the
probability and entropy change we obtained are opposite in
sign as compared to those obtained using string theory
(Snyder) motivated MCRs. Hence, these two cases are
experimentally distinguishable in future experiments.

VI. UNCERTAINTY PRINCIPLES FOR DHO

To realize the deformed quantum algebra in Eq. (4) with
q ¼ 1, we represent the position and momentum operators
from Eq. (19) perturbatively7 up toOð�2Þ in position space by

X ¼ x; P ¼ pð1� �pþ �2p2Þ; (68)

with ½x; p� ¼ iℏ being the standard Heisenberg–Weyl al-
gebra, and both ðx; pÞ are canonical.8 Here, the small letter

5 10 15 20
n

0.05

0.10

0.15

0.20

P
n

FIG. 5 (color online). The probability distribution for the
q ¼ 1 GCS (infinite potential well). Blue dots correspond to
the � ! 0 limit. The purple dot is the deformed cases with
� ¼ 0:01. We set J ¼ 350. Notice that, as in the DHO case, the
peak is shifted to larger ~n as � increases.
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J

0.2

0.4

0.6

0.8

1.0

1
N

FIG. 4 (color online). The normalization factor for the q ¼ 1
GCS (infinite potential well). The blue color corresponds to the
� ! 0 limit. Purple, gold, and green lines are the deformed cases
with � ¼ ð0:035; 0:045; 0:075Þ The distribution is similar to the
Fig. 1 DHO case. Here, we set m ¼ ℏ ¼ L ¼ 1.
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J
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S J
k

FIG. 6 (color online). The entropy distribution for the q ¼ 1
GCS (infinite potential). The blue line corresponds to the � ! 0
limit. Purple and gold lines are the deformed cases with � ¼
ð0:02; 0:03Þ. Notice that the entropy is increased as � increases.

7The exact and perturbative approaches in the previous section
give generic similar results.

8Note that we can choose an X representation for q � 1
because in this sector we have maximum momentum cutoff
and no minimal length uncertainty [14], the eigenstate of physi-
cal position operator X is well-defined. We have commutative
space ½xi; xj� ¼ ½pi; pj� ¼ 0.
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p can be physically interpreted as the momentum operator
at low energies and thus carries the standard representation
in position space, i.e., p ¼ ℏ

i
@
@x . It is very important to note

that, since we represent the deformed momentum operator
perturbatively (68), the results in this and subsequent sec-
tions will be interpreted as the effects and manifestations of
the intrinsic high-momentum cutoff at lower momentum in
a perturbative treatment.

With Eq. (68), any (nonrelativistic) quantum mechanical
Hamiltonian is modified to

HðX;PÞ ¼ P2

2m
þ VðXÞ

¼
�
p2

2m
� �

m
p3 þ 3�2

2m
p4 þOð�3Þ

�
þ VðxÞ

¼ H0 þH1; (69)

where the undeformed Hamiltonian H0 ¼ p2

2m þ VðxÞ and
perturbed Hamiltonian H1 ¼ � �

mp
3 þ 3�2

2m p4 þOð�3Þ.
For harmonic potential, we have

HðX;PÞjDHO ¼
�
p2

2m
þm!2x2

2
� �p3

m
þ 3�2

2m
p4

�
; (70)

where we ignore the higher-order terms. Next, we intro-
duce the canonical creation-annihilation operators,

A :¼
ffiffiffiffiffiffiffiffi
m!

2ℏ

r �
xþ ip

m!

�
; Ay :¼

ffiffiffiffiffiffiffiffi
m!

2ℏ

r �
x� ip

m!

�
: (71)

They satisfy the canonical commutation relations,

½A; Ay� ¼ 1 ½A; A� ¼ ½Ay; Ay� ¼ 0: (72)

The standard Fock basis of SHO is given by

Aj0i ¼ 0; Ajnð0Þi ¼ ffiffiffi
n

p jnð0Þ � 1i;
Ayjnð0Þi ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p jnð0Þ þ 1i: (73)

The perturbative Hamiltonian of DHO turns out to be

H ¼ ℏ!
��

N þ 1

2

�
þ i

�
ffiffiffiffiffiffiffiffiffiffiffi
mℏ!

p

23=2
ðAy � AÞ3

þ 3mℏ!�2

8
ðAy � AÞ4

�
; (74)

where N ¼ AyA is the number operator. The perturbative
energy spectrum is given by

~�n¼
�
nþ1

2

�
�3

2
nðnþ1Þ�2��2

4
; �¼ ffiffiffiffiffiffiffiffiffiffiffi

mℏ!
p

� (75)

) �n ¼ ~�n � ~�0 ¼ n

�
1� 3

2
ðnþ 1Þ�2 þOð�4Þ

�
; (76)

which is consistent with the expansion of the exact energy
spectrum in Eq. (16). Using the identity

�ð2� 2
3�2Þ

�ðnþ 2� 2
3�2Þ ¼

��3�2

2

�
n
�
1þ 3nðnþ 3Þ�2

4
þOð�4Þ

�
;

(77)

we obtain the perturbative normalization constant as

NðJÞ ¼ exp ½J=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 3JðJ þ 4Þ

4
�2 þOð�4Þ

�s
: (78)

The GCS in the perturbative setting is expressed as

jJ;�i¼X
n�0

½1þ1
8ð6nðnþ3Þ�3JðJþ4ÞÞ�2�Jðn=2Þe�i��nffiffiffiffiffi

n!
p jni:

(79)

The deformed number states can be expanded in terms
of the undeformed one by the standard Rayleigh–
Schrodinger perturbation theory, in which, up to first order,
we have9

jni ¼ jnð0Þi þ X1
k�n

hkð0ÞjH1jnð0Þi
�0n � �0k

jk0i

¼ jnð0Þi þ i
�ffiffiffi
8

p
��

� 1

3

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ3

q
jnð0Þ þ 3i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2Þ2

q
jnð0Þ � 3i

�
þ 3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ3

q
jnð0Þ þ 1i

þ
ffiffiffiffiffiffiffiffiffi
ðnÞ3

q
jnð0Þ � 1i

��
: (80)

Note that ðaÞn is the Pochhammer symbol defined in
Eq. (50).
Also, the (perturbative) physical position and momen-

tum operator can be further expressed in terms of creation/
annihilation operators as

X ¼ x ¼
ffiffiffiffiffiffiffiffiffiffiffi
ℏ

2m!

s
½Ay þ A� (81)

X2 ¼ x2 ¼ ℏ
2m!

½ðAyÞ2 þ A2 þ 2N þ 1� (82)

9Phenomenologically, the perturbative results are sufficient, as
one expects alpha to be very small. So, we shall keep up to Oð�Þ
terms consistently in the subsequent section.

GENERALIZED COHERENT STATES UNDER DEFORMED . . . PHYSICAL REVIEW D 88, 084009 (2013)

084009-9



P¼p��p2þOð�2Þ¼
ffiffiffiffiffiffiffiffiffiffiffi
mℏ!
2

s �
iðAy�AÞþ �ffiffiffi

2
p ½ðAyÞ2þA2�2N�1�þOð�2Þ

�

P2 ¼p2�2�p3þOð�2Þ¼mℏ!
2

f�½ðAyÞ2þA2�2N�1�þ i
ffiffiffi
2

p
�½ðAyÞ3�A3þ3½AyA2�ðAyÞ2AþA�Ay��þOð�2Þg:

(83)

Next, we compute the position and momentum disper-
sion for the perturbative GCS in Eq. (79). After a lengthy
but straightforward calculation,10 we obtain

hXi ¼
ffiffiffiffiffiffiffiffiffiffiffi
ℏ

2m!

s
½hAyi þ hAi�

¼
ffiffiffiffiffiffiffiffiffi
2ℏJ
m!

s
½cos�þ �

ffiffiffiffiffiffi
2J

p
sin ð2�Þ þOð�2Þ� (84)

and also

hX2i ¼ ℏ
2m!

½hðAyÞ2i þ hA2i þ 2hNi þ 1� (85)

¼ ℏ
2m!

½1þ 2Jðcos 2�þ 1Þ
þ 4

ffiffiffiffiffiffi
2J

p
�½ðJ þ 1Þ sin�þ J sin 3�� þOð�2Þ�: (86)

Using the standard interpretation of uncertainty as standard

deviation ð�XÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihX2i � hXi2p
, the MCRs dispersion in

position operator X is

ð�XÞmcr

ð�XÞqm ¼ 1þ 2
ffiffiffiffiffiffi
2J

p
� sin�þOð�2Þ; (87)

whereby we denote ð�XÞqm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2m!Þp

. We see that
Eq. (87) recovers the standard undeformed result when

ð�XÞmcr
�!0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2m!Þp

. Also, for the special case when

� ¼ 0, we have the same minimal position uncertainty
ð�XÞmcr

�!0 ¼ ð�XÞqm. In general, for any finite J and non-

zero parameters (� � 0, � � 0), the position dispersion
ð�XÞmcr can either increase or decrease as compared toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2m!Þp

, depending on the values of �. It implies that,
although GCSs saturate the position uncertainty as in
standard CSs, the absolute minimum is shifted with the
deformed parameter � and �. Similar to Eq. (87), the string
theory motivated GUP position uncertainty is given by [22]

ð�XÞgup
ð�XÞqm ¼ 1þmℏ!�

2
ð1þ Jð2� 2� sin 2�� cos 2�ÞÞ

þOð�2Þ; (88)

where � is the deformed parameter proportional to L2
pl and

has the dimension of an inverse squared momentum.
Similar to our MCR case, this position uncertainty can
take both positive and negative corrections.

With the same token, the momentum expectation
value in jJ; �i is
hPiffiffiffiffiffiffiffiffiffiffiffi
mℏ!

p ¼ � ffiffiffiffiffiffi
2J

p
sin�þ �ð1þ 2Jð1þ cos 2�ÞÞ þOð�2Þ;

(89)

and

2hP2i
mℏ!

¼1þ2Jð1�cos�Þ
�4

ffiffiffiffiffiffi
2J

p
�ðJsin3�þðJþ1Þsin�ÞþOð�2Þ: (90)

The MCRs dispersion in momentum operator P is

ð�PÞmcr

ð�PÞqm ¼ 1þOð�2Þ; (91)

whereby we denote ð�PÞqm ¼
ffiffiffiffiffiffiffiffi
mℏ!
2

q
. From Eq. (91) we see

that the deformed momentum uncertainty is similar to the
standard CS up to the first-order perturbation, regardless of
values for ðJ; �Þ.
The stringy momentum dispersion is given by [22]

ð�PÞgup
ð�PÞqm ¼ 1�mℏ!�J

2
ðcos 2�� 2� sin 2�Þ: (92)

We see that stringy momentum uncertainty (92) can
increase or decrease as compared to the undeformed
case, depending on the values of �. For our MCR case
(91), it is always unchanged with respect to ðJ; �Þ. We see
from Eqs. (88) and (92) that the GUP position and mo-
mentum uncertainties are behaving like the conjugate pair
for all finite values of J and �, but not in the MCR case
since ð�PÞmcr is always constant up to the leading order in
perturbation.
The product of both position and momentum uncertain-

ties for the MCR produces the MUP,�
�X�P

ℏ=2

�
mup ¼ 1þ 2

ffiffiffiffiffiffi
2J

p
� sin�þOð�2Þ

¼ 1� 2�hJ; �jPjJ; �i þOð�2Þ: (93)

For comparison, the stringy GUP is given by [21]�
�X�P

ℏ=2

�
gup ¼ 1þ 1

2
�mℏ!ð1þ 4Jsin 2�Þ þOð�2Þ

¼ 1þ �hJ; �jP2jJ; �i þOð�2Þ: (94)

First, both Eqs. (93) and (94) produce the correct
undeformed limit. Let us consider the special case when10See the Appendix for a more detailed calculation.
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� ¼ 0; we have ½ð�XÞð�PÞ�mup
�¼0 ¼ ℏ=2 for MUP and

½ð�XÞð�PÞ�gup�¼0 ¼ ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2�mℏ!J
q

for the GUP. Thus,

in deformed quantum theory, the MCR predicts no change
in the uncertainty principle for the GCS when � ¼ 0. This
scenario is effectively different from the GUP. The latter
implies an increase in the uncertainty principle for all finite
values of �.

However, for nonzero �, the situation is drastically
different from � ¼ 0. In Fig. 7, for some finite values of
�, the product uncertainties of position and momentum
operators vanish, i.e., ½ð�XÞð�PÞ�mup ¼ 0, which exhibits
the classical characteristic11 as in the MCR-deformed SHO
[14]. The stringy GCS always further increases the mini-
mal uncertainty in the product of ð�XÞð�PÞ. This feature
can be the empirical significance to distinguish between
the MCR and GUP schemes of quantum deformation be-
sides the entropy in Sec. IV.

The energy of the MCR-deformed GCS (without zero
point energy) turns out to be

hJ; �jHjJ; �i ¼ hJ; �j
�
P2

2m
þm!2X2

2m
� ℏ!

2

�
jJ; �i:

¼ ℏ!J: (95)

Equation (95) is the consistency condition to ensure that
the energy behaves as the action angle variable, and GCSs
remain coherent states under time evolution (temporally
stable).

A. Quantum statistic of coherent state

One can further compute the dispersion of the number
operator N ¼ AyA. First, up to first order in perturbation
Oð�Þ, we have the following expectation values12:

hJ; �jAyAjJ; �i ¼ J

�
1þ �ffiffiffiffiffiffi

2J
p ðJ sin 3�� 3ðJ þ 1Þ sin�Þ

�
(96)

hJ; �jðAyÞ2A2jJ; �i

¼ J2
�
1þ

ffiffiffi
2

J

s
�ððJ þ 1Þ sin 3�� 3ðJ þ 2Þ sin�Þ

�
(97)

The respective expectation values ofN andN2 are given by

hJ; �jNjJ; �i ¼ hJ; �jAyAjJ; �i

¼ J

�
1þ �ffiffiffiffiffiffi

2J
p ðJ sin 3�� 3ðJ þ 1Þ sin�Þ

�
(98)

hJ; �jN2jJ; �i ¼ hJ; �jðAyÞ2A2jJ; �i þ hJ; �jAyAjJ; �i

¼ JðJ þ 1Þ þ
ffiffiffi
J

2

s
� sin�½2Jð2J þ 3Þ cos 2�

� 4JðJ þ 3Þ � 3�: (99)

The dispersion of the number operator turns out to be

hJ; �jð�NÞ2jJ; �i
¼ hJ; �jN2jJ; �i � ðhJ; �jNjJ; �iÞ2

¼ J

�
1þ 3� sin�ffiffiffiffiffiffi

2J
p ð2Jðcos 2�� 1Þ � 1Þ þOð�2Þ

�
: (100)

In quantum optics, the measure of deviation from the
standard Poissonian distribution is given by the Mandel
parameter, defined by [27]

Q :¼ hJ; �jð�NÞ2jJ; �i
hJ; �jNjJ; �i � 1; (101)

where Q ¼ 0 refers to standard Poissonian distribution,
Q � 0 the super-Poissonian (photon bunching), and
Q � 0 the sub-Poissonian (photon antibunching). Thus,
for GCSs of DHO, we have

Q ¼
1þ 3� sin�ffiffiffiffi

2J
p ð2Jðcos 2�� 1Þ � 1Þ

1þ �ffiffiffiffi
2J

p ðJ sin 3�� 3ðJ þ 1Þ sin�Þ � 1

¼ �4
ffiffiffiffiffiffi
2J

p
�sin 3�þOð�2Þ: (102)

The CS, the output by a laser far above threshold, has
Poissonian statistics yielding random photon spacing.
However, from Eq. (102), we see that the GCS no longer

FIG. 7 (color online). The MUP. We set � ¼ 0:1. The edge of
the plot with J � 0; � � 0 carries the vanishing uncertainty
principle �X�P ¼ 0.

11The existence of such classical phase, i.e., ð�XÞð�PÞ�mup ¼
0, is fundamentally different in physical grounds from the one in
Ref. [14]. For the latter, the vanishing of the uncertainty princi-
ple is directly due to the intrinsic maximum momentum cutoff.
In fact, at the maximum momentum state (nmax ! 1 for q ¼ 1),
the right-hand side of the MCR (4) vanishes. For the GCS, the
uncertainties vanish for certain classes of � (action angle
variable). 12Refer to Appendix for more details.
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purely exhibits random Poissonian distribution. The effect
of Eq. (102) can be considered as the MCR gravitational
induced super-/sub-Poissonian statistics. Thus, within the
framework of GCS, photons can arrive either more (posi-
tively correlated) or less (negatively correlated) simulta-
neously at the detectors depending on the value of�. In

Fig. 8, we show that the variation of the Mandel Q number
as a function of �. We have the sub-Poissonian case when
� 2 ð0; 	Þ þ 2r	 and super-Poissonian case when � 2
ð	; 2	Þ þ 2r	, where r is any positive integers. In contrast
to Eq. (102), the stringy motivated GUP predicts the sub-
Poissonian distribution for the GCS regardless of ð�;�Þ.

B. Semiclassical dynamics

We consider the dynamics of DHO in the framework of
the MCR that incorporates the maximum momentum
by using the Heisenberg picture. To quantify how closely
our GCSs resemble classical mechanics, we can test
Ehrenfest’s theorem. For any bounded operator O, the
theorem is given by

d

dt
hJ; �þ t!jOjJ; �þ t!i

¼ i

ℏ
hJ; �þ t!j½H;O�jJ; �þ t!i; (103)

where jJ; �þ t!i is the time evolution of states
jJ; �i under the Hamiltonian such that jJ; �þ t!i ¼
exp ð�iHt=ℏÞjJ; �i. Using the deformed Hamiltonian,
the Heisenberg equation of motion (EOM) for the position
of the center of the wave packet takes the form of

hJ; �̂j _XjJ; �̂i ¼ i

ℏ
hJ; �̂j½H;X�jJ; �̂i ¼ i

ffiffiffiffiffiffiffi
ℏ!
2m

s �
h½AyA; ðAy þ AÞ�i þ i�

2
ffiffiffi
2

p h½ðAy � AÞ3; ðAy þ AÞ�i þOð�2Þ
�

¼ i

ffiffiffiffiffiffiffi
ℏ!
2m

s �
hAyi � hAi þ 3i�ffiffiffi

2
p ð2hAyAi � hðAyÞ2i � hA2i þ 1Þ þOð�2Þ

�
) mhJ; �̂j _XjJ; �̂i ¼ ffiffiffiffiffiffiffiffiffiffiffi

mℏ!
p ½� ffiffiffiffiffiffi

2J
p

sin �̂þ 4J� cos 2�̂þOð�2Þ�; (104)

where we have denoted �̂ :¼ �þ t!. We see that, by taking time derivative of Eq. (84) and comparing it to Eq. (104), one
can obtain the Ehrenfest theorem. Also, by taking limit � ! 0, we recover the exact Ehrenfest theorem for usual quantum
mechanics. With the same token, the EOM of the momentum operator is

hJ; �̂j _PjJ; �̂i ¼ i

ℏ
hJ; �̂j½H;P�jJ; �̂i ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mℏ!3

2

s
½ih½AyA; ðAy � AÞ�i þ ffiffiffi

2
p

�h½AyA; ðAy � AÞ2�i þOð�2Þ�

¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mℏ!3

2

s
½iðhAyi þ hAiÞ þ ffiffiffi

2
p

�ðhðAyÞ2i � hA2iÞi þOð�2Þ�

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mℏJ!3

p
cos �̂� 4J

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mℏ!3

p
� sin 2�̂þOð�2Þ: (105)

By taking time derivative of Eq. (89), we are in complete
agreement with Eq. (105). It is worth noticing that, in the
stringy motivated model, this requirement is not exactly
satisfied by the authors in Ref. [21] but further rectified by
the author in Ref. [22] by applying the non-Hermitian
quantum mechanics approach.

Next, we differentiate Eq. (104) and use Eq. (84) in order
to obtain the deformed Newton EOM,

hJ; �̂j €XjJ; �̂i ¼ �!2

2
64

ffiffiffiffiffiffiffiffiffi
2ℏJ
m!

s
cos �̂þ 8J�

ffiffiffiffiffiffiffiffi
ℏ
m!

s
sin 2�̂

3
75

¼ �!2

�
hJ; �̂jX � 3�ffiffiffiffiffiffiffiffiffiffiffi

mℏ!
p ðXPþ PXÞjJ; �̂i

�
:

(106)

FIG. 8 (color online). The Mandel Q number for the GCS. We
set � ¼ 0:1. Note that the Mandel Q number can be positive or
negative periodically depending on the parameter �.
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Note that the correspondence principle in the MCR-
deformed quantum theory is modified, and generally the
center of the wave packet no longer follows the DHO path.
Interestingly, we produce the similar correspondence prin-
ciple as in the stringy case [22]. Indeed, the classical
dynamics of the GCS is not strictly simple harmonic.

Next, we consider�
� @V

@x

	
¼ �m!2hXi

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mℏJ!3

p
½cos �̂þ ffiffiffiffiffiffi

2J
p

� sin 2�̂�: (107)

Comparing with Eq. (105), the Ehrenfest theorem is sat-
isfied perturbatively, and it is given by h _Pi ¼ h� @V

@xi for
arbitrary values of �.

C. Fractional revival times

In this section, we study the revival structure of the GCS
wave packet under MCR-deformed quantum theory. It is
commonly known that, when a wave function evolves in
time to a state that closely resembles its initial form, we
have the quantum revival phenomena. In addition, frac-
tional revival occurs in a situation when a wave function
evolves in time to another state that can be described as a
collection of spatially distributed subwave functions, each
of which closely resembles the shape of the initial wave
function [18].

The wave packet in our GCS can be written as13

jJ;!ti ¼ X1
n¼0

cnðJÞe�i�nt=ℏjni; (108)

with normalization condition
P

n�0jcnðJÞj2 ¼ 1. The

weighting probabilities jcnðJÞj2 are defined by cnðJÞ :¼
Jn=2=NðJÞ ffiffiffiffiffiffi

�n
p

. The revival phenomena arise from the

weighting probabilities in the way that it describes well-
localized behavior of the wave packet under sub-(super-)
Poissonian distribution. In Ref. [18], one can expand the
energy in the expression for wave packets around the
centrally excited submode ~n, with energy E~n. This sub-
mode refers to the peak of jcnðJÞj2 in which it is governed
by corresponding distributions. The submode is assumed to
be close to the expectation value of the number operator
~n � �n ¼ hNi ¼ Jd lnN2ðJÞ=dJ. The revival time scales
are given by the derivatives of the energy, i.e., classical
period Tcl ¼ 2	ℏ=j�0~nj, revival time Trev ¼ 4	ℏ=j�00~nj,
super-revival time Tsrev ¼ 12	ℏ=j�000~n j, and so on. Note
that the energy of our system is quadratic in n, and thus
we only have nonzero classical period Tcl and revival time
Trev for the system.

Now, consider the q ¼ 1 MCR-deformed harmonic os-
cillator. We treat it perturbatively up to the leading-order
correction. Considering the perturbative energy spectra

(76), the deformed probability density (and its inverse) to
leading order is

�n ¼
ð� 3

2Þn�2nn!�ðnþ 2� 2=ð3�2ÞÞ
�ð2� 2=ð3�2ÞÞ þOð�2Þ (109)

) 1

�n

¼ 1

n!
þ 3ðnþ 3Þ�2

4ðn� 1Þ! þOð�4Þ: (110)

The normalization constant and the weighting function are
given by

N2ðJÞ :¼ X1
n¼0

Jn

�n

� eJ
�
1þ 3J

4
ðJ þ 4Þ�2

�
(111)

jcnðJÞj2 :¼
Jnð 1n! þ 3ðnþ3Þ�2

4ðn�1Þ! Þ
eJð1þ 3J

4 ðJ þ 4Þ�2Þ

� Jne�J

n!

�
1� 3½JðJ þ 4Þ � nðnþ 3Þ��2

4

�
: (112)

In Eq. (112), we see that the usual Poissonian weighting

function jcpoin ðJÞj2 ¼ Jne�J=n! is modified due to the de-
formation. In fact, Eq. (112) is the perturbative expansion
of the exact probability density in Eq. (57). In Fig. 9, we
plot the modified weighting function for various energy J
as the functions of n. Note that the peak refers to the
dominating submode ~n. This submode is given by

~n � hJ; �jNjJ; �i

¼ J

�
1þ �ffiffiffiffiffiffi

2J
p ðJ sin 3�� 3ðJ þ 1Þ sin�Þ þOð�2Þ

�
:

(113)

Besides that, the derivatives of the perturbative energy
are

5 10 15 20 25
n

0.1

0.2

0.3

0.4

0.5

C 2

FIG. 9 (color online). The probability density jcnðJÞj2 as a
function of n. We set � ¼ 0:01. Blue, purple, and gold lines
correspond to J ¼ 3, 6, 15.13For simplicity, we choose � ¼ 0 in this section, so �̂ ¼ !t.
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�0n ¼ ℏ!
�
�3n�2 þ

�
1� 3

2
�2

��
�00n ¼ �3ℏ!�2:

(114)

Using ~n and Eq. (114) allows us to determine the time
scales involved,

Tcl ¼ 2	ℏ=j�0~nj �
2	

!
þ 3	ð2J þ 1Þ�2

!
(115)

Trev ¼ 4	ℏ=j�00~nj �
4	

3!�2
: (116)

Subsequently, we analyze the behavior of the autocorre-
lation function in order to study the revival structure. It is
defined by the overlapping of states under the evolution of
Hamiltonian,

AðtÞ :¼ hJ; �jJ; �þ t!i ¼ Xn0
n¼0

Jne�it!�n

N2ðJÞ�n

: (117)

One can choose an appropriate upper cutoff limit in the
sum of Eq. (117) by analyzing the behavior of the square of
weighting function jcnj2. For our situation as shown in
Fig. 9, n � 50 will be a sufficiently good value to use as
the termination point in the sum of the autocorrelation
function.

Numerically, the square of the autocorrelation function
jAðtÞj2 varies in between 0 and 1. Themaximum jAðtÞj2 ¼ 1
is the situation in which the wave packet c ðx; tÞ ¼
hxjJ;!ti exactly matches the initial wave packet c ðx; 0Þ,
whereas the minimum, jAðtÞj2 ¼ 0, refers to nonoverlap-
ping or the wave packet is far from the initial one. There
will be a revival of the classical-like wave packet after the
classical period Tcl. Since we have either sub-(super-)
Poissonian distribution (depending on �̂) in our model,
we also encounter the fractional revival as in the GUP
stringy model [22]. The fractional revival occurs at time
p=qðTrevÞ, with coprime integers p, q. We show the revival

structure in Figs. 10 and 11 for small (large) J values. In
Fig. 10, we observe local maximum occurs at multiples of
Tcl ¼ 15:08; i.e., t ¼ 15:08, 30.16, 45.24, etc. Also, the
first full reconstruction [18] of the original wave packet
happens at Trev=2 ¼ 125:63. In Fig. 11, we choose to set
smaller � so that the Tcl 	 Trev in order to observe the
fractional revival structure clearly. The first reconstruction
of the original wave occurs clearly at Trev ¼ 1256:64.
Furthermore, we see multiples of fractional revival occur
at Trev=4, Trev=3, Trev=6, etc.
Note that our result in fractional revival is similar to

Ref. [22] even though the latter case (stringy-motivated
model) predicts strictly the sub-Poissonian distribution.
Hence, we cannot distinguish the MCR and GUP models
by investigating the autocorrelation function and the re-
vival structure. The main reason is that we simplify the
problem by using the perturbative approach. We believe
the extension to higher orders or eventually the exact case
will be able to determine the differences in the revival
structure induced by these models.

VII. CONCLUSION

In this paper, we have successfully constructed GCSs
that incorporate maximum momentum for q ¼ 1 DHO
exactly and obtained their probability distribution and
entropy of states. However, the infinite potential box was
studied perturbatively.
First, we review the bound state spectrum of both DHO

and the infinite potential box. Their energies terminate at
finite n level [14] and hence illustrate the main conse-
quence of the DSR, which carries a maximum energy
cutoff. Then, we review the generalized Heisenberg alge-
bra scheme. This allow us to define the characteristic
function and weight function of GCS. As an example, we
consider the Planck length quantum optical system. We
have computed exactly the probability density and entropy
distribution as well as studied their behavior in terms of the
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FIG. 10 (color online). Autocorrelation function as a function
of time. We set J ¼ 1:5, � ¼ 0:18, ! ¼ 0:5, ℏ ¼ 1, � ¼ 0, and
Tcl ¼ 15:08, Trev ¼ 251:27.
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FIG. 11 (color online). Autocorrelation function as a function
of time. We set J ¼ 6, � ¼ 0:06, ! ¼ 0:5, ℏ ¼ 1, � ¼ 0, Tcl ¼
13:38, and Trev ¼ 2513:27.
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MCRs deformation. The entropy of the system increases in
the presence of the maximum momentum in the model.

On the other hand, for simplicity, we have calculated the
modified uncertainty principle perturbatively for q ¼ 1
DHO. The GCSs constructed remain the squeezed type
since they saturate the uncertainties ð�X�PÞmup, but with
the minimal value shifted. The uncertainties may increase
or decrease from the saturation point of the undeformed
quantum optics depending on the value of �. For � > 0, it
is possible that the MUP will at finite ðJ; �Þ and hence
exhibits the classical characteristics. This classical phase is
generally different in nature compared to the DHO in
Ref. [14].

Mandel’s Q parameter has shown that the usual quantum
description of laser light above threshold should be modi-
fied and behave as a sub-(super-)Poisonnian distribution.
We have studied the motion of the center of the wave
packet under the MCR. The Ehrenfest and correspondence
principle are reproduced. Last, we have analyzed the au-
tocorrelation function and obtained the quantum revival
structure. Although the revival structure result is similar to
the stringy model up to the first-order perturbation inOð�Þ,
we believe the distinction should appear when higher-order
perturbation or exact calculation is considered.

Overall, the GCS can be treated as an interesting model
to distinguish the physics between the string theory moti-
vated model, i.e., Snyder model, and the DSR-motivated
q ¼ 1 MCR model.
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APPENDIX

We present the computational scheme in detail here. Note
that the expansions are performed up to Oð�Þ consistently.
Recall the perturbed number state (80) is expressed as

jni ¼ jnð0Þi þ i
�ffiffiffi
8

p
��

� 1

3

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ3

q
jnð0Þ þ 3i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2Þ2

q
jnð0Þ � 3i

�
þ 3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ3

q
jnð0Þ þ 1i

þ
ffiffiffiffiffiffiffiffiffi
ðnÞ3

q
jnð0Þ � 1i

��
;

and thus

hmjAjni ¼ ffiffiffi
n

p
�m;n�1 þ i

�ffiffiffi
8

p
h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
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þ 3
�
ð2nþ 1Þ�m;n þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp

�m;n�2

�i
:

(A1)

The expectation value of the annihilation operator is
given by

hJ; �jAjJ; �i ¼ 1

N2ðJÞ
X1
n;m

JðnþmÞ=2ei�ð�m��nÞffiffiffiffiffiffiffiffiffiffiffiffi
�m�n

p hmjAjni

¼ 1

N2ðJÞ
X1
n

ffiffiffi
n

p
Jn�1=2ei�ð�n�1��nÞ

�n�1
ffiffiffiffiffiffi
�m

p þ i
�ffiffiffi
8

p

X1

n

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þðnþ 2Þp
Jnþ1ei�ð�nþ2��nÞ

N2ðJÞ�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nþ2�nþ1
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þ 3
X1
n

�ð2nþ 1ÞJn
N2ðJÞ�n

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp

Jn�1ei�ð�n�2��nÞ

N2ðJÞ�n�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�n�1

p
��
: (A2)

We evaluate terms in Eq. (A2) individually. By using �n�1 � �n ¼ �1þ 3n�2, the first term can be evaluated as

e�i�ffiffiffi
J
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N2ðJÞ

X1
n

ffiffiffi
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Jnei3n�
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J þ

�
3

4
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3�2 ;� 2J
3�2Þ

��
;

where the regularized confluent hypergeometric function is given by 0
~F1ða; xÞ ¼ 0F1ða;xÞ

�ðaÞ . It is also related to the Bessel
function of the first kind J�ðxÞ by 0

~F1ða; xÞ ¼ ð�xÞð1�aÞ=2Ja�1ða
ffiffiffiffiffiffiffi�x

p Þ. For small �, we see that we have the negative index
for 0

~F1ða; xÞ.
We have the following ratio of the special function:

GENERALIZED COHERENT STATES UNDER DEFORMED . . . PHYSICAL REVIEW D 88, 084009 (2013)

084009-15



0
~F1ð3� 2

3�2 ;� 2J
3�2Þ

0
~F1ð2� 2

3�2 ;� 2J
3�2Þ

¼
ð 2J
3�2Þ

1�½3� 2

3�2
�

2 Jð3� 2

3�2
Þ�1

�
2

ffiffiffiffiffiffi
J

3�2

q �
ð 2J
3�2Þ

1�½2� 2

3�2
�

2 Jð2� 2

3�2
Þ�1

�
2

ffiffiffiffiffiffi
J

3�2

q �¼
ffiffiffiffiffiffiffiffi
3�2

2J

s 2
4J�ð 2

3�2
�5

2þ1
2Þ
�
2

ffiffiffiffiffiffi
J

3�2

q �
J�ð 2

3�2
�3

2þ1
2Þ
�
2

ffiffiffiffiffiffi
J

3�2

q �
3
5
�����������let n2¼2=ð3�2Þ�5=2;n1¼2=ð3�2Þ�3=2:

¼
ffiffiffiffiffiffiffiffi
3�2

2J

s 2
4J�ðn2þ1

2Þ
�
2

ffiffiffiffiffiffi
J

3�2

q �
J�ðn1þ1

2Þ
�
2

ffiffiffiffiffiffi
J

3�2

q �
3
5
�����������use identity J�ðnþ1=2ÞðzÞ¼ð�1Þnþ1Ynþ1=2ðzÞ:

¼�
ffiffiffiffiffiffiffiffi
3�2

2J

s 2
4Yðn2þ1

2Þ
�
2

ffiffiffiffiffiffi
J

3�2

q �
Yðn1þ1

2Þ
�
2

ffiffiffiffiffiffi
J

3�2

q �
3
5
�����������use identity Y�ðxÞ¼��

ffiffiffiffiffiffiffi
2

	�

s �ex
2�

���
;��0:

¼�
ffiffiffiffiffiffiffiffi
3�2

2J

s ffiffiffiffiffiffiffiffiffiffiffiffi
2

3�2�3
2

2
3�2�5

2

s 2
6664
�
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J=ð3�2Þ

p
2

3�2
�3

2

� 2

3�2
�3

2

�
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J=ð3�2Þ

p
2

3�2
�5

2

� 2

3�2
�5

2

3
7775

¼�3�2

2

�
1þ15

4
�2þOð�4Þ

�
: (A3)

So, we have the first term in Eq. (A2):
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: (A4)

The perturbed terms can be calculated as
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Thus, we have the expectation value of annihilation operator A up to Oð�Þ as
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J

p
e�i� � i�ffiffiffi

8
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Note that we also have the following useful identities in order to evaluate the rest of expectation values:
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Hence, all the expectation of the combination of creation/annihilation operators is given by
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(A12)

We can use these fundamental expectation values to compute the uncertainties in Sec. VI and the equation of motion of
wave packet under the MCR in Secs. VI and II.
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