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The unique ghost-free mass and nonlinear potential terms for general relativity are presented in a

diffeomorphism and local Lorentz invariant vierbein formalism. This construction requires an additional

two-index Stückelberg field, beyond the four scalar fields used in the metric formulation, and unveils a

new local SL(4) symmetry group of the mass and potential terms, not shared by the Einstein-Hilbert

term. The new field is auxiliary but transforms as a vector under two different Lorentz groups, one of

them the group of local Lorentz transformations, the other an additional global group. This formulation

enables a geometric interpretation of the mass and potential terms for gravity in terms of certain volume

forms. Furthermore, we find that the decoupling limit is much simpler to extract in this approach; in

particular, we are able to derive expressions for the interactions of the vector modes. We also note that it

is possible to extend the theory by promoting the two-index auxiliary field into a Nambu-Goldstone

boson nonlinearly realizing a certain spacetime symmetry, and show how it is ‘‘eaten up’’ by the

antisymmetric part of the vierbein.
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I. INTRODUCTION AND SUMMARY

Einstein’s gravity is the theory that describes the 2
degrees of freedom of the massless helicity-2 representa-
tion of the Poincaré group, and their two derivative self-
interactions. One may ask whether it is possible to alter the
interactions of the graviton beyond those dictated by the
Einstein-Hilbert (EH) action. At the lowest, zero-derivative
level, such a deformation would correspond to adding a
potential for the metric perturbation. An obvious example
is the potential described by the cosmological constant
(CC) term,L0 � ffiffiffiffiffiffiffi�g

p
�. This changes neither the number

of propagating degrees of freedom of general relativity
(GR), nor the consistency of the theory, but necessarily
alters the background spacetime.

The CC is the only such term—other potentials inevita-
bly change the number of degrees of freedom. The Fierz-
Pauli term [1] is the unique consistent quadratic potential
that gives rise to 5 degrees of freedom, as required by the
massive spin-2 representation of the Poincaré group.
Adding a generic potential to the EH action, however, leads
to the loss of all four Hamiltonian constraints of GR, and
thus a total of six propagating degrees of freedom, one of
which is necessarily a ghost [2].

Nevertheless, there exists a special class of mass and
potential terms (the often-called de Rham, Gabadadze,
Tolley (dRGT) terms [3,4], see [5] for a review) that make
the graviton massive, while retaining one of the four
Hamiltonian constraints. This remaining constraint projects

out the ghostly sixth degree of freedom [6,7], see also
[8–10].
In addition to the CC term, the dRGT construction

allows for 3 free parameters. One combination is the
graviton mass, m, and the other two independent
combinations, �3 and �4, set the strength of the non-
linear potential. The theory can be formulated by using
four spurious diffeomorphism scalars, � �a—first intro-
duced in an earlier proposal for massive gravity [11]—
to allow for a manifestly diffeomorphism-invariant
description. Adopting these four scalars, and following
[4], one can define a matrix with components

K�
� ¼ ��

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��@��

�a@��
�b� �a �b

q
, that can be used to

build invariants supplementing the EH action by the
graviton mass as well as zero-derivative interactions that
guarantee 5 degrees of freedom on an arbitrary back-
ground. One such term is given by [4]

L2 �M2
Plm

2

2

ffiffiffiffiffiffiffi�g
p

"�1�2��"
�1�2��K�1

�1
K�2

�2 : (1)

The remaining two possible terms L3;4, cubic and quartic

in K respectively, can be obtained by the higher order
generalization of (1),1

L3 � �3M
2
Plm

2 ffiffiffiffiffiffiffi�g
p

"�1�2�3�"
�1�2�3�K�1

�1
K�2

�2
K�3

�3
;

(2)
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1The �’s here are the epsilon symbols, with no factors of
ffiffiffiffiffiffiffi�g

p
.

Moreover, the linear term L1 � ffiffiffiffiffiffiffi�g
p

""K can be expressed—
up to a total derivative—through a linear combination of L2;3;4
and the CC.
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L4 � �4M
2
Plm

2 ffiffiffiffiffiffiffi�g
p

"�1�2�3�4
"�1�2�3�4K�1

�1

�K�2
�2
K�3

�3
K�4

�4
: (3)

In addition to being invariant under the global Poincaré
subgroup, ISOð3; 1ÞGCT, of the group of general coordinate
transformations (GCT), the theory is invariant under an
additional, global internal Poincaré group, ISOð3; 1ÞINT,
realized on the ‘‘flavor’’ indices of the scalars, as first
pointed out by Siegel in an earlier context [11]

� �a ! L �a
�b
�

�b þ c
�b: (4)

Generation of the graviton mass occurs in the phase
defined by the vacuum expectation value of the order
parameter h@�� �ai ¼ � �a

�. This results in the spontaneous

symmetry breaking pattern of the global symmetry group

ISOð3; 1ÞGCT � ISOð3; 1ÞINT ! ISOð3; 1ÞST: (5)

The unbroken ISOð3; 1ÞST group guarantees that the result-
ing theory is invariant under the ordinary spacetime (ST)
Poincaré transformations. Three of the four auxiliary
scalars � �a are ‘‘eaten’’ by the graviton to form a massive
spin-2 representation of the latter group, while the fourth,
potentially ghostly scalar is made nondynamical by the
single remaining Hamiltonian constraint of massive GR,
originating from the specific structure of the dRGT
terms L2;3;4.

The dRGT theory gets rid of the sixth ghostly mode, and
also guarantees that the remaining 5 are unitary degrees of
freedom at low energies and on nearly Minkowski back-
grounds (i.e., the backgrounds with typical curvature
smaller than the graviton mass square). However, the the-
ory does not guarantee that for more general backgrounds
the 5 physical modes are healthy. In fact, some of their
kinetic terms may change signs around certain cosmologi-
cal backgrounds. Moreover, for a large region of the �2, �3

parameter space, the potential is known to violate the null
energy condition and one often gets kinetic and gradient
terms that give rise to superluminal group and phase
velocities. Most of the above issues stem from one and
the same source: the dRGT theory is strongly coupled at

the energy/momentum scale �3 � ðMPlm
2Þ1=3 [3,4]. As a

result, a typical curvature of order m2 produces order 1
corrections to the kinetic terms for fluctuations, often giv-
ing rise to vanishing or negative kinetic terms, or super-
luminal group and phase velocities (for brief comments on
the current state of affairs on all these issues, see Sec. VI).

As for any strongly coupled theory, an extension above
the scale �3 is desirable.2 However, it is hard to think of
such an extension since the Lagrangian contains square

roots of the longitudinal modes (represented by the � �a’s).
This inconvenience might be mitigated by using the vier-
beins, which are square roots of the metric. The goal of
the present work is to rewrite the theory in terms of the
vierbeins in a GCTand local Lorentz transformation (LLT)
invariant form. The hope is that this form of the theory
might make it easier to find a weakly coupled completion.
Also, irrespectively of that, the vierbein formulation itself
merits a separate consideration.
A vierbein reformulation of the theory was given by one

of us and R.A. Rosen3 [9]. That work focused on a unitary
gauge description, which for a single massive graviton is
not GCT or LLT invariant. In the present work, we give a
GCT- and LLT-invariant action for a massive graviton.
We find that such a formulation requires a new two-

index Stückelberg field, �a
�a, in addition to the four scalar

fields � �a used in the metric description. The new field is
auxiliary and enters the action algebraically. To recover
dRGT, this field should transform as a vector under two

different Lorentz groups, �a
�a ! Qa

bðxÞ�b
�a, and �a

�a !
L

�b
�a�

a
�b
, where QðxÞ belongs to SOð3; 1ÞLLT, while the

constant matrix L belongs to the global group
SOð3; 1ÞINT. Moreover, we note that the mass and potential
terms—once written in the GCT- and LLT-invariant
form—are amenable to an extension with � 2 SLð4Þ and
unveil a new local symmetry with respect to simultaneous
transformations, e�

a ! Qa
bðxÞe�b and �a

�a ! Qa
bðxÞ�b

�a,

where QðxÞ 2 SLð4Þ. Thus, the enhanced symmetry group
of the mass and potential terms, SLð4Þ �GGCT, is larger
than the symmetry group of the EH action. This observa-
tion suggests an extension of the theory by additional fields
[see Sec. II and III, for a GLð4Þ symmetric extension].
As we will discuss in Sec. III, the vierbein formulation

enables one to give a geometric interpretation to the mass
and potential terms—they can be expressed in terms of
certain volume forms.
There are other benefits as well: we find that the decou-

pling limit is much simpler to extract in this approach. The
original results of [3] can be obtained with significantly
less effort. Moreover, it is straightforward to derive closed-
form expressions for the vector modes, which have not
been obtained in complete generality before.
We also note that the field �a

�a 2 SOð3; 1Þ can be rep-
resented as �a

�a ¼ exp ðva
�a=fÞ, where v is an antisymmet-

ric field (once indices are lowered with �) and f is some
dimensionful constant. Then, v can be promoted into a
dynamical Nambu-Goldstone field parametrizing a coset
ðSOð3; 1ÞGCT � SOð3; 1ÞINTÞ=SOð3; 1ÞDiag. We show that

these six bosons are ‘‘eaten up’’ by the antisymmetric

2Using the particle physics terminology, dRGT is a theory with
no ‘‘radial mode,’’ i.e., the graviton gets a mass via the Anderson
mechanism, as opposed to the Higgs mechanism. What may be
needed is an extension to include putative ‘‘radial mode(s)’’ that
would ensure weakly coupled behavior above �3.

3Reference [12] has extracted the square root in dRGT using
vierbeins; however, we disagree with the main conclusion of that
work on the Boulware-Deser degree of freedom. See also
Refs. [13,14] for earlier interesting works on the vierbein for-
mulation of bigravity.
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part of the vierbein. This extends ghost-free massive grav-
ity to a theory where the six antisymmetric components of
the vierbein become dynamical.

II. VIERBEIN FORMULATION

The formulation of massive GR, as well as its exten-
sions, is significantly simplified in the vierbein formalism
[9]. Introducing the vierbein field e�

a, g�� ¼ e�
ae�

b�ab

with �ab ¼ diagð�1; 1; 1; 1Þ, the cosmological constant
term can be written as d4xL0 � d4x

ffiffiffiffiffiffiffi�g
p

���"abcde
a ^

eb ^ ec ^ ed, where the one form ea is defined as ea �
e�

adx�. The ghost-free interactions of the vierbein pertur-

bations can be represented in a similar fashion; e.g. in the
unitary gauge, one such term is given by

d4xL2 �M2
Plm

2"abcde
a ^ eb ^ ðec � 1cÞ ^ ðed � 1dÞ;

where 1a � ��
adx� represents a unit vierbein. The two

contributionsL0;2 to the potential can be supplemented by

the two other independent terms L3;4, involving respec-

tively three and four powers of (e� 1), contracted with the
" symbol in a similar fashion,4

d4xL3�M2
Plm

2"abcde
a^ðeb�1bÞ^ ðec�1cÞ^ ðed�1dÞ;

(6)

d4xL4 �M2
Plm

2"abcdðea � 1aÞ ^ ðeb � 1bÞ
^ ðec � 1cÞ ^ ðed � 1dÞ: (7)

The above terms together with the Einstein-Hilbert term
define an action for the 16 variables in the vierbein which is
neither GCT nor LLT invariant, whereas the metric for-
mulation is an action for 10 metric variables (plus four
scalars in the Stückelberg formulation). Nevertheless, both
formulations are dynamically equivalent. Following [9],
we first show that the vierbein action is dynamically
equivalent to the same action only with the additional
constraint that the vierbein is symmetric (with respect to
the Minkowski metric). In matrix notation,

e� ¼ �eT: (8)

We parametrize the general vierbein as a constrained
vierbein ê satisfying (8), times a Lorentz transformation,

parametrized as the exponential of a matrix B̂ (which is
antisymmetric with respect to �),5

e ¼ êe�B̂; �B̂ ¼ �B̂T�: (9)

The B̂’s do not enter the Einstein-Hilbert term, since this
term is invariant under local Lorentz transformations.

Thus, the 6 variables in B̂ appear only in the mass and
potential terms (which in the metric formulation depend

on the inverse metric g�1 through the matrix K ¼ 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1@�@�

p
). These fields therefore appear without deriva-

tives—they are auxiliary fields. We now vary with respect

to B̂ and look at the equations of motion, in powers of B̂.

The lowest-order terms contain no powers of B̂ (other than

the variation �B̂). Therefore, the only terms that appear at
lowest order are the ones containing traces of one power of

�B̂ along with powers of ê�1. Because ê�1 is symmetric

and �B̂ antisymmetric, and because �B̂ appears only lin-

early, the terms in the equations of motion linear in B̂ all

vanish. This means that the equations of motion of B̂ start

linearly in B̂, and are solved by B̂ ¼ 0. Plugging this
solution back into the action, we see that the action with
unconstrained vierbeins is dynamically equivalent to the
action with symmetric vierbeins.
To relate the potential with symmetric vierbeins to the

potential in the metric formulation we use the matrix
representation g ¼ e�eT ,

g�1� ¼ ðe�1ÞT��1e�1�: (10)

Using the parametrization (9) and the symmetry property
of ê�1: ffiffiffiffiffiffiffiffiffiffiffiffi

g�1�
q

¼ ðê�1ÞT: (11)

Thus in the unitary gauge, @��
�a ¼ � �a

�, we can write

L2;3;4

� ffiffiffiffiffiffiffiffiffiffiffiffi
g�1�

q �
¼ L2;3;4ðê�1Þ: (12)

Due to the presence of the unit vierbein, in the form
presented above, the first-order theory lacks invariance
under both the GCT and LLT, characteristic of general
relativity. Both of the symmetries however can be restored
via corresponding Stückelberg fields. For this, one intro-
duces the auxiliary scalars � �a, analogous to those of the
metric description of massive GR, as well as the ‘‘link’’
field �a

�a. The latter transforms as a contravariant vector
under the local Lorentz group, �a

�a ! Qa
bðxÞ�b

�a, where

QðxÞ 2 SOð3; 1ÞLLT, and as a covariant vector under the

global group SOð3; 1ÞINT, �a
�a ! L

�b
�a�

a
�b
. Using these

fields, the mass and potential terms can be rewritten in a
manifestly GCT� LLT-invariant form via the ‘‘k vier-
bein,’’ k�

a � e�
a � �a

�a@��
�a,

L2 �M2
Plm

2"���	"abcde�
ae�

bk�
ck	

d; (13)

L3 � �3M
2
Plm

2"���	"abcde�
ak�

bk�
ck	

d; (14)

L4 � �4M
2
Plm

2"���	"abcdk�
ak�

bk�
ck	

d: (15)

(As before, the �’s here are the epsilon symbols, i.e. there
are no factors of

ffiffiffiffiffiffiffi�g
p

.) In the unitary gauge defined by

4As in the second-order case, the remaining possible term L1,
linear in (e� 1), can be expressed as a combination of the rest of
the terms.

5See [15] for more on this condition and its relation to the
square roots of the metric formulation.
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� �a
a ¼ � �a

a and @��
�a ¼ � �a

�, one recovers the L2;3;4 of (1).

Away from this gauge, the theory acquires invariance
under GCT, as well as under LLT, realized on the vierbein
and the link fields as follows:

e�
a ! QðxÞabe�b; �a

�a ! QðxÞab�b
�a: (16)

The transformations (16) with QðxÞ 2 SOð3; 1ÞLLT
represent a symmetry of the entire action, the potentials
(13)–(15) and the Einstein-Hibert term. However, the po-
tential terms themselves, (13)–(15), without the EH term,
can have a larger symmetry. To see this, we first note that
these potentials are invariant under the formal field redefi-
nition (16) with QðxÞ 2 SLð4Þ. Now, we defined � to be a
SOð3; 1Þ matrix and therefore, such transformations with
SLð4Þ matrices would take them outside of SOð3; 1Þ. This
observation suggests that in the theory where the EH term
is absent, the � can be promoted to a SLð4Þ-valued field.
The resulting terms, (13)–(15), will have a local SLð4Þ
symmetry, in addition to being invariant under GCTs.
This extended local SLð4Þ symmetry is the defining prop-
erty of the mass and potential terms.

However, the EH term does not respect the SLð4Þ.
Therefore, there are two ways to combine the EH term
with the potentials (13)–(15): (1) To define a theory where
� is an SOð3; 1Þ-valued field, (2) alternatively, to define a
theory with � 2 SLð4Þ. In this paper we chose the former
case because that is the theory of a single massive graviton.
The latter choice gives a theory with 9 ¼ dim SLð4Þ �
dim SOð3; 1Þ additional fields, and might be an interesting
model to look at in the future.

Thus, for � 2 SOð3; 1Þ, in the unitary gauge, � ¼ 1,
with � �a kept unfixed, one recovers the GCT-invariant
but LLT noninvariant formulation of massive GR.6

The relevant symmetry breaking pattern, corresponding
to this case,

SOð3; 1ÞINT � SOð3; 1ÞLLT ! SOð3; 1ÞDIAG; (17)

involves six broken generators, while the remaining six
correspond to the diagonal part of LLTand internal Lorentz
groups. The equation of motion for �, evaluated in the
unitary gauge, gives precisely the constraint (8), needed for
the theory to reduce to massive GR.

As already remarked above, it is useful to represent

the vierbein as e�
a ¼ exp ðB̂a

bÞê�b and the � field as

�a
�a ¼ exp ðva

�a=fÞ, where both B and v are antisymmetric
fields (once indices are lowered by �). Under LLT, both of

these fields shift by a coordinate dependent gauge function,
so one or the other of them may be gauged away, but not

both. One linear combination of B̂ and v is invariant under
LLT. This combination has no kinetic term in our construc-
tion, and it is algebraically determined by classical
equations of motion guaranteeing, by the same arguments
given earlier. Only the five helicities of the graviton are
propagating degrees of freedom in the theory.
An interesting alternative is to give dynamics to the

gauge-invariant combination by regarding it as a Nambu-
Goldstone field parametrizing the coset corresponding
to the symmetry breaking pattern (17). The kinetic term
for this field also breaks the local SLð4Þ of the potential
down to the group of LLTs. We will discuss this possibility
in Sec. V. Before then we will stay in the framework of
massive gravity and the gauge invariant part of the � field
will be regarded as nondynamical.

III. GEOMETRIC INTERPRETATION
AND GENERALIZATIONS

In this section, wewill give this formulation of the theory
a geometric interpretation. Let us consider twomanifolds of
the same dimension,7 and a smooth mapping between them
�: M ! E. When a set of coordinates is given, the map-
ping � consists of 4 smooth functions which we denote by
�aðxÞ. (We ignore any possible topological obstructions at
the moment. Such a smooth mapping always exists locally
within certain patches of bothM and E.)
We denote, at each point of x 2 M and �ðxÞ 2 E, the

cotangent spaces T�
MðxÞ and T�

Eð�Þ respectively. A set of

vierbeins ea ¼ dx�e�
a is defined for every T�

MðxÞ which
endow M with a metric g�� � e�

ae�
b�ab. Usually, for

the mapping � between M and E to be compatible with
their Riemannian structures, one must assume that the
metric on M coincides with the metric pulled back from
E through the functions �aðxÞ, i.e. both manifolds share
identical Riemannian geometries and the mapping � rep-
resents nothing other than a simple coordinate transforma-
tion. Physically, the two are indistinguishable.
If, on the other hand, we insist that the manifold E

should stay flat, we may choose to define the vierbeins in
each T�

Eð�ðxÞÞ as 
a ¼ d�a. Together with the torsion-free
condition, such a choice guarantees that the curvature
tensor on E vanishes. But, such a construction of 
a does
not respect the local Lorentz symmetry of T�

Eð�ðxÞÞ,
leaving only the global version intact.8

6In this gauge k�
a ¼ e�

a � �a
�a@��

�a, and the global Siegels
ISOð3; 1ÞINT symmetry (4) gets enhanced to a symmetry with
respect to the global ISLð4Þ transformations of the � �a fields, if
the vierbein is also transformed under the global SLð4Þ. The
existence of this enhanced global symmetry of the mass and
potential terms had been pointed out by W. Siegel [16], and has
recently made us realize that in the LLT invariant theory the
potentials (13)–(15) can be promoted to the local SLð4Þ sym-
metric form.

7We assume both manifolds to be dimension 4 for brevity in the
current discussion, but this can be straightforwardly generalized,
including to manifolds of different dimension, giving theories
with new scalar degrees of freedom, along the lines of [17].

8Formally, one may fix this by introducing another set of flat
spin connections on E and write 
a ¼ D�a instead, where D is
the covariant exterior derivative. It is not necessary for the
current discussion and we choose not to pursue this direction
here.
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Now that the two manifoldsM and E are endowed with
totally different Riemannian structures, there is no natural
way to mix the cotangent vectors living in T�

MðxÞ and those
living in T�

Eð�ðxÞÞ. Indeed, if we just write terms such as
ea � d�a, they violate invariance with respect to the LLTs.
The link fields �a

�aðxÞ are introduced to remedy this. Due to
the specific transformation of �a

�a under the two Lorentz
groups, we are able to map the forms in one cotangent
space to the other and introduce mixing via the k vierbein
ea � �a

�ad�
�a, where d� �a ¼ @��

�adx�. We write the mass

and potential in terms of the forms

d4xL1 � �abcdðea � �a
�ad�

�aÞ ^ eb ^ ec ^ ed;

d4xL2 � �abcdðea � �a
�ad�

�aÞ ^ ðeb � �b
�b
d�

�bÞ ^ ec ^ ed;

d4xL3 � �abcdðea � �a
�ad�

�aÞ ^ ðeb � �b
�b
d�

�bÞ
^ ðec � �c

�cd�
�cÞ ^ ed;

d4xL4 � �abcdðea � �a
�ad�

�aÞ ^ ðeb � �b
�b
d�

�bÞ
^ ðec � �c

�cd�
�cÞ ^ ðed � �d

�d
d�

�dÞ: (18)

As discussed in the previous section, these expressions
manifestly respect the local Lorentz symmetry on M,
defined by

ea ! Qa
be

b �a
�b
! Qa

c�
c
�b

� �a ! � �a;

at the cost of introducing the Stückelberg fields �a
�a.

Notice that we can equally well write terms by multi-

plying �a
�b—which we define to be the inverse matrix of

�a
�b
—onto ea instead of d� �a. So we could write, as an

example,

d4xL2 � � �a �b �c �dð�a
�aea � d� �aÞ ^ ð�b

�beb � d�
�bÞ

^ �c
�cec ^ �d

�ded:

This formulation however is equivalent to the one in (18).
In the new form, the invariance under LLT is manifestly
visible since d� �a are invariant, and the LLT transforma-
tions of ea are simply compensated by the opposite rotation
for �a

�a so the combination �a
�aea remains invariant auto-

matically. Note that in this latter formulation one can
directly extend � to a GLð4Þ-valued field, and then have
the mass and potential terms invariant under local GLð4Þ,
instead of SLð4Þ discussed in Sec. II. The GLð4Þ invariant
form can also be achieved in the original formulation, if the
mass and potential terms (13)–(15) are multiplied by
det ð��1Þ, with � 2 GLð4Þ.

The terms in (18) are quite reminiscent of the CC term in
GR—these terms strongly resemble some sort of volume
forms. In particular, one linear combination of the four
terms gives the CC term (up to a total derivative). If, for the
moment, we imagine that the fields � �a are the embedding
coordinates of the manifold M into a higher dimensional
flat manifold (so that �a takes the values of 1; 2; . . . ; D

where D> 4), a term L� �a
�a�

b
�b
�c

�c�
d
�d
d� �a ^ d�

�b ^
d� �c ^ d�

�d"abcd, with a fixed matrix �a
�a that projects

the D-dimensional tangent vectors down to the tangent
space of M, is the volume form for the surface M as
embedded in E.
Here, in our formulation, there are two major differ-

ences. First of all, we are dealing with the mixing terms
among the vierbeins of two different manifolds,M and E,
with different geometries but an identical dimensionality.
Secondly, we must integrate with respect to all possible
embeddings parametrized by �a

�b
to make a comparison

between different volume forms meaningful. Both differ-
ences complicate the geometrical identification of these
mixing terms. However, for any fixed �a

�b
, each term in

(18) can be given a geometric interpretation in terms of a
difference between certain volume forms of the two differ-
ent manifolds.
Consider the simplest example, d4xL1 � ðea �

�a
�ad�

�aÞ ^ eb ^ ec ^ ed�abcd. Apart from the volume
form of M, it contains the term �a

�ad�
�a ^ eb ^ ec ^

ed�abcd. If we choose the gauge �a
�a ¼ �a

�a, and focus
only on the term ða; b; c; dÞ ¼ ð1; 2; 3; 4Þ, we recognize
this as the volume form of M3 � R, where M3 denotes
a 3-dimensional submanifold spanned out by the cotangent
vectors e2, e3, and e4, and R denotes the ‘‘flat dimension’’
parametrized by �1ðxÞ. So, L1 gives a difference between
the two types of volume forms: the one of M and another
from those of M3 � R, with M3 now representing a
3-dimensional submanifold of M spanned by any three
of the four vierbeins ea. Individually, each such term
depends on the arbitrary choice of ea, � �a, as well as the
embedding matrix �a

�a, but when all the indices are
contracted and the fields are integrated over, we obtain a
well-defined notion of a relative volume forms of the two
manifolds.
Figure 1 gives an illustration to this. The left figure

represents the original volume form of M, with the
4th dimension suppressed, and the right one depicts
the volume form obtained when the direction along that
of e1 is ‘‘straightened.’’ The difference between the two
volume forms is d4xL1.

e1
2

3e
e 2e

3e
dφ

FIG. 1. Illustration of various volume forms, appearing in the
graviton potential in massive GR.
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Likewise, we may interpret terms �a
�a�

b
�b
d� �a ^ d�

�b ^
ec ^ ed�abcd as the volume form for various different
M2 � R2, where M2 denotes the 2-dimensional submani-
folds spanned by an arbitrary pair of ea and eb. A linear
combination of all the four terms in (18)—that is a most
general potential for GR that includes the CC term—can be
thought as linear combination of all possible departures of
the volume forms of M from those of M4�n � Rn, with
n ¼ 1, 2, 3, 4 denoting the number of dimensions that have
been ‘‘straightened out.’’

The principles outlined here allow one to consider vari-
ous generalizations. For example, the dimensionality of E
does not have to coincide with the dimensionality of M.
If the dimensionality of E is D, the index �a takes values
from 1 to D in the vector representation of SOðD� 1; 1Þ,
while the auxiliary fields �a

�b
transform as bivector of

SOð3; 1ÞLLT and SOðD� 1; 1ÞINT respectively. If D> 4,
the extra coordinates will correspond to extra physical
scalar fields with a Galileon-like symmetry. The construc-
tion remains consistent, in the sense that a Boulware-
Deser-like ghost will not be introduced. Such an extension
of dRGT was already considered in [17]. Its vierbein
formulation was given in [18] and was used to show ghost
freedom. The present formalism provides the LLT-
invariant vierbein formulation of this theory.

In the extreme case whereD ¼ 1,� �a reduces to a single
scalar� (the index �a takes only one value) and �a

�b
reduces

to a single Lorentz vector vaðxÞ subjected to the condition
v2 ¼ 1. Following the discussion given above, one finds
that one of the natural interaction terms to consider is

L� vad� ^ eb ^ ec ^ ed�abcd; (19)

which, after integrating out va, gives rise to an action of the
Cuscuton type [19]

L� ffiffiffiffiffiffiffi�g
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jg��@��@��j
q

: (20)

Last but not least, one may consider an even more
general class of theories where the internal global symme-
try does not have to be the Lorentz symmetry but is instead
described by an arbitrary Lie group G. As long as � �a is in
some representation R of G and the field �a

�b
is in the

bi-representation of R and the Lorentz group, we may
consider interactions of � �a with gravity described by the
Lagrangians given in (18). If one further gauges this inter-
nal symmetry, one arrives at a broader class of theories,
which includes the bigravity theories considered in [20].

IV. THE DECOUPLING LIMIT IN THE
FIRST-ORDER FORMULATION

In this section, we will illustrate the advantages of the
first-order formalism for the analysis of the decoupling
limit (DL) of massive GR. In addition to reproducing
very easily the already well-known scalar-tensor interac-
tions that arise in this limit, we will derive an all-orders

expression for the DL interactions involving the vector
helicity of the massive graviton. To the best of our
knowledge, the vector interactions have previously
been unknown in closed form, though partial results are
available [21–23].
We start by decomposing the vierbein field as before

e�
a ¼ ðexp B̂Þabê�b; (21)

where B̂a
b � Ba

b=M
1=2
Pl is an antisymmetric generator of

LLT, B̂ab ¼ �acB̂
c
b ¼ �B̂ba, while ê is the vierbein, sym-

metric on its lower indices, ê�� � ê�
b�b� ¼ ê��. The

symmetric vierbein and the auxiliary scalars are decom-
posed into background values and their perturbations as

ê�
a ¼ �a

� þ S�
a

MPl

; � �a ¼ � �a
�x

� � � �a; (22)

where � �a¼� �a�ð@��=�3
3þmA�=�

3
3Þ and �3�

ðMPlm
2Þ1=3. The scalings for various perturbation fields

have been chosen so as to recover the correct quadratic
terms in the decoupling limit of the theory. In the ghost-
free theories at hand, this limit is m ! 0, MPl ! 1, with
�3 held finite [3,24,25].
Concentrating first on the S-� interactions that result

from the Lagrangian (13), one can easily see that only
terms with a single S and a certain number of �’s survive
in the decoupling limit

Ld:l:
2 � S�

a

�
"����"ab��@b@��

þ 1

�3
3

"����"abc�@b@��@c@��
�
;

where the indices on the " symbols are contracted with the
help of the unit vierbein. At linear order, the vierbein and
metric perturbations are related as 2S�

a�a� ¼ h��; there-

fore, the above scalar-tensor interactions are nothing but
the well-known ghost-free DL interactions of the helicity-0
and helicity-2 gravitons in massive GR [3]. Including the
independent interactions L3;4 with three and four powers

of k, one equally easily reproduces the remaining hð@2�Þ3
interaction of the decoupling limit of massive GR.
As a next step, we use the above formalism to derive a

closed-form expression for the vector-scalar interactions in
the DL. To illustrate, we will start with the case when the
two free parameters of dRGT are chosen so that all the
scalar-tensor nonlinear interaction at the scale �3 identi-
cally vanish [3]. For this parameter choice a linear combi-
nation of L2, L3 and L4 can be expressed, up to a total
derivative, in terms ofL1 and a CC term with a tuned value
[26]; the resulting theory was dubbed ‘‘the minimal
model.’’ In the GCT- and LLT-invariant vierbein formalism
the minimal model takes the form:

d4xLmin ¼ M2
Plm

2"abcdðea ^ eb ^ ec ^ ed

� 4ea ^ eb ^ ec ^ kdÞ; (23)
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where the one form k is defined in the usual way kd ¼
dx	k	

d using the k vierbein k�
a � e�

a � �a
�a@��

�a. In

spite of the absence of the nonlinear helicity-0 interactions
with helicity-2 at the scale �3, the minimal model has
nonlinear interaction terms of the vector mode with the
helicity-0 at the scale9 �3.

As can be straightforwardly checked, the potentially
diverging contributions, e.g. of the form ""B@2�, in fact
vanish due to the symmetry properties of the B field [this is
precisely what allows us to consistently set the scaling of

the field B to be ðMPlÞ�1=2]. Keeping all finite terms
involving B in the decoupling limit and expanding the
wedge product in (23), one obtains10

Ld:l:
min � 12ð�3

3B
��B�� � B��B�

�ð@�@��� ���h�Þ
� 2�3=2

3 B��@�A�Þ: (24)

This is the simplest all-orders expression. It involves the
auxiliary field B. We may, if we like, integrate it out to
obtain an expression involving only the physical fields �
and A, at the cost of generating an infinite number of terms.
In matrix notation (all indices are understood to be con-
tracted with the help of the flat metric), the equation of
motion for B yields

P�	
��ð�ÞB�	 ¼ F��; (25)

where F�� ¼ @�A� � @�A� denotes the field strength for

the vector mode, and P is a tensor of the schematic form
(��þ �@@�) appropriately antisymmetrized.11 When
substituted back into the action, the last equation gives
the closed-form expression for the vector-scalar interac-
tions in the decoupling limit of the ‘‘minimal’’ massive GR

Ld:l:
min � 6Tr½P�1 � F � @A	: (26)

The lowest-order term in the expansion of the latter
Lagrangian in powers of @@� yields the (correct-sign)
kinetic term for the vector, while higher order terms give
its interactions with the scalar helicity.

Moving away from the minimal model, for the most
general form of the potential the Lagrangian has the
following schematic form in the decoupling limit:12

Ld:l: ��4
3

�
BB

�3

�
1þ @2�

�3
3

þ ð@2�Þ2
�6

3

þ ð@2�Þ3
�9

3

�

þ B@A

�5=2
3

�
1þ @2�

�3
3

þ ð@2�Þ2
�6

3

��
: (27)

Varying with respect to the nondynamical field B yields an
expression for it in terms of� and A, that can be substituted
back into the action, recovering the complete decoupling
limit form of the vector-scalar interactions. These interac-
tions are derived in [28]. The resulting expressions can be
readily used for studying dynamics of the given sector of
the theory on various background solutions.

V. DYNAMICAL ANTISYMMETRIC FIELD

While in pure massive gravity the link fields �a
�a are

nondynamical, one can go further and consider a general-
ization with dynamical link fields, nonlinearly realizing the
symmetry breaking pattern (17). Given the symmetries at
hand, the most general Lagrangian at low energy can be
written as a function of the fields with definite transforma-
tion properties under GCT� LLT� ISOð3; 1ÞINT,

S ¼
Z

d4xLð�a
�a;�

�a; e�
a; D�Þ: (28)

The covariant derivative D� acts on the LLT indices

through the standard expression D��
a
�a ¼ @��

a
�a þ

!� b
a�b

�a, where the spin connection !� b
a can be ex-

pressed in terms of the vierbein and its derivatives in a
torsion-free theory. Being a Lorentz matrix-valued field, �
is most conveniently expressed in terms of the antisym-
metric generator, � ¼ exp ðv=fÞ, where f denotes the
‘‘decay constant’’ of v. The decay constant f is an adjust-
able parameter of the theory.
The lowest-order nontrivial invariant that one can form

from these fields can be written as follows:

L ¼ �f2ðD��Þ2 ¼ ��ab�
�a �b@�v

a
�a@

�vb
�b
þ � � � ;

and includes the kinetic term for the 6 degrees of freedom
present in va

�a. Note that the kinetic term for the � field,
alongside with the EH term, breaks the local SLð4Þ sym-
metry of the mass and potential terms if we were to

promote the � to a SLð4Þ-valued field. We will write f�
f̂ðMPl�3Þ1=2, where f̂ is dimensionless. The�3 decoupling

limit remains intact as long as f̂ remains fixed in this limit,
i.e. does not depend parametrically on any other scales.
Supplementing the action by the ghost-free potential

terms, for example Eq. (13), one obtains a set of interac-
tions of v with the rest of the fields present in the theory
(for the moment, we choose the LLT gauge defined by
B ¼ 0.) At the linearized order, (13) yields the mass term,
as well as a mixing with the vector mode in the decoupling
limit (we disregard the distinction between the LLT and
spacetime indices for notational simplicity)

9It also has vector-scalar-tensor interaction terms at higher
scales, such as �2 ¼ ðMPlmÞ1=2 and/or at scales formed by
products of the �2

2 and �3
3 scales. These nonlinear terms, up

and including quartic order, were calculated by L. Berezhiani
and G. Chkareuli [27].
10For the sake of simplicity, we will not make distinction
between the Lorentzian and spacetime indices of the B field in
the decoupling limit, since both are contracted with the flat
metric.
11We thank the authors of [28] for pointing out a sloppy
treatment of P�1 in version 1 of this work. Explicit expressions
are obtained in [28].
12We discard explicit vector-scalar interactions of the form
@A@2�, @A@2�@2�, @A@A@2� because these turn out to be total
derivatives.
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Ld:l: ¼ v��

�
hþ 2�2

3

f̂2

�
v�� þ 2�3

f̂
F��v��: (29)

A shift in the v field, v�� ! v̂�� � F��

�3
f̂
ð2þf̂2h

�2
3

Þ
diagonalizes

the action, bringing it to the following form:

Ld:l: ¼ v̂��

�
hþ 2�2

3

f̂2

�
v̂�� � F�� 1

2þ f̂2h
�2

3

F��: (30)

Another peculiar feature of the above action is that v̂

acquires a mass jm2
vj ��2

3=f̂
2. This is below the cutoff

of the effective theory to the extent that f̂ 
 1. Note that,
in order to reproduce the correct sign of the vector kinetic
term at low energies,m2

v has to be tachyonic; however, one
could expect higher powers of v (e.g. v4) to also be present,
and these could stabilize the v potential. Likewise, the
kinetic term of the vector acquires a modification. In the

regime, f̂2h=�2
3 � 1, the modification is irrelevant and

A� propagates the usual two vector polarizations of the

massive graviton. Note that the residue of the vector
particle propagator vanishes at the position of the pole of
the v field.

One can give the above generation of the mass mv an
Anderson-mechanism-like interpretation. Indeed, both of
the antisymmetric fields, B and v, nonlinearly realize the
local Lorentz invariance. One can always choose a gauge
in which either of the two, e.g. B, is frozen to be zero;
however, one combination of these is gauge invariant
(at the linear level, the invariant combination is simply

f̂�1=2
3 B� v). Then, the gauge-invariant combination

(which reduces to v in the B ¼ 0 gauge) acquires a mass
due to the spontaneous breaking of LLT.

Finally, we comment on ghost freedom of the interac-
tions of the antisymmetric field v with the rest of the
modes, present in the decoupling limit Lagrangian. The
object ka

� is decomposed (excluding the symmetric vier-
bein perturbation) in the B ¼ 0 gauge as follows:

ka
� ¼ @�@

a�

�3
3

þ @�A
a

M1=2
Pl �3=2

3

� va
�

f̂ðMPl�3Þ1=2
þ va

b@�@
b�

f̂M1=2
Pl �7=2

3

þ va
b@�A

b

f̂MPl�
2
3

� va
bv

b
�

2f̂2MPl�3

þ va
bv

b
c@�@

c�

2f̂2MPl�
4
3

þ � � � :

Most of the terms, that follow from the expansion of (13)
are easily checked to be safe from more than two
derivatives acting on fields in the resulting equations of
motion—either on the basis of antisymmetry of v, or due
to the presence of the " symbols in the corresponding
expressions.

The only two interactions for which this property is not
apparent are of the vv@@�@@�-type. The first of these is
"����"ab��va

�@�@
��vb


@�@

�. The only potentially

dangerous, three-derivative term arises in the equation of

motion for � (all other similar terms vanish by antisym-
metrization), and has the following form:

"����"ab��@�ðva
�v

b

Þ@�@
@��:

Now, antisymmetrization in the a and b indices tells us
that the object in the parentheses is antisymmetric in the
ð�;
Þ pair. Contracted with @�@
 on the scalar, the term
at hand vanishes. Likewise, a potentially dangerous
term in the Lagrangian "����"ab��@�@a�vb

�v
�

@�@


�

yields an apparently ghostly contribution to the
�-equation of motion

"����"ab��½@�ðvb
�v

�

Þ@a@�@
�

þ @�ðvb
�v

�

Þ@a@�@
�	:

However, the object in the square parentheses in this
expression is manifestly symmetric under � ! �.
Contracted with the antisymmetric "����, this again
yields zero. Of course, although this is a nice consistency
check, such a vanishing of the three-derivative terms in
the equations of motion is by no means surprising and
follows automatically from the inherent ghost freedom of
the potential (13).

VI. BRIEF COMMENTS ON THE LITERATURE

In this section, we briefly discuss the status of massive
gravity as applied to the real world. In this approach, the
graviton mass is taken to be of the order of the present day
Hubble parameter, m�H0 � 10�33 eV (for phenomeno-
logical bounds on the graviton mass see [29]). Although
this is a very small parameter as compared to the Planck
scale, such smallness is robust—the mass parameter does
not get renormalized by large quantum corrections [24,30];
this is unlike the cosmological constant which does receive
large renormalizations. Therefore, it is appealing to de-
scribe the observed cosmic acceleration as an effect due to
a nonzero graviton mass.
Massive gravitons can produce a state with the stress

tensor mimicking dark energy (the so-called self-
accelerated solutions [31–36]). Massive gravity dark en-
ergy is expected to have a slightly different predictions
from those of CC based cosmology, and the differences
may be tested observationally. These solutions produce
dark energy with the equations of state identical to that
of CC, but different fluctuations. Unfortunately, certain
fluctuations about these solutions are problematic—some
of the physical 5 degrees of freedom have vanishing kinetic
terms, destabilizing the background [37]. Extensions of
dRGT by additional scalars [33,38] or bi- and multigravity
[9,20], or further extensions [39,40], also exhibit self-
accelerated solutions. Recently, an extension by scalars
has been proposed by De Felice and Mukohyama [41]
and shown to have a self-accelerated solution with stable
fluctuations—a first example of this kind.
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Spherically symmetric solutions and black holes in mas-
sive GR have been studied in [32,42]. A general issue in
dRGT is that it is a strongly coupled theory at the distance
scale ð�3Þ�1, which for the above value of the graviton
mass is �1000 km. This scale is background dependent,
and decreases for realistic backgrounds [43], but never
enough for one to feel comfortable with it. The higher
dimensional operators—that best manifest themselves in
the decoupling limit—are suppressed by this scale.
Moreover, on realistic backgrounds these operators give
rise to order 1 or larger classical renormalization of the
kinetic terms of fluctuations. That is how some of these
kinetic terms vanish or flip their signs on the self-
accelerated backgrounds. Therefore, dRGT needs an ex-
tension beyond the strong coupling scale in order for it to
be potentially applicable to the real world. This extension
is unknown at present, but for it to work it should introduce
new states at or below the scale �3. Therefore, many
properties of the backgrounds and fluctuations sensitive
to scales above �3 can get modified in an extended
theory.13

Furthermore, in the decoupling limit dRGT gets related
[3] to the Galileons [45]. The latter are known to exhibit
superluminal propagation on nontrivial backgrounds. So
does dRGT for a large portion of the �3, �4 parameter
space. For theories satisfying the Froissart bound, this has
been argued [46] to preclude a standard UV completion by
a local, Lorentz invariant field or string theory, however,
theories with long-range fields do not necessarily obey this
bound; moreover, there is no claim to rule out a possible
Lorentz-violating, nonlocal or intrinsically higher dimen-
sional completion. Furthermore, there is an exception for
some special values of �3, �4, where subluminality for a
spherically symmetric solution is achieved at the expense
of not having an asymptotically flat background14 [43,50].

The question of whether superluminality can lead to
prohibitive acausality is entangled with the strong coupling
issue [51]. The conclusion of acausality of massive gravity
[52,53] that has been reached by constructing superluminal
shock waves and characteristics is, in the context of a low
energy theory, not warranted without a further nuanced

study. A well-known counterexample is the following:
quantum electrodynamics (QED) in an external gravita-
tional field, at energies below the electron mass, gives
rise to dimension 6 operators, one of which yields super-
luminal characteristics for a photon propagating in a given
nontrivial gravitational background [54]. However, this
superluminality—which appears within the effective
theory—does not mean that QED supplemented by GR is
an acausal theory. In spite of a large body of literature on
the issue of superluminality vs acausality, some with split
views, we believe that the low energy effective field theory
understanding of systematic criteria for potential harms, or
their absence, of superluminal low energy group and phase
velocities is still to be precisely formulated.
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ours in their completeness. The remarkable work [55],
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Boulware-Deser ghost. We thank Andrew Tolley for bring-
ing this to our attention.

[1] M. Fierz and W. Pauli, Proc. R. Soc. A 173, 211

(1939).
[2] D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368

(1972).

[3] C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020
(2010).

[4] C. de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev.

Lett. 106, 231101 (2011).

14Although not directly related to massive gravity, cosmologi-
cal solutions with subluminal spectra in dilatation invariant
theories of Galileons have been found in [47–49].

13For related recent developments see Ref. [44].

POTENTIAL FOR GENERAL RELATIVITY AND ITS GEOMETRY PHYSICAL REVIEW D 88, 084003 (2013)

084003-9

http://dx.doi.org/10.1098/rspa.1939.0140
http://dx.doi.org/10.1098/rspa.1939.0140
http://dx.doi.org/10.1103/PhysRevD.6.3368
http://dx.doi.org/10.1103/PhysRevD.6.3368
http://dx.doi.org/10.1103/PhysRevD.82.044020
http://dx.doi.org/10.1103/PhysRevD.82.044020
http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://dx.doi.org/10.1103/PhysRevLett.106.231101


[5] K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012).
[6] S. F. Hassan and R.A. Rosen, Phys. Rev. Lett. 108, 041101

(2012).
[7] S. F. Hassan and R.A. Rosen, J. High Energy Phys. 04

(2012) 123.
[8] M. Mirbabayi, Phys. Rev. D 86, 084006 (2012).
[9] K. Hinterbichler and R.A. Rosen, J. High Energy Phys. 07

(2012) 047.
[10] C. Deffayet, J. Mourad, and G. Zahariade, J. Cosmol.

Astropart. Phys. 01 (2013) 032.
[11] W. Siegel, Phys. Rev. D 49, 4144 (1994).
[12] A. H. Chamseddine and V. Mukhanov, J. High Energy

Phys. 08 (2011) 091.
[13] A. H. Chamseddine, A. Salam, and J. A. Strathdee, Nucl.

Phys. B136, 248 (1978).
[14] A. H. Chamseddine, Phys. Lett. B 557, 247 (2003).
[15] C. Deffayet, J. Mourad, and G. Zahariade, J. High Energy

Phys. 03 (2013) 086.
[16] W. Siegel (private communication).
[17] G. Gabadadze, K. Hinterbichler, J. Khoury, D.

Pirtskhalava, and M. Trodden, Phys. Rev. D 86, 124004
(2012).

[18] M. Andrews, G. Goon, K. Hinterbichler, J. Stokes, and M.
Trodden, Phys. Rev. Lett. 111, 061107 (2013).

[19] N. Afshordi, D. J. H. Chung, and G. Geshnizjani, Phys.
Rev. D 75, 083513 (2007).

[20] S. F. Hassan and R.A. Rosen, J. High Energy Phys. 02
(2012) 126.

[21] C. de Rham and G. Gabadadze, Phys. Lett. B 693, 334
(2010).

[22] K. Koyama, G. Niz, and G. Tasinato, J. High Energy Phys.
12 (2011) 065.

[23] G. Tasinato, K. Koyama, and G. Niz, Phys. Rev. D 87,
064029 (2013).

[24] N. Arkani-Hamed, H. Georgi, and M.D. Schwartz,
Ann. Phys. (Amsterdam) 305, 96 (2003).

[25] P. Creminelli, A. Nicolis, M. Papucci, and E. Trincherini,
J. High Energy Phys. 09 (2005) 003.

[26] S. F. Hassan and R.A. Rosen, J. High Energy Phys. 07
(2011) 009.

[27] L. Berezhiani and G. Chkareuli (unpublished).
[28] N. A. Ondo and A. J. Tolley, arXiv:1307.4769.
[29] A. S. Goldhaber and M.M. Nieto, Rev. Mod. Phys. 82, 939

(2010).
[30] C. de Rham, G. Gabadadze, L. Heisenberg, and D.

Pirtskhalava, Phys. Rev. D 87, 085017 (2013).
[31] C. de Rham, G. Gabadadze, L. Heisenberg, and D.

Pirtskhalava, Phys. Rev. D 83, 103516 (2011).
[32] K. Koyama, G. Niz, and G. Tasinato, Phys. Rev. Lett. 107,

131101 (2011); Phys. Rev. D 84, 064033 (2011).
[33] G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D.

Pirtskhalava, and A. J. Tolley, Phys. Rev. D 84, 124046
(2011).

[34] A. E. Gumrukcuoglu, C. Lin, and S. Mukohyama, J.
Cosmol. Astropart. Phys. 11 (2011) 030; Mod. Phys.

Lett. A 28, 1340016 (2013); A. De Felice, A. E.
Gumrukcuoglu, C. Lin, and S. Mukohyama, Classical
Quantum Gravity 30, 184004 (2013).

[35] M. S. Volkov, Phys. Rev. D 86, 061502 (2012); 86, 104022
(2012); 86, 061502 (2012).

[36] P. Gratia, W. Hu, and M. Wyman, Phys. Rev. D 86, 061504
(2012).

[37] A. E. Gumrukcuoglu, C. Lin, and S. Mukohyama,
J. Cosmol. Astropart. Phys. 03 (2012) 006.

[38] G. D’Amico, G. Gabadadze, L. Hui, and D. Pirtskhalava,
Phys. Rev. D 87, 064037 (2013); Classical Quantum
Gravity 30, 184005 (2013); A. E. Gumrukcuoglu, K.
Hinterbichler, C. Lin, S. Mukohyama, and M. Trodden,
Phys. Rev. D 88, 024023 (2013).

[39] D. Comelli, M. Crisostomi, F. Nesti, and L. Pilo, J. High
Energy Phys. 03 (2012) 067; 06 (2012) 020(E).

[40] Q.-G. Huang, Y.-S. Piao, and S.-Y. Zhou, Phys. Rev. D 86,
124014 (2012); Q.-G. Huang, K.-C. Zhang, and S.-Y.
Zhou, J. Cosmol. Astropart. Phys. 08 (2013) 050.

[41] A. De Felice and S. Mukohyama, arXiv:1306.5502.
[42] G. Chkareuli and D. Pirtskhalava, Phys. Lett. B 713, 99

(2012); A. Gruzinov and M. Mirbabayi, Phys. Rev. D 84,
124019 (2011); C. Deffayet and T. Jacobson, Classical
Quantum Gravity 29, 065009 (2012); L. Berezhiani, G.
Chkareuli, C. de Rham, G. Gabadadze, and A. J. Tolley,
Phys. Rev. D 85, 044024 (2012); P. Gratia, W. Hu, and M.
Wyman, Classical Quantum Gravity 30, 184007 (2013).

[43] L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze,
and A. J. Tolley, Classical Quantum Gravity 30, 184003
(2013).

[44] D. Comelli, F. Nesti, and L. Pilo, arXiv:1305.0236; Phys.
Rev. D 87, 124021 (2013); D. Comelli, M. Crisostomi, F.
Nesti, and L. Pilo, Phys. Rev. D 86, 101502 (2012).

[45] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D
79, 064036 (2009).

[46] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis,
and R. Rattazzi, J. High Energy Phys. 10 (2006) 014.

[47] P. Creminelli, K. Hinterbichler, J. Khoury, A. Nicolis, and
E. Trincherini, J. High Energy Phys. 02 (2013) 006.

[48] K. Hinterbichler, A. Joyce, J. Khoury, and G. E. J. Miller,
J. Cosmol. Astropart. Phys. 12 (2012) 030.

[49] K. Hinterbichler, A. Joyce, J. Khoury, and G. E. J. Miller,
Phys. Rev. Lett. 110, 241303 (2013).

[50] L. Berezhiani, G. Chkareuli, and G. Gabadadze,
arXiv:1302.0549.

[51] C. Burrage, C. de Rham, L. Heisenberg, and A. J. Tolley,
J. Cosmol. Astropart. Phys. 07 (2012) 004.

[52] S. Deser, K. Izumi, Y. C. Ong, and A. Waldron,
arXiv:1306.5457.

[53] S. Deser and A. Waldron, Phys. Rev. Lett. 110, 111101
(2013).

[54] I. T. Drummond and S. J. Hathrell, Phys. Rev. D 22, 343
(1980).

[55] S. Nibbelink Groot, M. Peloso, and M. Sexton, Eur. Phys.
J. C 51, 741 (2007).

GABADADZE et al. PHYSICAL REVIEW D 88, 084003 (2013)

084003-10

http://dx.doi.org/10.1103/RevModPhys.84.671
http://dx.doi.org/10.1103/PhysRevLett.108.041101
http://dx.doi.org/10.1103/PhysRevLett.108.041101
http://dx.doi.org/10.1007/JHEP04(2012)123
http://dx.doi.org/10.1007/JHEP04(2012)123
http://dx.doi.org/10.1103/PhysRevD.86.084006
http://dx.doi.org/10.1007/JHEP07(2012)047
http://dx.doi.org/10.1007/JHEP07(2012)047
http://dx.doi.org/10.1088/1475-7516/2013/01/032
http://dx.doi.org/10.1088/1475-7516/2013/01/032
http://dx.doi.org/10.1103/PhysRevD.49.4144
http://dx.doi.org/10.1007/JHEP08(2011)091
http://dx.doi.org/10.1007/JHEP08(2011)091
http://dx.doi.org/10.1016/0550-3213(78)90280-8
http://dx.doi.org/10.1016/0550-3213(78)90280-8
http://dx.doi.org/10.1016/S0370-2693(03)00190-4
http://dx.doi.org/10.1007/JHEP03(2013)086
http://dx.doi.org/10.1007/JHEP03(2013)086
http://dx.doi.org/10.1103/PhysRevD.86.124004
http://dx.doi.org/10.1103/PhysRevD.86.124004
http://dx.doi.org/10.1103/PhysRevLett.111.061107
http://dx.doi.org/10.1103/PhysRevD.75.083513
http://dx.doi.org/10.1103/PhysRevD.75.083513
http://dx.doi.org/10.1007/JHEP02(2012)126
http://dx.doi.org/10.1007/JHEP02(2012)126
http://dx.doi.org/10.1016/j.physletb.2010.08.043
http://dx.doi.org/10.1016/j.physletb.2010.08.043
http://dx.doi.org/10.1007/JHEP12(2011)065
http://dx.doi.org/10.1007/JHEP12(2011)065
http://dx.doi.org/10.1103/PhysRevD.87.064029
http://dx.doi.org/10.1103/PhysRevD.87.064029
http://dx.doi.org/10.1016/S0003-4916(03)00068-X
http://dx.doi.org/10.1088/1126-6708/2005/09/003
http://dx.doi.org/10.1007/JHEP07(2011)009
http://dx.doi.org/10.1007/JHEP07(2011)009
http://arXiv.org/abs/1307.4769
http://dx.doi.org/10.1103/RevModPhys.82.939
http://dx.doi.org/10.1103/RevModPhys.82.939
http://dx.doi.org/10.1103/PhysRevD.87.085017
http://dx.doi.org/10.1103/PhysRevD.83.103516
http://dx.doi.org/10.1103/PhysRevLett.107.131101
http://dx.doi.org/10.1103/PhysRevLett.107.131101
http://dx.doi.org/10.1103/PhysRevD.84.064033
http://dx.doi.org/10.1103/PhysRevD.84.124046
http://dx.doi.org/10.1103/PhysRevD.84.124046
http://dx.doi.org/10.1088/1475-7516/2011/11/030
http://dx.doi.org/10.1088/1475-7516/2011/11/030
http://dx.doi.org/10.1142/S0217732313400166
http://dx.doi.org/10.1142/S0217732313400166
http://dx.doi.org/10.1088/0264-9381/30/18/184004
http://dx.doi.org/10.1088/0264-9381/30/18/184004
http://dx.doi.org/10.1103/PhysRevD.86.061502
http://dx.doi.org/10.1103/PhysRevD.86.104022
http://dx.doi.org/10.1103/PhysRevD.86.104022
http://dx.doi.org/10.1103/PhysRevD.86.061502
http://dx.doi.org/10.1103/PhysRevD.86.061504
http://dx.doi.org/10.1103/PhysRevD.86.061504
http://dx.doi.org/10.1088/1475-7516/2012/03/006
http://dx.doi.org/10.1103/PhysRevD.87.064037
http://dx.doi.org/10.1088/0264-9381/30/18/184005
http://dx.doi.org/10.1088/0264-9381/30/18/184005
http://dx.doi.org/10.1103/PhysRevD.88.024023
http://dx.doi.org/10.1007/JHEP03(2012)067
http://dx.doi.org/10.1007/JHEP03(2012)067
http://dx.doi.org/10.1007/JHEP06(2012)020
http://dx.doi.org/10.1103/PhysRevD.86.124014
http://dx.doi.org/10.1103/PhysRevD.86.124014
http://dx.doi.org/10.1088/1475-7516/2013/08/050
http://arXiv.org/abs/1306.5502
http://dx.doi.org/10.1016/j.physletb.2012.05.030
http://dx.doi.org/10.1016/j.physletb.2012.05.030
http://dx.doi.org/10.1103/PhysRevD.84.124019
http://dx.doi.org/10.1103/PhysRevD.84.124019
http://dx.doi.org/10.1088/0264-9381/29/6/065009
http://dx.doi.org/10.1088/0264-9381/29/6/065009
http://dx.doi.org/10.1103/PhysRevD.85.044024
http://dx.doi.org/10.1088/0264-9381/30/18/184007
http://dx.doi.org/10.1088/0264-9381/30/18/184003
http://dx.doi.org/10.1088/0264-9381/30/18/184003
http://arXiv.org/abs/1305.0236
http://dx.doi.org/10.1103/PhysRevD.87.124021
http://dx.doi.org/10.1103/PhysRevD.87.124021
http://dx.doi.org/10.1103/PhysRevD.86.101502
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1088/1126-6708/2006/10/014
http://dx.doi.org/10.1007/JHEP02(2013)006
http://dx.doi.org/10.1088/1475-7516/2012/12/030
http://dx.doi.org/10.1103/PhysRevLett.110.241303
http://arXiv.org/abs/1302.0549
http://dx.doi.org/10.1088/1475-7516/2012/07/004
http://arXiv.org/abs/1306.5457
http://dx.doi.org/10.1103/PhysRevLett.110.111101
http://dx.doi.org/10.1103/PhysRevLett.110.111101
http://dx.doi.org/10.1103/PhysRevD.22.343
http://dx.doi.org/10.1103/PhysRevD.22.343
http://dx.doi.org/10.1140/epjc/s10052-007-0311-x
http://dx.doi.org/10.1140/epjc/s10052-007-0311-x

