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We study static spherically symmetric solutions of massive bigravity theory, free from the Boulware-

Deser ghost. We show the recovery of general relativity via the Vainshtein mechanism, in the weak limit of

the physical metric. We find a single polynomial equation determining the behavior of the solution for

distances smaller than the inverse graviton mass. This equation is generically of the seventh order, while for

a specific choice of the parameters of the theory it can be reduced to lower orders. The solution is analytic

in different regimes: for distances below the Vainshtein radius (where general relativity is recovered), and

in the opposite regime, beyond the Vainshtein radius, where the solution approaches the flat metric.
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I. INTRODUCTION

Modification of general relativity (GR) giving mass to
the graviton started from the work of Fierz and Pauli [1]:
they considered a linear theory of a single massive spin-2
field living in flat space-time. The first nonlinear realiza-
tion of the massive graviton was presented much later [2],
although in a completely different context. To extend at the
nonperturbative level the action of Fierz and Pauli, adding
to the Einstein-Hilbert action a nonderivative self-coupling
for the metric g, it is required the introduction of an addi-
tional metric f that may be a fixed external field, or a
dynamical one. When f is nondynamical we are in the
framework of æther-like theories where diffeomorphism
invariance can be restored by the introduction of a suitable
set of Stuckelberg fields; on the other hand, if it is dynami-
cal, we enter in the context of bigravity theories.

Unfortunately, for a generic potential the theory has a
ghost propagating degree of freedom (dof) [3], the
so-called Boulware-Deser ghost, associated with the
Ostrogradski ghost in more general setup. Notably,
the Fierz-Pauli theory was constructed so that it has 5
healthy propagating degrees of freedom, while the sixth
mode is removed due to the specific choice of the coef-
ficients in the mass term. When the theory is promoted to
nonlinear level or considered around nonflat background,
the sixth mode reappears leading to ghost instability. This
problem was solved only recently by a careful choice of the
massive gravity potential [4] such that, on the fully non-
perturbative level, the theory propagates only 5 degrees of
freedom [5] (see also [6–8]). We will refer to this theory as
the de Rham-Gabadadze-Tolley (dRGT) model. Of course,
one has to be cautious about the rest—the 5 propagating
degrees of freedom—however, at least there is no a priori
Ostrogradski instability associated with the sixth mode.
The original dRGT construction of massive gravity takes
the additional metric as a flat, nondynamical field; then it
was extended in the bigravity context supplying an extra

Einstein-Hilbert term for the second metric [9]. The
bimetric approach to massive gravity is the main subject
of our work. We would like to emphasize here that the
bigravity formulation of massive gravity is not just a
theoretical entertainment, but also cosmology calls for it.
When the second metric is nondynamical and Minkowski
there is no homogeneous spatially flat Friedmann-
Robertson-Walker solution [10,11], on the contrary in the
bigravity formulation flat Friedmann-Robertson-Walker
homogeneous solutions do exist [12–14]. Moreover, the
cosmological perturbations are far less problematic [15]:
all the dof propagate at the linear level without ghost
instabilities [16]. For more recent works see [17].
Another problemwhich arises in massive gravity models

is generic for theories with extra propagating degrees of
freedom. Since the graviton mass turns on (at least) 3 extra
degrees of freedom, it is expected that the extra interaction
change the Newtonian limit or/and the light deflection.
This can be easily seen in the so-called decoupling
limit—the scalar part of the graviton is directly coupled
to the matter with approximately the same coupling con-
stant of the helicity-2 piece. The extra scalar behaves
similar to the Brans-Dicke field ruling out the theory on
observational ground. Moreover, a naive way to recover
GR sending the mass of the graviton to zero, does not solve
the problem—the so-called van Dam-Veltman-Zakharov
(vDVZ) discontinuity [18]—since the theory with arbitrary
small (but nonzero) graviton mass contains the extra prop-
agating scalar, absent in the massless theory (GR). A way
to overcome this difficulty was proposed by Vainshtein
[19] in 1972. Vainshtein noticed that the linear approxima-
tion breaks down at some distance far from the source (now
called the Vainshtein radius) and therefore one cannot
approximate the solution by linearizing it close to the
source. On the contrary, he showed that a solution can be
found by expanding around the GR solution in powers
of the graviton mass. This construction indicates the
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possibility that the extra propagating scalar mode can be
hidden close to the source by nonlinear effects. The question
still remained if this close-to-GR solution could have been
matched to an asymptotically flat solution [3]; it was in fact
argued that it was not possible [20,21]. Only recently it has
been realized that the Vainshtein solution close to the source
matches the one obtained by linearization far from the
source. Therefore GR is restored locally for asymptotically
flat solutions, at least for some potentials in massive gravity
[22,23]1 (see also [26] for a more recent work). This match-
ing was shown for potentials giving rise to the sixth danger-
ous mode. Later it was found, both analytically in the
so-called decoupling limit [27–29] and numerically [30],
that GR is also restored in the dRGT model. In the frame-
work of the same model, the Vainshtein mechanism was
studied in the decoupling limit for asymptotically nonflat
space-times in [31], where these solutions were shown to be
the only stable ones (see also a related work on Galileons
[32] and on Horndeski theory [33]); and in the quasidilaton
extension in [34]. For a recent review on the Vainshtein
mechanism see [35].2 Other possible issues of massive
gravity we are not going to discuss here include super-
luminality [37] (see, however, discussion in [38,39] on the
relation between causality and superluminality), strong cou-
pling problem [40,41], and instability of black holes [42].

For what concerns the bigravity formulation of the
dRGT model, the numerical study of the Vainshtein
mechanism was presented in [30], while the far-distance
analytic expansion valid outside the Vainshtein radius was
found in [43] and then studied up to the second order in
[44]. Some estimates of the Vainshtein suppression have
been put forward also in [45] in order to calculate the
emission of gravitation waves. However, there is still a
lack of an analytic analysis of the Vainshtein mechanism,
which we fill in this work.

In this paper we analytically study the spherically sym-
metric solutions in the bigravity extension of the dRGT
model and show that the Vainshtein mechanism indeed works
also with a dynamical second metric. We make our analysis
in the approximation of the weak gravitational field of the
physical metric—the one coupled to the matter—which is
always correct for (nonrelativistic) weak matter sources. This
assumption allows us to treat the problemmostly analytically.
The key equation we obtain is an algebraic polynomial
equation, generically of the 7th order, for a function of the
radius entering, in our ansatz, in the second metric. The
other functions that parametrize the metrics are expressed
in terms of this key function. In two regimes—inside and

outside the Vainshtein radius—we can solve (approxi-
mately) the algebraic equation that gives different branches
of the solution, then we identify the one which ensures the
flat asymptotic behavior. We exhibit a solution featuring
the GR behavior for the physical metric inside the
Vainshtein radius and that matches the asymptotically flat
(Yukawa decaying) solution of the linearized equations.
The paper is organized as follows. In Sec. II for com-

pleteness, we reanalyze the Vainshtein mechanism for the
original dRGT model (with fixed reference metric) in a
slightly different manner than in [27–29]. This approach
will be generalized in the main part of the paper (Sec. III)
for the bigravity extension, where we rigorously study the
Vainshtein mechanism with the second metric dynamic.
Our conclusions are formulated in Sec. IV.

II. DRGT MODEL

In this section we obtain static spherically symmetric
solutions in the limit of weak gravitational field for
the dRGT model. We reproduce the results already
found in [27–29] for distances smaller than the Compton
wavelength of the graviton, where the decoupling limit
(DL) is a good approximation. In our approach however,
originally introduced in [23] and called ‘‘weak-field ap-
proximation,’’ the DL scheme is not used. The weak-field
approximation allows to capture both the DL and the
Yukawa part of the solution outside the Compton wave-
length, where the DL ceases to operate.3 In Sec. III, this
scheme—with appropriate modifications—will be applied
to the bigravity extension of the model.

A. Action and equations of motion

The action for the dRGT model can be written as
follows [4]:

S ¼ M2
P

Z
d4x

ffiffiffiffiffiffiffi�g
p �R½g�

2
þm2U½g; f�

�
þ Sm½g�: (1)

It is convenient to express the interaction potentialU½g; f�
in terms of the matrix K, such that K�

� ¼ �
�
� � �

�
� ,

where the matrix �
�
� is the square root of the product of

the inverse physical metric g�� and the fiducial metric f��,
i.e., �

�
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��f��
p

, in the sense that ð�2Þ�� ¼ �
�
���

� ¼
g��f��. As it is often assumed we will consider the
fiducial metric to be flat.4 The potential U consists of
three pieces,

U ¼ U2 þ �3U3 þ �4U4; (2)

each of them, in terms of K, reads

1For the Dvali-Gabadadze-Porrati model [24] the cosmologi-
cal version of the Vainshtein mechanism was found in [25].

2For completeness we mention that, very recently, a full class
of new massive gravity potentials has been found in the Lorenz
breaking scenario [36]; these models do not suffer of the vDVZ
discontinuity and therefore do not need to rely on the Vainshtein
mechanism to recover GR.

3In particular, we derive an ordinary differential equation for
the gauge function which is valid at all radii, in the limit of weak
source. For practical purposes this equation is not useful, how-
ever, it may show some important features, e.g., for the dRGT
potential compared to a generic one see discussion in Sec. II B.

4We use the mostly positive signature (�þþþ).
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U2 ¼ 1

2!
ð½K�2 � ½K2�Þ;

U3 ¼ 1

3!
ð½K�3 � 3½K�½K2� þ 2½K3�Þ;

U4 ¼ 1

4!
ð½K�4 � 6½K�2½K2� þ 3½K2�2

þ 8½K3�½K� � 6½K4�Þ; (3)

where we introduced the notations ½K� � trðK̂Þ ¼ K̂�
�

and ½Kn� � trðK̂nÞ ¼ ðK̂nÞ��.
Varying the action with respect to g��, one obtains

G�� ¼ m2T�� þ TðmÞ
��

M2
P

;

whereG�� is the Einstein tensor and on the right-hand side

there are the contributions from the energy-momentum

tensor for the matter, TðmÞ
�� � � 2ffiffiffiffiffi�g

p �S
�g��

, and for the inter-

action term with f��,

T�� ¼ Ug�� � 2
�U
�g�� :

The last can be computed and gives

T�� ¼ �g���
�
�ðK�

� � ½K���
� Þ

þ �3g���
�
�ð�U2�

�
� � ½K�K�

� þ ðK2Þ�� Þ
þ �4g���

�
�ð�U3�

�
� þU2K�

�

þ ½K�ðK2Þ�� � ðK3Þ�� Þ þUg��:

B. Static spherically symmetric solutions

In this section we study spherically symmetric solutions
for the case where the nondynamical second metric f��

parametrizes a flat Minkowski space-time. The study of the
Vainshtein mechanism in this case has been already done in
a number of papers [28,29,46], in the decoupling limit.
Here we reproduce these results; moreover, we will give
some additional new upshots outside the DL regime. The
procedure is to consider the full equations of motion and
then make reasonable approximations valid for the regimes
in which we are interested. Following the weak-limit ap-
proximation scheme [23], we take the following ansatz:

ds2 ¼ �e�dt2 þ e	dr2 þ r2d�2;

df2 ¼ �dt2 þ ðrþ r�Þ02dr2 þ ðrþ r�Þ2d�2:

(4)

This ansatz is not the most general, indeed we do not
consider the case with one of the two metrics off diagonal,
but (4) is where we find the Vainshtein mechanism at work.

Sincewe are interested in a recovery of GR solutions, we
require for weak matter sources to have weak gravity, i.e.,
that the functions � and 	 are small’ as well as their
derivatives. So the first step is to consider

f	; �g � 1; fr	0; r�0g � 1; (5)

and to retain all the nonlinearities in � and �0. The tt, rr,
and 

 components of the Einstein equations in this
approximation read

�	0

r
� 	

r2
¼m2

�	
2
þ 1

r2

�
r3
�
��þ��2��

3
�3

��0�� �

M2
P

;

(6)

�0

r
� 	

r2
¼ m2

��
2
� 2�þ ��2

�
; (7)

� 	0

2r
þ 1

2

�
�00 þ �0

r

�

¼ m2
��þ 	

2
þ 1

r

�
r2
�
��þ �

2
�2

��0�
; (8)

where we introduced

� ¼ 1þ �3; � ¼ �3 þ �4:

The Bianchi identity, r�T
�
r ¼ 0, gives

� 	

r
þ �0

2
þ �

�	
r
� �0

�
�þ �

2
�0�2 ¼ 0: (9)

Note that the pressure in the right-hand side (rhs) of (7) and
(8) disappears as a consequence of the conservation of the
matter energy momentum tensor in the weak field regime
(5). Of course, like in GR, the three Einstein equations and
the Bianchi one are not all independent, so we can consider
(6), (7), and (9) as our independent set to be solved.
From this set we are able to obtain one second order

ordinary differential equation on � only. Indeed we can
solve (7) for 	 and then, substituting into (6) and (9), we
end up with two equations, one for �0, �, �, and the other
for �00, �0, �, �0, �. Taking the first equation and its first
and second derivative, together with the second equation
and its first derivative, we have a system of five equations
in �000, �00, �0, �,�00,�0,�. We can then solve algebraically
four of them for � and all its three derivatives and, sub-
stituting in the last equation, it will be a second order
differential equation only on � of the form

A�00 þB�03 þ C�02 þD�0 þ E ¼ 0: (10)

A, B, C, D, E are functions of � whose form is not
particularly illuminating, so we can omit it here. It is worth
stressing the difference with respect to the equivalent
equation found in the ghosty massive gravity theories
[23]. Our second order equation needs two initial condi-
tions in order to be solved, fixing to one the number of
degree of freedom that it describes. For other kinds of
potentials [40] that exhibit the Boulware-Deser instability,
the equation is of the fourth order [23], meaning four initial
conditions and therefore two dof. One of these modes is
absent for the dRGT potential.
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Equation (10) is hard to solve, even numerically.
Without solving it, however, the equation clearly indicates
that the weak field approximation (5) gives the relevant
features of the fields for all ranges of distance for non-
relativistic sources. In order to understand the behavior of
the solutions, below we will consider various regimes.

1. Linear regime

Since we require asymptotically flat solutions, we expect
that far away from the source also the field � becomes
small. Therefore, assuming � � 1 in (6), (7), and (9), as
well as its derivative, we get the solutions

� ¼ �Ce�mr

3m2r3
½1þmrð1þmrÞ�; (11)

	 ¼ 2Ce�mr

3r
ð1þmrÞ; (12)

� ¼ � 4Ce�mr

3r
; (13)

where C is an integration constant that in the following we
will see equal to the Schwarzschild radius rS. Clearly, the
gravitational potentials (12) and (13) exhibit the vDVZ
discontinuity in the limit of m ! 0; instead the field �
shows a singularity in the same limit. Actually the linear
regime is nowhere allowed in the vanishing mass limit;
indeed this regime exists only for values of radii for which
� � 1. For nonzero small m, as can be easily seen from
(11), the linear regime is valid for r � rV , where rV is the
Vainshtein radius,

rV �
� rS
m2

�
1=3

:

In the limitm ! 0we have rV ! 1, making unreliable the
condition to be outside rV . Hence, to look at the small mass
limit, we need to consider a nonlinear regime in�. Finally,
it is remarkable that the weak field approximation is able to
retain the asymptotically Yukawa decay at large distances
from the source, as well as the Vainshtein crossover as we
will see in the next paragraph.

2. Inside the Compton wavelength

In order to study the behavior of the solutions for which
the m ! 0 limit is well defined and the Vainshtein mecha-
nism operates, we need to consider the distances inside the
Compton wavelength, i.e., r � 1=m. In this regime we can
neglect terms �m2	 and �m2� in the rhs of Eqs. (6)–(8).
In this approximation, we can integrate Eq. (6) to obtain

	 ¼
8><
>:

rS
r þm2r2

�
�� ��2 þ �

3 �
3
�

for r > R�
�r2

3M2
P

þm2r2
�
�� ��2 þ �

3 �
3
�

for r < R�;

(14)

where R� is the radius of the source, the Schwarzschild
radius rS reads

rS ¼ 1

M2
P

Z R�

0
�r2dr;

and the integration constant in (14) has been chosen to
ensure the continuity of the solution at the surface of the
star. In the following for simplicity we will consider only a
constant density source. Neglecting �m2	 and �m2� in
Eq. (7), one obtains

�0

r
� 	

r2
¼ m2ð�2�þ ��2Þ; (15)

while the integration of (8) gives (15) up to an integration
constant. From (14) and (15) we find

r�0 ¼
8><
>:

rS
r �m2r2

�
�� ��3

3

�
for r > R�

�r2

3M2
P

�m2r2
�
�� ��3

3

�
for r < R�:

(16)

Finally, combining (9), (14), and (16) we get a single
algebraic equation on �,

3�� 6��2 þ 2
�
�2 þ 2�

3

�
�3 � �2

3
�5

¼
8<
:
� rS

m2r3
ð1� ��2Þ for r > R�

� �
3m2M2

P

ð1� ��2Þ for r < R�:
(17)

The last equation in (17) corresponds to the one found in
the DL of the model [28,29,46]. This confirms that the
approximations we made here correspond to the DL in the
full equations of motion.
All the physics is hence enclosed in Eq. (17): once we

have its solutions we can determine the gravitational po-
tentials through Eqs. (14) and (16). Equation (17) is a fifth
order algebraic equation and its solutions cannot be pre-
sented in a closed form. Choosing the parameters of the
theory � and �, we can lower the degree of such an
equation in order to get analytically solvable ones. E.g.,
for the minimal massive gravity potential with onlyU2—it
corresponds to � ¼ 0 and � ¼ 1—Eq. (17) becomes a
third order algebraic equation. This special case was first
studied in [27], where it was shown that the Vainshtein
mechanism works properly reproducing GR inside the
Vainshtein radius.
Since the solutions of the set of equations (17), (14),

and (16) have been largely studied [28,29,46], we only
report schematically the behavior of the solutions for
different subregimes. To consider the most interesting
case, for which the Vainshtein mechanism takes place,
we set �> 0 so that Eq. (17) has two complex and three
real solutions. Only one of the three real branches of the
solution recovers GR and is asymptotically flat, so we
give it in Eq. (18).
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r r < R� R� < r � rV rV � r � 1=m

� � 1ffiffiffi
�

p þ m2R3
�ð�2þ3�

ffiffiffi
�

p
þ2�Þ

�2rS
� 1ffiffiffi

�
p þ m2r3ð�2þ3�

ffiffiffi
�

p
þ2�Þ

�2rS
� rS

3m2r3

	 rSr
2

R3
�
� m2r2ð3�þ4

ffiffiffi
�

p
Þ

3�
rS
r �

m2r2ð3�þ4
ffiffiffi
�

p
Þ

3�
2rS
3r

� � 3rS
2R�

þ rSr
2

2R3
�
þ m2r2

3
ffiffiffi
�

p � rS
r þ m2r2

3
ffiffiffi
�

p � 4rS
3r

(18)

Inside the Vainshtein radius we find that � ¼ �1=
ffiffiffiffi
�

p
at

the leading order and the gravitational potentials are of
the GR form plus small corrections. Clearly, the vanishing
mass limit is well defined inside the Vainshtein radius and
the corrections to GR smoothly vanish as m ! 0. Outside
the Vainshtein radius we find the asymptotically flat weak
field solution where also � � 1: this solution matches
the one obtained in the linear regime (11)–(13) provided
C ¼ rS and r � 1=m.

To get some understanding of the solutions from
Eq. (17), note the rhs of itself. The ratio ðrV=rÞ3 that
appears there becomes large inside the Vainshtein radius,
and small otherwise. For r � rV we have either j�j � 1
retaining so the higher power of � in the equation, or the
leading order of � cancels the rhs itself, i.e., � ¼
�1=

ffiffiffiffi
�

p
. For r � rV instead we can neglect at the first

order the rhs of (17), obtaining therefore three real con-
stant values for �: obviously only � ¼ 0 gives asymptoti-
cally the flat metric.

The branch of the solution presented in (18) is unphys-
ical for �< 0 due to the square root in �. A complete
description of the solutions for the whole range of the free
parameters � and � can be found in [46].

III. BIGRAVITY

This section is devoted to the study of the Vainshtein
mechanism in the Hassan-Rosen bigravity extension of
the dRGT model [9]. In the bigravity approach the
second metric f��, which was fixed before, now be-

comes dynamical. The weak-field approximation, which
we applied in the previous section, is also useful here.
The trick is to deform the ansatz (4) to include the
dynamics of the metric f��. After writing down the

action and the field equations in Sec. III A, we introduce
the ansatz and identify the functions that can be treated
linearly in the limit of weak sources, together with a
fully nonperturbative function. In this way we are able to
obtain again one algebraic polynomial equation, which
captures the distances inside the Compton wavelength of
the graviton.

A. Action and equations of motion

We consider the dRGT model where the additional
metric f�� is dynamical thanks to its own Einstein-

Hilbert term in the action [9],

S ¼ M2
P

Z
d4x

ffiffiffiffiffiffiffi�g
p �R½g�

2
þm2U½g; f�

�
þ Sm½g�

þ �M2
P

2

Z
d4x

ffiffiffiffiffiffiffi�f
p

R½f�: (19)

The interaction potential in (19) is given by the same
expressions in (2) and (3).5 Note an extra parameter � in
the action (19), which accounts for a possible difference in
Planck masses for the two gravitational sectors. One can
realize that the limit � ! 1 corresponds to the freezing of
the metric f, therefore recovering the model with flat
fiducial metric. Varying the action (19) with respect to
g��, we obtain

G�� ¼ m2T�� þ TðmÞ
��

M2
P

;

where G�� is the Einstein tensor associated with g�� and

T�� reads

T�� ¼ Ug�� � 2
�U
�g��

¼ �g���
�
�ðK�

� � ½K���
� Þ

þ �3g���
�
�ðU2�

�
� � ½K�K�

� þ ðK2Þ�� Þ
þ �4g���

�
�ðU3�

�
� �U2K�

�

þ ½K�ðK2Þ�� � ðK3Þ�� Þ þUg��:

On the other hand, the variation of the action with respect
to f�� gives

ffiffiffiffiffiffiffi�f
p

G�� ¼ ffiffiffiffiffiffiffi�g
p m2

�
T ��;

where

T �� ¼ �2
�U
�f��

¼ f���
�
�ðK�

� � ½K���
� Þ � �3f���

�
�ðU2�

�
�

� ½K�K�
� þ ðK2Þ�� Þ � �4f���

�
�ðU3�

�
�

�U2K�
� þ ½K�ðK2Þ�� � ðK3Þ�� Þ:

5Note that in principle we can add terms U0 ¼ 1 and U1 ¼½K�. These terms, however, account for cosmological terms for
the g and f metric. Since we aim to find asymptotically flat
solutions, we exclude those terms.
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One can observe a useful relation when working with
up-down indices, namely, for T

�
� � g��T�� and T �

� �
f��T ��, we have T

�
� ¼ �T

�
� þU�

�
� .

B. Static spherically symmetric solutions

Continuing the idea of the weak-field approximation
scheme, we consider the following parametrization for
the two metrics:

ds2 ¼ �e�dt2 þ e	dr2 þ r2d�2;

df2 ¼ �endt2 þ elðrþ r�Þ02dr2 þ ðrþ r�Þ2d�2;
(20)

where �, 	, n, l, and � are the r-dependent functions
that describe the spherically symmetric foliation of the
space-time in a common coordinate system. Again, this
ansatz is not the most general one, since we are considering
bidiagonal metrics.

Let us note that our ansatz (20) is compatible with the
biflat solution,

g ¼ f ¼ � ¼ diagð�1; 1; 1; 1Þ; (21)

obtained when one imposes T ¼ T ¼ 0, and that will be
the reference point for the asymptotic behavior.

1. Static spherically symmetric ansatz
and equations of motion

Following the procedure used for the dRGT model, we
consider a nonrelativistic matter source with constant den-
sity. This allow us to assume �, 	, n, and l small, as well as
their derivatives,

f	; �; l; ng � 1; fr	0; r�0; rl0; rn0g � 1; (22)

and to retain all the nonlinearities in the field� and�0. The
tt, rr, and 

 components of the Einstein equations in this
approximation are for the first metric,

� 	0

r
� 	

r2
¼ m2

�
1

2
ð	� lÞ þ 1

r2

�
r3
�
��þ ��2 � �

3
�3

��0�� �

M2
P

; (23)

�0

r
� 	

r2
¼ m2

�
1

2
ð�� nÞ � 2�þ ��2

�
; (24)

� 	0

2r
þ 1

2

�
�00 þ �0

r

�
¼ m2

�
1

2
ð�þ 	� n� lÞ þ 1

r

�
r2
�
��þ �

2
�2

��0�
; (25)

and for the second metric,

� ð1þ�Þ l
0

r
� ðrþ r�Þ0 l

r2
¼ m2

�

�
1

2
ðl� 	Þ þ 1

r2

�
r3
�
�þ ð1� �Þ�2 þ 1� �þ �

3
�3

��0�
; (26)

ð1þ�Þ n
0

r
� ðrþ r�Þ0 l

r2
¼ m2

�

�
1

2
ðn� �Þ þ 2�þ ð1� �Þ�2

�
ðrþ r�Þ0; (27)

� l0

2r
þ 1þ�

2ðrþ r�Þ0 n
00 þ ½1þ ðrþ r�Þf½ðrþ r�Þ0��1g0� n

0

2r
¼ m2

�

�
1

2
ðlþ n� 	� �Þ þ 1

r

�
r2
�
�þ 1� �

2
�2

��0�
: (28)

Of course, these equations are not all independent; indeed a combination of (25) and (28) can be obtained taking a suitable

combination of (24) and (27) and its derivative. The Bianchi identities, rðgÞ
� T

�
r / rðfÞ

� ð ffiffiffiffiffiffiffi�g
p

T �
r =

ffiffiffiffiffiffiffi�f
p Þ ¼ 0, give

1

r
ðrþ r�Þ0ð1� ��Þð	� lÞ � 1

2
ð1� 2��þ ��2Þ½ðrþ r�Þ0�0 � n0� ¼ 0: (29)

Note that assuming l ¼ n ¼ 0 in (29) we get back (9),
the Bianchi identity for the model with one dynamical
metric. It is worth mentioning that we were not able to
obtain an analogue of Eq. (10), because, applying the

similar approach that we described there, we find
a system of linear equations which is not linearly
independent. Therefore, in order to find analytical solu-
tions to this set of equations, we need to do other
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approximations. This means to look at more specific
regimes inside the weak field one (22).

2. Linear regime

Since asymptotically we want to find the biflat solutions
(21), we expect that far away from the source also the field
� becomes small. Hence, assuming � � 1 and r�0 � 1
in (23), (24), (26), (27), and (29), we find the solutions:

� ¼ �C2�e
�mr

ffiffiffiffiffiffiffi
1þ1

�

p
½�þmrðmrð1þ �Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1þ �Þp Þ�
3m4r3ð1þ �Þ ;

(30)

	 ¼ C1

r
þ 2C2�e

�mr
ffiffiffiffiffiffiffi
1þ1

�

p
½�þmr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ �Þp �

3m2rð1þ �Þ ; (31)

� ¼ �C1

r
� 4C2�

2e�mr
ffiffiffiffiffiffiffi
1þ1

�

p

3m2rð1þ �Þ ; (32)

l ¼ C1

r
� 2C2e

�mr
ffiffiffiffiffiffiffi
1þ1

�

p
½�þmr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ �Þp �

3m2rð1þ �Þ ; (33)

n ¼ �C1

r
þ 4C2�e

�mr
ffiffiffiffiffiffiffi
1þ1

�

p

3m2rð1þ �Þ ; (34)

where C1 and C2 are two integration constants that will be
determined in the next paragraph to be

C1 ¼ rS
1þ �

; C2 ¼ m2rS
�

: (35)

It is important to stress that [once (35) is taken into
account] taking the limit � ! 1, which freezes the dy-
namics of the second metric, we recover the solutions
found in the same regime of the original dRGT model,
i.e., (11)–(13) and l ¼ n ¼ 0.
For the m ! 0 limit, the vDVZ discontinuity appears

with the divergence in �, the same arguments as in the
previous section apply here: the linear regime is nowhere
allowed in the vanishing mass limit. Again, to properly
consider this limit, we need to rely on nonlinearities in the
field �.

3. Inside the Compton wavelength

As before, in order to study the Vainshtein mechanism
we consider distances inside the Compton wavelength, i.e.,
r � 1=m; this helps to avoid complications associated
with the change of behavior at r� 1=m. Neglecting there-
fore �m2	 and �m2l in the rhs of (23) and (26), we can
integrate both the equations to obtain

	 ¼
8><
>:

rS
r þm2r2

�
�� ��2 þ �

3 �
3
�

for r > R�
�r2

3M2
P

þm2r2
�
�� ��2 þ �

3 �
3
�

for r < R�

(36)

and

l ¼ � m2r2

�ð1þ�Þ
�
�þ ð1� �Þ�2 þ 1

3
ð1� �þ �Þ�3

�
;

(37)
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FIG. 1 (color online). Plot of the five branches (out of seven) of the solution of the function � vs r=rV , for R� < r < 1=m. We take
the following values for the parameters: m 	 rV ¼ 10�2, � ¼ 1, � ¼ 4, and � ¼ 1. The name of each curve corresponds to the same
name given in Appendix B where the analytic solutions are reported for the regime inside and outside the Vainshtein radius. The
Vainshtein-Yukawa solution is the one that reproduces GR inside rV and that gives the asymptotically flat solution outside rV , as given
in Eq. (41). (a) Solutions that, for r=rV ¼ r
=rV ’ 0:31, join together in a complex conjugates pair. (b) The three everywhere real
solutions.
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where the integration constants have been chosen requiring
the continuity of the solutions at the surface of the star.
Similarly, neglecting also �m2� and �m2n in (24) and
(27) one finds

r�0 ¼
8><
>:

rS
r �m2r2

�
�� ��3

3

�
for r > R�

�r2

3M2
P

�m2r2
�
�� ��3

3

�
for r < R�

(38)

and

rn0 ¼ m2r2ðrþ r�Þ0
�ð1þ�Þ2

�
�þ 2�2 þ 2� 2�� �

3
�3

�
;

(39)

while the integration of (25) and (28) does not give
new equations. Finally, combining (29) and (36)–(39),
we obtain a single algebraic equation on �:

3ð�þ 1Þ�þ 6ð�þ 1Þð1� �Þ�2 þ 1

3
½6ð�þ 1Þ�2 � 2ð18�þ 17Þ�þ 4ð�þ 1Þ�þ 9�þ 10��3

þ 2

3
½6ð�þ 1Þ�2 � ð9�þ 7Þ�þ 4ð�þ 1Þ�þ 1��4

þ 1

3
½2ð3�þ 1Þ�2 � ð�þ 1Þ�2 þ 2ð2�þ 1Þ�� 4��� 2���5 � 2

3
��2�6 � 1

3
��2�7

¼
8<
:
� �rS

m2r3
ð1þ�Þ2ð1� ��2Þ for r > R�

� ��
3m2M2

P

ð1þ�Þ2ð1� ��2Þ for r < R�:
(40)

Notice that Eqs. (36) and (38) for 	 and �0 are the same
found for the dRGTmodel, see Eqs. (14) and (16). It is also
important to stress that dividing Eq. (40) by �ð1þ�Þ2 and
taking the limit � ! 1 that freezes f, we recover the
master equation (17) of the previous section. The fields l
and n0 given in (37) and (39) vanish in the same limit.

Again, all the information is retained in an algebraic
equation for � only: for bigravity this equation is of the
seventh order compared to the fifth order equation for the
dRGT model. Generically Eq. (40) has seven solutions that
can be real or complex.

For �> 0, it has three real and two complex conjugates
solutions for all values of r; the remaining two solutions

are real inside some radius r
 and join together in a com-
plex conjugates pair for r > r
, see Fig. 1. The value of r

depends on the choice of the free parameters � and �. The
three everywhere real solutions for �, shown in Fig. 1,
have different asymptotic behavior, however all three re-
cover GR inside the Vainshtein radius. One of these three is
asymptotically flat (Vainshtein-Yukawa solution), and the
others (dashed) have nonflat asymptotics (solutions three
and four in Appendix B). One of these last two solutions,
(B4), may be of interest in the context of cosmology. The
asymptotically nonflat solution and a possible match to a
cosmological one, however, deserves a separate study and
will be discussed elsewhere.
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FIG. 2 (color online). Plot of the Vainshtein-Yukawa solution of the functions 	 and �0 vs r=rV , for R� < r < 1=m. We take the
following values for the parameters: m 	 rV ¼ 10�2, � ¼ 1, � ¼ 4, and � ¼ 1. These solutions are plotted together with the
corresponding ones of GR in (a) and in (b) is given their ratio for a better comparison. The analytic behavior for the regime well
inside and outside the Vainshtein radius is given in Eq. (41).
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For �< 0 two of the three solutions which are real for
�> 0 become complex conjugates, therefore only one
everywhere real solution is left. The other solutions show
the same behavior as in the case �> 0. For �< 0 the only
everywhere real solution is given by solution three of
Appendix B and it does not show the asymptotically flat
behavior nor the expected weak field solution inside the
Vainshtein radius. Therefore, in the following, we will
consider only the case �> 0. The special case � ¼ 0,
that for � ¼ 1 corresponds to the minimal massive gravity
potential with only U2, will be presented in Appendix A.

However, we do not guarantee that solutions exist for the
whole range of parameters space; i.e., we do not exclude
that for some range of the parameters � and � the asymp-
totic solution might not match the solution inside the
Vainshtein radius. This issue would require a complete
analysis for each value of � and � that is beyond the scope
of this work. Indeed, contrary to Eq. (17) of the dRGT
model, where a symmetry allows one to study easily the
whole range of parameters space [46], in Eq. (40) we were
not able to find a similar strategy that facilitates the scan of
solutions for general � and �.

Again, one can understand the behavior of the solutions
analyzing two regimes: well inside and outside the
Vainshtein radius. For r � rV the ratio ðrV=rÞ3 in the rhs
of (40) becomes large leaving us with two possibilities:
either j�j � 1 in order to compensate the large rhs (so at
the leading order the higher powers of � dominate); or the
leading order of � cancels out the rhs, this happens for
� ¼ �1 (double root) and � ¼ �1=

ffiffiffiffi
�

p
. For r � rV , the

ratio ðrV=rÞ3 is small and it suggests to neglect at first order
the rhs of (40): this determines the three real constant

asymptotical values of �. One of these values is obviously
zero and it is the one approached by the linear solution (30).
In Eq. (41) we present the branch of the solution which

features the Vainshtein recovery of GR and the Yukawa
decay. The other branches are schematically presented in
Appendix B. The way these regimes match together is
understood from the numerical study that will be presented
immediately after.

r r < R� R� < r � rV rV � r � 1=m

� � 1ffiffiffi
�

p þ �� �� � 1 � 1ffiffiffi
�

p þ �� �� � 1 � rS�
3m2r3ð1þ�Þ

	 rSr
2

R3
�
� m2r2ð3�þ4

ffiffiffi
�

p
Þ

3�
rS
r �

m2r2ð3�þ4
ffiffiffi
�

p
Þ

3�
rSð3þ2�Þ
3rð1þ�Þ

� � 3rS
2R�

þ rSr
2

2R3
�
þ m2r2

3
ffiffiffi
�

p � rS
r þ m2r2

3
ffiffiffi
�

p � rSð3þ4�Þ
3rð1þ�Þ

l � m2r2½1���3ð1��Þ
ffiffiffi
�

p
þ4��

3��ð1�
ffiffiffi
�

p
Þ � m2r2½1���3ð1��Þ

ffiffiffi
�

p
þ4��

3��ð1�
ffiffiffi
�

p
Þ

rS
3rð1þ�Þ

n
m2r2½1���3

ffiffiffi
�

p
þ��

3��ð1�
ffiffiffi
�

p
Þ

m2r2½1���3
ffiffiffi
�

p
þ��

3��ð1�
ffiffiffi
�

p
Þ

rS
3rð1þ�Þ

(41)

Inside the Vainshtein radius, for the metric g the GR
solution is recovered (plus small corrections) and for the
second metric the potentials l and n are of the same order
of the corrections to GR of the metric g. Outside the
Vainshtein radius we find the asymptotically flat solution
with � � 1: this solution matches the one obtained in the
linear regime (30)–(34) for r � 1=m and

C1 ¼ rS
1þ �

; C2 ¼ m2rS
�

;

as we already anticipated in (35). Note that inside the
Vainshtein radius the vanishing mass limit, m ! 0, is
well defined and gives exactly GR for the first metric
while zero for l and n potentials of the second metric.
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FIG. 3 (color online). Plot, for the Vainshtein-Yukawa branch,
of the functions l and n0 vs r=rV , for R� < r < 1=m. We take the
following values for the parameters: m 	 rV ¼ 10�2, � ¼ 1, � ¼
4, and � ¼ 1. These numerical solutions show how the poten-
tials l and n of the second metric get non-negligible values only
in the intermediate regime around the Vainshtein radius. Indeed,
as shown analytically in Eq. (41), for r � rV their values are of
the same order of magnitude of the corrections respect to GR of
the potentials of the first metric and, for r � rV , the solutions are
asymptotically flat.
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It is also important to stress that in the limit � ! 1 for
which f�� is frozen, this branch of the solution repro-
duces the Vainshtein-Yukawa one of the dRGT model,
namely Eq. (18).

In addition to Fig. 1, in Figs. 2–4, we depict
correspondingly the potentials of the physical metric
outside the source, the potentials of the second metric
outside the source, and the potentials for both metrics
inside the source, only for the Vainshtein-Yukawa
solution.

IV. CONCLUSIONS

In this paper we studied the Vainshtein mechanism in the
massive bigravity model with no Boulware-Deser ghost.
To attack the problem, we applied the ‘‘weak-field approxi-
mation scheme’’ where the metric coefficients are sepa-
rated into two parts. One contains functions of the radial
coordinate which remain small (i.e., the quadratic and
higher order terms are negligible in comparison to the
linear ones) for nonrelativistic sources, even inside the
Vainshtein radius; the other part is fully nonlinear, with
nonlinearities crucial for the existence of a GR-like solu-
tion. This approach allows one to capture all the important
features of the solutions: the Vainshtein regime, the linear
regime, and the Yukawa decay.

In Sec. II we demonstrated how this scheme works for
the original dRGT model—where the auxiliary metric is
fixed to Minkowski. Inside the Compton wavelength, our
results are in agreement with previous studies in the de-
coupling limit [27–29], see in particular (18). On the other
hand, we can also describe the solution outside the
Compton wavelength, which is beyond the validity of the

decoupling limit. Moreover, for the function �ðrÞ which is
introduced as the nonlinear piece of the metric (4), we
derived a single ordinary differential equation of the sec-
ond order (10) valid for all radii.
For bimetric massive gravity we modified the approach

to incorporate the dynamics of the second metric.
Notably, the ansatz we introduced (20), again separates
the metric coefficients in the linearizable part and in the
fully nonlinear part �ðrÞ. If we additionally assume that
far from the source also � is in the linear regime, then we
readily obtain the linearized solution that shows the
Yukawa decay. Other regimes can be obtained assuming
radii smaller than the Compton wavelength, i.e., r �
1=m. In this case, it is possible to derive one algebraic
equation of the seventh order on �, Eq. (40), while the
other metric functions are given in terms of it. Using this
master equation, we analyzed the behavior of the solu-
tions in various subregimes and identified several
branches of the solution. For �> 0 the only solution
that has the desired behavior—asymptotic flatness—is
presented in Eq. (41): this solution shows the recovery
of GR inside the Vainshtein radius.
It is worth making a comment about the asymptoti-

cally nonflat solution (B4). Although we did not study
(B4) in detail in the present work, since we concentrated
on asymptotically flat solutions, this solution may have
a physical meaning if matched to a cosmological solu-
tion at r ! 1. The same comment applies to the choice
of the potential �3 ¼ �4 ¼ 0, which we discuss in
Appendix A. While for the dRGT model this simplest
potential gives an asymptotically flat solution recover-
ing GR inside the Vainshtein radius, in the case of the
bimetric massive gravity, such an asymptotic solution
does not exist and the solution featuring the Vainshtein
behavior becomes asymptotically nonflat. The behavior
and the physical meaning of these solutions, together
with a possible match to cosmological ones, deserves a
separate study.
To summarize, in the bigravity formulation of the

dRGT massive gravity, with matter coupled to only
one (physical) metric, we have found the recovery of
GR for the physical metric inside the Vainshtein radius
and the Yukawa decay outside. At the same time, the
second metric is nontrivial because of the indirect cou-
pling to matter via the interaction (mass) term; its de-
viation from flat space-time is highly suppressed and it
reaches non-negligible values only around the Vainshtein
radius.
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APPENDIX A: SIMPLEST MASSIVE
GRAVITY POTENTIAL

Here we present the study of the simplest massive
gravity potential with only U2 in (2). It corresponds to
set � ¼ 0 and � ¼ 1 in the equations of Sec. III B 3. This
case deserves a particular analysis both since it was the first
one studied in the framework of the dRGT model [27],
showing a well working Vainshtein mechanism, and
because the branch that realizes the Vainshtein-Yukawa

solution (41) is not present for � ¼ 0. For these values of
the free parameters, the master equation (40) becomes a

fifth degree equation with only one real solution for all the

range of distances; the other four solutions start (as r
increases) as two pairs of complex conjugate solutions

and then divide into four real distinct ones, see Fig. 5.

Let us thus concentrate on the everywhere real branch.

Similar to the general case, we can analytically find solu-

tions in different regimes, see Eq. (A1).

r r < R� R� < r � rV rV � r � 1=m

� �
�
rS
2m2

�
1=3 1

R�
�
�
rS
2m2

�
1=3 1

r c0

	 rSr
2

R3
�
�

�
mrS
2

�
2=3

�
r
R�

�
2 rS

r �
�
mrS
2

�
2=3 rS

r þm2r2ðc0 � c20Þ
� c� þ rSr

2

2R3
�
þ

�
m4rS
2

�
1=3 r2

2R�
� rS

r þ
�
m4rS
2

�
1=3

r � rS
r � 1

2m
2r2c0

l � m2r2

� � m2r2

� � m2r2c0
�ð1þc0Þ

n m2r2

�
m2r2

�
m2r2c0ð1þ2c0Þ

2�ð1þc0Þ

(A1)

c� in Eq. (A1) is an integration constant fixed by the

matching condition to be: c� ¼ � 3rS
2R�

þ ðm4rS
2 Þ1=3 R�

2 .

Inside the Vainshtein radius we find that j�j � 1 and, in
contrast to the general case, it is this behavior of � that
gives a well working Vainshtein mechanism with GR-like
solutions for the metric g and small potentials l and n for
the other metric. For the dRGT model with the simplest
potential a similar recovery of GR was found in [27],
with flat asymptotic. For the bigravity model we find
that, for r � rV , � asymptotically approaches a nonzero
constant value c0, giving nondecaying tails for all the other

gravitational potentials. This solution does not match the

asymptotically flat linear solution (30)–(34). It does not

mean, however, that the solution (A1) is nonphysical; it

may in fact match a nontrivial cosmological solution for

large r. This possibility, however, deserves a separate study
and goes beyond the scope of this paper. In Fig. 5 we show

also the numerical study of this solution for all the range of

distances inside the Compton wavelength.
The fact that the choice of parameters � ¼ 0 does not

allow for an asymptotically flat everywhere real solution,

while with the nondynamical second metric such a
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FIG. 5 (color online). (a) Plot of the absolute value of all five solutions of the function � vs r=rV , for R� < r < 1=m. There is only
one everywhere real solution. (b) Plot of the functions �, 	, and l vs r=rV , for R� < r < 1=m. As shown analytically in Eq. (A1), the
asymptotic behavior is not flat. We take for both plots the following values for the parameters: m 	 rV ¼ 10�2 and � ¼ 1.
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solution exists, might seem surprising. There is however
a simple explanation for this effect: when � ! 1 the
outer part of the (nonphysical) asymptotically flat branch
(dashed curve in Fig. 6) and the inner part of the every-
where real solution (thick curve in Fig. 6) join together
to make one asymptotically flat solution recovering GR
for small radii. This can be easily seen from Fig. 6,
where the absolute value of the solutions of � are
plotted for bigger values of �.

It is also instructive to compare our findings with the
numerical work of Volkov [30], where he obtains an
asymptotically flat solution for the simplest potential
(� ¼ 1, � ¼ 0). It looks as if our results contradict the
ones in [30]. In fact, a possible explanation lies in some
specific choice of m, rS, and R�: it seems that in [30] these
parameters are chosen such that the size of the source R�

is larger than r
—the point below which the asymptotically
flat solution (dashed curve in Fig. 6) becomes complex—
therefore avoiding the problem since inside the source� is
constant. If the source is made more compact though still
nonrelativistic, we expect that this problem of complex-
valued solution comes back, although without complete
numerical analysis of the full equations of motion we
cannot prove this statement.

APPENDIX B: OTHER BRANCHES IN
MASSIVE BIGRAVITY

In this Appendix we report the analytical solutions, for
the regime inside and outside the Vainshtein radius, of the
four branches of the massive bigravity solution that we
omitted in the main text.

Solution one:

r r < R� R� < r � rV rV � r � 1=m

� �
�
3rS
�m2
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1=3 1
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(B1)

cn in Eq. (B1) is an integration constant fixed by the matching condition to be: cn ¼ � 2�2���

2�32=3k
½31=3ðmrS

� Þ2=3 þ
2R�ðm

4rS
� Þ1=3�.

10 1 1 10
0

1

2

3

4

5

r rv

10 1 1 10
0

1

2

3

4

5

r rv

FIG. 6 (color online). Plot of the absolute value of all five solutions of the function � vs r=rV , for R� < r < 1=m. We take for
(a) � ¼ 102 and for (b) � ¼ 105; both plots have m 	 rV ¼ 10�2.
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Solution two:

r r < R� R� < r � rV rV � r � 1=m
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	 rSr
2

R3
�
�m2r2

�
1þ �þ �

3

�
rS
r �m2r2

�
1þ �þ �

3

�
==

� � 3rS
2R�

þ rSr
2

2R3
�
þ 1

2m
2r2

�
1� �

3

�
� rS

r þ 1
2m

2r2
�
1� �

3

�
==

l O
�

1
��

�
O
�

1
��

�
==

n O
�

1
��

�
O
�

1
��

�
==

(B2)

Solution three:

r r < R� R� < r � rV rV � r � 1=m

� �1þ �� �� � 1 �1þ �� �� � 1 c1
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Solution four:

r r < R� R� < r � rV rV � r � 1=m
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Let us give some comments on these branches. The first
two are given by the solutions of � that at some point
become complex conjugates (therefore the marks ‘‘==’’
for rV � r � 1=m), so we can estimate their behavior
only inside the Vainshtein radius. For solution one,
j�j � 1 and this produces the screening of the gravita-
tional potentials 	 and � already seen in the dRGT
model with one dynamical metric [28]. For solutions
two and three, at the leading order � ¼ �1 giving
GR-like solutions for the first metric potentials and
very large values for the potentials of the second metric,

i.e., l, n � 1. This is due to the fact that, for the ansatz
(20), the inverse of the second metric is singular for �
strictly equal to �1. It should be stressed that these
solutions violate the assumption of weak field approxi-
mation (22), therefore they are not viable. In branch
three and four, outside the Vainshtein radius, � ap-
proaches asymptotically to nonzero constant values c1
and c2: this gives nondecaying gravitational potentials.
Finally, in branch four, for r � rV we find that the
Vainshtein mechanism works properly, recovering GR
as in the Vainshtein-Yukawa branch (41).
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