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We investigate the possible accuracy that can be reached by analytical models for the matter density

power spectrum and correlation function. Using a realistic description of the power spectrum that

combines perturbation theory with a halo model, we study the convergence rate of several perturbative

expansion schemes and the impact of nonperturbative effects, as well as the sensitivity to phenomeno-

logical halo parameters. We check that the simple reorganization of the standard perturbative expansion,

with a Gaussian damping prefactor, provides a well-ordered convergence and a finite correlation function

that yields a percent accuracy at the baryon acoustic oscillation peak (as soon as one goes to second order).

Lagrangian-space expansions are somewhat more efficient, when truncated at low orders, but may diverge

at high orders. We find that whereas the uncertainty on the halo-profile mass-concentration relation is not a

strong limitation, the uncertainty on the halo mass function can severely limit the accuracy of theoretical

predictions for PðkÞ (this also applies to the power spectra measured in numerical simulations). The real-

space correlation function provides a better separation between perturbative and nonperturbative effects,

which are restricted to x & 10h�1 Mpc at all redshifts.
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I. INTRODUCTION

The growth of large-scale structures in the Universe
through gravitational instability is a key ingredient of
modern cosmology [1] and an important probe of cosmo-
logical parameters. In particular, future galaxy surveys aim
at a percent precision on a broad range of scales to con-
strain the dark energy component [2]. On large scales or at
high redshifts, where the amplitude of the density fluctua-
tions is small, it is sufficient to use linear theory, whereas
on small scales, in the highly nonlinear regime, one must
use numerical simulations or phenomenological models,
such as the halo model [3], which are also calibrated on
simulations. On intermediate scales, which are the focus of
several observational probes, such as measures of baryon
acoustic oscillations (BAOs) [4,5], perturbative approaches
provide systematic methods to go beyond linear theory and
increase the range of accurate theoretical predictions.

This has led to a renewed interest in perturbative
approaches that go beyond the standard perturbative ex-
pansion [6,7] by including partial resummations of higher-
order terms. A variety of schemes have been developed, in
both the Eulerian-space framework [8–14] and the
Lagrangian-space framework [15–17]. However, most of
these approaches are based on the single-stream approxi-
mation and neglect shell-crossing effects (a few exceptions
are Refs. [17–19]).

To compare these theoretical predictions with observa-
tions, it is important to understand their range of validity.
The impact of shell crossing onto the matter power spec-
trum has already been investigated in [20,21] using two
variants of a phenomenological halo model or the
Zel’dovich dynamics [22], and in [23] by estimating the

generation of vorticity and velocity dispersion. In this
paper, we investigate in more details the convergence of
several perturbative expansions and the quantitative impact
of nonperturbative effects due to shell crossing. Moreover,
we estimate the sensitivity of the predicted power spectrum
to the uncertainty of phenomenological parameters (the
concentration of the halo density profile, the halo mass
function) that must be taken from numerical simulations.
This also gives an estimate of the accuracy of the power
spectra obtained from these simulations.
To this order, we use the simple analytical model devel-

oped in [17], which combines one-loop standard perturba-
tion theory with a halo model within a Lagrangian-space
framework. This provides a good approximation to the
nonlinear power spectrum on a broad range of scales and
redshifts while being based on a physical modeling.
Therefore, we can expect that it provides a good quantita-
tive basis for such a study. For this article, the advantage of
using such a toy model rather than numerical simulations is
that we can easily separate perturbative from nonperturba-
tive contributions, as well as the impact of different halo
parameters. In contrast, numerical simulations include at
once all these effects and this can lead to misleading
comparisons with analytical approaches that neglect
some of them.
This paper is organized as follows. In Sec. II, we first

recall the model for the power spectrum obtained in [17]
that is the basis of our study. Then, in Sec. III we inves-
tigate the rate of convergence of some simple expansion
schemes, both within a Eulerian-space and a Lagrangian-
space framework. Next, in Sec. IV we estimate the impor-
tance of nonperturbative contributions, as a function of
scale and redshift, and we consider the impact of the
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limited accuracy of phenomenological halo parameters.
We conclude in Sec. V.

II. TOY MODEL FOR THE FULLY NONLINEAR
MATTER POWER SPECTRUM

We briefly recall in this section the expression of the
matter power spectrum obtained in [17] (see the Appendix
for details). As in usual halo models [3], this model writes
the nonlinear power spectrum as a sum of one-halo and
two-halo terms,

PðkÞ ¼ P1HðkÞ þ P2HðkÞ: (1)

The one-halo term reads as

P1HðkÞ ¼
Z 1

0

d�

�
fð�Þ M

�ð2�Þ3 ð~uMðkÞ �
~WðkqMÞÞ2; (2)

where fð�Þ is the scaling function that determines the
halo mass function, as dn ¼ ��=Mfð�Þd�=�, with � ¼
�c=�ðMÞ and �ðMÞ the rms linear density contrast at
mass scale M. Here, ~uMðkÞ is the Fourier transform of
the density profile of a halo of massM [we use the popular
Navarro-Frenk-White (NFW) profile [24]] given by
Eq. (A14), while ~WðkqMÞ is the Fourier transform of the
top hat of Lagrangian radius qM [it also ensures that
P1HðkÞ / k4 at low k in agreement with the conservation
of mass and momentum [25]]. Using a Lagrangian-space
framework, the two-halo term reads as

P2HðkÞ ¼
Z dq

ð2�Þ3 F2HðqÞheik�xivirq

� 1

1þ A1

e�
1
2k

2ð1��2Þ�2
?

�
e�’ð�ikq��2

�Þ=�2
� þ A1

þ
Z 0þþi1

0þ�i1
dy

2�i
e�’ðyÞ=�2

�

�
1

y
� 1

yþ ikq��2
�

��
;

(3)

where we integrate over the Lagrangian-space separation
q � q2 � q1 of particle pairs and � ¼ k � q=ðkqÞ.
Defining the displacement field�i ¼ xi � qi, the longitu-
dinal and transverse variances (with respect to the direction
q) of the linear relative displacements are �2

k ¼ hð�2kL �
�1kLÞ2i and �2

? ¼ hð�2?L ��1?LÞ2i (along any given

transverse direction). They are given by Eqs. (A1) and
(A2). The dimensionless longitudinal relative displace-
ment is denoted as � ¼ xk=q ¼ 1þ�k=q and �� ¼
�k=q. As explained in the Appendix, to derive Eq. (3),

we approximated the transverse displacement as Gaussian
(as in Lagrangian linear theory) whereas the longitudinal
displacement is non-Gaussian, defined at the perturbative
level by its cumulant generating function ’ðyÞ,

’ðyÞ ¼ � X1
n¼1

S�n
n!

ð�yÞn; S�n ¼ h�nic
�2ðn�1Þ

�

; (4)

with the behavior at the origin (S�1 ¼ S�2 ¼ 1)

y ! 0: ’ðyÞ ¼ y� y2

2
þ S�3

y3

6
þ . . . (5)

This ensures that the underlying probability distribution
function P’ð�Þ given by Eq. (A8) is normalized to unity

and obeys the constraint h�i ¼ 0, and an adequate choice
of the resummed function ’ also ensures that P’ð�Þ is
everywhere positive. Finally, the factors F2H, heik�xivirq , A1,

and the last integral over y are nonperturbative shell-
crossing contributions associated with pancake and halo
formation (see [17] for details).
The nonlinear power spectrum (1) combines perturba-

tion theory with a halo model. In particular, we showed in
Ref. [17] that this power spectrum is exact up to second
order P2

L if we use for the skewness S�3 the expression

(A7). Then, using for the resummed function ’ðyÞ the
Ansätze (A5) and (A6), we checked that we obtained a
good agreement with numerical simulations up to k�
10hMpc�1. Then, we can use the power spectrum (1) as
a toy model to investigate the rate of convergence of
various perturbative expansions to the resummed perturba-
tive power or to estimate the impact of nonperturbative
contributions and of halo parameters.

III. CONVERGENCE OF SOME
PERTURBATIVE EXPANSIONS

A. Eulerian-space expansions

Throughout this paper, by ‘‘perturbative’’ we refer to
quantities that can be expanded over integer powers of the
linear power spectrum PL, as in the standard perturbation
theory [7]. Then, the perturbative part of the matter density
power spectrum (1) writes as (see the Appendix and
Ref. [17])

PpertðkÞ ¼
Z dq

ð2�Þ3 e
�’ð�ikq��2

�Þ=�2
�e�

1
2k

2ð1��2Þ�2
? : (6)

It is also the perturbative part of the two-halo component

(3), as the one-halo component (2) of the form e�1=�2
is

nonperturbative. It is convenient to define the function
c ðyÞ, which describes the deviation from the Gaussian, by

c ðyÞ � ’ðyÞ � yþ y2

2
¼ S�3

y3

6
þ . . . ; (7)

and the power spectrum (6) writes as

PpertðkÞ ¼
Z dq

ð2�Þ3 e
ikq��1

2k
2½�2�2

kþð1��2Þ�2
?�e�c ð�ikq��2

�Þ=�2
� :

(8)

Thus, setting c ¼ 0 in Eq. (8) gives back the Zel’dovich
power spectrum [22,26,27], which is only exact up to linear
order over PL, whereas keeping c � 0with Eq. (A7) gives
a power spectrum that is exact up to second order P2

L

and also generates approximate higher-order contribu-
tions [17].
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In this framework, the functions ’ðyÞ and c ðyÞ depend
on the scale q, but they do not depend on redshift nor on the
amplitude of the linear power spectrum PL. Therefore, the
‘‘standard’’ perturbative expansion over powers of PL of
the power spectrum (1) can be recovered by expanding
Eq. (8) over powers of PL, that is, over powers of the linear
displacement variances �2

k, �
2
?, and �2

�. We denote this

‘‘standard perturbation theory’’ expansion as

PpertðkÞ ¼
X1
n¼1

PðnÞ
SPTðkÞ with PðnÞ

SPT / ðPLÞn; (9)

and from Eq. (8) each term reads as

PðnÞ
SPTðkÞ¼

Z dq

ð2�Þ3e
ikq�

�be�1
2k

2½�2�2
kþð1��2Þ�2

?��c ð�ikq��2
�Þ=�2

� cðPLÞn ; (10)

where b. . .cðPLÞn denotes the term of order ðPLÞn of the

expression between the two delimiters. Although the ex-
plicit expression (10) derives from the Lagrangian-space
formulation (6) within our framework, the standard expan-
sion of the form (9) is usually computed from a Eulerian-
space approach. Being uniquely defined as the expansion
over powers of PL, the method of computation does not
matter and no trace of the Lagrangian-space framework
remains in this expansion, which can be fully defined
within a Eulerian-space approach.

Because of the approximations involved in the model
(6), this perturbative expansion is only exact up to second
order P2

L. However, we can expect its main features to be
correct as the power spectrum built in Ref. [17] has been
shown to provide a good quantitative match to numerical
simulations and it is based on a realistic physical modeling
[e.g., the probability distribution function P ð�Þ of relative
displacements that underlies Eq. (6) is well behaved].

We show the first seven partial series of the expansion
(9) in Fig. 1. We recover the well-known behavior of the
standard perturbation theory [8,21], which has already
been exactly computed up to two-loop order, or up to
very high order for the simpler Zel’dovich dynamics. As
seen in the upper panel, the amplitude of higher orders
grows increasingly fast at high k, so that the series (9) is
badly behaved and cannot be used to compute the real-
space correlation function because of the divergent high-k
tails. However, on quasilinear scales, k & 0:4hMpc�1 at
z ¼ 0:35, the series seems to converge, at least up to order
N ¼ 7. Nevertheless, the convergence is not very regular,
as the series truncated at orders N ¼ 2, 4, or 6 shows a
stronger deviation from the full perturbative power (8) than
the previous ordersN ¼ 1, 3, or 5 (except on the very large
scales). This faster convergence of odd-order partial series
is even more clearly seen in the lower panel. This is due to

the change of signs of the fast growing contributions PðnÞ
SPT.

The nonlinear power spectrum (in the convergence do-
main) arises from cancellations between the different terms

PðnÞ and this explains why, for some values of N going to
order N þ 1 can worsen the result on scales that have not
converged yet, because some required counterterms are
included in the subsequent order N þ 2. In particular,
while going to third order over PL (i.e., two-loop order in
terms of the usual perturbative diagrams) significantly
extends the range of validity of the prediction as compared
with the linear or second-order approximations, a better
approximation requires going to fifth order.
On the other hand, if we compare the partial series (9)

with the full nonlinear power spectrum PðkÞ measured in
numerical simulations, or given by Eq. (1), we find that the
second-order (i.e., one-loop) approximation fares best than
all other truncations on a broad range of scale. This is
because k1:5P1-loopðkÞ happens to show a slow rise beyond

quasilinear wave numbers that is similar to the growth

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

(k
h

)1.
5
 P

(k
)

k [h Mpc-1]

z=0.35

Σ1
N P(n)

SPT

Ppert

PL

N=2
3

4 5

6
7

 0.01

 0.1

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

|∆
P

(k
)/

P
(k

)|

k [h Mpc-1]

z=0.35

PL

N=2

3

4

5

6

7

FIG. 1 (color online). Upper panel: ‘‘standard’’ perturbative
expansion over powers of PL of the power spectrum (6), as in
Eq. (9). We show the partial series truncated at order N ¼
1; 2; . . . ; 7 (the case N ¼ 1 is simply the linear power spectrum
PL), as well as the resummed perturbative power spectrum Ppert,

at redshift z ¼ 0:35. Lower panel: relative deviation between
these partial series and the resummed perturbative power spec-
trum Ppert of Eq. (6).
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shown by the nonlinear power spectrum. However, this is
only a misleading coincidence: the ‘‘true’’ perturbative
power spectrum Ppert, of which P1-loopðkÞ is only a

second-order approximation, actually shows a faster de-
crease at high k and the growth of the nonlinear power
spectrum PðkÞ is due to nonperturbative effects that are not
included in any perturbative scheme based on the single-
stream approximation. This emphasizes the danger of
comparing various perturbative approaches (or more gen-
eral analytic models) with numerical simulations, which do
not separate between the different contributions to the
power spectrum (e.g., originating from perturbative and
nonperturbative scales). Thus, a seemingly good agree-
ment between a perturbative prediction and the full
nonlinear power spectrum on transition scales is not nec-
essarily meaningful. Because a non-negligible part of the
power comes from effects that are not included in the
model, a good match is likely to be a coincidence rather
than the result of a very realistic and accurate modeling,
and it may even become a problem as one tries to improve
the model by adding these other effects.

As advocated in [8,9], it is possible to reorganize the
standard perturbation theory by factoring out a Gaussian

damping term e�k2�2
v , where �2

v ¼ hj�ij2i=3 is the vari-
ance of the linear one-point displacement along one
dimension. We denote this expansion as

PpertðkÞ ¼ e�k2�2
v

X1
n¼1

PðnÞ
�v
ðkÞ with PðnÞ

�v
/ ðPLÞn; (11)

and from Eq. (8) each term reads as

PðnÞ
�v
ðkÞ ¼

Z dq

ð2�Þ3 e
ikq�

� be�1
2k

2½�2�2
kþð1��2Þ�2

?�2�2
v��c ð�ikq��2

�Þ=�2
� cðPLÞn :

(12)

The prefactor e�k2�2
v in Eq. (11) arises from the large-

distance limit of the Gaussian term in Eq. (8). Indeed, at
large separation length, q ! 1, the two particles become
uncorrelated and �2

k and �2
? converge to 2�2

v. [This also

means that for large q the Gaussian term in Eq. (12) goes to
zero, which simplifies the numerical computation.] Again,
although the explicit expression (12) derives from a
Lagrangian-space formulation, the expansion (11) is usu-
ally computed from a Eulerian-space approach and does
not require introducing a Lagrangian-space framework.

The two expansions (9) and (11) can be derived from
each other for any truncation order N. For instance, from
the definitions (9) and (11) we obtain at once

PðnÞ
SPTðkÞ ¼

Xn�1

p¼0

ð�k2�2
vÞp

p!
Pðn�pÞ
�v

ðkÞ: (13)

[This is in fact how we computed the standard high-order

terms PðnÞ
SPT because the terms PðnÞ

�v
are better behaved.]

We show the first seven partial series of the expansion
(12) in Fig. 2. We recover the well-known property [8,21]
that this reorganized expansion is much better behaved
than the standard expansion (9). This is partly artificial as

this is mostly due to the too strong Gaussian cutoff e�k2�2
v .

As explained for instance in [27,28], this damping only
occurs for different-time propagators or power spectra and
vanishes for equal-time statistics, which show a smoother
power-law decline at high k (as for the Zel’dovich power
spectrum [26,27,29]). Then, the series in Eq. (11) must

compensate for this too strong cutoff and behave as ek
2�2

v ,
up to power-law corrections, which gives contributions

of the form e�k2�2
vPðnÞ

�v
ðkÞ � e�k2�2

vðk�vÞ2n=n! that are
positive and well ordered, with a sharp peak around
kn �

ffiffiffi
n

p
=�v. Nevertheless, this reorganization of the per-

turbative expansion provides a very regular convergence to
the perturbative power spectrum (6), at least up to order
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FIG. 2 (color online). Upper panel: reorganized perturbative
expansion (11) of the power spectrum (6), with the Gaussian
prefactor e�k2�2

v . We show the partial series truncated at order
N ¼ 1; 2; . . . ; 7, as well as the resummed perturbative power
spectrum Ppert. Lower panel: relative deviation between these

partial series and the resummed perturbative power spectrum
Ppert of Eq. (6).
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N ¼ 7, The comparison of Fig. 2 with the standard
expansion displayed in Fig. 1 shows that even-order series
(N ¼ 2, 4, 6) are significantly improved while odd-order
series (N ¼ 1, 3, 5, 7) fare somewhat worse. However, the
well-ordered convergence of the expansion (11) (at least on
these scales, as the radius of convergence of the perturba-
tive series is not necessarily infinite) makes it superior to
the standard expansion. Another key advantage of the
series (11) is that the high-k tail is no longer divergent.
This means that we can now compute the Fourier transform
of the power spectrum (11), which gives a perturbative
expansion of the two-point correlation �ðxÞ.

We show in Fig. 3 the correlation functions �ð�NÞ
�v

ob-
tained from the partial series (11) truncated at order N. We
compare these results with the correlation function �pert

defined by the resummed perturbative power spectrum of
Eq. (6). We focus on BAO scales because small nonlinear

scales are beyond the reach of this approach. As compared
with linear theory, we can see that the simple multiplica-
tion of the linear power spectrum by the Gaussian damping

e�k2�2
v already provides a very significant improvement,

as the deviation from the resummed correlation �pert

decreases from 30% to 4%, at redshift z ¼ 0:35. The
second (one-loop) order already gives a better than percent
accuracy. (The rise of the curves in the lower panel at
x� 130h�1 Mpc is due to the change of sign and crossing
through zero of �pert, which amplifies relative deviations.)

Thus, perturbative expansions converge very fast for the
real-space BAO peak, provided the high-k tail of their
power spectrum is well behaved. This explains why most
perturbative resummation schemes manage to give accu-
rate predictions for the BAO correlation function.
The comparison between Figs. 2 and 3 shows that the

convergence is much faster for the correlation function
than for the power spectrum. This means that the real-space
BAO peak is a more robust probe of cosmology than the
oscillations of the power spectrum. This is because by
looking at the BAO peak we focus on a fixed scale, far in
the quasilinear regime, whereas by looking at oscillations
in PðkÞ we must consider a broad range of wave numbers,
where different orders contribute, including nonperturba-
tive effects that are not shown in Fig. 2. More generally, the
power spectrum and the correlation function are not iden-
tical probes for practical purposes, because the Fourier
transform mixes all scales, to some degree, and we can
never observe all scales nor make accurate predictions for
all scales.

B. Lagrangian-space expansions

We have described in Sec. III A the two simplest pertur-
bative expansions of the density power spectrum. Being
defined as the truncation at order N of expansions over
powers of PL, they can be computed by any perturbative
method using either a Eulerian or Lagrangian framework.
In practice, they are computed using the standard Eulerian
perturbation theory [7], which is the simplest approach and
directly provides these partial series. However, because our
model (6) is based on a Lagrangian-space framework, it
also allows us to investigate the standard Lagrangian per-
turbation theory. In this approach, instead of looking for a
perturbative expansion of the density and velocity fields,
which gives in turn the density and velocity power spectra,
one looks for a perturbative expansion of the displacement
field, �i ¼ xi � qi. This gives in turn the density power
spectrum through the relation

PðkÞ ¼
Z dq

ð2�Þ3 he
ik�xi (14)

¼
Z dq

ð2�Þ3 exp

2
4X1

n¼1

hðik � xÞnic
n!

3
5; (15)
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FIG. 3 (color online). Upper panel: two-point correlation func-

tions �ð�NÞ
�v

ðxÞ defined by the partial series for the power spec-
trum shown in Fig. 2 and given by Eq. (11). We show the partial
series truncated at order N ¼ 1; 2; . . . ; 7, as well as the re-
summed correlation �pert and the linear correlation �L. The

curves for N � 2 and �pert cannot be distinguished. Lower panel:

relative deviation between these perturbative expansions �ð�NÞ
�v

and the resummed correlation �pert.
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where again q ¼ q2 � q1 and x ¼ x2 � x1 are the
Lagrangian and Eulerian pair separations (and we dis-
carded a Dirac factor). If we expand the exponential over
powers of PL we recover the standard Eulerian perturba-
tion theory, as in Sec. III A, but by keeping some terms in
the exponential we obtain alternative approximations,
which can be seen as partial resummations of the standard
Eulerian perturbation theory.

If we truncate the cumulant series in the exponential in
Eq. (15) at order PL, which corresponds to the linear
displacement field, we recover the Zel’dovich power
spectrum,

PZðkÞ ¼
Z dq

ð2�Þ3 e
ikq��1

2k
2½�2�2

kþð1��2Þ�2
?�; (16)

which coincides with Eq. (8) where we set c ¼ 0. This is
only exact up to linear order over PL. Then, to go beyond
the Zel’dovich approximation, we usually compute the
displacement field up to some finite order over the ampli-
tude of the initial fluctuations �L, substitute into Eq. (14),
and expand the exponential over terms that are cubic or
higher order over �L. This provides a Gaussian expression
over �L, with polynomial prefactors, that can be explicitly
computed. Within our framework (6), this simply corre-
sponds to expanding the last term in Eq. (8) over powers of
PL. This gives the perturbative expansion

PpertðkÞ ¼
X1
n¼1

PðnÞ
Z ðkÞ with PðnÞ

Z �O½ðPLÞn�; (17)

and

n � 2: PðnÞ
Z ðkÞ

¼
Z dq

ð2�Þ3 e
ikq��1

2k
2½�2�2

kþð1��2Þ�2
?�be�c ð�ikq��2

�Þ=�2
� cðPLÞn ;

(18)

and we define Pð1Þ
Z ¼ PZ. Thus, each term PðnÞ

Z scales as
ðPLÞn for PL ! 0 but it also contains contributions at all
higher orders. The first order n ¼ 1 is the Zel’dovich
power spectrum. The second order n ¼ 2 involves the
skewness S�3 .

We show the first six partial series of the expansion (17)
in Fig. 4. As compared with the Eulerian expansions, we
can see that the first few partial series converge much faster
and on a broader range of scales. Moreover, the accuracy
improves with the order from N ¼ 1 to N ¼ 3, but the
orders N ¼ 4 and N ¼ 6 are somewhat worse than N ¼ 3
and N ¼ 5. This suggests that this Lagrangian-space per-
turbative expansion has a better start because the
Zel’dovich approximation is a good starting point (which
is sometimes used for instance to initialize numerical
simulations), as it corresponds to a physical matter distri-
bution that is realistic on large scales and well defined
beyond shell crossing. In particular, the high-k tail remains
well behaved until N � 4. However, for high orders,

N ¼ 5, 6, the series does not seem to converge very well
and the high-k tail starts diverging. Therefore, the
Lagrangian-space expansion (17) shares some features
with both Eulerian-space expansions (9) and (11). The first
few orders show an ordered systematic convergence, as for
(11), but at higher orders the convergence becomes irregu-
lar, as in (9), and may even break down at high k.
Nevertheless, this Lagrangian-space expansion appears
superior to both Eulerian-space expansions in the sense
that for a given low order (e.g.,N ¼ 3 or 5), the accuracy is
significantly better and has a broader range of validity.
However, it seems that it should not be pushed too far.
The bad convergence at high k and large orders may be due
to a finite radius of convergence of perturbative expansions
of the power spectrum (6), associated with singularities of
the function ’ðyÞ in the complex plane at a finite distance
from the origin. Then, the Eulerian-space expansions (9)
and (11) are expected to show the same problems as we
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push them to higher orders and higher k. On the other, this
high-order behavior may not generalize to the exact gravi-
tational dynamics, where the conditions of convergence of
perturbative expansions are not known.

We show the correlation functions �ð�NÞ
Z obtained from

the partial series (17) in Fig. 5. We again focus on BAO
scales, for the orders N ¼ 1, 2, and 3. As for the reorgan-
ized Eulerian-space expansion (11) shown in Fig. 3, the
first term N ¼ 1 (which is the Zel’dovich approximation
here) already improves the accuracy from 30% to 4% at
redshift z ¼ 0:35, as compared with linear theory. This
reasonably good agreement of the Zel’dovich correlation
function with numerical simulations on large scales was
already noticed in [17,30]. Orders N ¼ 2 and 3 provide a
subpercent accuracy. The accuracy is only slightly better
than for the expansion (11) at these orders.

An alternative to the approach associated with the ex-
pansion (18) is to again compute the displacement field up
to some finite order over the initial fluctuations �L, but then
to substitute into Eq. (15) and keep a truncated cumulant
series into the exponential. Within our framework (8), this
simply corresponds to expanding the function c in the
exponential. This gives the sequence of approximations

Pð�NÞ
ZE ðkÞ ¼

Z dq

ð2�Þ3 e
ikq��1

2k
2½�2�2

kþð1��2Þ�2
?�

� e
b�c ð�ikq��2

�Þ=�2
�c�ðPLÞN ; (19)

where b. . .c�ðPLÞN denotes the truncation at order N over PL

of the expression between the two delimiters. The ‘‘E’’ in
the subscript ‘‘ZE’’ recalls that we keep the terms in the
exponential. The order N ¼ 1 again corresponds to the
Zel’dovich power spectrum (16).
We show the first seven orders of the expansion (19) in

Fig. 6. We obtain a behavior that is similar to the one

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 70  80  90  100  110  120  130

10
3

x
ξ(

x)

x [h-1Mpc]

z=0.35ξL

ξL
N=1
N=2

 0.01

 0.1

 1

 70  80  90  100  110  120  130

|∆
 ξ

 (
x)

 / 
ξ(

x)
|

x [h-1Mpc]

z=0.35

ξL

N=1

ξL
N=1
N=2
N=3

FIG. 5 (color online). Upper panel: two-point correlation func-

tions �ð�NÞ
Z ðxÞ defined by the partial series for the power spec-

trum shown in Fig. 4 and given by Eq. (17). We show the partial
series truncated at order N ¼ 1, 2, and 3, as well as the
resummed correlation �pert and the linear correlation �L. The

curves for N ¼ 2, 3, and �pert cannot be distinguished. Lower

panel: relative deviation between these perturbative expansions

�ð�NÞ
�v

and the resummed correlation �pert.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

(k
h

)1.
5
 P

(k
)

k [h Mpc-1]

z=0.35

P(≤N)
ZE

N=1

2

4

6

7

 0.01

 0.1

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

|∆
P

(k
)/

P
(k

)|

k [h Mpc-1]

z=0.35

N=1

2 3

4

5

6
7

FIG. 6 (color online). Upper panel: Lagrangian-space pertur-
bative expansion (19) of the power spectrum (8). We show the
orders N ¼ 1; 2; . . . ; 7, as well as the resummed perturbative
power spectrum Ppert. Lower panel: relative deviation between

these partial series and the resummed perturbative power spec-
trum Ppert of Eq. (8).

ACCURACY OF ANALYTICAL MODELS OF THE LARGE- . . . PHYSICAL REVIEW D 88, 083524 (2013)

083524-7



obtained in Fig. 4 for the other Lagrangian-space expan-
sion (17). We again find a fast convergence of the first few
orders at k � 0:5hMpc�1 and signs of bad behavior and
divergence at higher orders and higher k. The accuracy is
typically of the same order as for the expansion (17). This
means that on quasilinear scales there is not much differ-
ence between expanding the exponential or not. The high-k
tail is more sensitive to the details of the method but it also
seems beyond the scope of these perturbative expansions.

We also computed the two-point correlations �ð�NÞ
ZE for

N ¼ 1 and 2 and found results that are similar to those in
Fig. 5.

Thus, we can conclude that for a fixed low order of
truncation, Lagrangian-space approaches can have a
broader range of validity than their Eulerian counterparts
for the power spectrum and also provide good approxima-
tions to the two-point correlation on BAO scales. However,
for the computation of the BAO peak of the two-point
correlation, the simple reorganization (11) of standard
Eulerian perturbation theory may be more efficient because
of its greater simplicity.

IV. SCOPE OF PERTURBATIVE APPROACHES

A. Impact of nonperturbative contributions

We have investigated in Sec. III the convergence of
Eulerian and Lagrangian perturbative expansions toward
the resummed perturbative power spectrum (6). However,
even if we find an efficient perturbative scheme, or manage
to resum the perturbative expansion, this is not sufficient to
provide the matter density power spectrum. Indeed, these
perturbative expansions are restricted to the single-stream
regime and do not include nonperturbative effects associ-
ated with shell crossings. (Even though the Lagrangian
expansions of Sec. III B implicitly go beyond shell cross-
ing, as in the Zel’dovich approximation, this analytic con-
tinuation is not exact and cannot be trusted in this regime.)

Our framework (1)–(3) based on the halo model com-
bines these perturbative single-stream contributions with
nonperturbative contributions that are modeled in a more
phenomenological fashion. However, because our model
has been shown to provide a good agreement with numeri-
cal simulations for a variety of cosmologies [17] and it is
based on a realistic modelization, it allows us to estimate
the relative importance of these contributions. We can split
the full nonlinear power spectrum into three components,

PðkÞ ¼ PpertðkÞ þ P
nonpert
2H ðkÞ þ P1HðkÞ: (20)

The one-halo term P1H is the fully nonperturbative contri-
bution given by Eq. (2) and we split the two-halo term
given by Eq. (3) into its perturbative part Ppert given by

Eq. (6), and its nonperturbative part P
nonpert
2H defined as

Pnonpert
2H ðkÞ � P2HðkÞ � PpertðkÞ: (21)

Of course, the halo model itself is only an approximate and
phenomenological description of the density field. Hence
the splitting of nonperturbative contributions into the two

terms Pnonpert
2H and P1H is not very well and uniquely

defined, especially from a Eulerian point of view.
However, from the Lagrangian point of view that led to
the model (1)–(3), the distinction is easier to make (even
though approximate) as pairs of particles belong either to
the same or different halos and we can split their motion
into small-scale virial motions and large-scale collective

flows. Then, the term Pnonpert
2H is the contribution of small-

scale multistreaming to the large-scale power spectrum.
This transfer of power is due to the Fourier transform that
defines the power spectrum, which mixes scales: finite-
scale motions contribute to all wave numbers in Eq. (14).
Within our framework (3), this arises from the uncorrelated
small-scale virial motions of both particles in their respec-
tive halos [the factor heik�xivirq in Eq. (3)], the sticking of

particles within pancakes (instead of escaping to infinity as
in the Zel’dovich approximation) [the factors A1 and the
complex integral over y in Eq. (3)], and the removal of
particle pairs that belong to the same halo [the factor F2H in
Eq. (3)] as we collect their contribution in a separate one-
halo term. At a qualitative level, these factors are analo-
gous to the viscous (sticking in pancakes) and pressure
(uncorrelated small-scale virial motions) terms that have
been added in some previous works [18,19] to the hydro-
dynamical equations of motion to build perturbative ex-
pansions that can handle some shell-crossing effects. These
effective approaches, which are based on a separation of
scales, would provide another route to predict the ‘‘cosmic
web’’ power spectrum or two-halo term (3) but cannot
describe the fully nonlinear scales associated with the
one-halo term (2).
We show in Fig. 7 the three components of Eq. (20). We

can check that the perturbative component is dominant on

large scales, the one-halo term on small scales, and the

nonperturbative part of the two-halo term is mainly rele-

vant on intermediate scales. As seen in the lower panel, the

perturbative part Ppert shows a fast decrease at high k in

relative terms. This is because it typically decays faster

than k�3 as the Zel’dovich power spectrum, because

intermediate-scale structures are erased as particles keep

moving on. The one-halo term (2) shows a fast decrease at

low k because of its k4 tail ensured by the counterterm ~W in

Eq. (2) associated with mass and momentum conservation.

The term P
nonpert
2H , which combines small and large scales,

shows a broader distribution but its precise shape is likely

to depend on the details of our model. In any case, Fig. 7

shows that if we require a few percent accuracy we are

sensitive to shell-crossing effects down to k� 0:1hMpc�1

at z ¼ 0:35. This agrees within a factor of about 2 with the
results obtained in previous works that used simpler

models [20,21]. As expected, we first encounter the
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term P
nonpert
2H , associated with the residual effect of small-

scale multistreaming onto the large-scale power, and next

the one-halo contribution.
We must note that Fig. 7 does not define by itself the

limitation of semianalytical models. This only gives a
lower bound to the range of wave numbers that can be
described by semianalytical models, if we set all nonper-
turbative contributions to zero and use a Lagrangian-based
regularization of perturbation theory. In practice, if we take
into account nonperturbative contributions in an approxi-
mate fashion, as in Ref. [17] for instance or by including
some additional pressure terms to the equations of motion,
we can extend the range of validity of semianalytical
models. In particular, they only need to be modeled up to
10% on scales where they do not contribute to more than
20% if we require a 2% accuracy. We discuss in more
details these points in Secs. IVB 1 and IVB2 below.
However, Fig. 7 is useful as a warning to the limitations
of perturbation theories and gives an estimate of the scale

and accuracy where adding high-order contributions to the
single-stream perturbative expansions is relevant.
The Fourier transform of Eq. (20) gives the decomposi-

tion of the two-point correlation function,

�ðxÞ ¼ �pertðxÞ þ �
nonpert
2H ðxÞ þ �1HðxÞ: (22)

We show our results in Fig. 8. Again, the perturbative term
dominates on large scales, the one-halo term on small
scales, and the nonperturbative part of the two-halo term
is mainly relevant on intermediate scales. The peaks at x ’
130h�1 Mpc in the lower panel are due to the zero crossing
of the two-point correlation, which makes the ratios
diverge. The lower panel shows that nonperturbative con-
tributions are negligible at z ¼ 0:35 on scales larger than
10h�1 Mpc, even when we require an accuracy of 1%.
(This also agrees with Ref. [30] who noticed that the
Zel’dovich correlation function is reasonably accurate
down to �10h�1 Mpc.) This shows that real-space statis-
tics provide a robust and efficient probe of cosmology as
they offer a clean separation between perturbative and
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nonperturbative contributions. This is important as the
perturbative contributions can be computed from first
principles by systematic expansion schemes, whereas non-
perturbative contributions are necessarily more phenome-
nological and of limited accuracy. Moreover, as noticed in
Sec. III, the perturbative expansions of the two-point cor-
relation function show a fast convergence on large scales.
These features can be understood from the physics at play,
as nonlinearities arise from small-scale motions (rather
than wave interactions) that take place in configuration
space and do not redistribute matter on large scales.
Then, one can expect a separation of scales to be more
readily apparent in configuration space than in Fourier
space, where the integral transform spreads the contribu-
tions to all wave numbers.

To study the evolution with redshift of these perturbative
and nonperturbative contributions, we show in the upper
panel of Fig. 9 the contour lines in the ðk; zÞ plane of the

regions where Pnonpert
2H and P1H contribute to more than 2%

or 10% of the full power spectrum. The lower panel shows
the same contour lines for the two-point correlation in the
ðx; zÞ plane. At higher redshift the region where the non-
perturbative contributions are important is pushed toward
higher wave numbers k and smaller scales x. The contour

lines associated with P
nonpert
2H and P1H are similar, as they

follow the nonlinear scale. The lower panel shows that if
we can model these nonperturbative up to 20% we can
reach an accuracy of 2% for �ðxÞ down to x � 10 or
x � 0:5h�1 Mpc at redshifts z ¼ 0 or 3 (provided we
have a good perturbative scheme, but this should not be
the limiting factor). This is rather reassuring, as it ensures a
broad range of scales for future wide surveys.

B. Impact of phenomenological parameters

As noticed in Sec. IVA, the study of the relative impor-
tance of nonperturbative contributions to the matter power
spectrum or correlation function only gives a very conser-
vative estimate of the scope of semianalytical models.
Indeed, the latter can include such effects in a phenome-
nological manner, e.g., through a halo model, or through an
implicit regularization of the perturbative scheme. Then,
we can estimate the scope of semianalytical models by
studying the sensitivity of their predictions to the value of
these phenomenological parameters, which cannot be com-
puted by systematic analytical approaches. Within our
framework, this corresponds to investigating the sensitivity
of our predictions on the halo-model parameters, associ-
ated with the halo mass function and density profiles.
Indeed, because there is little hope that such properties
can be predicted with a high accuracy by analytical mod-
els, they must be taken from numerical simulations. Then,
the theoretical predictions become limited by the accuracy
of these simulations, and more generally by these parame-
ters; even more so when one considers different cosmolo-
gies than those where they were measured. This yields a
limitation to the accuracy of semianalytical models but
also of predictions that can be directly obtained from the
numerical simulations themselves.

1. Impact of the halo mass-concentration relation

The halo density profiles are a first limitation to the
accuracy of semianalytical models. Indeed, being the result
of highly nonlinear and nonperturbative processes, it has
proved difficult to obtain accurate and systematic theoreti-
cal predictions (especially within the virial radius). In
practice one uses a typical fitting profile (e.g., a rational
function) with a few parameters that may depend on the
halo mass. Here, as in [17], we use the NFW profile [24].
The exponents are fixed and there is a single concentration
parameter, cðMÞ, that determines the transition scale be-
tween the inner and outer regimes � / x�1 and � / x�3.
We show in Fig. 10 the impact on the power spectrum

and correlation function, at z ¼ 0:35, of a 10% increase of
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cðMÞ. We also show the difference between the predictions
obtained using two different fits to numerical simulations
from previous works, Refs. [31,32]. We can see that the
difference between published fits for cðMÞ is of order 10%
(somewhat greater; this also depends on mass and redshift).
However, it appears that the impact on the power spectrum
and correlation function is restricted to rather small scales,
k * 1hMpc�1 and x & 2h�1Mpc at z ¼ 0:35, for a 1%
accuracy.

The contour lines in the ðk; zÞ and ðx; zÞ planes of a 2% or
8% impact on the power spectrum and correlation function
are shown in Fig. 11, for these same modifications to cðMÞ.
Again, we find that for the redshift range 0 � z � 3 the
uncertainties of the mass-concentration relation only affect
the power spectrum and correlation function on rather
small scales. The comparison with Fig. 9 shows that this
occurs in the highly nonlinear regime where the perturba-
tive expansions are no longer valid and the power spectrum

or correlation function is dominated by the one-halo
contribution.
Thus, the precise shape of halo profiles should not be a

worrying limitation of semianalytical models, because
there remains a large range of scales where its impact is
negligible.

2. Impact of the halo mass function

Apart from the halo profiles, a second limitation to the
accuracy of semianalytical models is the halo mass func-
tion itself. In principle, it should be more easily predicted
than halo profiles, because one does not need to follow the
late virialization stages of inner halo regions but only to
count collapsed regions. This explains the relative success
of various analytical approaches [33,34] that try to detect
future halos from the initial linear density field (for the
high-mass tail). However, it has proved difficult to go
below a 20% accuracy (this depends on mass and redshift)
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and most works use fits to numerical simulations, or in-
volve some parameters that are taken from simulations.

We show in Fig. 12 the impact on the power spectrum
and correlation function, at z ¼ 0:35, of a 10% decrease of
the mass function nðMÞ. We also show the difference
between the predictions obtained using three different fits
to numerical simulations, Refs. [35–37]. We can see that
the difference between published fits for nðMÞ is of order
10% (somewhat greater; this also depends on mass and
redshift). The comparison with Fig. 10 shows that the
impact of a 10% inaccuracy of the halo mass function is
greater than the impact of a 10% inaccuracy of the mass-
concentration relation. Therefore, this could be the limiting
factor of semianalytical models.

Decreasing (or increasing) the halo mass function by
10% is not realistic because the total halo mass fraction
should remain at unity (or at least not greater than unity).
However, the power spectrum and correlation functions on

large scales are mostly sensitive to massive and large halos,
so that the constraint of a unit normalization (which is
satisfied by the three fits from Refs. [35–37]) is not suffi-
cient to lessen the impact on the power spectrum. The
large-mass tail is also difficult to measure from numerical
simulations, because these are rare objects. These fits for
halo mass functions are actually defined in different man-
ners, as one can use different halo-finder algorithms (e.g.,
based on a spherical-overdensity criterion or friends-of-
friends procedures) and different halo definitions (e.g.,
different halo density contrasts). This is a further difficulty
for semianalytical models, as different definitions may be
relevant for different purposes.
In any case, Fig. 12 shows that there remains a signifi-

cant range of scales that is not affected by these
inaccuracies of the halo mass function. In particular, for
the correlation function at z ¼ 0:35 scales beyond
10h�1 Mpc are not affected at the percent level. This
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means that accurate theoretical predictions can be obtained
for a useful range of scales and redshifts.

The contour lines in the ðk; zÞ and ðx; zÞ planes of a 2% or
8% impact on the power spectrum and correlation function
are shown in Fig. 13, for these same modifications to nðMÞ.
We can check from the comparison with Fig. 9 that these
effects only occur on small scales where the nonperturba-
tive contributions are significant. Again, the comparison
with Fig. 11 shows that in the redshift range 0 � z � 3 the
uncertainties of the halo mass function have a greater
impact than those of the mass-concentration relationship.
The real-space correlation function again appears to be
more robust and provides a cleaner separation from these
effects than the power spectrum.

The sources of uncertainty displayed in Figs. 12 and 13
also apply to the power spectra and correlation functions
directly measured from numerical simulations. Our analy-
sis describes how the measures of halo mass functions and
power spectra from simulations are correlated.

V. CONCLUSION

In this paper, using an accurate description of the matter
power spectrum that combines perturbation theory with a
halo model, we have investigated the possible accuracy
that can be expected from semianalytical models.

First, focusing on the perturbative component, we have
found that the simple reorganization of the standard per-
turbation theory with a Gaussian damping prefactor pro-
vides a well-ordered convergence for the power spectrum
at low k. It also provides a finite two-point correlation
function that is accurate at the percent level on BAO scales
as soon as we go up to order P2

L. Lagrangian-space ex-
pansions appear more efficient than their Eulerian counter-
parts when both are truncated at a low order, N � 4, but at
high orders the convergence is no longer well ordered and
shows signs of divergence at high k. On the other hand, the
correlation function obtained from these Lagrangian-space
expansions is also accurate at the percent level on BAO
scales as soon as we go up to order P2

L (and N & 4).
Second, we have investigated the importance of non-

perturbative contributions to the power spectrum. Those
coming from the two-halo term, which may be seen as
a backreaction of small scales onto large scales, affect a
rather large range of wave numbers if one looks for a
percent accuracy for PðkÞ. Those coming from the one-
halo term, which correspond to inner halo regions, are
restricted to higher wave numbers although they already
reach a percent level at k� 2hMpc�1 at z ¼ 0:35. The
separation between perturbative and nonperturbative ef-
fects appears to be better defined in configuration space.
Thus, all nonperturbative effects are smaller than 1% at all
redshifts on scales x * 10h�1 Mpc, for the correlation
function. This may be understood from the fact that these
nonperturbative processes (shell crossing and virialization

within halos) occur through local processes in real space,
rather than wave interactions in Fourier space.
These estimates of the scales where nonperturbative

effects are non-negligible can also be useful when one
compares perturbative schemes with numerical simula-
tions, to avoid meaningless comparisons. Indeed, whereas
most perturbative schemes do not include shell-crossing
effects, numerical simulations include all contributions at
once and a good agreement on scales where the latter are
not negligible can be misleading.
The relative importance of such nonperturbative effects

is not necessarily a limit to semianalytical models if they
can be accurately described. To assess the actual accuracy
of semianalytical modeling, we have then estimated the
impact on the power spectrum of the uncertainty of the
mass-concentration relation and of the halo mass function.
These uncertainties apply as well to the predictions ob-
tained from the numerical simulations themselves. We find
that the current accuracy of the mass-concentration relation
(of order 10%) is not a worrying limitation to theoretical
predictions, as it only yields an uncertainty below the
percent level on large scales with k & 1hMpc�1 or x *
1h�1 Mpc at all redshifts. This is due to the fact that
changes to halo profiles only make a small-scale redistrib-
ution of matter and do not modify large-scale properties.
The current uncertainty on the halo mass function is a
greater problem for semianalytical models as it can affect
wave numbers down to k� 0:2hMpc�1 and scales up to
x� 10h�1 Mpc at z ¼ 0 if we require a percent accuracy.
Indeed, this corresponds to a reorganization of matter on
the scale of the largest halos, because weakly nonlinear
scales are mostly sensitive to the largest halos and the
constraint associated with the normalization to unity of
the halo mass function is not sufficient to damp this effect.
Again, it appears that configuration-space statistics are
better suited to separate such effects. In particular, while
k� 0:2hMpc�1 is close to the scales (k� 0:1hMpc�1)
where baryon acoustic oscillations can be measured in the
power spectrum, x� 10h�1 Mpc is quite far from the
correlation-function acoustic peak (x� 105h�1 Mpc).
These results also apply to the power spectra measured

in numerical simulations, as they describe how uncertain-
ties of the halo mass functions and power spectra measured
in these simulations are correlated.
From the observational point of view, one must then

balance the higher accuracy of the theoretical predictions
in configuration space with the easier handling of Fourier-
space data, because of their better-behaved covariance
matrices (which are diagonal in the linear regime because
different wave numbers are uncorrelated).
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APPENDIX: COMBINING THE HALO MODEL
WITH ONE-LOOP PERTURBATION THEORY

In this appendix we provide some more details about the
combination of one-loop perturbation theory and the halo
model that defines the nonlinear power spectrum that we use
in this paper, given by Eqs. (1)–(3). See Ref. [17] for details.

In the Lagrangian-space framework, particles follow
trajectories xiðtÞ ¼ qi þ�iðtÞ, where qi is the initial po-
sition and �i the displacement field. At linear order, the
variances of the relative displacement � ¼ �2 ��1 of
two particles 1 and 2, in the transverse and longitudinal
directions with respect to the initial separation vector
q ¼ q2 � q1, are

�2
kðqÞ ¼ h�2

Lki ¼ 2
Z

dk½1� cos ðkkqÞ�
k2k
k4

PLðkÞ; (A1)

�2
?ðqÞ ¼ h�2

L?i ¼ 2
Z

dk½1� cos ðkkqÞ�
k2?
k4

PLðkÞ; (A2)

where k? is the component along one of the two trans-
verse directions. The power spectrum in the Zel’dovich
approximation is obtained by considering the displacement
field at linear order. For Gaussian initial conditions, this
yields a Gaussian distribution for the relative displacements
and, using the exact expression (15), this leads to the
Zel’dovich power spectrum (16), where � ¼ ðk � qÞ=ðkqÞ.
We go beyond the Zel’dovich approximation by including
nonlinearities in the distribution of the parallel displacement
field, while keeping linear theory for the transverse one.
Thus, introducing the rescaled longitudinal relative displace-
ment � of the pair of particles, and its linear variance �2

�,

� ¼ xk
q
; �2

� ¼ �2
k

q2
; (A3)

we define its cumulant generating function ’ðyÞ by
he�y�=�2i ¼ e�’ðyÞ=�2

� : (A4)

By definition, this generating function must satisfy the series
expansion (4), with the first few orders given by
Eq. (5). Then, we use the Ansatz

’ðyÞ ¼ 1� 	

	

�
1þ y

1� 	

�
	 � 1� 	

	
; (A5)

where the scale-dependent parameter 	ðqÞ is given by

	ðqÞ ¼ 2� S�3 ðqÞ
1� S�3 ðqÞ

: (A6)

This is the simplest function that ensures consistency with
the constraint (5) [and that�’ðyÞ be convex, which must be
satisfied to provide a meaningful cumulant generating func-
tion]. The associated power spectrum PpertðkÞ is given by

Eq. (6) using Eq. (A4) into Eq. (14) and recalling that we
keep linear theory for the transverse displacement.
Moreover, PpertðkÞ is exact up to one-loop order (i.e., up to

order P2
L) provided S�3 ðqÞ is given by

S�3 ðqÞ ¼ � 24�

�4
�

Z 1

0
dk

P1loopðkÞ � P
1loop
Z ðkÞ

q4k2

�
�
2þ cos ðkqÞ � 3

sin ðkqÞ
kq

�
; (A7)

where P1loopðkÞ is the exact one-loop power spectrum con-

structed with standard perturbation theory, whereas P1loop
Z ðkÞ

is the one-loop power spectrum obtained from the
Zel’dovich power spectrum (16). Thus, the power spectrum
(6) is a generalization of the Zel’dovich power spectrum. It is
consistent with the exact perturbative expansion up to one-
loop order (i.e.,P2

L), whereas the Zel’dovich power spectrum
only agrees at linear order, and it also contains some pertur-
bative terms at all higher orders in both Eulerian and
Lagrangian spaces [generated through the nonpolynomial
function ’ðyÞ and the exponential in Eq. (6)].
The generating function ’ðyÞ of Eq. (A4) also defines

the probability distribution function of �,

P’ð�Þ ¼
Z i1

�i1
dy

2�i�2
�

e½�y�’ðyÞ�=�2
� : (A8)

The perturbative expression (6) does not take into account
nonperturbative phenomena such as shell crossings,
which can be approximated using a simplified adhesion
model whereby particles coalesce when � < 0. This is
described by modifying the probability distribution as

P adð�Þ ¼ a1�ð� > 0ÞP’ð�Þ þ a0�Dð�Þ; (A9)

where a0;1 are determined by the constraints h1i ¼ h�i ¼
1. This provides a simplified account of the formation of
pancakes (the first nonperturbative structures on large
scales, such as the ‘‘walls’’ around cosmic voids or under-
dense regions), and it leads to the cosmic web power
spectrum

Pc:w:ðkÞ ¼
Z dq

ð2�Þ3
1

1þ A1

e�
1
2k

2ð1��2Þ�2
?

�
�
e�’ð�ikq��2

�Þ=�2
� þ A1

þ
Z 0þþi1

0þ�i1
dy

2�i
e�’ðyÞ=�2

�

�
1

y
� 1

yþ ikq��2
�

��
;

(A10)

where A1 ¼ ð1� a1Þ=a1 is given by

A1 ¼ �2
�

Z 0þþi1

0þ�i1
dy

2�iy2
e�’ðyÞ=�2

� : (A11)

The power spectra (6) and (A10) are identical to all orders
of perturbation theory, and only differ by nonperturbative

corrections of the form e�1=�2
associated with the adhe-

sionlike modification (A9).
To go to highly nonlinear scales, we use the halo model

and the power spectrum is split over one-halo and two-halo
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components as in Eq. (1). Then, the probability that two
particles of initial separation q belong to the same halo of
mass M is [38]

F1HðqÞ ¼
Z 1

�q=2

d�

�
fð�Þ ð2qM � qÞ2ð4qM þ qÞ

16q3M
; (A12)

where fð�Þ is the scaling function that determines the
halo mass function, �¼�LðMÞ=�M, and M ¼ 4� ��q3M=3.
(The lower bound of the integral corresponds to the mass
enclosed within a radius q=2.) The probability of belonging
to two halos is F2H ¼ 1� F1H. Finally, the average of the
component of the particle displacements that is associated
with small-scale virialized motions within halos reads as

heik�xivirq ¼
�R�q=2

0
d�
� fð�Þ~uMðkÞR�q=2

0
d�
� fð�Þ

�
2
; (A13)

because we assume that virialized motions within two
different halos are uncorrelated. Here, we have defined
the Fourier transform of the halo profile as

~uMðkÞ ¼
R
dxe�ik�x�MðxÞR

dx�MðxÞ ; (A14)

with M ¼ R
dx�MðxÞ.

Then, the two-halo part P2HðkÞ of the power spectrum
is given by Eq. (3), where we recognize the cosmic web
power spectrum (A10), to which we have added the factor
F2H, to avoid double counting with the one-halo term,
and the small-scale motions factor (A13), to take into
account the finite width of halos. The one-halo part
P1HðkÞ is given as usual by Eq. (2), with the counterterm
~W2 associated with mass and momentum conservation,
which ensures that P1HðkÞ / k4 at low k. Again, this gives
a ‘‘halo-model’’ power spectrum (1) that is identical to
Eq. (6) at all orders of perturbation theory. In particular,
thanks to the choice (A7), it agrees with standard pertur-
bation theory up to one-loop order [and contains partial
terms at all higher orders generated through the function
’ðyÞ, as well as nonperturbative terms of the form

e�1=�2
].
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