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We use cosmological perturbation theory to study the backreaction effects of a self-consistent and well-

defined cosmological averaging on the dynamics and the evolution of the Universe. Working with a

perturbed Friedman-Lemaı̂tre-Robertson-Walker Einstein–de Sitter cosmological solution in a comoving

volume-preserving gauge, we compute the expressions for the expansion scalar and deceleration

parameter to second order, which we use to characterize the backreaction. We find that the fractional

shift in the Hubble parameter with respect to the input background cosmological model is �� � 10�5,

which leads to �eff of the order of a few times 10�5. In addition, we find that an appropriate measure of

the fractional shift in the deceleration parameter �Q is very large.
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I. INTRODUCTION

It is currently of great interest to determine the quanti-
tative size of backreaction effects, obtained by averaging
the Einstein gravitational field equations on cosmological
scales, on the dynamics and the evolution of the Universe
and consequently on cosmological observations (see for
example [1–18]). The recent literature has begun to focus
increasing attention on multiscale averaging in cosmology
(as in [19–24]) in which one or more characteristic length
scales—such as the typical scale of cosmological voids and
clusters—are used to construct a more detailed model of an
averaged cosmology than is provided by a simplistic
single-scale averaging procedure. However, this focus
overlooks an extremely important aspect of relativistic
and cosmological averaging.

In order for the results of cosmological averaging to
make physical sense, it is crucial to possess a rigorous
(fully covariant) definition of the spacetime average of a
tensor on a differential manifold [25–29]. In particular,
it is necessary to select a coordinate system and ‘‘gauge’’
in which the averaging procedure is well defined (as
discussed in different contexts in [14,30,31]).

Cosmological perturbation theory provides a well-
motivated paradigm in which to consider the potential
quantitive effects of cosmological averaging, with parame-
ters that can be fixed in the early, highly uniform, universe
and which have a clear physical interpretation. While any
appreciable effect would suggest that cosmological pertur-
bation theory is invalid, at least in the late universe, it does
provide at least a useful toy model, so long as care is taken

when interpreting the results. (Alternative approaches em-
ploying inhomogeneous models include those in [32–40].)
Relativistic perturbation theories are gauge-dependent.

The cosmological backreaction from perturbations is
therefore clearly gauge-dependent. In addition it obviously
depends on the choice of averaged Hubble rate, which in a
multifluid system is nonunique. Studies of cosmological
backreaction have typically been in synchronous gauge
(as in [2,4,7]) or conformal Newtonian gauge (as in
[9,12–14,41–43]). Uniform curvature gauge was briefly
considered in [12]. Recently we argued that a spacetime
average is only well defined in perturbation theory when
undertaken in so-called volume-preserving coordinates
(VPCs), or in the closely related comoving volume-
preserving gauges (VPGs) [44] (see also [45]). In a VPC
the volume of a domain is preserved as the system evolves
in time.
In [44] we began an investigation of VPCs in cosmo-

logical averaging, focusing our attention on uniform cur-
vature gauge, which can be interpreted as a comoving
VPG. We constructed two choices of averaged Hubble
rate, one naturally defined from a fluid’s expansion scalar
(the ‘‘projected fluid frame’’) and one from the expansion
of a 3-volume (the ‘‘gravitational frame’’) and compared
analytical and numerical results in the VPG with those in
Newtonian gauge. A suitable measure of the impact of the
‘‘backreaction’’ is to consider the difference between the
input and averaged Hubble rates. (Naturally this can be
extended to other relevant observational quantities [1].)
After arguing that the projected fluid frame provides a
more physical definition of an averaged Hubble rate, we
found that the effective energy density of the backreaction,
evaluated at the current epoch for an Einstein–de Sitter
universe in a comoving VPG, is�eff � 5� 10�4, which is
slightly larger than but in broad agreement with previous
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results in conformal Newtonian gauge. However, we did
not consider a measure of the acceleration rate in the
comoving VPG and neither did we consider a genuine
VPC, with a constant four-dimensional volume. This
motivates the present study.

In this paper we extend the previous analysis. We work
to second order in perturbation theory, assuming as a toy
model a pressureless Einstein–de Sitter universe. We stress
that this is presented as a convenient toy model rather than
necessarily an accurate model—we are less interested in
the physical viability of the models, but rather in the
comparative quantitative effects of the backreaction found
in consistent VPCs. In Sec. II we briefly review the
dynamics of a second-order Einstein–de Sitter universe in
Poisson gauge (closely following [46,47]), in which ana-
lytical solutions for the perturbations at linear and second
order can be found, relating the Newtonian potentials at
any time to the spectrum of the Newtonian potential at the
present epoch.

We then discuss VPCs in cosmology in Sec. III, in which
consistent spacetime averages of cosmological perturba-
tions can be undertaken, and present in detail the construc-
tion of a four-dimensional VPC at background, linear and
second order in perturbations. We consider an extension of
the comoving VPC, or VPG, employing one of the scalar
gauge freedoms to ensure that the determinant of the four-
dimensional metric is constant and then applying an
appropriate coordinate transformation; this generalizes
the considerations in [44] in which we employed uniform
curvature gauge to fix the determinant of the induced three-
dimensional metric to a function of the scale factor alone.
The linear and second-order Newtonian potentials can then
be straightforwardly transformed into this VPC.

We discuss the cosmological averaging procedure in a
VPC. The backreaction is defined from the expansion
scalar and deceleration parameter, which we derive to

second order. The fractional shift in the Hubble rate �
(86) characterizes the averaged Hubble rate (and could be
used to estimate the effective energy density of the back-
reaction) while the fractional shift in the deceleration

parameter �Q (88) characterizes the averaged deceleration
parameter. In pure Friedman-Lemaı̂tre-Robertson-Walker
(FLRW) evolution both of these quantities naturally van-
ish. Finally, we transform to Fourier space and evaluate the
spatial averages employing the linear gravitational poten-
tial evaluated by a Boltzmann code developed from
COSMICS and CMBFast [48,49]. The numerical results
are presented in Fig. 2. We find that the fractional shift in
the Hubble parameter with respect to the input FLRW

model is �� � 10�5 which leads to �eff of a few times
10�5. This is consistent with previous results. The aver-
aged deceleration parameter evaluated in the VPC is found

to be �Q � 0:44. The size of the fluctuation to the averaged
acceleration rate is very large; it is unclear to what extent
this is a gauge-dependent effect and whether it is physical

or not, whether it indicates a breakdown of the formalism,
or whether it indicates a problem with the choice of the
second scalar gauge condition. However, it can certainly
be stated that averaging the deceleration parameter in
a coordinate system consistent with an averaging proce-
dure could potentially lead to a large effect, with conse-
quences for cosmological observations or for the current
understanding of perturbation theory.

II. DYNAMICS

In this section we briefly review the dynamics of dust-
dominated FLRW universes perturbed to second order.
Following the notation of [50], in an arbitrary gauge the
perturbed FLRW line element is

ds2 ¼ a2ð�ð1þ 2�1Þd�2 þ 2Bi�dx
i

þ ðð1� 2c 1Þ�ij þ 2CijÞdxidxjÞ: (1)

Here

Bi ¼ @iB� Si;

Cij ¼ 2@ðiF1NjÞ þ @ðiF2NjÞ þ 1

2
hðTÞ1Nij þ

1

4
hðTÞ2Nij;

@iFi ¼ @ihðTÞij ¼ �ijhðTÞij ¼ 0:

(2)

Solutions for the perturbations are relatively straightfor-
ward in Poisson gauge, in which the line element
reduces to

ds2 ¼ a2ð�Þð�ð1þ 2�1N þ�2NÞd�2

þ ðð1� 2c 1N � c 2NÞ�ij þ 2CijÞdxidxjÞ: (3)

Fluid densities and pressures are expanded as

�ð�; xiÞ ¼ ��ð�Þ
�
1þ �1Nð�; xiÞ þ 1

2
�2Nð�; xiÞ

�
;

pð�; xiÞ ¼ �pð�Þ þ �p1Nð�; xiÞ þ 1

2
�p2Nð�; xiÞ

(4)

with a 4-velocity

u�¼1

a

�
1��1N�1

2
�2Nþ3

2
�2

1Nþ
1

2
va
1Nv

1N
a ;vi

1Nþ
1

2
vi
2N

�
:

(5)

Here vi ¼ @ivþ vi
ðVÞ with @avðVÞ

a ¼ 0.

We assume a pressureless Einstein–de Sitter (EdS) uni-
verse at all times. We also neglect throughout vector and
tensor modes. At linear order, vector modes decay with the
scale factor and therefore rapidly become negligible, while
tensor modes propagate as gravitational radiation and are
suppressed by a factor of the scalar/tensor ratio, con-
strained to r & 1=9 [51]. At second order, in principle
the scalar, vector and tensor modes are of equivalent
magnitude. However, as we will later see, in the
expressions we evaluate the dominant term will arise
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from the square of linear scalar modes, of order Oð�2Þ,
while the second-order vector and tensor modes will con-
tribute quadratically, of order Oð�4Þ, or in combination
with linear scalar modes, of order Oð�3Þ. For the purposes
of averaging at second order, vectors and tensors are there-
fore always subdominant to scalars.

Neglecting vector and tensor modes, the expansion
scalar is

�N ¼ r�u�

¼ 1

a

�
3H þ @a@av1N � 3c 0

1N � 3H�1N

þ 1

2
½j@a@av2N � 3c 0

2N � 3H�2N þ 9H�2
1N

þ @av1Nð2@av0
1N þ 3H@av1N

þ 2ð@a�1N � 3@ac 1NÞÞ þ 6ð�1N � 2c 1NÞc 0
1N�

�
:

(6)

The acceleration rate is governed by the projected time
derivative of this:

_� ¼ u�r�� ¼ u�@�� (7)

which can be recovered from the Raychaudhuri equation or
directly from the expansion scalar.

In an Einstein–de Sitter universe the background
solution is

��ð�Þ¼ ��0

að�Þ3 ; að�Þ¼
�
�

�0

�
2
; H ¼a0

a
¼ 2

�
: (8)

The linear system can be solved by considering the
Einstein equations in Newtonian gauge [50],

3H ðc 0
1N þH�1NÞ � @a@ac 1N ¼ �4�Ga2 ���1N;

c 0
1N þH�1N ¼ �4�Ga2 ��v1N;

c 1N ¼ �1N;

c 00
1N þ 3H c 0

1N ¼ 0: (9)

Setting �1N ¼ c 1N in the evolution equation gives

�1N ¼ Aþ B

�
�m

�

�
5
: (10)

This solution is initialized at a time �m deep in matter
domination. Since we are considering the recent Universe
where � � �m [or equivalently, að�mÞ � 1] we can
neglect the decaying mode, implying that

�0
1N ¼ 0: (11)

The Hamiltonian and momentum constraints now rapidly
provide the density contrast and velocity,

�1N ¼ �2�1N þ 1

6
�2@a@a�1N; v1N ¼ � 1

3
��1N:

(12)

Let us turn now to the more complicated issue of the
second-order scalar perturbations. Our discussion follows
that of [46], although we work in a pure EdS universe and
our results are equivalent to those in [47]. The components
of theGi

j equation in a pure EdS universe with�0
1N ¼ 0 are

[52–54]

0� 0: 3H ðc 0
2N þH�2NÞ � @a@ac 2N

� 3@a�1N@a�1N � 8c 1N@
a@ac 1N � 12H 2�2

1N

¼ �4�Ga2 ��ð�2N þ 2@av1N@av1NÞ; (13)

0� i: @ic
0
2N þH@i�2N � 2H�1N@i�1N

¼ �4�Ga2 ��ð@iv2N þ 2@iv1N�1NÞ; (14)

i� j trace: c 00
2N þH ð2c 0

2N þ�0
2NÞþ

1

3
@a@að�2N � c 2NÞ

� 7

3
@a�1N@a�1N � 8

3
�1N@

a@a�1N

¼ 4�Ga2 ��

�
2

3
@av1N@av1N

�
; (15)

i�jtraceless: @4ðc 2N��2NÞ
¼12�Ga2 ��ð2@a@bð@av1N@

bv1NÞ�@a@að@bv1N@bv1NÞÞ
�14@a@b�1N@a@b�1N�24@a�1N@a@

b@b�1N

�2ð@a@a�1NÞ2�8�1N@
4�1N: (16)

These equations can provide us with a commutator for c 2N

and �2N and an evolution equation for c 2N in the same
manner as the equivalent linear equations, which we derive
closely following the method in [46].1

1It should be noted that this trace corrects that presented in
[46] and its references, which has an inaccurate prefactor on the
@a�1N@a�1N term. This appears to be a typographical error, as
their final result is accurate. It should also be noted that it is
possible that the decaying mode in �1N could influence the
second-order perturbation theory. While the impact on the
second-order potentials is expected to be negligible for dust,
this should be taken into account in more general situations.
Likewise, while we have neglected �p1 due to the extremely low
adiabatic speed of sound in matter domination, we have also
neglected �p2 which may contain additional contributions. The
authors are grateful to Adam Christopherson for discussion of
these issues.
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Defining the auxiliary functions

Pi
j ¼ 2@i�1N@j�1N þ 8�Ga2 ��@iv1N@jv1N; P ¼ Pi

i

(17)

and the related definitions

N ¼ @�2ð@i@jPi
jÞ; Q ¼ @�2ð3N � PÞ (18)

allows us to write the commutator as

c 2N ��2N ¼ Q� 4�2
1N; (19)

as can be verified by expanding this equation out and
comparing with Eq. (16) with �p ¼ �p ¼ 0.

Using the form of the solutions at linear order it is easy
to see that

Pi
j ¼

10

3
@i�1N@i�1N;

N ¼ 10

3
@�2ð@i@jð@i�1N@j�1NÞÞ;

Q ¼ 10@�2@�2ð@i@jð@i�1N@j�1NÞÞ
� 10

3
@�2ð@i�1N@i�1NÞ;

P0
ij ¼ 0; Q0 ¼ 0: (20)

In particular, this implies that

c 0
2N ¼ �0

2N: (21)

(Note that this holds only because we are working in an
EdS universe; in a �CDM universe—dominated by dark
energy (�) and cold dark matter (CDM)—this is no longer
true and the time derivatives of the potentials will increas-
ingly differ from one another.)

The evolution equation from the trace can be
rewritten as

c 00
2N þ 3H c 0

2N

¼ H ðc 0
2N ��0

2NÞ þ
1

3
@a@aðc 2N ��2NÞ

þ 7

3
@a�1N@a�1N þ 8

3
�1N@

a@a�1N

þ 8�Ga2

3
��@av1N@av1N: (22)

Inserting the commutator this reduces to

c 00
2N þ 3H c 0

2N ¼ N � @a�1N@a�1N ¼ S: (23)

Since the source S is time-independent this is trivially
solved to give

c 2N ¼ Aþ B

�
�m

�

�
5 þ 1

14
�2ðN � @a�1N@a�1NÞ: (24)

The curvature perturbation on uniform density hyper-
surfaces is conserved on large scales [50], and can there-
fore be used to set boundary conditions.2 The curvature
perturbation produced after inflation produces [46]

�2ð�mÞ � 50

9
�2

1N: (25)

Employing the second-order Hamiltonian constraint and
the relationship between �2 and the Newtonian gauge
variables [46,50] then gives

�2Nð�mÞ ¼ 2�2
1N þ 2@�2ð@i�1N@i�1NÞ

� 6@�4ð@i@jð@i�1N@j�1NÞÞ: (26)

Using the commutator to find c 2Nð�mÞ and dropping the
decaying mode allows us to fix the constant A, ultimately
yielding

c 2Nð�Þ � �2�2
1N þ 6

5
@�2N � 4

3
@�2ð@i�1N@i�1NÞ

þ 1

14
�2ðN � @i�1N@i�1NÞ; (27)

�2Nð�Þ � 2�2
1N � 9

5
@�2N þ 2@�2ð@i�1N@i�1NÞ

þ 1

14
�2ðN � @i�1N@i�1NÞ: (28)

These agree with the results of [46,47] reduced to pure EdS
and � � �m. We also require the Laplacian of the velocity
in Poisson gauge, which can be found from the momentum
constraint (14) to be

@a@av2N ¼ � 1

3
�

�
6�1N@

a@a�1N þ 8@a�1N@a�1N

� 9

5
N þ 1

7
�2@a@aðN � @b�1N@b�1NÞ

� 1

3
�2@a@a�1N@

b@b�1N

� 1

3
�2@a�1N@a@

b@b�1N

�
: (29)

The expansion scalar can now be written to second order in
Poisson gauge in a pure EdS universe in terms of the linear
potential �1N ,

2This is, strictly speaking, not the case. In a multifluid system
relative entropy perturbations between species induce a
nonadiabatic pressure �prel which acts as a source for �2
[50,53,55–57]. This nonadiabatic pressure grows until the epoch
of matter/radiation equality, after which time it begins to decay
again [58]. As a result, this initial condition can only be used to
provide an order-of-magnitude estimate.
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�N ¼ �2
0

�3

�
6ð1��1NÞ � 1

3
�2@a@a�1N

þ 1

2
ð�@a@av2N � 3�c 0

2N � 6�2NÞ

þ 9�2
1N þ 10

9
�2@a�1N@a�1N

�
: (30)

We calculate the acceleration rate directly from (7), giving

_�N ¼ �4
0

�6

�
�18þ 36�1N þ 1

3
�2@a@a�1N � �@a@av2N

� 3

2
�2c 00

2N þ 3�ðc 0
2N ��0

2NÞ þ 18�2N

� 1

3
�2�1N@

a@a�1N � 72�2
1N � 1

9
�2@a�1@a�1N

þ 1

9
�4@a@

b@b�1N@
a�1N

�
: (31)

III. VOLUME-PRESERVING COORDINATE
SYSTEMS IN COSMOLOGY

A. Background

Let us consider first the background cosmology, which
will determine the coordinate transformation necessary to
ensure an appropriate volume element and a suitable
notation. By definition a volume-preserving coordinate
system is one in which

ffiffiffiffiffiffiffi�g
p ¼ 1. The determinant of

the metric of the flat FLRW background spacetime (1) is
g ¼ �a8ðtÞ. This can be brought into a volume-preserving
form through the coordinate transformation

a2d�2 ¼ d	2

a6
) 	 ¼

Z �

0
a4ð�0Þd�0: (32)

For a universe filled with dust we therefore have that

	 ¼ �9

9�8
0

; að	Þ ¼
�
	

	0

�
2=9

; ~H ¼ _a

a
¼ 2

9	
:

(33)

The physical Hubble rate is H ¼ a3 ~H , and an overdot
denotes differentiation with respect to 	.

B. Linear order

We can now consider a volume-preserving coordinate
system at linear order, with the procedure we follow stand-
ing as a template for the significantly more complicated
nonlinear case. The material in this section was first pre-
sented in [45]. The determinant of a linearly perturbed
FLRW metric in an unspecified gauge isffiffiffiffiffiffiffi�g

p ¼ a4ð1þ�1 � 3c 1 þ @i@iE1Þ (34)

where we have not neglected vector and tensor compo-
nents. A comoving VPC with

ffiffiffiffiffiffiffi�g
p ¼ a4ð�Þ is therefore

defined by choosing a gauge in which

�1V � 3c 1V þ @i@iE1V ¼ 0: (35)

This determines one of the two scalar gauge freedoms. The
other can be specified by enforcing

c 1V ¼ 0 ) �1V ¼ �@i@iE1V; (36)

which ensures the gauge transformation is cleanly defined.
It is important to note that there is therefore not a single
VPC in cosmology but rather a family of VPCs dependent
on the choice of this second remaining freedom. The gauge
transform is generated by the 4-vector 
� ¼ ð�; @i�Þ, and
choosing a gauge in which the spatial curvature vanishes
implies

�1 ¼ c 1

H
: (37)

The metric determinant then transforms as

�1V þ @i@iE1V ¼ 0

¼ �1 � 3c 1 þ @i@iE1 þ �0
1

þ 4H�1 þ @i@i�1: (38)

This can be solved for the spatial component of the gauge
transformation,

@i@i�1 ¼ �
�
�1 þ c 1 þ @i@iE1 þ

�
c 1

H

�0�
: (39)

Applying this gauge transformation to the metric and
fluid quantities therefore gives the perturbations in the
comoving VPC,

�1V ¼ �1 þ c 1 þ
�
c 1

H

�0
;

@i@iB1V ¼ @i@iB1 � @i@ic 1

H

�
�
�1 þ c 1 þ @i@iE1 þ

�
c 1

H

�0�0
; (40)

�1V ¼ �1 � 3ð1þwÞc 1;

@i@iv1V ¼ @i@iv1 þ
�
�1 þ c 1 þ@i@iE1 þ

�
c 1

H

�0�0
:

(41)

Specializing to the transformation of Newtonian-gauge
dust perturbations into the comoving VPC gives

�1V ¼5

2
�1N; @i@iB1V ¼�1

2
�@i@i�1N;

�1V ¼�5�1Nþ1

6
�2@i@i�1N; @i@iv1V ¼�1

3
�@i@i�1N:

(42)

The metric can be brought into a true volume-preserving
form with d	 ¼ a4d�, leaving the line element in a linear
cosmological VPC
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ds2 ¼ � 1

a6
ð1þ 2�1VÞd	2 þ 2

a2
@iB1Vd	dx

i

þ a2ð�ij þ 2@i@jE1VÞdxidxj (43)

with �1V ¼ �@a@aE1V . Writing quantities in terms of
the Newtonian-gauge potential, the expansion scalar and
acceleration rate to first order are

�V ¼ �2
0

�3

�
6� 15�1N � 1

3
�2@a@a�1N

�
;

_�V ¼ �4
0

�6

�
�18þ 90�1N þ 1

3
�2@a@a�1N

�
:

(44)

C. Second order

The linear VPC presented in the above section can
be extended to second order in perturbations in a straight-
forward manner. To second order in perturbations

ffiffiffiffiffiffiffi�g
p ¼ a4ð�Þ

�
1þ�þ Cþ�C

þ 1

2
ðC2 þ BaBa ��2Þ � CijCij

�
: (45)

Here C ¼ Ci
i ¼ �3c þ @i@iE. As claimed earlier, vector

and tensor modes enter only in products, and therefore only
the linear vector and tensor perturbations are significant.
Since for linear modes Fi / a�1, while OðhijÞ � rOðc Þ
and r & 1=9, the impact of these modes on the determinant
can be neglected. We assume that the linear sector is
already in the comoving VPC defined above, with time
coordinate �. In this section, perturbations without a sub-
script contain both linear and second-order components;
for instance, C ¼ C1 þ ð1=2ÞC2.

Finding a VPC to second order becomes significantly
more straightforward if we choose to transform from a
system in second-order perturbed Poisson gauge. If we
later had solutions in, for instance, synchronous gauge it
is straightforward to first transform them to Newtonian
gauge and then the VPC. The task also becomes far easier
if we also focus from the outset on dust-dominated uni-
verses, which is sufficient for our purposes but must be
generalized if one wishes to consider systems containing
radiative species or some form of dark energy.

As in the linear case we fix the first gauge freedom by
setting

c 2V ¼ 0: (46)

It must be emphasized again that as at linear order, there
are a number of ways in which a comoving VPC can be
fixed at second order. The choice c 2V ¼ 0 provides a
straightforward case in which

�2 ¼ c 2

H
þ 1

4H
ð@�2@i@j

ij � k
kÞ; (47)

with ij defined later. Since this is the same as the �2

required to transform between Poisson and uniform curva-
ture gauges at second order [see Eq. (7.24) of [50]], this
transformation produces gauges that are fully fixed in their
time evolution. However, it is possible an alternative
choice would produce a gauge better suited to the problem.
We further discuss this issue later.
The effects of averaging at second order are known to be

gauge-dependent. For example, for an appropriate choice
of averaged Hubble rate, it is possible to choose a gauge in
which a measure of the backreaction on the Hubble rate
vanishes (as in the ‘‘gravitational frame’’ in uniform cur-
vature gauge in [44,59]), or alternatively to choose gauges
in which logarithmic divergences arising from superhor-
izon modes are also absent (as in the ‘‘projected fluid
frame’’ in uniform curvature gauge in [44]). While the
formalism we will employ in this paper is different from
that employed in these earlier studies, such logarithmic
divergences are endemic in studies of second-order pertur-
bations and should be expected to naturally arise here. In
principle, we could choose the second gauge condition to
explicitly eliminate logarithmic divergences in the aver-
aged expansion or acceleration rate q ¼ � _H=H2 � 1,
although it may not prove possible to simultaneously
eliminate them from both quantities.
In any event, the logarithmic divergences are clearly

gauge effects given they arise in some formulations (for
instance, [13,14]) and not in others (as in [44]), and should
not be expected to influence the physical results. On a
practical level, we can handle them by imposing an infra-
red cutoff scale at or above the Hubble scale; since the
divergence is typically logarithmic the impact of changing
the cutoff even by an order of magnitude is not very
significant. We will return to this issue later.
In this paper, to keep things relatively simple and not

overly complicate the analysis, we shall consider the sim-
pler case with c 2V ¼ 0. Neglecting the vectors and ten-
sors, expanding out the determinant and enforcing the VPG
condition at linear order gives

ffiffiffiffiffiffiffi�g
p ¼ a4ð�Þ

�
1þ 1

2
�2V þ 1

2
@i@iE2V þ 1

2
@iB1V@iB1V

� @i@jE1V@i@jE1V � @i@iE1V@
j@jE1V

�
: (48)

The spatial part of the transformation �2 enters only
through the second-order anisotropic stress scalar trans-
formation, Eq. (A10). We can also see that for a dust
system in Poisson gauge, �0

1 ¼ 0. Inserting the gauge
transformations for �2 (A9), E2 (A10) and substituting
the dust solutions for the linear perturbations (12) allows
us to solve for �2, giving
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@i@i�2 ¼ �
�
�2N þ c 2N þ �0

2 þ @�2@i@jXij � 1

2
Xk

k � 4�2
1N þ 1

4
�2@i�1N@i�1N � 35

4
@ið@�2�1NÞ@i�1N

� 25

2
@i@jð@�2�1NÞ@i@jð@�2�1NÞ

�
: (49)

The quadratic  terms (A11)–(A13) for this transformation, the perturbations at second order and other useful quantities
are presented in Appendix C.

The expansion scalar and acceleration rate become to second order

�V ¼ �2
0

�3

�
6� 15�1N � 1

3
�2@a@a�1N þ 1

2

�
�@a@av2N � 3�c 0

2N � 3ð3c 2N þ 2�2NÞ þ 99

2
�2

1N þ 20

9
�2@a�1N@a�1N

þ 9

4
Xk

k �
9

4
@�2@i@jXij þ 1

3
�2�1N@

a@a�1N þ 5

3
�2@k@

a@a�1N@
k@�2�1N þ 105

2
@k�1N@

k@�2�1N

��
; (50)

_�V ¼ �4
0

�6

�
�18þ 90�1N þ 1

3
�2@a@a�1N þ 1

2

�
�2@a@av

0
2N � 2�@a@av2N � 3�2c 00

2N þ 6�ðc 0
2N ��0

2NÞ

þ 18ð3c 2N þ 2�2NÞ � 522�2
1N � 2�2�1N@

a@a�1N � 2

9
�2@a�1N@a�1N þ 2

9
�4@a�1N@a@

b@b�1N

� 5

3
�2@k@

a@a�1N@
k@�2�1N � 315@k�1N@k@

�2�1N þ 27

2
@�2@i@jXij � 27

2
Xk

k

��
: (51)

These quantities can be transferred into the full VPC with
the substitution � ¼ �	1=9.

With this coordinate transformation 
 ¼ ð�2; @i�2Þ the
metric is now in VPC form to second order,

ds2 ¼ � 1

a6
ð1þ 2�1V þ�2VÞd	2

þ 1

a2
@ið2B1V þ B2VÞd	dxi

þ a2ð�ij þ 2@i@jE1V þ @i@jE2VÞdxidxj (52)

where

�1V ¼ �@a@aE1V;

�2V ¼ �ð@a@aE2V þ @aB1V@aB1V � 2@a@bE1V@a@bE1V

� 2@a@aE1V@
b@bE1VÞ: (53)

IV. SPACETIME AVERAGING IN
A COSMOLOGICALVPC

A. Averaging and measures of deviations from FLRW
form (‘‘backreaction’’)

A 4-domain in a 3þ 1 split can be defined as a
4-cylinder bounded by a range of the rescaled time coor-
dinate 	 and a 3-domainD, � ¼ ð	þ 	0Þ �D where 	0
is a small perturbation on the time 	 and D is a three-
dimensional domain. The average of a scalar quantity in
the VPC is then

hAðx�Þi4 ¼ 1

V4

hAðx�Þd4xi ¼ 1

V4

ZZ
Að	þ 	0; xiÞd	0d3x

(54)

where the 4-volume isV4 ¼
R
d4x and the spatial average is

implicitly taken to lie in the domainD. Within the assump-
tions of the cosmological models under consideration, evo-
lution is smooth with respect to the time coordinate 	;
therefore, there is no appreciable small-scale deviation of
Að	; xiÞ with respect to time scales 	0 � 	. Thus, writing

Z �Z
Að	; xiÞd3x

�
d	0 ¼ �

Z
Að	; xiÞd3x (55)

for some� determined by the 4-domain, and therefore with

V4 ¼
ZZ

d	0d3x ¼ �V3 (56)

we have that

hAðx�Þi4 ¼ �
R
Að	; xiÞd3x
�V3

¼ hAð	; xiÞi3: (57)

For a perturbed FLRW model, the four-dimensional
average reduces to a spatial average.3

3Note that while this closely resembles an average in uniform
curvature gauge, this is not the average on the surfaces of
constant 	—the induced metric on those surfaces, hij ¼
h
�
i h

�
j g��, is not flat and the volume element is

ffiffiffi
h

p
d3x.
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The most natural way to characterize the expansion of a
fluid is through its expansion scalar � ¼ r�u�. This has

been employed in the Buchert formalism, averaged across
the fluid’s rest frame (e.g. [4,5,7,14]). A deviation from
pure FLRW evolution can be characterized by

� ¼ h�Vi4 � h�0i4
h�0i4 ¼ h��Vi3

�0

: (58)

The 3-average is tractable in a similar manner to those
taken in a more typical approach (e.g. [4,7,12–14,44] and
their references).

The other characteristic of the evolution of a FLRW
model can be parametrized by

q ¼ �3
_�

�2
� 1 (59)

where an overdot here denotes the covariant derivative

projected along the fluid 4-velocity, _� ¼ u�r��. In an

EdS universe, q0 ¼ 1=2. Unlike the expansion scalar, q is
dimensionless. We can characterize the average accelera-
tion by defining

Q ¼ hqVi4 � hq0i4
hq0i4 ¼ 2h�qi3

q0
: (60)

It is not our intention to construct a consistent effective
FLRW cosmology based on the backreaction terms.
Rather, we are interested in characterizing the magnitude
of deviations from the FLRW background. In this context,
� andQ provide ideal test variables, which can be readily
interpreted. If an interpretation in terms of some effective
dynamical model is required, the simple commutation
between spatial averaging and time differentiation that
arises in a VPC would make this a relatively straightfor-
ward procedure.

The impact from linear tensor modes was considered in
[43], in which they were found to provide an effect that was
unsurprisingly weak, but which acted as a fluid withweff �
�8=9. Although that study considered 3-averages, the
effective energy density and pressure in this study were
found from spatial averages which were effectively in
uniform curvature gauge, with the corrections to the vol-
ume element from the gravitational waves entirely negli-
gible. The contribution of the linear tensor modes to the
second-order scalar perturbations is likewise extremely
subdominant to that from linear scalar modes, and the
scalar and tensors therefore do not couple to any appre-
ciable degree. The results of [43] can consequently be
directly employed.

B. Consistent spacetime averages
of cosmological perturbations

1. Spacetime averages of perturbations

Spacetime averaging is most conveniently performed
in Fourier space, in which the above forms simplify

considerably and in which we possess both numerical
and analytic solutions for the linear Newtonian potential
�1N . The transformation is defined as

AðxÞ ¼
Z

AðkÞ exp ð�ik � xÞ d3k

ð2�Þ3 ;

AðkÞ ¼
Z

AðxÞ exp ðik � xÞd3x:
(61)

Defining the 3-volumewith a window function allows us to
perform the integral over xi across all scales. LettingWðxÞ
be the window function defining the spatial domain, the
spatial average and 3-volume are then

hAðxÞi3 ¼ 1

V3

Z
WðxÞAðxÞd3x; V3 ¼

Z
WðxÞd3x:

(62)

The Fourier transform of the window function is
WðkÞ ¼ R

WðxÞ exp ðik � xÞd3x implying Wðk ¼ 0Þ ¼R
WðxÞd3x ¼ V3. That is, the 3-volume is the zero mode

of WðkÞ. The 3-average is therefore

hAðxÞi3 ¼ 1

V3

ZZZ
W	ðk0ÞAðkÞ

� exp ðiðk0 � kÞ � xÞ d
3k0

ð2�Þ3
d3k

ð2�Þ3 d
3x

¼ 1

V3

ZZ
W	ðk0ÞAðkÞ�ðk0 � kÞd3k0 d3k

ð2�Þ3

¼ 1

V3

Z
W	ðkÞAðkÞ d3k

ð2�Þ3 : (63)

Similarly,

hAðxÞBðxÞi3 ¼ 1

V3

ZZ
W	ðkÞAðk0ÞBðk� k0Þ d

3k0

ð2�Þ3
d3k

ð2�Þ3 :
(64)

Since our solutions at linear order only provide us with
the statistical nature of the distribution, to recover mean-
ingful answers we take ensemble averages of the spatial
averages. (On large scales these averages will tend to
converge through ergodicity.) Denoting an ensemble
average with an overbar, the ensemble averages of linear
perturbations and products are

A1ðkÞ ¼ 0;

A1ðkÞB	
1ðk0Þ ¼ 2�2

k3
P ðkÞA1ðkÞB	

1ðkÞð2�Þ3�ðk� k0Þ
(65)

with primordial power spectrum P ðkÞ ¼ A?ðk=k?Þns�1. An
immediate well-known consequence is that the pure linear

terms in �1V and _�1V will not contribute to the deviations
from FLRW behavior. However, they will contribute on
smaller scales; when an ensemble average is not being
taken it should be expected that a spatial average of the
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linear terms on smaller scales would contribute signifi-
cantly. This will be explored in a forthcoming paper [60].

It is convenient to consider the separate cases of second-
order averages individually.

Quadratic products of linear perturbations.—Consider
terms of the form hAðxÞBðxÞi3. The perturbations can be
straightforwardly expanded in Fourier space and an
ensemble average taken, to yield the familiar

hAðxÞBðxÞi 3 ¼
Z

P ðkÞAðkÞB	ðkÞdk
k
: (66)

Products of gradients and Laplacians.—Let AðxÞ ¼
@a � � � @b�1N and BðxÞ ¼ @c � � �@d�1N , where the indices
balance such that the result is a scalar, and let there be m
operators acting on AðxÞ and n acting on BðxÞ. Then

h@a � � � @b�1N@
c � � �@d�1Ni 3

¼
Z

P ðkÞð�ikÞmðikÞnj�1Nj2 dkk
¼ ð�1Þmimþn

Z
P ðkÞkmþnj�1Nj2 dkk : (67)

In particular,

h@a�1N@a�1Ni 3 ¼ �h�1N@
a@a�1Ni3

¼
Z

P ðkÞk2j�1Nj2 dkk : (68)

Products containing inverse Laplacians.—Now let AðxÞ
contain an inverse Laplacian term acting on the linear
perturbation. In this instance, we require the Fourier trans-
form of @a � � �@b@�2@c � � �@d�1N . Consider first the case
@�2CðxÞ. Then we want to find the Fourier transform of
@a@aXðxÞ ¼ CðxÞ,

�
Z

k2XðkÞ exp ð�ik � xÞ d3k

ð2�Þ3

¼
Z

CðkÞ exp ð�ik � xÞ d3k

ð2�Þ3

) XðkÞ ¼ � 1

k2
CðkÞ; (69)

that is, the Fourier transform of @�2CðxÞ is �ð1=k2ÞCðkÞ.
Inserting CðxÞ ¼ @a�1N does not change the argument and
simply inserts an additional power of (�ik). Likewise,
setting AðxÞ ¼ @a@

�2CðxÞ in (66) merely adds an extra
power of �ik�1. We can therefore state that

h@a ���@b@�2p�1N@
c ���@d@�2q�1Ni3

¼ð�1Þmþpþqimþn
Z
P ðkÞkmþn�2p�2qj�1Nj2dkk : (70)

For instance, setting m ¼ 1, n ¼ 3, p ¼ q ¼ 1 gives

h@a@�2�1N@a@
b@b@

�2�1Ni3 ¼ �
Z

P ðkÞj�1Nj2 dkk (71)

as can be confirmed by direct calculation.
Inverse Laplacians of Products.—These cases need a bit

more care since the inverse Laplacian is now acting on a
product of perturbations and the simple arguments pre-
sented above do not apply. We follow the approach of
[13], in which it was demonstrated [their Eq. (91)] that

h@�2@i@jð@iAðxÞ@jBðxÞÞi 3 ¼
1

3

Z
P ðkÞk2AðkÞB	ðkÞdk

k

(72)

and, in particular [their (93)], that

h@�2@i@jð@i�1N@
j�1NÞi 3 ¼

1

3
h@a�1N@a�1Ni3

¼ 1

3

Z
P ðkÞk2j�1Nj2 dkk (73)

and [their Eq. (95)] that

h@�4@i@jð@i�1N@
j�1NÞi 3 ¼

3

10
h@�2Ni3

¼ 1

3
h@�2ð@a�1N@a�1NÞi3:

(74)

These forms, along with straightforward substitutions for A
or B of the form A ! @a � � � @b@�2 � � � @c�1N , are suffi-
cient for almost all of our purposes.
The final form we require is

h@�2@i@jðA@i@jBÞi 3 ¼ � 1

3

Z
P ðkÞk2j�1Nj2 dkk : (75)

This is demonstrated in Appendix D.
Second-Order perturbations.—We can use the above

results to evaluate the averages of c 2N , c
0
2N , c

00
2N , �2N

and @a@av2N , which appear in the expansion scalar and its
time derivative. The Laplacian of the velocity contains the
terms hNi and h@a@aðN � @b�1N@b�1NÞi3; the other con-
tributions are straightforwardly recovered from the above.
The average of N is also straightforward. Using (73) it is

easy to see that

hNi 3 ¼ 10

3
h@�2@i@jð@i�1N@

j�1NÞi3

¼ 10

9

Z
P ðkÞk2j�1Nj2 dkk : (76)

The Laplacian of the source term, h@a@aðN �
@b�1N@b�1NÞi3, is similarly straightforward. Expanding
out the derivatives and using (67) it is easy to see that

h@a@aNi 3 ¼ 10

3
h@i@jð@i�1N@

j�1NÞi3 ¼ 0 (77)

and similarly
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h@a@að@b�1N@b�1NÞi 3 ¼ 0: (78)

We can then evaluate the other contributions to h@a@av2Ni3
from (29) to find that

h@a@av2Ni 3 ¼ 0 (79)

as previously seen in [13].

In a similar vein, the expressions for c 2N and�2N contain
a term proportional to @�2N. Using (74) this can be written

h@�2Ni 3 ¼ 10

9
h@�2ð@a�1N@a�1NÞi3: (80)

As noted in [13], terms proportional to @�2N are always
balanced by a term proportional to @�2ð@a�1N@a�1NÞ.
Therefore

hc 2Ni3 ¼
�
�2�2

1N þ 6

5
@�2N � 4

3
@�2ð@a�1N@a�1NÞ þ 1

14
�2ðN � @a�1N@a�1NÞ

�
3

¼
�
�2�2

1N þ 1

14
�2ðN � @a�1N@a�1NÞ

�
3

¼
Z

P ðkÞ
�
�2þ 1

126
k2�2

�
j�1Nj2 dkk (81)

and

h�2Ni3 ¼
�
2�2

1N � 9

5
@�2N þ 2@�2ð@a�1N@a�1NÞ þ 1

14
�2ðN � @a�1N@a�1NÞ

�
3

¼
�
2�2

1N þ 1

14
�2ðN � @a�1N@a�1NÞ

�
3

¼
Z

P ðkÞ
�
2þ 1

126
k2�2

�
j�1Nj2 dkk : (82)

Finally, we can quickly note that

hc 0
2Ni 3 ¼

1

7
�hN � @a�1N@a�1Ni3 ¼ 1

63
�
Z

P ðkÞk2j�1Nj2 dkk ¼ �hc 00
2Ni3: (83)

2. The expansion scalar and deceleration parameter

We are now in a position to evaluate the spatial averages in
the averaged expansion scalar (50) and deceleration parame-
ter. Background terms are invariant under the spatial averag-

ing, while h�1Vi3 ¼ 0. Using (C6) we can also see that

hXk
ki 3 ¼

Z
P ðkÞ

�
� 29

2
� 1

2
k2�2

�
j�1Nj2 dkk (84)

while the inverse Laplacian of @i@jXij (C7) resolves to

h@�2@i@jXiji3 ¼�
Z

P ðkÞ
�
29

6
þ 1

6
k2�2

�
j�1Nj2 dkk : (85)

With the results from the previous section, we can find that
the fractional shift in the Hubble parameter with respect to
the input FLRW model is

�� ¼ h�Vi4 � h�0i4
h�0i4

¼ h�Vi3 ��0

�0

¼ 1

16

Z
P ðkÞ

�
95

27
k2�2 � 25

�
j�1Nj2 dkk : (86)

The deceleration parameter evaluated in the VPC can be
seen to be

qV ¼ �3
_�V

�2
V

� 1

¼ 1

2
þ 5

36
�2@a@a�1N � 1

2

�
1

12
�2@a@av

0
2N þ 1

3
�@a@av2N � 1

4
�2c 00

2N � 1

2
�ð2c 0

2N þ�0
2NÞ �

5

9
�2�1N@

a@a�1N

þ 59

54
�2@a�1N@a�1N � 7

324
�4@a@a�1N@

b@b�1N þ 1

54
�4@a�1N@a@

b@b�1N þ 25

36
�2@k@

a@a�1N@
k@�2�1N

	
(87)
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which generates the fractional shift

�Q ¼ hqi3 � q0
q0

¼ 1

54

Z
P ðkÞ

�
13

6
k2�2 � 125

�
k2�2j�1Nj2 dkk : (88)

It is significant to note that unlike �� there is no term in the
integrand proportional to j�1Nj2. As we demonstrate in the
next section, this implies that there is no large-scale loga-
rithmic divergence in the integral and it remains safely
finite—there is no need for an unphysical infrared cutoff.
However, the integrand will instead exhibit an ultraviolet
divergence, which we will control with a smoothing of
the gravitational potential for scales above a smoothing
scale RS.

3. Numerical results

On large scales, the integrand for �� scales as k�1, which

produces the familiar logarithmic divergence ��� ln ðkIRÞ
which emerges naturally in studies of nonlinearities in
cosmology (as, for example, in a different context in
[61]). We control this by imposing an infrared cutoff at
ten times the Hubble radius, as in [13]. While the choice of
kIR is arbitrary, the divergence is only logarithmic and there

is little difference in �� for choices of kIR within an order
of magnitude of the horizon scale. There is no infrared

divergence in �Q.

Conversely, on small scales the integrand for �Q scales as

ðln kÞ2=k. This produces an ultraviolet divergence �Q�
ðln kUVÞ3. We control this as with similar integrals in
[13,14,44] by applying a smoothing function

WðkRSÞ ¼ exp ð�k2R2
SÞ (89)

to the gravitational potential. The most physical choice of
smoothing scale RS is the Silk scale which for this model is
RS � 6 Mpc. The ultraviolet divergence does not appear in
��4 but we present results both with the integrand
smoothed, for consistency with �Q, and left unsmoothed.

Figure 1 shows the integrands for �� and �Q for RS ¼
RSilk. Solving the integrals numerically, we find that

�� ¼
�
4:2� 10�5; not smoothed

1:0� 10�5; smoothed
; �Q ¼ 0:44: (90)

For such a small value of �� this implies

�eff �
�
8� 10�5; not smoothed

2� 10�5; smoothed
: (91)

In Fig. 2 we plot �� and �Q as functions of the smoothing
scale RS. To reduce the impact of the perturbations
on hqi4 to the level of 10�5 requires the perturbations
to be damped on scales as large as RS * 100 Mpc=h. As
RS grows beyond the homogeneity scale 100–115 Mpc
[62] the impacts decay rapidly to zero, as one should
expect.
The direct impact on the Hubble rate is therefore of

a similar order of magnitude to previous estimates.
Conversely, the shift in the acceleration rate is extremely
large—of the order of 50%—driven by the rapid ultra-
violet divergence that generates the large peak visible in
the integrand. It is also interesting to note that Q> 0,
implying that q is moved further from zero, and while this
result may naı̈vely suggest a large impact on the back-
ground acceleration it cannot immediately be connected
with the observed acceleration, for which we would desire
�Q � �1 if we wished an accelerating averaged EdS
Universe. It is unclear to what extent this is a gauge-
dependent effect, and given the magnitude of the result
the study of a volume-preserving coordinate system with
the second gauge choice fixed through physical arguments
seems imperative. Cosmological averaging is only prop-
erly defined when working within a VPC, but we have
only considered the simplest possible one here. It is now a

matter of importance to investigate whether �Q� 0:4 is a
generic prediction, or whether a VPC can be found in

which such divergences are eliminated from both �� and
�Q. The calculations in this paper form a vital first step in
this procedure.

10-4 10-3 10-2 10-1 1 10

k (h/Mpc)

102

104

106

108

10 10

I(
k)

FIG. 1. Integrands of �� (lower curves) and �Q (upper curves)
with and without smoothing at the Silk damping scale. Dashed
lines are negative.

4Note that in [44] neither divergence appeared for quantities
evaluated in the uniform curvature gauge, nor for the Newtonian
gauge in the projected fluid frame.
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V. DISCUSSION

In this paper we have considered the fractional shifts in
the Hubble and deceleration parameters, averaged across a
spatial volume. We have advocated the use of volume-
preserving coordinate systems, in which consistent
spacetime averages of cosmological perturbations can be
undertaken. These VPCs are defined through two scalar
gauge freedoms, one of which is used to set the metric
determinant to unity. The other gauge freedom is arbitrary,
and there is therefore an infinite family of cosmological
VPCs. Choosing the second gauge condition to set the
spatial curvature to zero—a choice motivated by conve-
nience, since it provides the simplest system to be solved
for the gauge generating vector—we then constructed a
VPC valid up to second order in perturbation theory.
Cosmological perturbations in an Einstein–de Sitter uni-
verse perturbed to second order can then be found in the
VPC in a straightforward manner by transforming them
from the Newtonian gauge, in which they are well known.
Spacetime averaging is then easily defined.

This approach is complementary to other research in the
area, which extends the usual single-scale cosmological
averaging to multiple scales, reflecting the hierarchy of
scales apparent in the observations. It also has consequen-
ces for averaging in unimodular gravity, which is equiva-
lent to general relativity but naturally formulated in
volume-preserving coordinate systems [63].

Deriving the expansion and deceleration parameters for
dust-dominated universes perturbed to second order, we
characterized the backreaction through the fractional shifts
in the Hubble parameter, � (86), and the deceleration
parameter Q (88). In contrast to the approach necessary
in [14,44], the Hubble rate can be simply and physically
associated with the expansion scalar of the cosmological
fluid. � and Q are not immediately related to parameters
in an averaged cosmology written in terms of effective
Friedmann equations, but � can be straightforwardly
related to an effective energy density in the backreaction
and, if it were required,Q could be linked with an effective
pressure through the simple commutation between time
differentiation and spatial averaging that arises in a VPC.

Since we understand linear perturbation theory in
Fourier space, the averages � and Q can be evaluated
for a typical event through ensemble averaging. To do so
we employed a Boltzmann code progressively developed
from COSMICs and CMBFast [48,49] in [9,12,43,44],
which we used to recover �ðk; �0Þ, the linear Newtonian
potential at the present epoch. In principle, this allows us to

evaluate �� and �Q (and if we desired their variances, which
were noted in [13] to potentially be far more significant
than the means).

However, integrands in the VPC exhibit infrared and
ultraviolet divergences which are endemic in studies of
second-order perturbation theory. Both infrared and ultra-
violet divergences are familiar in studies of backreaction

undertaken in 3-domains. While they occur in 3-averages
evaluated in Newtonian gauge [14] or traceless uniform
CDM gauge [44], they do not appear in uniform curvature
gauge [44] (although it is unclear whether or not they occur
in the deceleration parameter in this case). Therefore, the
divergences are clearly a gauge-dependent effect. The
ultraviolet divergence in Q that we found in this study is
similar in form to that which appeared in the traceless
uniform CDM gauge. We controlled the infrared and
ultraviolet divergences in the usual manner, imposing a
hard large-scale cutoff at kIR ¼ kH=10 and damping per-
turbations on scales below kUV. The large-scale cutoff can
be justified by noting that the divergence is only logarith-
mic, and that a change in kIR by an order of magnitude only
influences the results by a factor of approximately 2. On
small scales, linear perturbations are damped by Silk
damping and it is reasonable to take kUV ¼ kSilk �
6 Mpc�1; furthermore, on such scales linear perturbation
theory becomes invalid and the results from perturbation
theory can no longer be trusted.
Solving the integrals numerically, the results were pre-

sented in Fig. 2. We found that the fractional shift in the
Hubble parameter with respect to the input FLRWmodel is
�� � 10�5, which leads to �eff of the order of a few times
10�5. This is broadly consistent with previous results.
However, it is interesting to compare this result with the
effective energy density obtained in uniform curvature
gauge, which was found to be significantly larger: �eff �
5� 10�4. It seems plausible to suggest that this result in
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-12
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-09
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FIG. 2. �� and �Q for a range of smoothing scales RS. Constant
lines denote the case with no smoothing. Note that in this
case the value of �Q is arbitrary; the plotted values are with
kmax ¼ 10h=Mpc.
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uniform curvature gauge provides an approximate upper
bound on the effective energy density from backreaction;
since the integrands exhibited neither ultraviolet nor infra-
red divergences, we did not have to neglect the impact from
any scale in the manner we have had to here. By imposing
large-scale cutoffs and small-scale smoothing we may be
neglecting regions of the average that we should instead
consider—note, for instance, that imposing a cutoff on
large scales in Fourier space corresponds to removing
concentric shells, or ‘‘onion rings,’’ from a spherical aver-
age. The question of the relative size of these effects and
how self-consistent averaging within perturbation theory
may affect the correct interpretation of cosmological
observations has been discussed previously (see for
instance [44,64–66]).

The fractional shift in the averaged deceleration parame-

ter evaluated in the VPC was �Q � 0:44. The size of the
fluctuation to the averaged acceleration rate is very large,
being driven by the rapid ultraviolet divergence generating
the large peak visible in the integrand. It is unclear to what
extent this is a gauge-dependent effect and whether it is
physical or not, or whether it indicates a breakdown of the
formalism.

As we have emphasized, a cosmological VPC is defined
by a single scalar gauge condition. In this study we set the
second gauge condition by requiring that the spatial curva-
ture c V ¼ 0. However, this choice was arbitrary and it
seems likely that imposing an alternative gauge condition
would remove one, or perhaps both, of these divergences
and produce a gauge better suited to the problem. Defining a
VPC by the requirement that infrared or ultraviolet diver-

gences do not occur in �Q or �� could be expected to provide
the ‘‘preferred’’ coordinate system (or systems, in the event
that both cannot be safely evaluated in a single VPC) in
which to perform spatial averaging. As a concrete example,
it is possible to choose a gauge in which the backreaction on
the Hubble rate in a 3-volume exhibits neither infrared nor
ultraviolet divergences [44]. Alternatively we could choose
the second gauge condition to explicitly eliminate divergen-
ces in the averaged acceleration rate. While large-scale cut-
offs and small-scale divergences control our integrands, they
are unsatisfactory for two chief reasons: first, they are
entirely arbitrary and the extreme sensitivity on kUV in
particular creates large changes in the results for a small
change in the cutoff scale; and second, we exclude the onion
rings from the spatial averages in a distinctly unphysical
manner. It can be argued that the spatial average is only
properly evaluated in a coordinate system in which spurious
divergences do not occur and the impact from all scales (on
which the theory is valid) is well defined. This interesting
prospect is left to further study; here it suffices to note that
an infrared divergence is inevitable if the ensemble average
contains a constant term in its integrand,

R
Adðln kÞ, and that

an ultraviolet divergence is inevitable if it contains a term
proportional to k4,

R
Bðk�Þ4dðln kÞ. We are then effectively

restricted to integrals of the form
R
Cðk�Þ2dðln kÞ, as seen in

uniform curvature gauge in [44], and the amplitude of
cosmological perturbations then implies that the fractional

shifts in both �� and �Q arising from cosmological perturba-

tions are bounded by f ��; �Qg & 10�3. This estimate is pro-
vided for Einstein–de Sitter models; for more general
cosmologies the introduction of a cosmological constant
tends to reduce the effect by a factor of two or three. It
should also be noted that fractional shifts of this order-of-
magnitude would be extremely significant. Not only are
observational quantities such as the angular diameter dis-
tance of the baryon acoustic oscillations influenced by
integral effects, which could in principle compound small
shifts to produce a larger impact, but the actual backreaction
in the universe arises not only from perturbations but also
from nonlinear structures, which are likely to contribute a
larger effect.
For these reasons the further investigation of VPCs in

which consistent averages can be taken is vital for a full
understanding of modern cosmology, and the study in this
paper provides a vital first step in this procedure.
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APPENDIX A: GAUGE TRANSFORMATIONS AT
LINEAR AND SECOND ORDER

Here we summarize the scalar gauge transformations
presented in [50,53]. The transformation is generated by
a 4-vector


� ¼ ð�; 
iÞ ¼ ð�; @i�Þ: (A1)

1. Linear

A 4-scalar, and specifically the density perturbation,
transforms as

~��1 ¼ ��1 þ ��0�1 ) ~� ¼ �� 3ð1þ wÞ�1: (A2)

The scalar component of a 4-vector, and specifically the
4-velocity, transforms as

~v 1 ¼ v1 � �0
1: (A3)

The scalar metric perturbations transform as

~�1 ¼ �1 þ �0
1 þH�1; ~B1 ¼ B1 � �1 þ �0

1;

~c 1 ¼ c 1 �H�1; ~E1 ¼ E1 þ �1: (A4)

2. Second order

Four-scalars transform as

~��2 ¼ ��2 þ ��0�2 þ �1ð ��00�1 þ ��0�0
1 þ 2��0

1Þ
þ @kð2��1 þ ��0�1Þð@k�1 þ �k

1Þ (A5)
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and the scalar component of the 4-velocity transforms as

~v2 ¼ v2 � �0
2 þ @�2@kXv

k (A6)

where Xvi contains the terms quadratic in the first-order
perturbations and is defined in Eq. (A13). The scalar metric
components transform as

~c 2 ¼ c 2 �H�2 � 1

4
Xk

k þ
1

4
@�2@i@jXij; (A7)

~B2 ¼ B2 � �2 þ �0
2 þ @�2@kXB

k; (A8)

~�2 ¼ �2 þH�2 þ �0
2 þ �1½�00

1 þ 5H�0
1

þ ðH 0 þ 2H 2Þ�1 þ 4H�1 þ 2�0
1�

þ 2�0
1ð�0

1 þ 2�1Þ þ 
1k@
kð�0

1 þH�1 þ 2�1Þ
þ 
0

1k½@k�1 � 2Bk
1 � 
k0

1 �; (A9)

~E2 ¼ E2 þ �2 þ 3

4
@�2@�2@i@jXij � 1

4
@�2Xk

k; (A10)

where Xij (A11) and XB
i (A12) contain the terms

quadratic in the first-order perturbations. The quadratic
terms are

Xij 
 2

��
H 2 þ a00

a

�
�2
1 þH ð�1�

0
1 þ 
k

1@k�1Þ
�
�ij þ 4½�1ðC0

1ij þ 2HC1ijÞ þ 
k
1@kC1ij þ C1ik@j


k
1 þ C1kj@i


k
1�

þ 2ðB1i@j�1 þ B1j@i�1Þ þ 4H�1ð@j
1i þ @i
1jÞ � 2@i�1@j�1 þ 2@i
1k@j

k
1 þ �1ð@j
0

1i þ @i

0
1jÞ

þ ð@j@k
1i þ @i@k
1jÞ
k
1 þ @k
1i@j


k
1 þ @k
1j@i


k
1 þ 
0

1i@j�1 þ 
0
1j@i�1; (A11)

XBi 
 2½ðB0
1i þ 2HB1iÞ�1 þ 
k

1@kB1i � 2�1@i�1 þ B1k@i

k
1 þ B1i�

0
1 þ 2C1ik


k0
1 � þ 4H�1ð
0

1i � @i�1Þ
þ �0

1ð
0
1i � 3@i�1Þ þ �1ð
00

1i � @i�
0
1Þ þ 
k0

1 ð@k
1i þ 2@i
1kÞ þ 
k
1ð@k
0

1i � @i@k�1Þ � @k�1@i

k
1; (A12)

and

Xvi 
 
0
1ið2�1 þ �0

1 þ 2H�1Þ � �1

00
1i � 
k

1@k

0
1i þ 
k0

1 @k
1i � 2�1ðv0
1i þHv1iÞ þ 2
k

1@kv1i � 2vk
1@k
1i: (A13)

APPENDIX B: SECOND-ORDER EINSTEIN FIELD EQUATIONS

In our notation, and correcting typographical mistakes in [53], the scalar Einstein field equations at second order in
Poisson gauge [52–54] and assuming perfect fluid matter are

0�0: 3H ðc 0
2NþH�2NÞ�@a@ac 2N�3c 02

1N�3@a�1N@a�1N�8c 1N@
a@ac 1N�12H 2�2

1Nþ12H c 0
1Nðc 1N��1NÞ

¼�4�Ga2ð��2Nþ2ð ��þ �pÞ@av1N@av1NÞ; (B1)

0� i: @ic
0
2N þH@i�2N � 8H�1N@i�1N þ 2c 0

1N@ið2c 1N ��1NÞ þ 4ðc 1N ��1NÞ@ic 0
1N

¼ 4�Ga2ð2ð��1N þ �p1NÞ@iv1N � ð ��þ �pÞð@iv2N � 2�1N@iv1NÞÞ; (B2)

i� j trace: c 00
2N þH ð2c 0

2N þ�0
2NÞ þ

1

3
@a@að�2N � c 2NÞ þ ð2H 0 þH 2Þ�2N � 4ð2H 0 þH 2Þ�2

1N

� 7

3
@a�1N@a�1N � 8

3
�1N@

a@a�1N � 8H�1N�
0
1N ��02

1N ¼ 4�Ga2
�
2

3
ð ��þ �pÞ@av1N@av1N þ �p2

�
; (B3)

i� j traceless: @4ðc 2N ��2NÞ ¼ 12�Ga2ð ��þ �pÞð2@a@bð@av1N@
bv1NÞ � @a@að@bv1N@bv1NÞÞ � 14@a@b�1N@a@b�1N

� 24@a�1N@a@
b@b�1N � 2ð@a@a�1NÞ2 � 8�1N@

4�1N (B4)
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APPENDIX C: SECOND-ORDER DYNAMICS IN THE COMOVING VOLUME-PRESERVING
COORDINATE SYSTEM

The quadratic terms (A11)–(A13) for the transformation between Newtonian gauge and the VPC reduce to

X Bi ¼ 5�

�
��1N@i�1N þ 1

4
ð@i@k�1N@

k@�2�1N þ @k�1N@i@
k@�2�1NÞ

�
; (C1)

Xij ¼ ð�4�2
1N þ5@k�1N@

k@�2�1NÞ�ijþ25@i@k@
�2�1N@j@

k@�2�1N þ25

2
@k@�2�1N@i@j@k@

�2�1N �1

2
�2@i�1N@j�1N;

(C2)

Xvi ¼ �

�
�1N@i�1N þ 5

3
ð@i@k�1N@

k@�2�1N � @k�1N@i@k@
�2�1NÞ

�
: (C3)

To evaluate the dynamics, expansion scalar and acceleration rate in the comoving VPC it is also useful to know the time
derivatives of the generating vector, the trace and inverse Laplacian of the fully contracted gradients of the quadratic term
Xij and the time derivative of the Newtonian gauge curvature. These are

�0
2 ¼

1

2
c 2N þ 1

8
@�2@i@jXij þ 1

8
�@�2@i@jXij0 � 1

8
Xk

k �
1

8
�Xk0

k ; (C4)

@a@a�
0
2 ¼�25

21
�@�2@i@

jð@i�1N@j�1NÞ�1

7
�@i�1N@

i�1N�5

4
@�2@i@jXij0 �1

8
�@�2@i@jXij00 þ3

4
Xk0

k þ1

8
�Xk00

k ; (C5)

Xk
k ¼ �12�2

1N þ 25@i@k@
�2�1N@

i@k@�2�1N þ 55

2
@k@�2�1N@k�1N � 1

2
�2@i�1N@

i�1N (C6)

@�2@i@jXij ¼ �4�2
1N þ 5@k�1N@

k@�2�1N þ 25@�2@i@jð@i@k@�2�1N@j@
k@�2�1NÞ

þ 25

2
@�2@i@jð@k@�2�1N@i@j@k@

�2�1NÞ � 1

2
�2@�2@i@jð@i�1N@j�1NÞ; (C7)

c 0
2N ¼ 1

7
�ðN � @a�1N@a�1NÞ ¼ 1

7
�

�
10

3
@�2ð@i@jð@i�1N@j�1NÞÞ � @a�1N@a�1N

�
: (C8)

Applying these to the second-order metric perturbations and velocity in Poisson gauge gives the VPC quantities

�2V ¼ �2N þ 3

2
c 2N þ 3

8
@�2@i@jXij þ 1

8
�ð@�2@i@jXijÞ0 � 3

8
Xi

i �
1

8
�ðXi

iÞ0 þ
21

2
�2

1N � 35

4
@i�1N@

i@�2�1N; (C9)

@a@aB2V ¼ � 1

2
�@a@ac 2N � 1

8
�@i@jXij � 5

4
ð@�2@i@jXijÞ0 � 1

8
�ð@�2@i@jXijÞ00 þ 1

8
�@a@aXi

i þ
3

4
ðXi

iÞ0 þ
1

8
�ðXi

iÞ00

� 25

21
�@�2ð@i@jð@i�1N@j�1NÞÞ � 36

7
�@i�1N@i�1N � 5��1N@

a@a�1N þ 5

4
�ð@i@k@�2�1N@k@

i�1N

þ @k@�2�1N@k@
a@a�1N þ @i@k�1N@

k@i@�2�1N þ @k�1N@
k�1NÞ; (C10)

@a@aE2V ¼ ��2N � 3

2
c 2N � 3

8
@�2@i@jXij þ 3

8
Xi

i þ
1

8
�ð@�2@i@jXijÞ0 þ 1

8
�ðXi

iÞ0 þ 4�2
1N � 1

4
�2@i�1N@i�1N

þ 35

4
@i@

�2�1N@
i�1N þ 25

2
@i@j@

�2�1N@
i@j@�2�1N; (C11)
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@a@av2V ¼ ���1N@
a@a�1N � 33

7
�@i�1N@i�1N þ 67

21
�@�2ð@i@jð@i�1N@j�1NÞÞ

þ 1

9
�3

�
ð@a@a�1NÞ2 þ @i�1N@i@

a@a�1N � 3

7
@a@aðN � @b�1N@b�1NÞ

�

þ �

�
5

3
@a@a@k�1N@

k@�2�1N þ 5

3
@i@k�1N@i@

k@�2�1N � 5

3
@i@

k�1N@
i@k@

�2�1N � 5

3
@k�1N@k�1N

�

þ 5

4
@�2@i@jXij0 þ 1

8
�@�2@i@jXij00 � 3

4
Xk0

k � 1

8
�Xk00

k : (C12)

APPENDIX D: SPATIAL AVERAGES IN FOURIER SPACE

In this appendix we demonstrate averages of expressions of the form @�2@i@jC
ij, whereCij ¼ @iA@jB orCij ¼ A@i@jB.

The starting point is Eq. (64). Then the average of both of these terms can be written

hXðxÞi3 ¼ � 1

V3

ZZ
W	ðkÞ fðk;k

0Þ
k2

Aðk0ÞBðk� k0Þ d
3k0

ð2�Þ3
d3k

ð2�Þ3 (D1)

where

fðk;k0Þ ¼
�
k2ðkk0 cos �k0 � k02cos 2�k0 Þ ¼ k2g1ðk;k0Þ; Cij ¼ @iA@jB

k2ðk2 þ k02cos 2�k0 � 2kk0 cos�k0 Þ ¼ k2g2ðk;k0Þ; Cij ¼ A@i@jB
(D2)

which can be found by expanding AðxÞ and BðxÞ across the Fourier modes and evaluating the derivatives. The power
spectrum for A and B then gives

hXðkÞi3 ¼ � 1

V3

1

4�

ZZ
W	ðkÞgðk;k

0Þ
k03

Aðk0ÞBðk0ÞP ðk0Þ�ðkÞd3k0d3k: (D3)

We can now perform the integral over �k0 and �k0 , giving

hXðkÞi3 ¼ � 1

2V3

ZZ
W	ðkÞIðk; k0ÞAðk0ÞBðk0ÞP ðk0Þ�ðkÞdk

0

k0
d3k; (D4)

with

Iðk; k0Þ ¼
8<
:
� 2

3 k
02; Cij ¼ @iA@jB


2k2 þ 2
3 k

02
�
; Cij ¼ A@i@jB

: (D5)

The integral over k is now trivial. Noting that the term proportional to k2 in Iðk; k0Þ vanishes in the integral, we are left with

hXðkÞi3 ¼ � 1

3

Z
k02P ðk0ÞAðk0ÞBðk0Þ dk

0

k0
(D6)

where the negative sign is taken for Cij ¼ @iA@jB while the positive sign is taken for Cij ¼ A@i@jB. The result for
Cij ¼ @iA@jB agrees with that in [13] and to our knowledge the other is original to this paper.
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