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We consider conserved currents in an interacting network of one-dimensional objects (or strings).

Singular currents localized on a single string are considered in general, and a formal procedure for coarse

graining over many strings is developed. This procedure is applied to strings described by the Nambu-

Goto action, such as cosmic strings. In addition to conserved currents corresponding to the energy-

momentum tensor, we consider an antisymmetric tensor of conserved currents related to the string tangent

vector. Under the assumption of local equilibrium we derive a complete set of hydrodynamic equations for

strings.
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I. INTRODUCTION

A fluid description of zero-dimensional objects (or
particles) can be derived from microscopic equations of
motion by considering a coarse-grained evolution of dis-
tributions instead of individual particles. Then the micro-
scopic conservation laws can be expressed as continuity
equations of mass, momentum and energy that the distri-
butions must obey. Using the kinetic theory of particles one
can also show that there is an equilibrium distribution
which is largely independent of the details of interactions.
Then, under the assumption of a local equilibrium, the
conservation equations are reduced to a system of only
five equations with five unknown parameters: (one) den-
sity, (three) velocity and (one) temperature fields.

In this paper we will derive a fluid description of one-
dimensional objects (or strings) whose microscopic evolu-
tion is governed by the Nambu-Goto action. Similarly to
the particle fluid, the relevant effects of the microscopic
interactions are captured by the kinetic theory whose cen-
tral result is a derivation of the equilibrium distribution of
strings [1]. Under the assumption of local equilibrium, we
derive a complete system of seven equations which can
describe the evolution of a string fluid regardless of the
details of the interactions. The string fluid description is
expected to be indispensable for the analysis of either
topological or fundamental strings in the regimes where
the conventional perturbative methods become unfeasible.

For example, networks of topological cosmic strings
may form as the Universe undergoes symmetry breaking
phase transitions [2]. It is expected that such networks
would give rise to very distinct and detectable signatures
such as gravitational lensing [3], CMB non-Gaussianities
[4], gravitational waves [5], ultrahigh energy cosmic rays
[6], radio signals [7], etc. (See [8] for a review of cosmic
strings.) It is also believed that cosmic superstrings could
form at the end of brane inflation [9], which opens the
possibility of testing string theory in the cosmological
settings. Unfortunately, the networks of cosmic strings
are usually analyzed using either numerical methods

[10,11] within tight computational constraints or analytical
models [12–14] with limited ranges of validity. These
limitations make it difficult, if not impossible, to obtain
precise observational predictions that would be based on
the statistical properties of cosmic strings.
Other examples are the networks of long fundamental

strings which are expected to form above the Hagerdon
temperature [15]. In addition to purely theoretical interests
the high temperature effects may give rise to important
observational signatures—as argued, for example, by pro-
ponents of the string gas cosmology [16]. Indeed, small
inhomogeneities in a network of fundamental strings could
lead to primordial fluctuations as the Universe cools down.
Of course, such predictions would require an extensive
analysis of fundamental strings in the Hagerdon phase.
However, because of divergences in the canonical partition
function, the usual methods of statistical mechanics are not
very useful for calculating physical observables [15]. On
the other hand, coarse-grained dynamics of either funda-
mental or topological strings could also be analyzed using
the string fluid description developed in this paper, given
that the local equilibrium does not depend on the details of
the interactions.
This paper is organized as follows. In Sec. II we discuss

some basic properties of Nambu-Goto strings, and in
Sec. III we derive continuity equations for singular currents
of strings. In Sec. IV we develop a coarse-grained descrip-
tion of strings and derive a set of hydrodynamic equations.
The main results of the paper are discussed in Sec. V.

II. PRELIMINARIES

The dynamics of a single string is well described by the
Nambu-Goto action, which can be expressed in terms of
generalized world-sheet coordinates �a,

S ¼ �
Z ffiffiffiffiffiffiffi�h

p
d2�; (1)

where for simplicity the string tension is set equal to 1.
Here, h is the determinant of the metric on the world sheet,
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which is induced from the metric g�� by pulling back the

mapping into spacetime x�ð�aÞ:

hab ¼ g��

@x�

@�a
@x�

@�b
: (2)

By varying the action (1) with respect to g�� we find the

energy-momentum tensor T��,

T�� ffiffiffiffiffiffiffi�g
p ¼

Z
d2�

ffiffiffiffiffiffiffi�h
p

hab
@x�

@�a
@x�

@�b
�ð4Þðy� � x�Þ; (3)

where y� is the argument of T��, and x� is again the
mapping from the world sheet into spacetime. (See [8]
for details.)

This expression (3) can be simplified by fixing our
choice of �a. The timelike coordinate will be denoted by
� and the spacelike coordinate by �. We fix � to be equal to
the spacetime coordinate x0:

x0ð�; �Þ ¼ �: (4)

Then the integration over � eliminates the temporal part of
the delta function in the expression (3) for T��:

T�� ffiffiffiffiffiffiffi�g
p ¼

Z
d� ~T��ð�Þ�ð3Þðyi � xiÞ: (5)

The tilde notation ~T�� indicates the nonsingular part of the
integrand. While T�� is a singular density over spacetime,
~T�� is a density over the world sheet. This notation will be
used for other tensor densities of the form (5) as well.

Denoting derivatives with respect to � and � by dots and
primes, respectively, we adopt a further gauge condition on
the world-sheet coordinates:

_x � x0 ¼ 0: (6)

Restricting our consideration to the Friedmann universe in
conformal coordinates with the metric

g�� ¼ a2ð�Þ���; (7)

the energy density is given by

� � ~T00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02

1� _x2

s
: (8)

If we also define the string velocity v � _x, the tangent
vector u � ��1x0 and the Hubble parameter H � _a=a,
then the equation of motion is found to be

_vþ 2H ð1� v2Þv ¼ ��1u0: (9)

The quantity v2 þ u2 is a constant of motion which can be
fixed by imposing a final gauge condition,

v 2 þ u2 ¼ 1: (10)

By applying these gauge conditions (4), (6), and (10) to
Eq. (3), we can solve for the nonsingular part of the energy-
momentum tensor,

~T �� ¼ �ðv�v� � u�u�Þ: (11)

Here u and v have timelike components v0 ¼ 1 and
u0 ¼ 0. So the energy density ~T00 ¼ �, the momentum
density ~Ti0 ¼ �vi, and the spacelike components ~Tij ap-
pear as the momentum current density in the continuity
equation for momentum.

III. CONSERVED CURRENTS

A. Minkowski space

In order to simplify the analysis of the energy-
momentum tensor, we will first restrict our attention to
Minkowski spacetime where H ¼ 0 and � ¼ 1. In this
special case, the equations of motion (9) simplify to the
wave equation,

_v ¼ u0: (12)

Moreover, the conservation of the energy-momentum
tensor in flat spacetime can be expressed using an ordinary
divergence, without additional gravitational correction
terms,

@�T
�� ¼ 0: (13)

However, because of the delta functions in (5), it is not
immediately clear how to interpret the continuity (or con-
servation) equation (13). We will approach the problem by
considering instead the integral form of the differential
equation (13) over an appropriate choice of enclosing
volume. For a general current density j� the integral
equation is given by

@0
Z

j0dV ¼ �
Z

j � dA: (14)

1. Particles

When j is in the direction of the velocity v, the situation
is much the same as that of a localized particle. So we
begin by considering the current density for a single
particle,

j� ¼ J��ð3Þðyi � xiÞ: (15)

We choose a volume in (14) which contains the particle for
some time � < �0. The particle leaves the volume at time
�0, and the boundary surface is chosen such that v is
normal at the point where the particle exits.
By integrating (14) over a small interval of time ��, the

left-hand side becomes the net change in enclosed charge,
�J0. We choose our coordinate system with x? in the
direction of v, normal to surface. The current J is also in
this normal direction, but in preparation for the more
general case we will write J � dA ¼ JvdA. The integration
over area in the flux integral cancels with the other two
dimensions in the delta function, and (14) reduces to
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�J0 ¼ �
Z

�ð3Þðyi � xið�ÞÞJ � dAd�

¼ �
Z

Jv�
ð1Þðy? � x?ð�ÞÞd�

¼ �
Z

Jv�
ð1Þðy? � x?Þ

�
dx?
d�

��1
dx?

¼ �Jvv
�1: (16)

Here the factor of v ¼ dx?=d� came about by changing
our remaining integration variable to dx?. So the continu-
ity equation for a localized particle just implies the familiar
fact that the nonsingular part of the current density is the
charge times the velocity,

Jv ¼ J0v: (17)

2. Strings

In the case of a string, in addition to the current in the
direction of vi, it is physically relevant to have a current
propagating along the string in the direction of ui.
Even when a piece of string is contained in a volume, it
may pierce the surface at two or more points, and the flux
of the current density at these points contributes extra
terms in (14).

Nevertheless, the argument for a localized particle can
be extended straightforwardly to an infinitesimal piece of
string with J� ¼ ~J�d�. In the limit of �� ! 0, only the
terms due to the string discontinuously leaving the volume
remain in the continuity equation. So the current in the
direction of vi follows the same expression as before,

~J i
v ¼ ~J 0vi: (18)

To consider the current in the direction of ui, we will first
write an expression for the flux at a point where the string
pierces the surface using the general form of the singular
current. The coordinate x? again points in the normal
direction, and the ? subscript denotes the x? component
of a vector. Then,Z

j � dA ¼
Z

�ð3Þðyi � xið�ÞÞ~J � dAd�

¼
Z

�ð3Þðyi � xið�ÞÞ ~J?dAd�

¼
Z

�ð1Þðy? � x?ð�ÞÞ ~J?d�

¼ � ~J?
�
dx?
d�

��1 ¼ ~J?jx0?j�1: (19)

Note that the change in variables leads to a negative sign if
dx?=d� is negative, hence the use of the absolute value
jx0?j.

The expression (19) can be applied to the continuity
equation for the momentum density Ti0 in (11) with
� ¼ 1, where the associated current density has a term in

the direction of uk, ~Jku ¼ �uiuk. We choose a boundary
surface surrounding a segment of string such that ui is
normal to the surface at the two points where the string
enters and leaves the enclosed volume. The values of sigma
at these points are denoted by �i and �f, respectively. The

left-hand side of the continuity equation (14) becomes
simply

@0
Z
Ti0dV¼@0

Z
vi�ð3Þðyi�xiÞd�dV¼

Z @vi

@�
d�: (20)

Since in flat spacetime u ¼ x0, the component of ~Jku in the
normal direction is just ~J? ¼ �uijx0j. So using (19), the
continuity equation becomes

Z @vi

@�
d� ¼ �ð~J?jx0j�1j�f

þ ~J?jx0j�1j�i
Þ

¼ uið�fÞ � uið�iÞ (21)

which is just the equation of motion (12) integrated over
d�. Note that the equation of motion (12) has the form of a
one-dimensional continuity equation on the world sheet,

@~J0

@�
¼ � @~J�

@�
: (22)

In this case the charge density ~J0 ¼ vi and the one-
dimensional current density ~J� ¼ �ui.
In general, given any continuity equation of the form

(22), we can reverse the previous argument to find the
singular current density in spacetime, ~Jiu ¼ ~J�x

0i. This
can be combined with (18) for ~Jiv, to find the total current
density,

~J k ¼ ~J0 _xk þ ~J�x
0k: (23)

In particular, the commutation of partial derivatives is a
continuity equation of the form (22),

@

@�

�
@xi

@�

�
¼ � @

@�

�
� @xi

@�

�
; (24)

and by (23), this implies a conserved singular charge
density ~J0 ¼ x0i with an associated current density which
we denote

~F ik � x0i _xk � _xix0k: (25)

The conservation of this charge density depends only on
the commutation of the partial derivatives of xð�; �Þ and
not on the Nambu-Goto dynamics.

3. Intersections

For each of the three components x0i, there is a continu-
ity equation involving the flux of ~Fik. We may consider
extending the expression (25) to the timelike components,

~F 0k � �x0k; (26)

which motivates us to consider the fluxes of x0k as well.
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From the general expression for the flux of a singular
current density (19), the flux of x0k at a single intersection
point equals

~J ?jx0?j�1 ¼ x0?jx0?j�1 ¼ �1: (27)

The sign depends on whether x0? is parallel or antiparallel

to the normal direction. Considering x0 to specify a direc-
tion of motion along the string, the sign depends on
whether the string is leaving or entering the volume.

In general, a string may intersect a closed surface at
many points. As long as the string does not terminate in the
interior (on a topological monopole for topological strings
or on a D-brane for fundamental strings), for each point
where the string enters the volume there must be another
point at which the string leaves. So this means that the sum
of the flux over all of these intersection points equals zero.
Using (26) we can express this as a flux integral of F0k in
space,

I
F0kdAk ¼ 0: (28)

And so the top row of F�� also obeys the continuity
equation (14), with j0 ¼ F00 ¼ 0.

Just as a string cannot terminate on a monopole in the
interior, an intersection point on the surface cannot sud-
denly disappear. An intersection point where a string
leaves the volume can only vanish if it converges with a
point where the string enters the volume. This suggests a
picture in which the intersection points are two-
dimensional particles with a charge of either�1. A particle
can only be created or annihilated in conjunction with an
antiparticle of opposite charge. We wish to find the con-
tinuity equation for this flux charge.

From our discussion on localized particles, it is clear that
the corresponding current is just the charge multiplied by
the two-dimensional velocitywi on the surface. To find this
velocity, we choose our coordinate system so that the
surface near an intersection point is given by x3 ¼ 0.
Similarly to (4) which fixes our world-sheet coordinate �,
we introduce a new spatial world-sheet coordinate � which
is equal to x3 in the vicinity of the intersection point.
Formally, x3ð�0; �Þ ¼ � near the intersection point. For
clarity, the transformed timelike coordinate is written as
�0, even though �0 ¼ �. Then,

wk � @xk

@�0
¼ @�

@�0
@xk

@�
þ @�

@�0
@xk

@�
¼ _xk þ @�

@�0
x0k: (29)

Since the partial derivative with respect to �0 is taken at
fixed � , w3 ¼ 0. Thus,

@�

@�0
¼ _x3

x03
; (30)

and by substituting (30) into (29) we get

wk ¼ _xk � _x3

x03
x0k: (31)

To find the two-dimensional singular current density we
multiply this velocity by a two-dimensional delta function
and the appropriate sign of the charge. But since as before
�1 ¼ R

x03�ð�Þd�, this can be ‘‘upgraded’’ to a three-
dimensional string current density by multiplying wk in
(31) by x03. So the charge density ~J0 ¼ x03 is conserved
with current density

~J k ¼ wix03 ¼ x03 _xk � _x3x0k: (32)

But this is just the expression for the current density ~Fik in
(25), only now the continuity equation involves flux
through a surface rather than integration over a volume.
Abstracting back to the differential form of the continu-

ity equation (13), it is easier to see how these two distinct
integral continuity equations involving Fik are related.
Treating Fi� as a vector with index i, we can consider
the flux through a surface. Again choosing the coordinate
system locally so that the normal is in the x3 direction,
@0F

30 þ @kF
3k ¼ 0. But the current F3k is clearly perpen-

dicular to the normal k ¼ 3 direction, so the current every-
where lies in the tangent space of the surface. So we can
use a two-dimensional divergence theorem to bring (13)
into the form describing the conservation of intersection
points discussed above.

B. Friedmann space

So far we have been considering how densities on the
worldsheet such as ~T�� are related to singular densities in
spacetime of the form

T �� �
Z

d� ~T���ð3Þðyi � xiÞ: (33)

According to (5) the stress-energy tensor is related to T��

through a factor of
ffiffiffiffiffiffiffi�g

p
. In Friedmann space (7) this factorffiffiffiffiffiffiffi�g

p ¼ a4, and so

T�� ¼ a�4T��: (34)

In general relativity the continuity equation for
the energy-momentum tensor involves the covariant
divergence,

0 ¼ r�T
�� ¼ @�T

�� þ ��
	�T

	� þ ��
	�T

�	: (35)

In Friedmann space the connection coefficients �
�
	� all

vanish except for

�0
�� ¼ �

�
0� ¼ �

�
�0 ¼ H : (36)

So for any value of �, ��
	� is nonzero only if 	 ¼ 0. Thus

the last term in (35) reduces to

��
	�T

�	 ¼ 4HT�0 ¼ 4Ha�4T�0: (37)

Then by differentiating the first term in (35), we find
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@�T
�� ¼ a�4@�T

�� � 4Ha�4T�0; (38)

and the continuity equation (35) reduces to

@�T
�� þ �

�
	�T

	� ¼ 0: (39)

Considering the momentum continuity equations,
setting � ¼ i and using (36),

0 ¼ @�T
i� þ �i

0iT
0i þ �i

i0T
i0 ¼ @�T

i� þ 2HTi0: (40)

As before, this involves the time derivative of a charge
density ~J0 ¼ ~Ti0 and the divergence of a current density
~Jk ¼ ~Tik. By (11),

~T ik ¼ �ðvivk � uiukÞ ¼ ð�viÞ _xk þ ð�uiÞx0k; (41)

so ~Jk takes the form of (23), leading to a continuity equation
on the string. Here the only difference from (22) is
the gravitational correction term 2H ~Ti0 from (40):

0 ¼ @~J0

@�
þ @~J�

@�
þ 2H ~Ti0

¼ @ð�viÞ
@�

þ @ð�uiÞ
@�

þ 2H �vi

¼ � _vi þ ð _�þ 2H �Þvi � u0i: (42)

So using the relation _� ¼ �2H v2� (see for instance [8]),
we recover the equation of motion (9) from a different
perspective.

Unlike ~T��, the conservation of ~F�� depends only on
topological properties [e.g. (24)]. So a conservation law of
the form (14) remains valid in Friedmann space without
any gravitational correction terms. Still, ~F�� in (25) can be
written in a form more appropriate to Friedmann space:

~F �� ¼ x0� _x� � _x�x0� ¼ �ðu�v� � v�u�Þ: (43)

IV. STRING FLUID

A. Continuum description

As we have seen, the singular charge and current den-
sities associated with a small segment �� of string with a
given u and v take the form

qðx; u; vÞ ¼ ~Qðu; vÞ�ð3Þðx� yÞ�� (44)

where y is the position of the segment and x is the argument
of the density function. We now consider a volume �V
containing many string segments as in Ref. [1]. The num-
ber of enclosed segments with parameters u and v is
written as nðx; u; vÞ�V. Consider the integral of the charge
density q over the coarse-graining volume �V. The delta
function factor in q serves to count the number of enclosed
segments, and the integral becomesZ

~Qðu; vÞ��nðx; u; vÞ�Vdudv: (45)

Here ��� serves to convert the number density to an energy
density, which is notated by fðx; u; vÞ � ���nðx; u; vÞ.

Dividing by the volume �V we find the coarse-grained
charge density,

h ~Qi �
Z

��1 ~Qfðx; u; vÞdudv: (46)

Now consider the continuity equation (14) involving the
current density associated with ~J�. When the volume in-
volved is much larger than �V, the average values hJ�i
may be used in the continuity equation. This approxima-
tion implicitly assumes that the distribution over u and v is
statistically uniform at all points x0 within the coarse-
grained volume at x. The coarse-graining procedure can
be abstracted to the case where �V is infinitesimally small
with respect to the volume of integration. Then the con-
tinuity equation can be considered to be true for any
volume, and we can pass to the differential form.
In particular, from (39) we obtain the following continu-

ity equations,

@�h ~T��i þ ��
	�h ~T	�i ¼ 0 (47)

and

@�h ~F��i ¼ 0; (48)

where ~T and ~F are defined by (11) and (43), respectively.
Note that as in (35), Eq. (47) may instead be written as a
covariant derivative of a�4h ~T��i. Furthermore, since h ~F��i
is antisymmetric, (48) may also be written in terms of a
covariant derivative, r�h ~F��i ¼ 0.
Evaluating the connection coefficients in (47) explicitly

using (36), we find the energy continuity equation:

@�h ~T0�i ¼ �H
X
	

h ~T		i

¼ �H h�ð1þ ðv2 � u2ÞÞi
¼ �2H h�v2i; (49)

and following (40) we have the momentum continuity
equation:

@�h ~Ti�i ¼ �2H h�vii: (50)

Also note that the top row of (48) does not involve a time
derivative, and expresses the differential form of (28):

@ih�uii ¼ 0: (51)

The continuity equations (47) and (48) express the time
derivatives of the fields h�vii and h�uii in terms of spatial
derivatives of correlations such as h�uiuji. Rather than
taking a thermodynamic approach at this point [17], we
will simplify the equations under the condition of local
equilibrium. To express this condition, it is helpful to
consider a slightly different set of fields.
A solution to the equation of motion in flat space (12) for

a single string can be expressed in terms of two waves
moving in opposite directions,
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xið�; �Þ ¼ aið�� �Þ þ bið�þ �Þ
2

: (52)

Then it is convenient to consider the quantities Ai �
@ai=@� and Bi � @bi=@� which can be expressed in terms
of u and v:

Ai ¼ vi � ui; (53)

Bi ¼ vi þ ui: (54)

The gauge condition (10) implies both A and B are unit
three-vectors. We can also extend the definitions of Ai and
Bi to four-vectors with a timelike component of þ1.

Although (52) does not hold in Friedmann space, we can
still define A and B using (54). By (52), in Minkowski
space A and B are constant on paths of constant phase
�� �. Likewise, in Friedmann space the dynamics of A
and B greatly simplifies along certain paths on the world
sheet [18]. Explicitly, the two families of paths
ð�ðt�Þ; �ðt�ÞÞ can be defined by

d�

dt�
¼ 1;

d�

dt�
¼ ���1: (55)

Then using the equation of motion (9), the time derivatives
of A and B simplify along these paths:

dA

dtþ
¼ �H ðB� ðA �BÞAÞ; (56)

dB

dt�
¼ �H ðA� ðA �BÞBÞ: (57)

So the quantity A might be thought of as moving along the
paths parametrized by tþ, and B along those parametrized
by t�. Their spatial velocities are then

dx

dtþ
¼ B; (58)

dx

dt�
¼ A: (59)

So in this picture A can be thought of as moving with
velocity B, and vice versa.

Note that the symmetric and antisymmetric parts of the
tensor product B � A are just ~T�� and ~F��, respectively,

h ~T��i ¼ h�Bð�A�Þi; (60)

h ~F��i ¼ h�B½�A��i: (61)

Then we can rewrite the continuity equations (47) and (48)
in terms of A and B fields as

@

@�
h�Aii þ @

@xj
h�AiBji ¼ �H h�ðAi þ BiÞi; (62)

@

@�
h�Bii þ @

@xj
h�BiAji ¼ �H h�ðAi þ BiÞi: (63)

B. Local equilibrium

We can use the new variables in the argument of the
energy-density fðx; A; BÞ. The energy-density function in-
volves many small segments of strings in a given coarse-
grained region of space, and these segments may interact
through reconnections or (if they happen to lie on the same
string) through the Nambu-Goto dynamics [1]. By model-
ing these interactions as an exchange of A and B vectors, a
transport equation for fðx; A; BÞ may be derived. If fðA; BÞ
is homogeneous in space, it has been shown [1] that an
equilibrium distribution @feq=@� ¼ 0may be factored into

parts depending only on A and B separately,

feqðA; BÞ � fAðAÞfBðBÞ: (64)

We can treat f as a probability distribution, defining the
normalized expectation value in terms of the coarse-
graining brackets (46),

�Q � 
�1h�Qi; (65)

where the energy density 
 is the normalization factor,


 �
Z

fðA; BÞdAdB: (66)

Then (64) implies that at equilibrium Ai and Bj are inde-
pendent random variables:

h�AiBji ¼ 
 �Ai �Bj: (67)

In the general case where f varies in space, we will like-
wise take ‘‘local equilibrium’’ to mean that Ai and Bj are
independent at each point of space.
On the other hand, ui and vj are not, in general, inde-

pendent, but using (61) we can still factor both T�� and
F�� into �ui and �vi:

hT��i ¼ 
ð �v� �v� � �u� �u�Þ; (68)

hF��i ¼ 
ð �u� �v� � �v� �u�Þ: (69)

Because A and B are unit vectors, the variance does not
depend on higher order moments:

VarðAÞ ¼ A2 � �A2

¼ 1� �A2

VarðBÞ ¼ 1� �B2:

(70)

And since u and v are linear combinations of the indepen-
dent A and B,

VarðvÞ ¼ 1

4
ðVarðAÞ þ VarðBÞÞ ¼ VarðuÞ: (71)

This can be expressed solely in terms of u and v using the
gauge condition (6):
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VarðuÞ ¼ VarðvÞ ¼ 1

4
ð2� ð �A2 þ �B2ÞÞ

¼ 1

2
ð1� ð �u2 þ �v2ÞÞ: (72)

So the variance of u and v is related to the extent to
which the gauge condition (10) is violated by the averaged
fields. Likewise, the condition (6) is violated whenever
VarðAÞ � VarðBÞ. Using (70), it is easy to show that

Var ðAÞ � VarðBÞ ¼ 4ð�v � �uÞ: (73)

These expressions involving second order moments are
useful in dealing with the factor of h�v2i in the gravita-
tional correction to the energy continuity equation (49).
From (72),

v2 ¼ 1

2
ð1þ ð�v2 � �u2ÞÞ: (74)

C. Fluid equations

The continuity equations can now be put in the familiar
form of fluid mechanics. Ignoring the gravitational terms
for now, we can write (47) as the two equations

@


@�
þ @

@xj
ð
 �vjÞ ¼ 0 (75)

and




�
@ �vi

@�
þ �vj @ �v

i

@xj

�
¼ @�ij

@xj
; (76)

where the Cauchy stress tensor is defined as �ij � 
 �ui �uj.
The stress tensor can be decomposed into a scalar
‘‘pressure,’’

p � � 1

3
Trð�Þ; (77)

and a traceless ‘‘viscous stress tensor,’’

"ij � �ij þ p�ij: (78)

With these definitions we can put (76) into the general form
of the Navier-Stokes equations,



D �vi

D�
¼ � @p

@xi
þ @"ij

@xj
(79)

where the material derivative

D

D�
� @

@�
þ �v � r: (80)

We stress, however, that (79) differ from the proper Navier-
Stokes equations in that the viscous stress tensor "ij can not
be written in terms of spatial derivatives of v times a
viscosity coefficient.

Although p formally acts like the pressure, it is not clear
whether it can be identified with the thermodynamic pres-
sure. If there is a distinction, the viscous stress tensor may

be defined with a nonzero trace, in which case there would
be a nonvanishing bulk viscosity [19]. Also note that the
energy-momentum tensor 
ð �v� �v� � �u� �u�Þ is not in the
form of a perfect fluid. But the condition that "ij vanishes
implies that �
 �ui �uj ¼ p�ij. This condition is just what is
needed to put the energy-momentum tensor in the form of a
perfect fluid with pressure p. So p is consistent with the
pressure as defined in familiar cosmological models.
In general, it is a lot more informative to rewrite the

hydrodynamic equations with a dynamical vector field u
rather than the pressure and viscous tensor. Using (74) to

simplify v2 in the energy continuity equation (47), we find

@


@�
þr � ð
�vÞ ¼ �H ð�v2 � �u2 þ 1Þ
; (81)

and again from (51),

r � ð
 �uÞ ¼ 0: (82)

Using these two equations to simplify (50) and (48), we
find

D�v

D�
� ð �u � rÞ �u ¼ H ð�v2 � �u2 � 1Þ�v (83)

and

D �u

D�
� ð �u � rÞ�v ¼ H ð�v2 � �u2 þ 1Þ �u: (84)

Note that the evolution of the �u and �v fields decouples from
the energy density 
.
We can also rewrite the decoupled equations (84) and

(83) in terms of the �A and �B fields using (54),

@ �A

@�
þ ð �B � rÞ �A ¼ �H ð �B� ð �A � �BÞ �AÞ; (85)

@ �B

@�
þ ð �A � rÞ �B ¼ �H ð �A� ð �A � �BÞ �BÞ: (86)

As discussed in relation to (59), �A can be considered to
move with velocity �B and vice versa. In this respect, the
left-hand sides of Eqs. (85) and (86) can be interpreted as
material derivatives. So the material derivatives of the
fields �A and �B are formally identical to the path derivatives
(57) for a single string. This is an intuitive, but nontrivial
result given that the quantities appearing in (85) and (86)
are the local averages of the A and B values over many
string segments. In fact there is no reason to expect that the
same equations would describe more general fluids in
which the local equilibrium assumption is violated.

V. DISCUSSION

We shall now discuss some of the immediate consequen-
ces of the string fluid described by Eqs. (81), (82), (84), and
(83). In the limit where the string fluid consists of only
closed loops with typical sizes smaller than the coarse-
graining scale, the average value of the tangent vector must
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vanish (i.e. �u ¼ 0). As a result (83) in Minkowski space
reduces to the inviscid Burgers’ equation

@�v

@�
þ ð�v � rÞ�v ¼ 0; (87)

whose solutions are known to develop discontinuities (or
shock waves) that can only be resolved with higher order
terms. The small loops’ phase is relevant for describing
cosmic strings at late cosmological times or fundamental
strings below the Hagerdon temperature, and it would be
interesting to study the observable signatures of such shock
waves.

More generally, the string fluid might have a nonvanish-
ing component of long strings (i.e. �u � 0) in which case
the decoupled equations (85) and (86) must be solved
first. This would be relevant for the analysis of the network
of fundamental strings above the Hagerdon temperature or
cosmic strings in the early Universe. In particular, one
might be interested in the production and subsequent evo-
lution of closed loops in a network of cosmic strings. In the
language of string fluids, such processes would correspond
to a monotonic decay of the �u field. Then it should be
possible, for example, to distinguish the decay of infinite
strings into small loops with typically large velocities
�v� 1 from the decay of infinite strings into large loops
with typically small velocities �v 	 1.

Another important result of the string fluid discussion
which is worth emphasizing again is the decoupling of
Eqs. (84) and (83) from Eqs. (81) and (82). This means
that one can first solve for �u and �v fields regardless of the

energy density 
, given that (82) is satisfied at some
moment in time. Then (82) will continue to be satisfied
for all time for any 
which solves (81). Unfortunately, this
also means that the obtained equations cannot describe the
Hagerdon phase where the long strings are expected to
form (i.e. �u � 0) only when 
 is sufficiently large. This
suggests that the higher order nonequilibrium effects must
be included to describe the fundamental strings at very
high energy densities.
In conclusion, we note that even without the local

equilibrium assumption (64), the continuity equations
(48) are of the same form as the homogeneous Maxwell
equations. In Minkowski space Eq. (51) corresponding to
� ¼ 0 in (48) is analogous to the statement that there are
no ‘‘magnetic’’ monopoles,

r � hui ¼ 0; (88)

and the other rows of (48) corresponding to� ¼ 1, 2, 3 can
be written in a way analogous to Faraday’s law:

@hui
@�

¼ �r
 hu�vi: (89)

In this perspective, the time derivative of the flux of a
‘‘magnetic’’ field hui is related to the circulation of an
‘‘electric’’ field hu�vi, whereas before we were consider-
ing the flow of a two-dimensional ‘‘flux current’’ across a
one-dimensional boundary. Of course, the two pictures are
mathematically equivalent, and it remains to be seen
whether the field picture is useful.
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