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An entropic-force scenario, i.e., entropic cosmology, assumes that the horizon of the Universe has an

entropy and a temperature. In the present paper, in order to examine entropic cosmology, we derive

entropic-force terms not only from the Bekenstein entropy but also from a generalized black-hole entropy

proposed by Tsallis and Cirto [Eur. Phys. J. C 73, 2487 (2013)]. Unlike the Bekenstein entropy, which is

proportional to area, the generalized entropy is proportional to volume because of appropriate nonadditive

generalizations. The entropic-force term derived from the generalized entropy is found to behave as if it

were an extra driving term for bulk viscous cosmology, in which a bulk viscosity of cosmological fluids is

assumed. Using an effective description similar to bulk viscous cosmology, we formulate the modified

Friedmann, acceleration, and continuity equations for entropic cosmology. Based on this formulation, we

propose two entropic-force models derived from the Bekenstein and generalized entropies. In order to

examine the properties of the two models, we consider a homogeneous, isotropic, and spatially flat

universe, focusing on a single-fluid-dominated universe. The two entropic-force models agree well with

the observed supernova data. Interestingly, the entropic-force model derived from the generalized entropy

predicts a decelerating and accelerating universe, as for a fine-tuned standard �CDM (lambda cold dark

matter) model, whereas the entropic-force model derived from the Bekenstein entropy predicts a

uniformly accelerating universe.
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I. INTRODUCTION

Since the late 1990s, an accelerated expansion of the late
universe has gradually been accepted as a new paradigm
[1–6]. In order to explain this accelerated expansion, vari-
ous cosmological models have been suggested [7–11] (see,
e.g., Refs. [8–11] and the references therein). As one such
model, Easson et al. [12,13] recently proposed an entropic-
force scenario called ‘‘entropic cosmology.’’ In entropic
cosmology, an extra driving term, i.e., an entropic-force
term, should be added to the Friedmann-Lemaı̂tre accel-
eration equation, without introducing new fields [14]. The
entropic-force term is derived from the usually neglected
surface terms on the horizon of the Universe, assuming that
the horizon has an entropy and a temperature due to the
information holographically stored there [12].

Entropic cosmology has been extensively examined
from various viewpoints [15–21]. As an entropy on the
horizon, i.e., the Bekenstein entropy [22] is always used,
substituting the horizon of the Universe for the event
horizon of a black hole. In fact, the Bekenstein entropy is
proportional to area (or horizon) and is additive. However,
self-gravitating systems exhibit peculiar features [23,24],
such as nonequilibrium thermodynamics and nonextensive
statistical mechanics [25–41]. Accordingly, for example,
the Tsallis entropy [26] and the Renyi entropy [27] have
been proposed for nonadditive (nonextensive) generalized
entropies and have been investigated from astrophysical

viewpoints [28–41]. In particular, Tsallis and Cirto
recently suggested a generalized black-hole entropy pro-
portional to its volume based on appropriate nonadditive
generalizations [41]. Using the generalized entropy instead
of the Bekenstein entropy will provide new insight into
entropic cosmology. Therefore, it is important to derive
entropic-force models from the two entropies and examine
the properties of the two models in order to understand
entropic cosmology more deeply. Note that power-law and
logarithmic entropic corrections have been discussed
[13,14,17–19,42,43].
In addition, in entropic cosmology, the entropy on the

horizon of the Universe can increase during the evolution
of the Universe [15], even if we consider a homogeneous
and isotropic universe. However, a bulk viscosity of cos-
mological fluids [44–69] is usually the only thing that can
generate an entropy in the homogeneous and isotropic
universe [49]. (Such a cosmological model is referred to
as bulk viscous cosmology.) Through the study of entropic
cosmology, we may be able to discuss the classical entropy
generated by bulk viscous stresses.
In this context, we examine entropic cosmology using a

generalized black-hole entropy (proportional to its vol-
ume) proposed by Tsallis and Cirto [41]. In the present
study, we derive entropic-force terms not only from the
Bekenstein entropy but also from the generalized entropy.
Moreover, using an effective description similar to bulk
viscous cosmology, we formulate the modified Friedmann,
acceleration, and continuity (conservation) equations
for entropic cosmology. Note that the entropic force*komatsu@t.kanazawa-u.ac.jp
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considered here is different from the idea that gravity itself
is an entropic force [70,71]. Since we focus on background
evolutions of the late universe, we do not discuss the
inflation of the early universe.

The remainder of the present paper is organized as
follows. In Sec. II, we present a brief review of three
cosmological models, i.e., �CDM (lambda cold dark
matter) cosmology, bulk viscous cosmology, and entropic
cosmology. In Sec. III, we derive entropic-force terms from
both the Bekenstein entropy and a generalized black-hole
entropy. We also formulate the modified Friedmann,
acceleration and continuity equations for two entropic-
force models based on the obtained entropic-force terms.
In Sec. IV, we examine a model that combines the two
entropic-force models. In Sec. V, we discuss the evolution
of the Universe in the two entropic-force models using
solutions of the combined model. Finally, in Sec. VI, we
present a discussion and our conclusions.

II. COSMOLOGICAL MODELS

In the present paper, we consider a homogeneous, iso-
tropic, and spatially flat universe and examine the scale
factor aðtÞ at time t in the Friedmann-Lemaı̂tre-Robertson-
Walker metric. In this section, we present a brief review of
three cosmological models, i.e., �CDM, bulk viscous, and
entropic cosmologies, focusing on the Friedmann, accel-
eration, and continuity equations. (A spatially nonflat uni-
verse is discussed in the last paragraph of in Sec. IV.)

A. �CDM cosmology

We first introduce the well-known�CDMmodels [7–9].
In the standard �CDM model, the Friedmann equation is
given as �

_aðtÞ
aðtÞ

�
2 ¼ HðtÞ2 ¼ 8�G

3
�ðtÞ þ�

3
; (1)

and the acceleration equation is

€aðtÞ
aðtÞ ¼

_HðtÞ þHðtÞ2 ¼ � 4�G

3

�
�ðtÞ þ 3pðtÞ

c2

�
þ�

3
: (2)

In addition, the continuity equation is given by

_�ðtÞ þ 3
_aðtÞ
aðtÞ

�
�ðtÞ þ pðtÞ

c2

�
¼ 0; (3)

where the Hubble parameter HðtÞ is defined by

HðtÞ � da=dt

aðtÞ ¼ _aðtÞ
aðtÞ ; (4)

and G, �, c, �ðtÞ, and pðtÞ are the gravitational constant, a
cosmological constant, the speed of light, the mass density
of cosmological fluids, and the pressure of cosmological
fluids, respectively. Equations (1) and (2) include the extra
driving terms, i.e., �=3, which can explain the accelerated
expansion of the late universe.

The continuity equation is consistent with the
Friedmann and acceleration equations, because two of
the three equations are independent [7]. In other words, if
the Friedmann and acceleration equations are used, Eq. (3)
is derived from these two equations. Note that Eq. (3) can
be derived from the first law of thermodynamics as well,
assuming adiabatic (isentropic) processes, without using
the Friedmann and acceleration equations [7].

B. Bulk viscous cosmology

In bulk viscous cosmology, a bulk viscosity � of cos-
mological fluids is assumed [44–69]. Usually, the bulk
viscosity is the only thing that can generate an entropy in
the homogeneous and isotropic universe [49]. Such a cos-
mological model is referred to as bulk viscous cosmology.
For example, in the 1980s, Barrow [46,47], Davies [48],
and Lima et al. [49] investigated bulk viscous cosmology
in order to discuss the inflation of the early universe.
Recently, a number of studies have examined not only
the inflation but also the accelerated expansion of the late
universe, based on bulk viscous cosmology [50–69].
Generally, an effective pressure p0 for bulk viscous

cosmology is given by

p0ðtÞ ¼ pðtÞ � 3�HðtÞ; (5)

where, for simplicity, � is a constant. (It is possible to
assume a variable bulk viscosity. For instance, see
Refs. [64,67] and the references therein.) In bulk viscous
cosmology, the Friedmann equation is given by�

_a

a

�
2 ¼ 8�G

3
�: (6)

Unlike the �CDM model [Eq. (1)], Eq. (6) does not
include an extra term such as a cosmological constant.
Using the effective pressure p0, the acceleration equation
for bulk viscous cosmology is given by

€a

a
¼ � 4�G

3

�
�þ 3

p0

c2

�
: (7)

Substituting Eq. (5) into Eq. (7) and rearranging, we obtain
the acceleration equation as

€a

a
¼ � 4�G

3

�
�þ 3

p

c2

�
þ 12�G

c2
�H: (8)

The last term, 12�G�H=c2, corresponds to the extra driv-
ing term [15]. Accordingly, instead of the cosmological
constant, the extra term due to the bulk viscosity can
explain the accelerated expansion of the Universe. Note
that the extra term considered here is proportional to the
Hubble parameter HðtÞ. The continuity equation for bulk
viscous cosmology is given by

_�þ 3
_a

a

�
�þ p0

c2

�
¼ 0: (9)
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Substituting Eq. (5) into Eq. (9) and rearranging, we have

_�þ 3
_a

a

�
�þ p

c2

�
¼ 9�

c2
H2: (10)

Equation (10) has a nonzero right-hand side related to a
classical entropy generated by bulk viscous stresses
[15,46,47].

We now derive the continuity equation using a different
approach. To this end, we use the generalized continuity
equation obtained from the general Friedmann and accel-
eration equations [15], because two of the three equations
are independent. The general Friedmann and acceleration
equations are given, respectively, by�

_a

a

�
2 ¼ 8�G

3
�þ fðtÞ; (11)

and

€a

a
¼ � 4�G

3

�
�þ 3p

c2

�
þ gðtÞ; (12)

where fðtÞ and gðtÞ are general functions. Using Eqs. (11)
and (12), we obtain the generalized continuity equation
[15] given by

_�þ 3
_a

a

�
�þ p

c2

�
¼ 3

4�G
H

�
�fðtÞ �

_fðtÞ
2H

þ gðtÞ
�
: (13)

Comparing Eqs. (11) and (12) with Eqs. (6) and (8), we can
set the general functions as fðtÞ ¼ 0 and gðtÞ ¼
12�G�H=c2. Substituting these functions into Eq. (13),
we obtain

_�þ 3
_a

a

�
�þ p

c2

�
¼ 3

4�G
H

�
12�G

c2
�H

�
¼ 9�

c2
H2: (14)

Equation (14) is the same as Eq. (10). This indicates that
Eq. (10) obtained from the effective pressure is consistent
with Eq. (14) obtained from the Friedmann and accelera-
tion equations. The consistency plays an important role
in formulating the entropic-force models discussed in
Sec. III.

C. Entropic cosmology

In the entropic cosmology suggested by Easson et al.
[12,13], the horizon of the Universe is assumed to have an
associated entropy and an approximate temperature. The
entropy considered here is the Bekenstein entropy. In the
present study, we refer to this cosmology as the standard
entropic cosmology. (The Bekenstein entropy is discussed
in detail in Sec. III A.)

In a study by Koivisto et al. [14], the modified
Friedmann and acceleration equations are summarized as�

_a

a

�
2 ¼ 8�G

3
�þ �1H

2 þ �2
_H; (15)

and

€a

a
¼ � 4�G

3

�
�þ 3p

c2

�
þ �1H

2 þ �2
_H: (16)

The four coefficients �1, �2, �1, and �2 are dimensionless
constants. The H2 and _H terms with the dimensionless
constants correspond to the extra driving terms, i.e.,
entropic-force terms. The entropic-force terms are derived,
taking into account the entropy and temperature on the
horizon of the Universe due to the information holograph-
ically stored there [12]. We can solve the two equations
assuming the single-fluid-dominated universe [14,15].
Note that we neglect high-order terms for quantum correc-
tions, because we do not discuss the inflation of the early
universe in the present paper. (The dimensionless constants
were expected to be bounded by 3=ð2�Þ & �1 � 1 and
0 � �2 & 3=ð4�Þ, and typical values for a better fitting
were �1 ¼ 3=ð2�Þ and �2 ¼ 3=ð4�Þ [12]. It was argued
that the extrinsic curvature at the surface was likely to
result in something like �1 ¼ �1 ¼ 3=ð2�Þ and �2 ¼
�2 ¼ 3=ð4�Þ [13,14].)
As examined in Ref. [15], we can simplify the two

modified Friedmann equations, assuming a nonadiabatic-
like expansion of the Universe. The simple modified
Friedmann and acceleration equations are summarized as

�
_a

a

�
2 ¼ 8�G

3
�þ �1H

2; (17)

€a

a
¼ � 4�G

3

�
�þ 3p

c2

�
þ �1H

2: (18)

Equations (17) and (18) do not include _H terms. In fact,
Easson et al. first proposed that the entropic-force terms of
the modified acceleration equation are H2 or 3

2�H
2; i.e., _H

terms are not included in the entropic-force terms [12]. In
other words, Eq. (18) is consistent with their original
acceleration equation, as discussed in Sec. III A. In the
present paper, we select Eqs. (17) and (18) as standard
entropic-force models. (Note that it may be possible to
neglect the entropic-force terms of the modified Friedmann
equation, i.e., �1 ¼ �2 ¼ 0. In the standard entropic cos-
mology [14], the entropic-force terms are added not only
with the acceleration equation but also with the Friedmann
equation, as in the case of the �CDM models.)
In Ref. [12], Easson et al. considered that the continuity

equation was given by _�þ 3ð _a=aÞ½�þ ðp=c2Þ� ¼ 0,
assuming an adiabatic (isentropic) expansion. However,
in entropic cosmology, since the entropy on the horizon
is assumed, the entropy can increase during the evolution
of the Universe. Therefore, in a previous study, we derived
the continuity equation from the first law of thermodynam-
ics, taking into account a nonadiabatic-like process caused
by the entropy and the temperature on the horizon [15].
Consequently, the modified continuity equation was
written as
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_�þ 3
_a

a

�
�þ p

c2

�
¼ ��

�
3

4�G
H _H

�
: (19)

Because of the nonzero right-hand side, Eq. (19) was likely
consistent with the continuity equation obtained from the
modified Friedmann and acceleration equations [15]. In the
present paper, we do not use Eq. (19) as the modified
continuity equation. Instead, in the next section, we derive
the modified continuity equation from an effective pressure
for entropic cosmology.

We point out that a similar nonzero right-hand side of
the continuity equation appears not only in bulk viscous
cosmology but also in ‘‘energy exchange cosmology,’’ in
which the transfer of energy between two fluids is assumed
[15,72], e.g., the interaction between matter and radiation
[73], matter creation [74], interacting quintessence [75],
the interaction between dark energy and dark matter [76],
and dynamical vacuum energy [77–87]. In particular,
cosmological equations for dynamical vacuum energy
models are very similar to those for entropic-force models.
Therefore, in the following paragraph, we discuss a
similarity between the two models.

Instead of a cosmological constant, a variable cosmo-
logical term �ðtÞ is assumed in dynamical vacuum energy
models, i.e.,�ðtÞCDMmodels [77–87]. Various�ðtÞ terms
(e.g., H2, H, and constant terms) have been examined in
those works. For example, see Refs. [79–83]. Recently, H2

and _H terms have been investigated in Refs. [21,87]. [The
H2 and _H terms are the same as the entropic-force terms
shown in Eqs. (15) and (16).] Consequently, the influence
of _H terms was found to be similar to that of H2 terms. In
other words, essentially new properties of the late universe
were not obtained from _H terms. This implies that the _H
terms can be neglected as if Eqs. (17) and (18) were the
approximated Friedmann and acceleration equations, re-
spectively. In addition, in�ðtÞCDMmodels, the continuity

equation for matter ‘‘m’’ is arranged as _�m þ 3ð _a=aÞ�
ð�m þ pm=c

2Þ ¼ � _� [82]. The continuity equation is
equivalent to Eq. (19), when �ðtÞ is proportional
to H2. In this way, cosmological equations for �ðtÞCDM
models are similar to those for entropic-force models.
Accordingly, the cosmological equations and their solu-
tions discussed in the present paper are similar to those for
�ðtÞCDM models, especially in the work of Basilakos
et al. [82]. However, a theoretical background of the
�ðtÞCDMmodel is different from that of the entropic-force
model.

Finally, we discuss a fundamental problem of the stan-
dard entropic cosmology which includes H2 and _H terms
[Eqs. (15) and (16)]. In fact, H2 and _H terms of entropic-
force terms cannot describe a decelerating and accelerating
universe predicted by the standard �CDM model. This
problem has been discussed in Refs. [21,85] and our pre-
vious paper [15]. In particular, Basilakos et al. have shown
that it is not the H2 and _H terms but extra constant terms
that are important for describing the decelerating and

accelerating universe [21]. We emphasize that the standard
entropic cosmology has such a fundamental problem, since
entropic-force terms are usually considered to beH2 and _H
terms. However, a generalized black-hole entropy [41] is
expected to solve the problem, as discussed later. (It should
be noted that the above problem does not occur in
�ðtÞCDM models, as examined in Refs. [21,85]. This is
because the extra constant term is naturally obtained from
an integral constant of the renormalization group equation
for the vacuum energy density. For details, see a summa-
rized review [84] and a recent thorough review [86].)

III. DERIVATION OF ENTROPIC FORCE
FOR ENTROPIC COSMOLOGY

In this section, in order to discuss entropic cosmology,
we derive entropic-force terms from the Bekenstein
entropy and a generalized black-hole entropy proposed
by Tsallis and Cirto [41]. In Sec. III A, we derive the
standard entropic-force term from the Bekenstein entropy,
which is proportional to the surface area of a sphere with
the Hubble radius. Moreover, using an effective description
for pressure, we reformulate the entropic-force model. In
Sec. III B, we assume the generalized entropy proportional
to the volume. We derive an entropic-force term from the
generalized entropy and propose a new entropic-force
model. In the present paper, we use the Hubble radius
as the preferred screen, because the apparent horizon
coincides with the Hubble radius in the spatially flat
universe [12].

A. Entropic force from the Bekenstein entropy

In the standard entropic cosmology, the modified
Friedmann and acceleration equations include H2 terms
[Eqs. (15)–(18)] as entropic-force terms. We derive the
entropic-force term from the Bekenstein entropy, accord-
ing to the work of Easson et al. [12]. We also reformulate
the entropic-force model, using an effective pressure for
entropic cosmology.

1. Derivation of entropic force from the
Bekenstein entropy

For entropic cosmology, we assume that the Hubble
horizon has an approximate temperature T and an associ-
ated entropy S, where the Hubble horizon (radius) rH is
given by

rH ¼ c

H
: (20)

The temperature T on the Hubble horizon is given by

T ¼ ℏH
2�kB

� � ¼ ℏ
2�kB

c

rH
�; (21)

where kB and ℏ are the Boltzmann constant and the
reduced Planck constant, respectively. The reduced
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Planck constant is defined by ℏ � h=ð2�Þ, where h is the
Planck constant. The temperature considered here is
obtained by multiplying the horizon temperature,
ℏH=ð2�kBÞ, by � [15]. In the present study, � is a non-
negative free parameter on the order ofOð1Þ, typically ��
3
2� or 1

2 . A similar parameter for the screen temperature has

been discussed in Refs. [12,17–19]. (Note that the tem-
perature on the horizon can be evaluated as 10�30 K, which
is slightly lower than the temperature of our cosmic
microwave background radiation, 2.73 K. We use the tem-
perature on the horizon, assuming thermal equilibrium
states based on a single holographic screen [12,13].)

As an associated entropy on the Hubble horizon, the
Bekenstein entropy S is given as

S ¼ kBc
3

ℏG
AH

4
; (22)

where AH is the surface area of the sphere with the Hubble
radius rH. As shown in Eq. (22), the Bekenstein entropy is
proportional to AH. Substituting AH ¼ 4�r2H into Eq. (22)
and using rH ¼ c=H as given in Eq. (20), we obtain

S ¼ kBc
3

ℏG
AH

4
¼ kBc

3

ℏG
4�r2H
4

¼ kBc
3

ℏG
�

�
c

H

�
2

¼
�
�kBc

5

ℏG

�
1

H2
¼ K

1

H2
; (23)

where K is a positive constant [15] given by

K ¼ �kBc
5

ℏG
: (24)

The entropic-force Fr can be given by

Fr ¼ � dE

dr
¼ �T

dS

dr

�
¼ �T

dS

drH

�
; (25)

where the minus sign indicates the direction of increasing
entropy or the screen corresponding to the horizon [12].
Substituting Eqs. (21) and (22) into Eq. (25) and using
AH ¼ 4�r2H, we have the entropic force as

Fr ¼ �T
dS

drH
¼ � ℏ

2�kB

c

rH
�� d

drH

�
kBc

3

ℏG
4�r2H
4

�

¼ ��
c4

G
: (26)

Therefore, the pressure peB derived from the Bekenstein

entropy is given by

peB ¼ Fr

AH

¼ ��
c4

G

1

AH

¼ ��
c4

G

1

4�r2H

¼ ��
c4

G

1

4�ðc=HÞ2 ¼ ��
c2

4�G
H2: (27)

The above derivation is based on the original idea of
Easson et al. [12]. Note that Eq. (27) includes � used in
this study, where � is a free parameter for the temperature.

In the following, in order to reformulate entropic cos-
mology, we consider an effective description similar to
bulk viscous cosmology. In other words, we assume an
effective pressure for entropic cosmology. We will discuss
the reason for this in Sec. III B. We assume that the
effective pressure p0 based on the Bekenstein entropy is
given by

p0 ¼ pþ peB ¼ p� �
c2

4�G
H2: (28)

Using p0, the acceleration equation can be written as

€a

a
¼ � 4�G

3

�
�þ 3p0

c2

�
: (29)

Accordingly, substituting Eq. (28) into Eq. (29), we have

€a

a
¼ � 4�G

3

�
�þ 3ðp� � c2

4�GH
2Þ

c2

�

¼ � 4�G

3

�
�þ 3p

c2

�
þ �H2: (30)

The �H2 term is the entropic-force term, which can ex-
plain the accelerated expansion of the Universe. When
� ¼ 1, Eq. (30) corresponds to the modified acceleration
equation derived by Easson et al. [12].
We now examine the continuity equation for entropic

cosmology. Using the effective pressure p0, the continuity
equation is expected to be given by

_�þ 3
_a

a

�
�þ p0

c2

�
¼ 0: (31)

Substituting Eq. (28) into Eq. (31) and rearranging, we
have

_�þ 3
_a

a

�
�þ p

c2

�
¼ �

3

4�G
H3: (32)

This is the modified continuity equation obtained from the
effective pressure for entropic cosmology. In the present
paper, we consider Eq. (32) as the modified continuity
equation for entropic cosmology derived from the
Bekenstein entropy. [Note that Eqs. (32) and (19) are
consistent with each other when _H ¼ �H2. The universe
for _H ¼ �H2 corresponds to the empty universe, as
discussed in Sec. IV.]
We can determine two dimensionless constants �1 and

�1 included in the modified Friedmann and acceleration
equations [Eqs. (17) and (18)] using two continuity equa-
tions. The first continuity equation is Eq. (32), whereas the
second continuity equation can be derived from the modi-
fied Friedmann and acceleration equations. In order to
obtain the second continuity equation, we use the general-
ized continuity equation, i.e., Eq. (13). Comparing
Eqs. (11) and (12) with Eqs. (17) and (18), we can set
general functions as fðtÞ ¼ �1H

2 and gðtÞ ¼ �1H
2.
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Substituting these functions into Eq. (13) and rearranging,
we have the second continuity equation, which is given by

_�þ 3
_a

a

�
�þ p

c2

�
¼ 3

4�G
H

�
��1H

2 � 2�1H _H

2H
þ �1H

2

�

¼ 3

4�G
Hðð�1 � �1ÞH2 � �1

_HÞ: (33)

We expect that the two modified continuity equations,
i.e., Eqs. (32) and (33), are consistent with each other.
Consequently, we obtain �1 and �1 as

�1 ¼ 0 and �1 ¼ �: (34)

Therefore, we can neglect the entropic-force term �1H
2 of

the modified Friedmann equation shown in Eq. (17). This is
because, in the present paper, we assume the effective
pressure for entropic cosmology.

As mentioned previously, we consider � as a free
parameter for the temperature. Moreover, a free parameter
for the entropy may be required for calculating TdS.
However, we do not use the free parameter for the entropy,
because we assume that the Bekenstein entropy is given by
S ¼ ðkBc3AHÞ=ð4ℏGÞ [Eq. (22)].

2. Entropic-force model for the Bekenstein entropy

In Sec. III A 1, we derived an entropic-force term from
the Bekenstein entropy and obtained an entropic-force
model. Consequently, the modified Friedmann, accelera-
tion, and continuity equations are summarized as�

_a

a

�
2 ¼ 8�G

3
�þ �1H

2; (35)

€a

a
¼ � 4�G

3

�
�þ 3p

c2

�
þ �1H

2; (36)

and

_�þ 3
_a

a

�
�þ p

c2

�
¼ �

3

4�G
H3; (37)

where �1 and �1 are given by

�1 ¼ 0 and �1 ¼ �: (38)

Note that we leave �1H
2 in Eq. (35) in order to discuss a

combined model later.

B. Entropic force from a generalized entropy

Thus far, we have considered the Bekenstein entropy to
discuss the standard entropic cosmology. Instead of the
Bekenstein entropy, we now assume a generalized black-
hole entropy proposed by Tsallis and Cirto [41].

1. Derivation of entropic force from a generalized entropy

Recently, Tsallis and Cirto [41] examined a black-hole
entropy using appropriate nonadditive generalizations for
d-dimensional systems and suggested a generalized
black-hole entropy. In the following, we introduce the

generalized black-hole entropy, according to the work of
Tsallis and Cirto [41]. In their study, a nonadditive entropy
(for a set of W discrete states) is defined by

S� ¼ kB
XW
i¼1

pi

�
ln

1

pi

�
� ð� > 0Þ; (39)

where pi is a probability distribution [24,41]. When � ¼ 1,
S� recovers the Boltzmann-Gibbs entropy given by

SBG ¼ �kB
XW
i¼1

pi lnpi: (40)

If we compose two probabilistically independent
subsystems A and B, the Boltzmann-Gibbs entropy SBG
is additive,

SBGðAþ BÞ ¼ SBGðAÞ þ SBGðBÞ: (41)

However, when � � 1, S� is nonadditive,

S�ðAþ BÞ � S�ðAÞ þ S�ðBÞ: (42)

This is because, for � > 0, S�ðAþ BÞ is given by

S�ðAþ BÞ
kB

¼
��

S�ðAÞ
kB

�
1=� þ

�
S�ðBÞ
kB

�
1=�

�
�
: (43)

In Ref. [41], Tsallis and Cirto demonstrated that a gener-
alized black-hole entropy can be written as

S�¼3=2

kB
/
�
S0

kB

�3
2
; (44)

where the Bekenstein entropy S0 is given by

S0 ¼ kBc
3

ℏG
A0
H

4
; (45)

and A0
H is the event horizon area of a black hole. For

details, see Ref. [41].
We now apply the generalized black-hole entropy to

an entropy for entropic cosmology. To this end, substitut-
ing Eq. (45) into Eq. (44), replacing A0

H with AH, and
rearranging, the entropy S on the Hubble horizon can be
evaluated as

S / A
3
2

H / r3H; (46)

where AH is the surface area of the sphere with the Hubble
radius rH, and, therefore, AH ¼ 4�r2H. Because of non-
additive generalizations, the generalized entropy is propor-
tional to r3H, i.e., volume. Accordingly, from Eqs. (45) and
(46), we assume a generalized entropy Sg given by

Sg ¼ �kBc
3

ℏG
� �r3H; (47)

where � is a non-negative free parameter. Note that � is a
dimensional constant. We hereinafter refer to Sg as the

generalized entropy on the Hubble horizon. Substituting
rH ¼ c=H [Eq. (20)] into Eq. (47), we obtain
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Sg ¼ �kBc
3

ℏG
� �r3H ¼ �kBc

3

ℏG
� �

�
c

H

�
3 ¼

�
�kBc

5

ℏG

�
c� 1

H3

¼ Kc�
1

H3
; (48)

where K is �kBc
5=ðℏGÞ [Eq. (24)].

In order to calculate an entropic force, we use the
generalized entropy [Eq. (47)] and the temperature T on
the horizon [Eq. (21)]. Substituting Eqs. (21) and (47) into
Eq. (25) and using rH ¼ c=H, we obtain the entropic
force as

Fr ¼ �T
dS

dr
¼ �T

dSg
drH

¼ � ℏ
2�kB

c

rH
�� d

drH

�
�kBc

3

ℏG
� �r3H

�

¼ ��
c4

G

�
3

2
�rH

�
¼ ��

c4

G

�
3c�

2

1

H

�
: (49)

Therefore, the pressure peg derived from the generalized

entropy is given as

peg ¼
Fr

AH

¼��
c4

G

�
3c�

2

1

H

�
1

4�r2H

¼��
c4

G

�
3c�

2

1

H

�
1

4�ðc=HÞ2¼��
c2

4�G

3c�

2
H: (50)

In this equation, 3c�=2 is shown separately in order to
clarify the difference between Eqs. (27) and (50).
Similarly, 3c�=2 is shown separately in the following.

In the present study, we assume an effective pressure p0
for entropic cosmology. Using Eq. (50), the effective pres-
sure p0 based on the generalized entropy is given by

p0 ¼ pþ peg ¼ p� �
c2

4�G

3c�

2
H: (51)

Substituting Eq. (51) into Eq. (29), we have

€a

a
¼ � 4�G

3

�
�þ 3ðp� � c2

4�G
3c�
2 HÞ

c2

�

¼ � 4�G

3

�
�þ 3p

c2

�
þ �

3c�

2
H: (52)

This equation is the modified acceleration equation derived
from the generalized entropy. TheH term on the right-hand
side corresponds to an extra driving term to explain the
accelerated expansion of the Universe. The extra driving
term is found not to be the H2 term but rather to be the H
term, unlike in the case of the standard entropic cosmology.
The continuity equation is expected to be given by

_�þ 3
_a

a

�
�þ p0

c2

�
¼ 0: (53)

Substituting Eq. (51) into Eq. (53) and rearranging, we
have

_�þ 3
_a

a

�
�þ p

c2

�
¼ �

3

4�G

3c�

2
H2: (54)

In this paper, we consider Eq. (54) as the modified con-
tinuity equation based on the generalized entropy [88].
Interestingly, the effective pressure, Eq. (51), is similar

to Eq. (5), i.e., p0 ¼ p� 3�H for bulk viscous cosmology.
Therefore, Eqs. (52) and (54) are also similar to Eqs. (8)
and (10) for bulk viscous cosmology. This is probably
because the generalized entropy assumed here is propor-
tional not to the surface area but to the volume. However,
the similarity may be interpreted as a sign that the gener-
alized entropy behaves as if it were a classical entropy
generated by bulk viscous stresses. In other words, the
generalized entropy may be related to a bulk viscosity of
cosmological fluids through a holographic screen. In fact,
the bulk viscosity is usually the only thing that can gen-
erate an entropy in the homogeneous and isotropic uni-
verse. Accordingly, this interpretation may help to explain
the origin of the bulk viscosity of cosmological fluids. As
an alternative interpretation, the bulk viscosity may be
derived from an extra entropy that is proportional to the
volume of the Universe.

2. Entropic-force model for a generalized entropy

In Sec. III B 1, H terms are derived from a generalized
entropy on the horizon. Accordingly, we expect that the
modified Friedmann and acceleration equations are sum-
marized, respectively, as�

_a

a

�
2 ¼ 8�G

3
�þ �̂3H; (55)

and

€a

a
¼ � 4�G

3

�
�þ 3p

c2

�
þ �̂3H; (56)

where �̂3 and �̂3 are defined by

�̂ 3 � �3H0 and �̂3 � �3H0: (57)

The two coefficients �3 and �3 are dimensionless con-
stants, andH0 is the present value of the Hubble parameter.
As shown in Eq. (54), the modified continuity equation is
given by

_�þ 3
_a

a

�
�þ p

c2

�
¼ �

3

4�G

3c�

2
H2: (58)

We can determine �̂3 and �̂3, which are included in
Eqs. (55) and (56), from two continuity equations. In this
case, the first continuity equation is Eq. (58). The second
continuity equation (derived from the modified Friedmann
and acceleration equations) is calculated from the gener-
alized continuity equation, i.e., Eq. (13). Comparing
Eqs. (11) and (12) with Eqs. (55) and (56), we can set

general functions as fðtÞ ¼ �̂3H and gðtÞ ¼ �̂3H.
Therefore, substituting these functions into Eq. (13) and
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rearranging, we have the second continuity equation
given by

_�þ 3
_a

a

�
�þ p

c2

�
¼ 3

4�G
H

�
��̂3H� �̂3

_H

2H
þ �̂3H

�

¼ 3

4�G
H

�
ð�̂3 � �̂3ÞH� �̂3

_H

2H

�
: (59)

Since Eqs. (58) and (59) are expected to be consistent with

each other, we obtain �̂3 and �̂3 as

�̂ 3 ¼ 0 and �̂3 ¼ �
3c�

2
: (60)

Accordingly, the dimensionless constants �3 and �3 are
given as

�3 ¼ 0 and �3 ¼ �̂3

H0

¼ �
3c�

2H0

: (61)

As expected, we can neglect the entropic-force term �̂3H
of the modified Friedmann equation, Eq. (55). This is
because, in the above discussion and in the present study,
we assume an effective pressure for entropic cosmology.
Note that we leave �̂3H in Eq. (55) in order to discuss a
combined model in the next section.

In this section, we derive entropic-force terms from the
Bekenstein and generalized entropies, assuming that the
temperature on the horizon is given by Eq. (21), i.e., T ¼
�ℏH=ð2�kBÞ. Consequently, H2 terms are derived from
the Bekenstein entropy, whereas H terms are derived
from the generalized entropy, which is proportional to
volume. The two entropic-force terms for the modified
acceleration equation are summarized in Table I.
Interestingly, the H term is similar to an extra driving
term for bulk viscous cosmology. Therefore, we assume
an effective pressure for entropic cosmology. The modified
acceleration equation is found to include the entropic-force
terms, whereas the Friedmann equation does not include the
entropic-force terms. Based on these results, we propose
two entropic-force models. In the next section, we discuss
solutions of the two entropic-force models.

IV. COMBINED MODEL

In the previous section, the Friedmann equation was
found not to include entropic-force terms, because we
use an effective pressure for entropic cosmology.

Moreover, two entropic-force terms, i.e., H2 and H terms,
are discussed separately, as shown in Secs. III A and III B.
This is because theH2 term is derived from the Bekenstein
entropy, whereas the H term is derived from a generalized
entropy. However, in this section, in order to obtain general
solutions that are widely used, we consider a combined
model in which the Friedmann and acceleration equations
include bothH2 andH terms as the entropic-force terms. In
order to solve the equations, we extend our solution
method, which is discussed in Ref. [15]. Note that the
two extra driving terms for the acceleration equation, i.e.,
H2 and H terms, have been examined in bulk viscous
cosmology. For example, see the work of Avelino and
Nucamendi [64]. Of course, similar extra driving terms
have been discussed using a variable cosmological term.
For instance, Basilakos et al. [82] have examinedH2 andH
terms in detail. Several types of variable cosmological
terms, which include constant terms, are closely investi-
gated in Ref. [82]. For variable � cosmologies, see
Ref. [78], a recent review [86], and the references therein.
We point out that cosmological equations and their solu-
tions discussed in this section are similar to those examined
in the above previous works.

A. Formulations for the combined model

For a combined model, we consider both H2 and H
terms as extra driving terms. Accordingly, the modified
Friedmann equation is given as�

_a

a

�
2 ¼ H2 ¼ 8�G

3
�þ �1H

2 þ �̂3H; (62)

and the modified acceleration equation is given as

€a

a
¼ _H þH2 ¼ � 4�G

3
ð1þ 3wÞ�þ �1H

2 þ �̂3H;

(63)

where w is given by

w ¼ p

�c2
: (64)

�̂3 and �̂3 are defined by

�̂3 � �3H0 and �̂3 � �3H0; (65)

and w represents the equation-of-state parameter for a
generic component of matter. For nonrelativistic matter
(or the matter-dominated universe) w is 0, and for relativ-
istic matter (or the radiation-dominated universe) w is 1=3.
The four coefficients �1, �1, �3, and �3 are dimensionless
constants. For entropic-force models for the Bekenstein
and generalized entropies, three dimensionless constants
are set as �1 ¼ �3 ¼ �3 ¼ 0, and �1 ¼ �3 ¼ �1 ¼ 0,
respectively.
Coupling ð1þ 3wÞ� Eq. (62) with 2� Eq. (63) and

rearranging, we obtain

TABLE I. Entropic-force terms geðtÞ for the modified accel-
eration equation. The Bekenstein and Generalized columns in-
dicate the information for the entropic-force models derived
from the Bekenstein and generalized entropies, respectively.

Parameter Bekenstein Generalized

Entropy �kBc
3

ℏG � r2H
�kBc

3

ℏG � �r3H

geðtÞ �1H
2 �̂3H
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_H ¼ dH

dt
¼ �C1H

2 þ Ĉ3H; (66)

where

C1 ¼ 3ð1þ wÞ � �1ð1þ 3wÞ � 2�1

2
; (67)

and

Ĉ3 ¼ �̂3ð1þ 3wÞ þ 2�̂3

2
: (68)

Equation (66) includes not only theH2 term but also the H
term. (In our previous study [15], the H term was not
considered.) Here, we point out that C1 is a dimensionless

parameter, whereas Ĉ3 is a dimensional parameter.
Substituting Eq. (65) into Eq. (68), we obtain a dimension-
less parameter C3 given by

C3 ¼ Ĉ3

H0

¼ �3ð1þ 3wÞ þ 2�3

2
: (69)

From Eq. (66), ðdH=daÞa is calculated as�
dH

da

�
a ¼

�
dH

dt

�
dt

da
a ¼ ð�C1H

2 þ Ĉ3HÞ a
_a

¼ ð�C1H
2 þ Ĉ3HÞ 1

H
¼ �C1Hþ Ĉ3: (70)

We can rearrange Eq. (70) as

dH

dN
¼ �C1H þ Ĉ3; (71)

where N is defined by

N � ln a and therefore dN ¼ da

a
: (72)

Because of the Ĉ3 term, Eq. (71) is slightly more compli-
cated than the equation examined in Ref. [15]. We can
solve Eq. (71), as discussed in the next subsection.

B. Solutions for the combined model in the
single-fluid-dominated universe

In the previous subsection, we obtain Eq. (71) for the

combined model. We can solve Eq. (71) when C1 and Ĉ3

are constant. In fact, C1 and Ĉ3 are constant when five

parameters, i.e., �1, �1, �̂3, �̂3, and w, are constant.
Therefore, we assume that these five parameters are
constant. This indicates that we assume a single-fluid-
dominated universe. For example, w is 0 for the matter-
dominated universe and 1=3 for the radiation-dominated

universe. In the following, we consider C1, Ĉ3, and C3 as
non-negative free parameters. For simplicity, we also
assume C1 > 0.

When C1 and Ĉ3 are constant, Eq. (71) is integrated asZ dH

�C1H þ Ĉ3

¼
Z

dN: (73)

Solving this integral, and using N ¼ lna, we have

C1H � Ĉ3 ¼ Da�C1 ; (74)

and dividing this equation by C1 gives

H � Ĉ3

C1

¼ D

C1

a�C1 ; (75)

where D is an integral constant. Dividing Eq. (75) by

H0 � ðĈ3=C1Þ ¼ ðD=C1Þa�C1

0 , we have

H � ðĈ3=C1Þ
H0 � ðĈ3=C1Þ

¼
�
a

a0

��C1

; (76)

where a0 is the present value of the scale factor.

Rearranging Eq. (76), and substituting C3 ¼ Ĉ3=H0

[Eq. (69)] into the resulting equation, we obtain

H

H0
¼

�
1� 1

H0

Ĉ3

C1

��
a

a0

��C1 þ 1

H0

Ĉ3

C1

¼
�
1� C3

C1

��
a

a0

��C1 þ C3

C1

: (77)

Equation (77) indicates that C1 and C3 play an important
role in the combined model. We can determine C1 and C3

from Eqs. (67) and (69), respectively. Since C3 is related to
the H terms, Eq. (77) is somewhat complicated. For the
case in which C3 ¼ 0, typical results have been discussed
in our previous study [15]. For example, when C3 ¼ 0,
H=H0 for C1 ¼ 2, 1.5, 1, and 0 are consistent with H=H0

for the radiation-dominated, matter-dominated, empty, and
�-dominated universes, respectively, [15].

1. Scale factor a

We examine the scale factor aðtÞ, using Eq. (77). For this
purpose, Eq. (77) is rearranged as

~H ¼ ð1� AÞ~a�C1 þ A; (78)

where ~H, ~a, and A are defined by

~H � H

H0

; ~a � a

a0
; A � C3

C1

: (79)

Multiplying Eq. (78) by ~a, we obtain

~H ~a ¼ ~a½ð1� AÞ~a�C1 þ A�: (80)

On the other hand, we can calculate ~H ~a as

~H ~a ¼ H

H0

a

a0
¼ _a=a

H0

a

a0
¼ _a

H0a0
¼ a0

d
dt ð aa0Þ

H0a0
¼ 1

H0

d~a

dt
:

(81)

Therefore, substituting Eq. (81) into Eq. (80), we have
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1

H0

d~a

dt
¼ ~a½ð1� AÞ~a�C1 þ A�: (82)

As examined in Ref. [64], integrating Eq. (82), we obtain

Z ~a

1

da0

a0½ð1� AÞa0�C1 þ A� ¼
Z t

t0

H0dt
0 ¼ H0ðt� t0Þ; (83)

where t0 represents the present time. Solving this integral
yields

1

AC1

ln ½1� Aþ A~aC1� ¼ H0ðt� t0Þ: (84)

Moreover, solving Eq. (84) for ~a and substituting Eq. (79)
into the result, we finally have

a

a0
¼

�
1þ C1

C3

ðexp ½C3H0ðt� t0Þ� � 1Þ
� 1

C1 ; (85)

where C1 > 0 and C3 > 0 are assumed. Avelino and
Nucamendi discussed this type of equation for bulk viscous
cosmology in detail [64]. Note that, unlike the combined
model of the present study, the Friedmann equation for
bulk viscous cosmology does not have extra terms. When
C3 ¼ 0, the normalized scale factor a=a0 is given by

a

a0
¼

� ðC1H0tÞ
1
C1 ðC1 � 0Þ;

exp ½H0ðt� t0Þ� ðC1 ¼ 0Þ;
(86)

where t0 is set to be 1=ðC1H0Þ [15].
We now examine the deceleration parameter q0, which

is used to discuss the expansion of the Universe [7–9]. The
deceleration parameter is defined by

q0 � �
�

€a

aH2

�
t¼t0

: (87)

Substituting Eq. (66) into Eq. (63), we obtain

€a

a
¼ _H þH2 ¼ ð�C1H

2 þ Ĉ3HÞ þH2

¼ ð1� C1ÞH2 þ Ĉ3H; (88)

and rearranging the result yields

� €a

aH2
¼ C1 � Ĉ3

H
� 1: (89)

This equation is a temporal deceleration parameter qðtÞ.
Even if C1 and Ĉ3 are constant, qðtÞ can vary during the

evolution of the Universe depending on the Ĉ3=H term.

Substituting Eq. (89) into Eq. (87) and using Ĉ3 ¼ C3H0

[Eq. (69)], the deceleration parameter q0 is given as

q0 ¼ C1 � 1� Ĉ3

H0

¼ C1 � C3 � 1: (90)

When C1 � C3 < 1, q0 is negative corresponding to a
positive acceleration. This will be discussed in Sec. V.

Note that, in calculating q0, we do not assume the single-
fluid-dominated universe.
The temporal deceleration parameter qðtÞ [Eq. (89)] is a

negative constant when C1 < 1 and Ĉ3 ¼ 0. In other
words, the expansion of the Universe uniformly accelerates

when C1 < 1 and Ĉ3 ¼ 0. Therefore, entropic-force mod-
els for the Bekenstein entropy cannot describe a decelerat-
ing and accelerating universe. As discussed in Sec. II C, a
similar fact has been examined in Refs. [15,21,85], based
on the standard entropic cosmology which includesH2 and
_H terms [Eqs. (15) and (16)].

2. Luminosity distance dL

The luminosity distance is an important parameter for
investigating the accelerated expansion of the Universe.
Therefore, we examine the luminosity distance dL of the
single-fluid-dominated universe in the combined model.
The luminosity distance [89] is generally given as

dLðzÞ ¼ cð1þ zÞ
H0

Z 1þz

1

dy

FðyÞ ; (91)

where the integrating variable y and the function FðyÞ are
given by

y ¼ a0
a
; (92)

and

FðyÞ ¼ H

H0

; (93)

and z is the redshift defined by

1þ z � y ¼ a0
a
: (94)

For the combined model, substituting Eq. (77) into
Eq. (93), and using y ¼ a0=a, we obtain FðyÞ as

FðyÞ ¼ H

H0

¼
�
1� C3

C1

��
a

a0

��C1 þ C3

C1

¼
�
1� C3

C1

�
yC1 þ C3

C1

: (95)

Accordingly, substituting Eq. (95) into Eq. (91), we have�
H0

c

�
dL ¼ ð1þ zÞ

Z 1þz

1

dy

ð1� C3

C1
ÞyC1 þ C3

C1

; (96)

where C1 > 0 is assumed. We can calculate the luminosity
distance dL from Eq. (96). As a typical example [15], the
luminosity distance for C3 ¼ 0 is given by�
H0

c

�
dL ¼

(
1þz
C1�1 ½1� ð1þ zÞ�C1þ1� ðC1 � 1Þ;
ð1þ zÞ ln ð1þ zÞ ðC1 ¼ 1Þ:

(97)

In this section, we obtain solutions for the combined
model, assuming the single-fluid-dominated universe. The
solutions can be widely used because the modified
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Friedmann and acceleration equations simultaneously in-
clude both H2 and H terms. In the next section, using the
obtained solutions, we discuss two entropic-force models
derived from the Bekenstein and generalized entropies.

In the present study, in order to examine entropic cos-
mology, we consider a spatially flat universe (k ¼ 0),
where k is a curvature constant. However, in a spatially

nonflat universe (k � 0), the apparent horizon, rA ¼
c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ ðk=a2Þp

, does not coincide with the Hubble hori-
zon, rH ¼ c=H, because of k � 0 [12]. Accordingly, we
use the apparent horizon as the preferred screen rather than
the Hubble horizon, when we consider the spatially nonflat
universe. Of course, in the standard entropic cosmology, it
was argued that the extrinsic curvature at the surface was
likely to result in an expression such as �1 ¼ �1 ¼ 3

2� and

�2 ¼ �2 ¼ 3
4� [13,14]. Similarly, the influence of the cur-

vature may be included in four coefficients �1, �1, �3, and
�3. Note that in the present paper, we consider a spatially
flat universe. (Bulk viscous cosmology in the spatially
nonflat universe has been examined in detail. See, e.g.,
Refs. [47,64].)

V. EVOLUTION OF THE UNIVERSE IN THE TWO
ENTROPIC-FORCE MODELS

As entropic-force terms, H2 terms are derived from the
Bekenstein entropy, whereas H terms are derived from a
generalized entropy. Thus, we propose two entropic-force
models derived from the Bekenstein and generalized
entropies. We hereinafter refer to these models as the
Bekenstein entropic-force model [Eqs. (35)–(38)] and the
generalized entropic-force model [Eqs. (55)–(61)], respec-
tively. In this section, we examine the evolution of the
Universe in the two entropic-force models.

For the two entropic-force models, we consider the
matter-dominated universe given by

w ¼ 0: (98)

In Sec. IV, we obtained solutions for the combined model
using four dimensionless constants, i.e., �1, �3, �1, and
�3. In other words, by setting the four constants, we can
obtain the solution of each model. The four constants for
each model are listed in Table II.

For the Bekenstein entropic-force model, �1, �3, and�3

are 0, as described in Sec. III A 2 (and shown in Table II).
Therefore, substituting these values and w ¼ 0 into
Eq. (69), we have C3 ¼ 0. On the other hand, �1 is set to
be 3=4, in order to obtain C1 ¼ 3=4. This is because, as
reported in Ref. [15], when we consider the equation
dH=dN ¼ �C1H, the solution with C1 ¼ 3=4 was con-
sistent with the observed supernova data. Here, C1 ¼ 3=4
was calculated from the Hawking temperature description
[12], without using a fitting with the supernova data [15].
Of course, we accept that �1 should be a free parameter.
For example, C1 is approximated as 0.780, if a fitting

method discussed later herein is used to determine C1.
The value of 0.780 is close to 3=4, or, more specifically,
to 3

2 ð1� 3
2�Þ ¼ 0:7838 � � � . In Ref. [15], C1 ¼ 3

2 ð1� 3
2�Þ

was calculated from the anticipated surface term order
[12]. We have confirmed that the properties of the
Universe for C1 ¼ 3

2 ð1� 3
2�Þ or C1 ¼ 0:780 are similar to

the properties for C1 ¼ 3=4. Accordingly, in the present
paper, we select 3=4 as C1 for the Bekenstein entropic-
force model.
In contrast, for the generalized entropic-force model,�1,

�3, and �1 are 0, as examined in Sec. III B 2 (and shown in
Table II). Substituting these values and w ¼ 0 into
Eq. (67), we obtain C1 ¼ 3=2. (In the standard cosmology,
the universe for C1 ¼ 3=2 corresponds to the matter-
dominated universe [7–9].) On the other hand, �3 is a
free parameter. Therefore, �3 is determined through fitting
with a fine-tuned standard �CDM model based on the
Planck 2013 results [6]. To this end, we use the luminosity
distance.
For the two entropic-force models, we calculate the

luminosity distance dL from Eqs. (96) and (97) and
Table II. For the standard �CDM model, the luminosity
distance of the spatially flat universe is given as�

H0

c

�
dL ¼ ð1þ zÞ

Z z

0
dz0½ð1þ z0Þ2ð1þ�mz

0Þ
� z0ð2þ z0Þ����1=2; (99)

where �m ¼ �m

�c
¼ 8�G�m

3H2
0

and �� ¼ �
3H2

0

[90]. �m and ��

represent the density parameters for matter and �, respec-
tively. Moreover, �c represents the critical density, and �m

is the density of matter, which includes baryon and dark
matter. The universe in which ð�m;��Þ ¼ ð0:315; 0:685Þ
is a fine-tuned standard �CDM model, which takes into
account the recent Planck 2013 best fit values [6]. Note that
we assume�total ¼ �m þ�� ¼ 1 and neglect the density
parameter �r for the radiation [15,16].
In the present study, �3 for the generalized entropic-

force model is determined through fitting with the fine-
tuned standard �CDM model. In fact, substituting �3 ¼ 0
into Eq. (69), C3 is equal to�3. Accordingly, instead of �3,

TABLE II. Dimensionless constants for the two entropic-force
models. The Bekenstein and Generalized columns indicate the
information for the entropic-force models derived from the
Bekenstein and generalized entropies, respectively. For details,
see the text.

Parameter Bekenstein Generalized

�1 0 0

�3 0 0

�1 0:75ð¼3=4Þ 0

�3 0 0.884

C1 0:75ð¼3=4Þ 1:5ð¼3=2Þ
C3 0 0.884
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we determine C3 through fitting with the fine-tuned stan-
dard �CDM model, minimizing the following function
[36] given by

	2ðC1; C3Þ ¼
XNz

i¼0

�
dL;�ðzÞ � dLðz;C1; C3Þ

dL;�ðzÞ
�
2
; (100)

where dL;�ðzÞ and dLðz;C1; C3Þ are the luminosity dis-

tances for the fine-tuned standard �CDM model and the
combined (entropic-force) model, respectively. For the
generalized entropic-force model, C1 is set to be 1.5. In
order to determine C3, the redshift is varied from z ¼ 0 to
z ¼ 2 in increments of �z ¼ 0:01. In other words, z is
given by z ¼ i�z, where i is varied from 0 to Nz ¼ 200.
Through fitting, C3 is approximately determined to be
0.884, as shown in Table II. Since �3 ¼ C3, �3 is set to
be 0.884. (It may be possible to consider C1 and C3 as free
parameters simultaneously. In this case, C1 and C3 are
approximately 2.08 and 1.58, respectively. We do not
discuss such conditions in the present paper.)

We now observe the luminosity distance dL. As shown
in Fig. 1, the two entropic-force models agree well with
supernova data points and the fine-tuned standard �CDM
model. For the generalized entropic-force model, C3 ¼
0:884 is determined through fitting with the fine-tuned
standard �CDM model, as mentioned previously.
Therefore, it is not so surprising that the generalized
entropic-force model agrees well with the standard
�CDM model. For the Bekenstein entropic-force model,
C1 ¼ 0:75 is selected, where the value of 0.75 was
calculated based on the description of the Hawking

temperature [15]. However, it is demonstrated that the
two entropic-force models can describe the present accel-
erating universe without adding the cosmological constant
or dark energy.
As shown in Fig. 1, the difference between the two

entropic-force models is not clear when we observe the
luminosity distance at late times. Therefore, we examine
the time evolutions of the normalized scale factor a=a0
for longer time ranges. For the two entropic-force models,
we calculate a=a0 from Eqs. (85) and (86) and Table II.
For the standard �CDM model, we use the following
equation [7,8]:

H0ðt� t0Þ¼
Z a

a0

1

da0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r

a02þ�m

a0 þ��a
02þð1��totalÞ

q : (101)

We integrate Eq. (101) numerically in order to obtain the
time evolution of the normalized scale factor a=a0. In the
present study, for a spatially flat universe, we assume
�total ¼ �r þ�m þ�� ¼ 1 and neglect the influence
of radiation, i.e., �r ¼ 0 [15].
Figure 2 shows the time evolutions of the normalized

scale factor a=a0. For the Bekenstein entropic-force
model, a=a0 increases uniformly, because a=a0 is given

by ðC1H0tÞ1=C1 [Eq. (86)] when C1 � 0 and C3 ¼ 0. In
fact, a temporal deceleration parameter qðtÞ is given by

� €a=ðaH2Þ ¼ C1 � ðĈ3=HÞ � 1, as shown in Eq. (89).
Accordingly, qðtÞ is constant, when C1 is constant and

Ĉ3 ¼ C3 ¼ 0. In contrast, for the generalized entropic-

force model, qðtÞ can vary when Ĉ3 � 0, even if C1 is
constant. Therefore, we can expect that a=a0 for the gen-
eralized model does not increase uniformly, unlike that for
the Bekenstein model. In order to observe this phenome-
non, we focus on the generalized entropic-force model.

FIG. 1 (color online). Dependence of luminosity distance dL
on redshift z. Here, Bekenstein and Generalized indicate the
information for the entropic-force models derived from the
Bekenstein and generalized entropies, respectively. The open
diamonds with error bars are supernova data points taken from
Ref. [3]. For supernova data points, H0 is set to be
67:3 km=s=Mpc based on the Planck 2013 results [6].

FIG. 2 (color online). Time evolution of normalized scale
factor a=a0. The horizontal axis is normalized as H0ðt� t0Þ.
Here, Bekenstein and Generalized indicate the information for
the entropic-force models derived from the Bekenstein and
generalized entropies, respectively.
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As shown in Fig. 2, the increase in a=a0 tends to become
gradually slower for H0ðt� t0Þ & �0:5. However, for
H0ðt� t0Þ * �0:5, the increase in a=a0 tends to become
gradually faster. In other words, the generalized entropic-
force model predicts a decelerated and accelerated
expansion of the Universe, which is similar to a=a0 for
the fine-tuned standard �CDM model. Interestingly, the
generalized entropic-force model can describe the decel-
erated and accelerated expansion, without adding a con-
stant term such as a cosmological constant.

As discussed in Sec. II C, the standard entropic cosmol-
ogy cannot describe a decelerating and accelerating uni-
verse [21,85]. However, the standard entropic cosmology
can describe the decelerating and accelerating universe if
the modified Friedmann and acceleration equations include
extra constant terms, as shown in Ref. [21]. In the present
study, we do not discuss such entropic-force models that
include constant terms, because the origin of the constant
terms is not clear. (In�ðtÞCDMmodels, the constant terms
are naturally obtained from an integral constant of the
renormalization group equation for the vacuum energy
density [86].) Of course, bulk viscous cosmology can
describe the decelerated and accelerated expansion [64]
because the modified acceleration equation includes the H
term as an extra driving term. However, in the generalized
entropic-force model, the H term is derived from the
generalized entropy, without using a bulk viscosity of
cosmological fluids.

We now examine a transition time ttrans [64], which
represents the time of transition from the decelerated ex-
pansion epoch to the accelerated expansion epoch.
Calculating the second derivative of Eq. (85), equating to
0, and solving the result, we obtain the transition time for
the combined model as

H0ðttrans � t0Þ ¼ 1

C3

ln ðC1 �C3Þ ðC1 >C3 > 0Þ: (102)

Substituting C1 ¼ 1:5 and C3 ¼ 0:884 into Eq. (102), we
haveH0ðttrans � t0Þ � �0:55, for the generalized entropic-
force model. Note that ttrans does not exist for the
Bekenstein entropic-force model, because a=a0 increases
uniformly when C3 ¼ 0.

As shown in Fig. 2, the two entropic-force models are
consistent with the fine-tuned standard �CDM model at
the present time. In order to discuss this more closely, we
examine the deceleration parameter q0. For example, we
can estimate q0 for the fine-tuned standard �CDM model
as q0 � �0:53, from q0 ¼ ð�m � 2�� þ 2�rÞ=2 [8],
where ð�m;��;�rÞ is set to be (0.315, 0.685, 0). For the
two entropic-force models, q0 is calculated from q0 ¼
C1 � C3 � 1, as shown in Eq. (90). Consequently, for
the Bekenstein and generalized entropic-force models,
we have q0 ¼ �0:25 and q0 � �0:38, respectively.
Therefore, at the present time, the acceleration for the

two entropic-force models is slightly slower than that for
the fine-tuned standard �CDM model.
Finally, we observe the evolutions of the Bekenstein and

generalized entropies. In order to calculate the entropy,
S ¼ K=H2 [Eq. (23)] is used for the Bekenstein
entropic-force model, whereas S ¼ Kc�=H3 [Eq. (48)] is
used for the generalized entropic-force model. In the fol-
lowing, the two entropies are normalized as ðH2

0=KÞS and

ðH3
0=ðKc�ÞÞS, respectively. We numerically calculate

ðH=H0Þ�2 and ðH=H0Þ�3 of the fine-tuned standard
�CDM model, in order to compare the two entropic-force
models with the �CDM model. This is because ðH=H0Þ�2

and ðH=H0Þ�3 correspond to ðH2
0=KÞS and ðH3

0=ðKc�ÞÞS,
respectively.
Figure 3 shows the evolutions of the Bekenstein and

generalized entropies. We first focus on the entropies for
the fine-tuned standard �CDM model. For a=a0 & 1, the
entropies for the standard �CDM model increase rapidly,
whereas, for a=a0 * 1, the increase in the entropies tends
to become gradually slower. Since the standard �CDM
model has been widely examined, similar results have
been reported [91–97]. We now examine the two
entropic-force models. For a=a0 & 1, the entropy for
the Bekenstein entropic-force model is consistent with
ðH2

0=KÞS for the standard �CDM model. Similarly, for

a=a0 & 1, the entropy for the generalized entropic-force
model agrees well with ðH3

0=ðKc�ÞÞS for the �CDM
model. This indicates that the evolutions of the late
universe for the two entropic-force models are consistent
with the evolution for the �CDM model. We have con-
firmed this from Figs. 1 and 2 as well. However, for
a=a0 * 1, the entropy for the Bekenstein entropic-force

FIG. 3 (color online). Evolutions of the Bekenstein and gen-
eralized entropies. The vertical axis represents ðH2

0=KÞS and

ðH3
0=ðKc�ÞÞS, for the Bekenstein and generalized entropic-force

models, respectively. The solid lines represent ðH2
0=KÞS and

ðH3
0=ðKc�ÞÞS for the fine-tuned standard �CDM model and

are numerically calculated from ðH=H0Þ�2 and ðH=H0Þ�3.
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model increases uniformly, whereas the increase in the
entropy for the generalized entropic-force model tends
to become gradually slower [Fig. 3]. Therefore, for
a=a0 * 1, the entropy for the Bekenstein entropic-force
model is clearly different from ðH2

0=KÞS for the standard

�CDM model. On the other hand, for a=a0 * 1, the
entropy for the generalized entropic-force model in-
creases more rapidly than ðH3

0=ðKc�ÞÞS for the �CDM
model. However, the increase in the entropy for the
generalized entropic-force model tends to become gradu-
ally slower. Accordingly, the evolution of the entropy for
the generalized entropic-force model is similar to the
evolution for the �CDM model. This is because the
generalized entropic-force model can describe a deceler-
ating and accelerating universe.

VI. DISCUSSION AND CONCLUSIONS

In order to examine entropic cosmology, we have de-
rived extra entropic-force terms not only from the
Bekenstein entropy but also from a generalized entropy,
assuming that the horizon of the Universe has an entropy
and a temperature. Because of nonadditive generalizations,
the generalized entropy is proportional to volume, unlike
for the Bekenstein entropy. Consequently, as entropic-
force terms, H terms are derived from the generalized
entropy, whereas H2 terms are derived from the
Bekenstein entropy.

Interestingly, the H term is similar to an extra driving
term for bulk viscous cosmology. This similarity may be
interpreted as a sign that the generalized entropy behaves
as if it were a classical entropy generated by bulk
viscous stresses. This is probably because the general-
ized entropy considered here is proportional not to area
but rather to volume. However, as one interpretation, the
generalized entropy may be related to a bulk viscosity of
cosmological fluids, through a holographic screen. This
interpretation does not contradict the following descrip-
tion; i.e., the bulk viscosity is considered to be the only
thing that can generate an entropy in the homogeneous
and isotropic universe. In the present study, we assume
an entropy on the horizon of the Universe, using the
holographic principle. However, if we assume another
entropy that is proportional to the volume of the
Universe, its entropic force can likely explain the accel-
erated expansion of the Universe. In other words, the
concept of the entropic force may be applied to the
bulk of the Universe, without using the holographic
principle.

In the present paper, based on effective pressure, we
have formulated the modified Friedmann, acceleration, and
continuity equations for two entropic-force models derived
from the Bekenstein and generalized entropies. The
Friedmann equation is shown not to include the entropic-
force term, whereas the continuity equation has a nonzero
right-hand side. In order to examine the properties of the

Universe in the two entropic-force models, we have con-
sidered a combined model, in which the Friedmann and
acceleration equations include both H2 and H terms
simultaneously as the entropic-force terms. We have
obtained solutions of the combined model, assuming a
homogeneous, isotropic, spatially flat universe, focusing
on the single-fluid-dominated universe.
We have confirmed that the two entropic-force mod-

els can describe the present accelerating universe, with-

out adding the cosmological constant or dark energy.

The Bekenstein entropic-force model is found to predict

a uniformly accelerating universe, whereas the general-

ized entropic-force model predicts a decelerating and

accelerating universe, as in the case for a fine-tuned

standard �CDM model. Similar properties of the uni-

verse with the extra driving terms, i.e., H2 and H
terms, have been examined and discussed in not only

bulk viscous cosmology but also �ðtÞCDM models

with a variable cosmological term �ðtÞ. However, in

the present study, the extra driving terms are derived

from the Bekenstein and generalized entropies, without

using a bulk viscosity of cosmological fluids and dark

energy.
The present study has revealed fundamental properties

of the expanding universe in entropic cosmologies based

on the Bekenstein and generalized entropies. In particular,

the entropic force derived from the generalized entropy

will help in discussing the accelerating universe in other

cosmological models. For example, when an entropy is

assumed to be proportional to r4H, the obtained entropic-

force term is a constant, as if it were a cosmological

constant. Although such an entropy has probably not yet

been suggested, we can discuss cosmological models from

various entropic-force viewpoints. In the present study, in

order to examine entropic cosmology, we assume an en-

tropy on the horizon of the Universe. At least in principle,

it is possible to assume an entropy that is proportional to

the volume of the Universe in order to discuss entropic-

force models.
In the present study, we have not examined cosmologi-

cal fluctuations, since we have focused on background

evolutions of the late universe. However, through linear

density perturbations, it has been discussed that bulk

viscous models are difficult to reconcile with astronomical

observations of structure formations [60]. In addition, as

shown in Ref. [82], �ðtÞCDM models similar to the

combined model are not consistent with the structure

formation data. (The structure formation in �ðtÞCDM
models has been examined in detail [83].) The previous

works imply that the present entropic-force models are

difficult to reconcile with the structure formation data. We

expect that another type of entropy, e.g., S / r4H, helps to
overcome the difficulty. This task is left for future

research.
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