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Typically, cold inflation with positive vacuum energy density dilutes all matter except the quantum

fluctuations, which are stretched outside the Hubble patch during inflation. However, the cyclic-inflation

scenario, in which the Universe undergoes many asymmetric cycles leading to an overall exponential

growth, operates in the presence of thermal matter. Thus, while some of the nice properties of cold

inflation are preserved, in cyclic inflationary models, thermal excitations are continually produced, and

there exists a unique opportunity of imprinting interesting thermal history in cosmic microwave

background radiation. In particular, we will see that a phase transition can lead to observably large

higher-order non-Gaussianities as the critical temperature is approached and that these are increasingly

divergent with the order of the correlations.
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I. INTRODUCTION

It is well known that our Universe can inflate over many
nonsingular cycles in such a way that every cycle undergoes
a slight expansion in the scale factor of the Universe. If the
Universe undergoes many cycles, which results in 50–60
e-foldings of inflation, known as cyclic inflation (CI) [1],
then it can explain the large-scale homogeneity of the
Universe. For the operation of the cyclic inflation scenario,
one requires a negative potential energy, ��, along with
thermal matter, both relativistic and nonrelativistic, which
are expected in any dynamical evolution. For instance, the
relativistic particles can come from the Standard Model
degrees of freedom and the cold dark matter sector (which
would all be relativistic at the energy scale in which we are
interested). Of course, if the Universe is locked in the
negative potential energy phase, it will keep on inflating.
However, as shown in Ref. [2], depending upon the nature
of the potential, one can exit primordial inflation through a
classical transition from negative to positive potential re-
gions; see also Refs. [3–6] for the study and implementation
of similar mechanisms. To our knowledge, the CI model
was the first to realize a phenomenologically successful
cosmology with negative potential energy1 and may have

interesting implications for string theory and supergravity,
which contains negative vacua [11].
In the present paper, we will argue that the origin of the

‘‘relevant’’ seed perturbations that were created during
the cyclic phases, i.e., roughly speaking, during the 6–7
e-foldings of inflation that is seen in the cosmic microwave
background (CMB) radiation, are statistical fluctuations that
are of thermal nature. In particular, we will look at the two-
point correlation function, which is related to the power
spectrum, P � , and the higher-point correlation functions,

which are related to the parameters fNL and gNL character-
izing the non-Gaussian features in the CMB. The constraints
on the fNL from the WMAP7 data for the local type of non-
Gaussianity implied �10< fNL < 74 [12], and PLANCK
data significantly tightened the constraint to fNL ¼ 2:7�
5:8 [13]. For the gNL, the constraints are considerably
weaker, and both the CMB [14] and large scale structure
[15,16] restrict it only to be less than about 105 in magnitude.
In a companion paper [17], we provide a comprehensive

discussion and derivation of how statistical fluctuations
that exist in any thermal ensemble can source fluctuations
in the CMB; see also Refs. [18–20]. We will focus on how
in the CI scenario the observations of the CMB could
reveal to us novel thermal features, such as phase transi-
tion, which is impossible to detect in the traditional cold
inflationary scenarios. In particular, we will see that if the
scale of the negative potential energy is close to the critical
temperature of a phase transition, then we can hope to find
observable non-Gaussian signatures. Interestingly, the sig-
nal increases as one looks at higher-order correlation func-
tions. So, for instance, while we find fNL to be too small to
agree with the Planck bounds, gNL as well as �NL can be
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1For more recent efforts in this direction, see Ref. [7], though

ghost and tachyonic instabilities may develop in this proposal
[8]. It is worth stressing that the nonsingular scenario of
Refs. [1,2] can be based on ghost-free gravity [9]. See also
Ref. [10] for a different attempt at nonlocal reconciliation of
AdS and our Universe.
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large enough to be observed in the near future. In addition,
we expect their amplitude to peak over a certain range of
scales, which is a further very distinguishing prediction of
the thermal phase transitions we explore here.

So, let us now provide a brief summary of how the
cyclic evolution works [1,2,21]. Let us begin our story at
the expanding phase of a given cycle with the Universe
containing some thermal matter along with a negative
cosmological constant.2 As our Universe expands, all the
matter components dilute and are eventually canceled by
the negative cosmological constant causing the Universe to
turn around and start contracting. In Einstein’s gravity, this
leads to an eventual collapse, but, for instance, in an
extension of general relativity with infinite higher deriva-
tives [22–26], it is possible to resolve this cosmological
singularity, and thus the contraction phase can nonsingu-
larly transition into an expansion phase, thereby complet-
ing the cycle. An interesting fact about this class of infinite
derivative theories is that, in the ultraviolet regime, it
resolves the cosmological singularity,3 but in the far infra-
red, the theory behaves exactly as that of Einstein’s theory
of gravity. The bounce happens at a scale close to the
Planckian time M�1

p , where Mp is the reduced Planck

mass.4 Once the Universe departs from the Planckian
time scale, i.e., as the Universe expands, we are far away
from the bounce, and the dynamics of the universe is
governed by Einstein’s theory. Since, as will soon become
apparent, all the interesting physics that we are going to
focus on in this paper occurs near the turnaround, which is
far away from the bounce, the details of the bounce
mechanism should not matter. Thus, while we do not
pretend that our assumption about the smooth resolution
of the big bang singularity should be taken lightly, at least,
if such a resolution mechanism via bounce does exist
in nature around the Planck scale, we fully expect our
analysis to be independent of the new physics.

Now, interactions between relativistic and nonrelativis-
tic species create entropy that can only increase mono-
tonically, thereby breaking the periodicity of the cyclic
evolution. In fact, this was precisely what Tolman pointed
out in the 1930s, giving rise to Tolman’s entropy problem
[35,36]. However, this turns out to be a great asset for the
CI scenario. As shown in Refs. [1,21], entropy tends to
increase by the same factor in every cycle, while the time
period of the cycles remain a constant since it is governed
by j�j. This means that the Universe must grow by the

same factor, say by (1þ �), in every cycle giving rise to an
overall inflationary growth; see Fig. 1. Most of the advan-
tages of standard slow-roll inflation is straightforwardly
transferred to the CI scenario, including the production of
nearly scale-invariant density fluctuations [21]. Tolman’s
entropy problem also finds an elegant resolution if the
Universe is closed [37]. For more details of the cyclic
inflationary scenario and how it can solve the different
cosmological puzzles (flatness, horizon, and homogeneity),
the readers are referred to Refs. [1,2,21]. In this paper, our
primary focus would be the computation of the various
features in the primordial fluctuations that are present
during the CI phase.
The necessary entropy production, for instance, can be

realized by considering some massive species interacting
with massless particles via scattering and decay processes.
In a given cycle, equilibrium can be maintained up to a
certain temperature in the expanding branch, below which
the massive species falls out of equilibrium. A subsequent
out-of-equilibrium decay into radiation creates entropy.
The dynamics of the interaction was investigated numeri-
cally in detail in Ref. [38] and found to be able to sustain
inflationary growth over many cycles as is essential for CI;
see also the summary [39]. The exchange dynamics of the
particle production can also present various dynamical
consequences such as Bose enhancement, Landau damp-
ing, dissipation thermalization, and all the various compli-
cations of particle production. Such have been investigated
in various other contexts [40–46], and their relevance for
the CI should be considered in the future, but the basic
mechanism has been shown to be successful [38]. In par-
ticular, the nonrelativistic particles decay at each cycle

FIG. 1 (color online). Cyclic inflation scenario: The Universe
starts in a negative energy phase undergoing asymmetric cyclic
evolution. There occurs a last cycle in which the Universe makes
a transition from the negative to positive energy phase followed
by usual radiation-dominated expansion.

2The generalization to a slowly evolving negative potential
energy required to obtain the observed spectral tilt and the
graceful exit is discussed in Refs. [2,21], respectively.

3In general, the infrared divergence of quantum fluctuations
that could otherwise dominate over the thermal fluctuations may
also be resolved in nonsingular cosmologies [27].

4For some of the other attempts to resolve the big bang/big
crunch singularity through bounces when a high-energy scale is
reached, see Refs. [28–34].
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with enough energy and entropy flow to the lighter
particles because the cycle contains sufficient nonequilib-
rium phases in which the heavier particles have a higher
effective temperature, and on the other hand, thermaliza-
tion is sufficiently effective in the high-temperature
regimes.

The paper is organized as follows. In Sec. II, we review
the evolution of perturbations during the cyclic inflation
phase. Sec. III then focuses on the thermal fluctuations in
this scenario; in particular, we consider phase transitions
and their impact on non-Gaussianity. Tensor modes are
found to be insignificant in this context. Section IV briefly
concludes. The technical issue of the transition of the
modes from the sub- to superhorizon is treated in the
Appendix.

II. BRIEF DISCUSSION ON CREATING
PERTURBATIONS FROM CYCLIC INFLATION

In Refs. [1,21], a new way of obtaining nearly
scale-invariant fluctuations was proposed in the context
of cyclic inflationary models. The underlying mechanism
is very similar to the standard inflationary scenarios, but
the implementation is very different. To understand how
the thermal fluctuations evolve, it is useful to compare the
cosmological time scale and the physical wavelength of
fluctuations under consideration. Naively, if the physical
wavelength is shorter than the cosmological scale
(sub-Hubble phase), then the fluctuations are expected to
be sourced by thermal statistical fluctuations in the fluid,5

but once the wavelengths become larger than the
cosmological time scale, thermal correlations cannot be
maintained, and the coupled metric and fluid fluctuations
are governed by the usual differential equations governing
an ideal fluid. This transition is rather similar to the
usual transition from the sub- to the super-Hubble phase
in inflationary cosmology, after which the amplitude
freezes.

In the traditional monotonically expanding or contract-
ing Universe, the cosmological time scale is given by the
Hubble radius. According to this reasoning, all modes start
out in a ‘‘pure sub-Hubble’’ phase in which the physical
wavelengths of fluctuations are always smaller than the
cosmological scale, which has a lower bound given by the
bounce scale,

�b �
Mpffiffiffiffiffiffi
�b

p �M�1
p ; (1)

where �b �M4
p determines the total energy density at the

time of bounce. This phase lasts until the physical wave-
length of the given comoving mode at the bounce point
remains smaller than �b. With the gradual increase of the

wavelengths, though, due to the asymmetric growth in the
cycles, the modes start to undergo a much more compli-
cated history. The modes now start out as sub-Hubble at the
turnaround point but exit the Hubble radius in the contract-
ing phase. It re-enters the sub-Hubble phase near the
bounce only to exit the Hubble radius shortly after the
bounce. Finally, they cross back into the sub-Hubble
domain in the expanding branch.
This cyclic pattern of evolution continues for a while,

but again as the Universe undergoes inflationary growth
over many cycles, the physical wavelength keeps in-
creasing, so that the times that a given mode spends in
the sub-Hubble phases around the turnarounds and the
bounces become shorter and shorter. Eventually, there
comes a cycle in which the sub-Hubble phases are
shorter than the physical wavelength of the modes.
From this cycle on, although technically the modes do
undergo sub-Hubble evolutions, they are ineffective in
establishing thermal correlations, and the modes effec-
tively remain super-Hubble until the rest of the duration
of the CI phase. We call this the ‘‘last exit.’’ Thus, the CI
scenario mimics the standard inflationary mechanism of
freezing the amplitude of perturbations after the Hubble
crossing.
Approximately, it is clear that the causal time scale in

our scenario is given by the time period of the cycle

� ¼ �
Mpffiffiffiffi
�

p ; (2)

where ��Oð1Þ constant, and therefore the modes must
be exiting when their wavelengths ��. In other words, the
modes exit very near the turnaround energy density; in
the Appendix, we provide a quantitative estimate of this
time scale. A more physical way of thinking about the
whole process is simply to realize that the cosmological
time scale does not correspond to the Hubble radius
near turnarounds and bounces but is rather controlled
by � and �b, respectively, which in turn are determined
by the typical energy densities near these regions.
The fact that the Hubble scale does not always correspond
to the cosmological scale has indeed been discussed
before [47].
We now come to a very important point. Suppose k1 is a

mode that is the first to make the last exit in a given cycle.
Then, once the wave number increases by a factor (1þ �),
the fluctuations can no longer undergo the last exit in that
given cycle because they reenter the thermal sub-Hubble
evolution during the following turnaround; see Fig. 2. They
therefore must wait for the next cycle for their last exit.
What this means is that, if � is a small parameter, then
the last exits always occur at approximately the same
energy densities, ��, near the turnarounds. We know
from our study of perturbations that the energy density
(or, equivalently, the temperature in our case) at the exit
controls the amplitude of fluctuations that we eventually

5For a detailed discussion on the subject, the reader is referred
to our companion paper [17].
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see in the CMB. This therefore explains why the cyclic
inflation model gives rise to an approximate scale-invariant
spectrum, preserving one of the most robust predictions of
inflation theory.

From the above discussion, a rather distinguishing
feature of the cyclic inflation model also emerges, which
was highlighted in Ref. [21]. The fact that in a given cycle
only a certain range of modes make their last exit means
that there should exist small wiggles in the primordial
spectrum of the form

P� ¼ A2SðkÞ; (3)

where A is strictly a constant if we have a negative
cosmological constant but will vary slowly if we have a
Vð�Þ giving rise to an overall tilt in the spectrum, while
SðkÞ is a periodic function in ln k:

Sðkð1þ �ÞÞ ¼ SðkÞ: (4)

The precise shape of SðkÞ is determined by how the tem-
perature rises as the modes exit in a give cycle, which in
turn depends on the thermodynamic properties of the fluid.
While our previous analysis provided some tantalizing
hints for such oscillatory features, the Planck data would
be able to shed more light. For us, the important point is
that the oscillatory feature can be used in conjunction with
the non-Gaussian features, which we will soon discuss, to

differentiate our model from other inflationary scenarios
that also produce large non-Gaussianities.

III. STATISTICAL THERMAL
FLUCTUATIONS AND CMB

In many extensions of the Standard model, we expect
our Universe to have undergone phase transitions at
high temperatures; these include grand unified theories
(supersymmetric and nonsupersymmetric) as well as string
theory. Could these phase transitions have left any observ-
able imprint in our sky? In this section, we will provide a
simple example of thermal phase transition that can leave
detectable signals in the CMB. First, the phase transition
parametrization will be described; then, we will apply the
results of the companion paper [17] to compute the result-
ing bispectrum and trispectrum. Finally, gravitational wave
production is discussed briefly.

A. Phase transition

Phase transitions are characterized by critical exponents.
For our purpose, the most relevant is the one associated
with the heat capacity, commonly denoted by �:

lim
T!Tc

CV �
��������
T � Tc

Tc

��������
�

: (5)

� ¼ �1 corresponds to a first-order phase transition,
where the heat capacity diverges. We are going to restrict
ourselves to higher-order transitions with �>�1 and
consider the case in which the temperature of the last
exit is below the critical temperature. A prototype partition
function corresponding to critical behavior such as Eq. (5)
is given by

p ¼ T lnZ

V
¼ 1

3
gT4 ��þ�T4

0

��
1� T

Tc

�
�þ2 � 1

�
:

(6)

The two terms in the first line correspond to the pressure
coming from the usual massless degrees of freedom and
the negative cosmological constant that is required in the
CI model to provide the turnarounds. The term in the
second parentheses contain the physics of the phase
transition; incorporating some multiplicative modulating
functions of temperature should not change the results in
any significant way, as we are only going to be interested
in temperatures very close to the critical temperature, Tc.
The parameter g is the number of effective massless
degrees of freedom times (	2=30), and the parameter �
controls the contribution of the thermal density component
undergoing the phase transition; we consider the regime
g � �. The temperature at the turnover is T0, and
it provides the overall energy scale. In terms of these
parameters, the cosmological constant is given by

FIG. 2 (color online). The last exit: The curve in the red
corresponds to the cosmological time scale, while the green
and the yellow curves represent the physical wavelengths of
two different comoving modes. The two modes are initially
in a mixed phase, but then they make their last exits, after
which they evolve as super-Hubble modes. While the green
wavelength exits in the third cycle, the yellow curve has
to wait for another cycle to make its last exit. The two
modes experience identical background cosmology, the yellow
curve only lagging behind by a cycle as compared to the green
curve.

TIRTHABIR BISWAS, TOMI KOIVISTO, AND ANUPAM MAZUMDAR PHYSICAL REVIEW D 88, 083526 (2013)

083526-4



� ¼ �ðT ! 0Þ ¼ �pðT ! 0Þ
¼ �T4

0

�
gþ���

�
1þ T0

Tc

�
�þ1

�
1þ ð1þ �ÞT0

Tc

��
;

(7)

and, as mentioned, it is negative in the CI scenario.
Noting the thermodynamic relation

�ðTÞ ¼ � 1

V

@ðlnZÞ
@�

¼ T
dpðTÞ
dT

� pðTÞ; (8)

one obtains

�¼ gT4 þ���T4
0

��
1� T

Tc

�
�þ1

�
1þ ð1þ�Þ T

Tc

�
� 1

�
;

(9)

CV

V
¼ 4gT3 þ�

T4
0T

T2
c

ð1þ �Þð2þ �Þ
�
1� T

Tc

�
�
: (10)

One readily checks that this is consistent with the density
vanishing at the turnaround T ¼ T0 and reducing to the
cosmological term at the zero temperature. We plot the
equation of state in Fig. 3.

B. Non-Gaussianity

The expressions for calculating the power spectrum
and the non-Gaussianity parameters from statistical fluc-
tuations are derived in our companion paper [17]. Here, we
summarize the results:

P � ¼ 
2
ffiffiffi
3

p
A2ðTÞ T2�0

M3
p

ffiffiffiffi
�

p ; (11)

fNL ¼
�
1




�
1

AðTÞ
�
5�ð2�0 þ T�00Þ

24Tð�0Þ2
�
; (12)

gNL ¼
�
1


2

�
1

A2ðTÞ
�
25�2½3ð�0 þ T�00Þ þ T2�000�

243T2ð�0Þ3
�
; (13)

where

AðTÞ � 9þ 3wþ 2r

6ð1þ wÞ (14)

r � � 3

2

�
1þ ð1þ wÞ�ð2�0 þ T�00Þ

T�02

�
(15)

w ¼ p

�
and 
 ¼ 2

ffiffiffi
2

p
	3=4 � 6:7: (16)

We have used the value of 
 that corresponds to a Gaussian
window function [17] and have set � ¼ 1 since Eq. (9)
already incorporated the energy coming from the
cosmological constant, radiation, and the thermal matter
undergoing phase transition.6

Before trying to compute and plot these different quan-
tities, let us try to understand the physics with the help of
some approximations. To begin with, we have six parame-
ters: Te, Tc, T0, �, g, and �, where Te is the exit tempera-
ture. However, not all of these parameters are independent
or important. First, we can choose g to be the number
appropriate for the Standard Model, g� ð	2=30ÞOð100Þ.
The value we use for numerics is g ¼ 100. We note in
passing that one of the virtues of the CImodel is that there is
no need for reheating, and the Universe could have only
contained the Standard Model degrees of freedom all along.
Also, our computation of the exit temperature in terms of T0

in the Appendix was done for radiative matter sources, and
since � � g, the result remains applicable to our case; as
also seen in Fig. 3, the radiative matter dominates the
system when T > T0. Hence, it is justified to fix

T0 ¼ 0:8Te: (17)

To consider a definite and relevant phase transition, we can
use the critical exponent corresponding to �4 theory. It has
been computed/measured using various methods, and the
results converge to � � 0:1; see, for instance, Ref. [48].
This is the value we use for numerical examples unless
otherwise specified.
We are thus left with three parameters: T0, �, and Tc.

Instead of the latter, we shall refer to

� � ðTe � TcÞ=Tc: (18)

However, the amplitude of CMB fluctuations is known, and
this can be used to constrain one of the parameters; a
convenient choice is T0, which gives the overall scale of
the cycles. We show in Fig. 4 solutions for the temperature
solved by matching the amplitude of the spectrum with the
observed PLANCK value. To conclude, our predictions
depend upon two parameters: the contribution of the matter

4 3 2 1
log

T

M

2

1

1

2
w

FIG. 3. The equation of state of the fluid as a function of
temperature when Tc ¼ 0:1Mp and T0 ¼ 0:01Mp. We use � ¼
0:1, g ¼ 100, and � ¼ 0:1. At high temperatures, the radiation
dominates, and w ¼ 1=3; at low temperatures, the cosmological
constant is important, and w ¼ �1. The divergence occurs at
T ¼ T0, where the density vanishes.

6In the CI scenario, one also requires the presence of non-
relativistic species [21], but it is always present in small amounts
and, in fact, decays before the onset of the contraction phase.
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subject to phase transition, �, and the proximity to the
critical temperature, �.

The essential feature of our results is large higher-order
non-Gaussianity. They contain more and more derivatives
of �ðTÞ and therefore become more and more divergent as
T approaches Tc. Accordingly, the fNL parameter remains
typically small, as seen in Fig. 5. The parameter ap-
proaches a constant as T ! Tc and another constant far
away from the critical temperature. The next-order non-
Gaussianity gNL is already much more interesting: the
parameter diverges as T ! Tc. To understand this, note
that the leading term in this limit, from Eq. (13), is due to
the third derivative of the density that goes like �000 �
���2. However, one should also take into account the

divergent terms in the denominator, which is given by A2 �
r2 � �002 ��2ð1��Þ, as seen from Eqs. (14) and (15). The
result is that the non-Gaussianity diverges as gNL � ���.

We illustrate this in the Fig. 6 where the non-Gaussianity
is logarithmically plotted as a function of � and �. While
the fact that we only get an interesting signal for� & 10�4

may appear to be a fine-tuning, that is not so.We remind the
readers that, to be consistent with the observed spectral tilt

of the spectrum, T0 and hence Te have to vary. For ns �
0:95, Te varies by approximately 30%, which means, as
long as Tc lies within this range, we can observe a signal.
In fact, based on our results, it seems that rather than having
a broad gNL spectrum, we expect a sharp peak in k, which
is another distinctive feature of the thermal signal. The
higher-order non-Gaussianities will peak at the wave-
lengths that cross the horizon as the phase transition occurs.
The dependence on the critical exponent very near the

transition is depicted in Fig. 7. In brief, for positive �,
whenever we are close enough to the critical temperature,
the gNL is large. In general, the non-Gaussianity corre-
sponding to the N-point function diverges near the critical

temperature as ð1� T=TcÞ�ð3�NÞ, so the higher-order
non-Gaussianities can be significantly larger than the
lower-order ones. This property stems from the diverging
behavior of the higher derivatives of the density � and can
provide a smoking-gun signal for these models.

C. Gravity waves

To close the section of CMB constraints, let us investigate
the gravitational wave production in the setup. For extensive
thermal systems, there are no off-diagonal stress energy

8 6 4 2 0
log

5 10 7

1 10 6

5 10 6

1 10 5

5 10 5

T

M

FIG. 4 (color online). The turnover temperature T0 of the fluid
as a function of �. For the red solid line, � ¼ 0:1, and for black
dashed line, � ¼ 1=1000.

12 10 8 6 4 2
log

0.06

0.04

0.02

0.02

0.04

0.06

fNL

FIG. 5 (color online). Non-Gaussianity fNL as a function of �.
For the red solid line, � ¼ 0:1, and for black dashed line,
� ¼ 1=1000.

FIG. 6 (color online). Non-Gaussianity gNL as a function of �
and �. The parameter is negative and diverges as T ! Tc.

0.0 0.2 0.4 0.6 0.8

104

106

108

1010

gNL

FIG. 7 (color online). Non-Gaussianity gNL as a function of
the critical exponent � when � ¼ 1. For the upper line, � ¼
10�15, and for the lower one, � ¼ 10�10. The monotonic scaling
behavior comes apparent only very near the transition.
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components, and, as a result, there are no source terms for
the gravitational waves. The gravity wave spectrum is there-
fore governedby the quantumvacuumfluctuations similar to
what happens in the standard scalar field driven inflationary
paradigm, assuming that the gravity is indeed quantum [49].
The gravity wave power spectrum is thus given by

P h ¼ 1

4	3

�
H

Mp

�
2 ¼ 1

12	3

�

M4
p

; (19)

where � corresponds to the energy density of the thermal
fluid at the time of the last exit. Therefore, the tensor-
to-scalar ratio is given by

rt=s � P h

P �

¼ 1

3
ffiffiffi
3

p
	3
2

�
1þ w

2þ wþ r

�
2 �

3
2

T2Mp

�
@�

@T

��1
: (20)

Again, the expression has to be evaluated at the Hubble
crossing, k ¼ aH. The results are plotted in Fig. 8. We see
that the amplitude of the tensor modes is typically too small
to be observed. For particular parameter combinations
though, the scalar-to-tensor ratio diverges. However, the
cyclic inflation to occur sufficiently near these singular
points to obtain an appreciable amount of gravitational
waves would seem to require considerable fine-tuning.
Hence, we regard negligible gravitational wave contribution
a robust prediction of the scenario.

IV. CONCLUSIONS

We computed the different features of the CMB in the
cyclic inflation scenario by applying the formalism devel-
oped for cosmological perturbations arising from statistical
thermal fluctuations in our companion paper [17].

In particular, we explored the implications of phase
transitions during the inflationary expansion. We found
that the non-Gaussianity corresponding to the N-point
function of thermal fluctuations diverge near the critical

temperature Tc as ð1� T=TcÞ�ð3�NÞ, where � is the critical
exponent. The higher-order correlations will be drastically
amplified over a given range of scales. This generic feature

is an imprint quite unique to the physics of thermal phase
transitions. Observationally, the higher-order correlations
are much more difficult to constrain, and since they are not
typically huge in cold inflation models, the attention
has been almost exclusively upon the bispectrum and
trispectrum. However, as we predict that the amplitude
of the signal is increasingly divergent for higher-order
non-Gaussianities, our findings can motivate the study of
previously neglected completely new signatures.
Coupled with the firm prediction of negligible tensor

amplitude and subtle wiggly features in the spectra [21],
the structure of non-Gaussianities can provide a robust test
of the cyclic inflation scenario.
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APPENDIX: TEMPERATURE OF THE LAST EXIT

While intuitively it is clear that, once the wavelengths
become larger than the period of the oscillations, the
modes should essentially behave as zero modes and follow
the super-Hubble evolution, in any nonsingular cyclic
model, there are always two points within a cycle, the
bounce and the turnaround, at which the Hubble radius is
infinite. So, according to the naive definition, all modes are
back in the sub-Hubble phase. Of course, the crucial point
is that the larger the wavelength of the modes, the shorter
the time was that they spent in this sub-Hubble phase. Very
conservatively, these modes need to spend at least a
minimum of �t� �=c time to have any ‘‘sub-Hubble’’
evolution at all. For instance, if the time the mode spends is
less than �=c, there is noway any thermal correlation could
be established stretching a wavelength �. Thus, although
technically all modes are sub-Hubble during the turn-
around and the bounce, that is of little relevance. Once a
mode reaches a particular physical wavelength, it makes its
last exit and starts behaving as a super-Hubble mode for the
cycles to follow. Let us, in fact, calculate this wavelength/
temperature of the last exit point.
Let us denote the scale factor and temperature when a

given mode, k, exits the Hubble radius in the contraction
phase as ak and Tk, respectively:

akHðakÞ ¼ k: (A1)

Next, let us calculate the time that this mode spends in the
sub-Hubble phase. Ignoring any asymmetry, this is given by

�t ¼
Z

dt ¼ 2
Z ak

1

da

aH
; (A2)

where we have chosen the convention that a ¼ 1 corre-
sponds to the turnaround in question, so thatHð1Þ ¼ 0. The
smaller the k, the closer ak is to one, and therefore �t is
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FIG. 8 (color online). The scalar-to-tensor ratio as a function
of �. For the red solid line, � ¼ 0:1, and for black dashed line,
� ¼ 1=1000.
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shorter, as expected. Now, in order for any thermal corre-
lation to reestablish, �t > � ¼ a=k. Clearly, then there
exists a value of k below which this condition can never
be satisfied. The largest k for which thermal correlation can
be reestablished is then given by

�t ¼ ak
k
: (A3)

The above is an implicit equation for k via Eq. (A1). Using
the above equation, for any given thermodynamic fluid, one
can calculate the exit temperature, k, and ak. Let us now
demonstrate this for radiation.

For radiation in the presence of a negative cosmological
constant, we have

H ¼
ffiffiffiffi
�

p
ffiffiffi
3

p
Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�4 � 1

p
) k ¼ ak

ffiffiffiffi
�

p
ffiffiffi
3

p
Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�4
k � 1

q

¼
ffiffiffiffi
�

p
ffiffiffi
3

p
Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2
k � a2k

q
and

�t ¼ 	

2
� tan�1

0
@ a2kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a4k

q
1
A: (A4)

Equation (A3) can now be solved numerically to obtain ae,
the scale factor at which the last exit starts to occur.
Approximately, we find

ae � 0:8 ) Te � 1:25T0; (A5)

where T0 is the temperature at the turnaround point. More
physically, all those modes for which the physical wave-
length at the turnaround point is larger than a certain
wavelength,

� >

ffiffiffi
3

p
Mpffiffiffiffi
�

p aeffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a4e

p � 1:04�; (A6)

never undergo any thermal sub-Hubble evolution at all;
they must have had their last exits in some previous
cycle.
One can carry out a similar analysis during the bounce,

since the time scale of the bounce is much shorter than the
turnaround; any mode which does not undergo any sub-
Hubble phase near the turnaround also has no sub-Hubble
evolution during the bounce.

[1] T. Biswas and A. Mazumdar, Phys. Rev. D 80, 023519
(2009).

[2] T.Biswas, T.Koivisto, andA.Mazumdar, arXiv:1105.2636.
[3] J. E. Lidsey and D. J. Mulryne, Phys. Rev. D 73, 083508

(2006).
[4] N. J. Nunes, Phys. Rev. D 72, 103510 (2005).
[5] J. E. Lidsey, D. J. Mulryne, N. Nunes, and R. Tavakol,

Phys. Rev. D 70, 063521 (2004).
[6] G. N. Felder, A. V. Frolov, L. Kofman, and A.D. Linde,

Phys. Rev. D 66, 023507 (2002).
[7] J. B. Hartle, S. Hawking, and T. Hertog, arXiv:1205.3807.
[8] A. T. Mithani and A. Vilenkin, J. Cosmol. Astropart. Phys.

04 (2013) 024.
[9] T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar,

Phys. Rev. Lett. 108, 031101 (2012).
[10] T. Prokopec, arXiv:gr-qc/0603088.
[11] M.R. Douglas and S. Kachru, Rev. Mod. Phys. 79, 733

(2007).
[12] E. Komatsu et al. (WMAP Collaboration), Astrophys. J.

Suppl. Ser. 192, 18 (2011).
[13] P. Ade et al. (Planck Collaboration), arXiv:1303.5084.
[14] P. Vielva and J. Sanz, Mon. Not. R. Astron. Soc. 404, 895

(2010).
[15] V.Desjacques andU.Seljak,Phys.Rev.D81, 023006 (2010).
[16] K. Enqvist, S. Hotchkiss, and O. Taanila, J. Cosmol.

Astropart. Phys. 04 (2011) 017.
[17] T. Biswas, R. Brandenberger, T. Koivisto, and A.

Mazumdar, Phys. Rev. D 88, 023517 (2013).

[18] J. Magueijo and P. Singh, Phys. Rev. D 76, 023510
(2007).

[19] B. Chen, Y. Wang, and W. Xue, J. Cosmol. Astropart.
Phys. 05 (2008) 014.

[20] Y.-F. Cai, W. Xue, R. Brandenberger, and X.-m. Zhang,
J. Cosmol. Astropart. Phys. 06 (2009) 037.

[21] T. Biswas, A. Mazumdar, and A. Shafieloo, Phys. Rev. D
82, 123517 (2010).

[22] T. Biswas, A. Mazumdar, and W. Siegel, J. Cosmol.
Astropart. Phys. 03 (2006) 009.

[23] T. Biswas, R. Brandenberger, A. Mazumdar, and
W. Siegel, J. Cosmol. Astropart. Phys. 12 (2007) 011.

[24] T. Biswas, T. Koivisto, and A. Mazumdar, J. Cosmol.
Astropart. Phys. 11 (2010) 008.

[25] T. Biswas, A. S. Koshelev, A. Mazumdar, and S. Y. Vernov,
J. Cosmol. Astropart. Phys. 08 (2012) 024.

[26] A. S. Koshelev, arXiv:1302.2140.
[27] T. S. Koivisto and T. Prokopec, Phys. Rev. D 83, 044015

(2011).
[28] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D 74,

084003 (2006).
[29] K. Freese, M.G. Brown, and W.H. Kinney,

arXiv:0802.2583.
[30] L. Baum and P. H. Frampton, Phys. Rev. Lett. 98, 071301

(2007).
[31] M. Bojowald, Living Rev. Relativity 8, 11 (2005).
[32] Y. Shtanov and V. Sahni, Phys. Lett. B 557, 1

(2003).

TIRTHABIR BISWAS, TOMI KOIVISTO, AND ANUPAM MAZUMDAR PHYSICAL REVIEW D 88, 083526 (2013)

083526-8

http://dx.doi.org/10.1103/PhysRevD.80.023519
http://dx.doi.org/10.1103/PhysRevD.80.023519
http://arXiv.org/abs/1105.2636
http://dx.doi.org/10.1103/PhysRevD.73.083508
http://dx.doi.org/10.1103/PhysRevD.73.083508
http://dx.doi.org/10.1103/PhysRevD.72.103510
http://dx.doi.org/10.1103/PhysRevD.70.063521
http://dx.doi.org/10.1103/PhysRevD.66.023507
http://arXiv.org/abs/1205.3807
http://dx.doi.org/10.1088/1475-7516/2013/04/024
http://dx.doi.org/10.1088/1475-7516/2013/04/024
http://dx.doi.org/10.1103/PhysRevLett.108.031101
http://arXiv.org/abs/gr-qc/0603088
http://dx.doi.org/10.1103/RevModPhys.79.733
http://dx.doi.org/10.1103/RevModPhys.79.733
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://arXiv.org/abs/1303.5084
http://dx.doi.org/10.1111/j.1365-2966.2010.16318.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16318.x
http://dx.doi.org/10.1103/PhysRevD.81.023006
http://dx.doi.org/10.1088/1475-7516/2011/04/017
http://dx.doi.org/10.1088/1475-7516/2011/04/017
http://dx.doi.org/10.1103/PhysRevD.88.023517
http://dx.doi.org/10.1103/PhysRevD.76.023510
http://dx.doi.org/10.1103/PhysRevD.76.023510
http://dx.doi.org/10.1088/1475-7516/2008/05/014
http://dx.doi.org/10.1088/1475-7516/2008/05/014
http://dx.doi.org/10.1088/1475-7516/2009/06/037
http://dx.doi.org/10.1103/PhysRevD.82.123517
http://dx.doi.org/10.1103/PhysRevD.82.123517
http://dx.doi.org/10.1088/1475-7516/2006/03/009
http://dx.doi.org/10.1088/1475-7516/2006/03/009
http://dx.doi.org/10.1088/1475-7516/2007/12/011
http://dx.doi.org/10.1088/1475-7516/2010/11/008
http://dx.doi.org/10.1088/1475-7516/2010/11/008
http://dx.doi.org/10.1088/1475-7516/2012/08/024
http://arXiv.org/abs/1302.2140
http://dx.doi.org/10.1103/PhysRevD.83.044015
http://dx.doi.org/10.1103/PhysRevD.83.044015
http://dx.doi.org/10.1103/PhysRevD.74.084003
http://dx.doi.org/10.1103/PhysRevD.74.084003
http://arXiv.org/abs/0802.2583
http://dx.doi.org/10.1103/PhysRevLett.98.071301
http://dx.doi.org/10.1103/PhysRevLett.98.071301
http://dx.doi.org/10.12942/lrr-2005-11
http://dx.doi.org/10.1016/S0370-2693(03)00179-5
http://dx.doi.org/10.1016/S0370-2693(03)00179-5


[33] C. Barragan, G. J. Olmo, and H. Sanchis-Alepuz, Phys.
Rev. D 80, 024016 (2009).

[34] T. S. Koivisto, Phys. Rev. D 82, 044022 (2010).
[35] R. C. Tolman, Relativity,Thermodynamics and Cosmology

(Clarendon, Oxford, 1934).
[36] R. C. Tolman, Phys. Rev. 37, 1639 (1931).
[37] T. Biswas, arXiv:0801.1315.
[38] W. Duhe and T. Biswas, arXiv:1306.6927.
[39] T. Biswas, arXiv:1308.0024.
[40] S. Ramsey, Int. J. Theor. Phys. 38, 1299 (1999).
[41] A. Ringwald, Phys. Rev. D 36, 2598 (1987).
[42] D. Boyanovsky, H. de Vega, R. Holman, D. Lee, and

A. Singh, Phys. Rev. D 51, 4419 (1995).

[43] A. Berera, M. Gleiser, and R.O. Ramos, Phys. Rev. D 58,
123508 (1998).

[44] M. Bastero-Gil, A. Berera, and R.O. Ramos, J. Cosmol.
Astropart. Phys. 09 (2011) 033.

[45] M. Bastero-Gil, A. Berera, R. O. Ramos, and J. G. Rosa,
J. Cosmol. Astropart. Phys. 01 (2013) 016.

[46] M. Drewes and J. U. Kang, Nucl. Phys. B875, 315
(2013).

[47] G. Geshnizjani, W.H. Kinney, and A.M. Dizgah,
J. Cosmol. Astropart. Phys. 11 (2011) 049.

[48] J. Zinn-Justin, Phys. Rep. 344, 159 (2001).
[49] A. Ashoorioon, P. B. Dev, and A. Mazumdar,

arXiv:1211.4678.

PHASE TRANSITIONS DURING CYCLIC INFLATION AND . . . PHYSICAL REVIEW D 88, 083526 (2013)

083526-9

http://dx.doi.org/10.1103/PhysRevD.80.024016
http://dx.doi.org/10.1103/PhysRevD.80.024016
http://dx.doi.org/10.1103/PhysRevD.82.044022
http://dx.doi.org/10.1103/PhysRev.37.1639
http://arXiv.org/abs/0801.1315
http://arXiv.org/abs/1306.6927
http://arXiv.org/abs/1308.0024
http://dx.doi.org/10.1023/A:1026674917504
http://dx.doi.org/10.1103/PhysRevD.36.2598
http://dx.doi.org/10.1103/PhysRevD.51.4419
http://dx.doi.org/10.1103/PhysRevD.58.123508
http://dx.doi.org/10.1103/PhysRevD.58.123508
http://dx.doi.org/10.1088/1475-7516/2011/09/033
http://dx.doi.org/10.1088/1475-7516/2011/09/033
http://dx.doi.org/10.1088/1475-7516/2013/01/016
http://dx.doi.org/10.1016/j.nuclphysb.2013.07.009
http://dx.doi.org/10.1016/j.nuclphysb.2013.07.009
http://dx.doi.org/10.1088/1475-7516/2011/11/049
http://dx.doi.org/10.1016/S0370-1573(00)00126-5
http://arXiv.org/abs/1211.4678

