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We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-

dependent WIMP scattering off 129;131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey

covers the nonzero-spin nuclei relevant to direct dark matter detection. We include a pedagogical

presentation of the formalism necessary to describe elastic and inelastic WIMP-nucleus scattering. The

valence spaces and nuclear interactions employed have been previously used in nuclear structure

calculations for these mass regions and yield a good spectroscopic description of these isotopes. We

use spin-dependent WIMP-nucleus currents based on chiral effective field theory at the one-body level and

including the leading long-range two-body currents due to pion exchange, which are predicted in chiral

effective field theory. Results for all structure factors are provided with theoretical error bands due to the

nuclear uncertainties of WIMP currents in nuclei.
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I. INTRODUCTION

About 25% of the energy density of our Universe
consists of dark matter, a form of matter that rarely
interacts with baryons and has eluded direct observation
so far [1,2]. This large-scale problem is closely connected
to new physics at the smallest scales, because dark matter
candidates arise naturally in extensions of the Standard
Model of particle physics [3]. Prominent dark matter
candidates are weakly interacting massive particles
(WIMPs). They are predicted in supersymmetric models,
as the lightest supersymmetric particles (typically neutra-
linos) and also in other Standard Model extensions like
models with extra dimensions. WIMPs are especially
promising candidates, because they account naturally for
the dark matter energy density established by observa-
tions [2]. Moreover, WIMPs interact with quarks, and
thus with baryonic matter, opening the door to direct
dark matter detection via elastic scattering off nuclei
[4]. Inferring properties of dark matter from direct detec-
tion therefore requires detailed knowledge of the structure
factors for WIMP scattering off strongly interacting
nuclei.

In this work, we focus on spin-dependent (SD) WIMP
scattering [5], which is relevant because WIMPs can carry
spin. In particular we assume spin 1=2 WIMPs, such as
neutralinos or other Majorana fermions. The detection of
elastic SD WIMP scattering has been the goal of several
past and ongoing experiments [6–12], using different

nonzero-spin nuclei as target, but so far without evidence.
Evaluating the response of nuclei to WIMPs is challeng-
ing. First, it requires matching the WIMP-quark coup-
lings in a particular supersymmetric model to WIMP-
nucleon currents. Because quantum chromodynamics
(QCD) is nonperturbative at low energies, this is best
achieved using effective theories [13–16], in which spin-
independent and SD interactions generally enter in lead-
ing order. Second, the WIMP-nucleus response requires
reliable nuclear-structure calculations. This is especially
important for SD interactions, because the response de-
pends on how the spin of the nucleus is distributed among
nucleons (due to attractive interactions most of the nucle-
ons pair to spin zero). For the isotopes of interest [6–12],
this involves medium-mass to heavier nuclei and is a
challenging many-body problem. Previous calculations
of SD WIMP scattering off nuclei [5,17–23] have relied
on phenomenological WIMP-nucleon currents, and are
based on nuclear-structure calculations that can be im-
proved with recent advances in nuclear interactions and
computing capabilities. This work presents progress on
these fronts.
The typical momentum transfers involved in WIMP

scattering off nuclei are low and of order of the pion
mass. In addition, the typical momenta involved in low-
energy nuclear structure are similar. At these momentum
scales, chiral effective field theory (EFT) provides a sys-
tematic expansion in powers of momenta Q for nuclear
forces and for the coupling to external probes, based on the
symmetries of QCD [24,25]. In addition to the coupling
through one-body (1b) currents, generally at leading order,
two-body (2b) currents enter at higher order and are quan-
titatively important.
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In previous work [15] we have derived the currents for
SD WIMP scattering off nuclei based on chiral EFT,
including 1b currents and the leading long-range 2b cur-
rents due to pion exchange, which are predicted in chiral
EFT. As an application, we focused on the scattering off
129;131Xe, as they provide the most stringent limits for
WIMP coupling to neutrons [26]. Our results have recently
been adopted as benchmark for the XENON100 SD
WIMP-nucleon cross-section limits [12], and have also
been used in Ref. [27].

More generally, two-body contributions to weak neutral
currents have been shown to be key for providing accu-
rate predictions of neutrino-deuteron scattering at solar
neutrino energies for SNO [28,29]. Weak neutral cur-
rents based on chiral EFT have been explored for light
nuclei and neutrino breakup in core-collapse supernovae
[30–33], and 2b weak charged currents have been shown to
provide important contributions to Gamow-Teller transi-
tions and double-beta decays of medium-mass nuclei [34].
Following our previous work [15], Refs. [35,36] have
reported simple prescriptions to approximately include
the effects of chiral 2b currents in previous calculations
of SD WIMP-nucleus scattering.

This work expands Ref. [15] by presenting state-of-the-
art large-scale shell-model calculations that describe the
nonzero-spin states of all isotopes that are experimentally
relevant for SD WIMP direct detection: 129;131Xe, 127I,
73Ge, 19F, 23Na, 27Al, and 29Si. The nuclear-structure cal-
culations are performed with interactions and valence
spaces that have been tested in these mass regions. Based
on the calculated ground states, we predict the structure
factors for elastic SDWIMP scattering, including chiral 1b
and 2b currents with an improved treatment of the
momentum-transfer dependence for higher momentum
transfers. We provide theoretical error bands due to the
uncertainties of WIMP currents in nuclei.

The outline of this article is as follows. In Sec. II, we
derive the WIMP currents in nuclei based on chiral EFT.
All microscopic inputs needed to compute the structure
factors of SD WIMP-nucleus scattering are discussed in
Sec. III. Combined with detailed appendixes, this includes
a pedagogical presentation of the formalism necessary to
describe elastic and inelastic WIMP-nucleus scattering. In
Sec. IV, we present large-scale nuclear-structure calcula-
tions that describe the nuclei relevant for SD WIMP direct
detection, and compare our results to experiment. We then
calculate the structure factors for elastic SD WIMP scat-
tering for all cases using chiral EFT currents. We discuss in
detail the role of 2b currents and their uncertainties; the
contributions of different multipole operators to the total
response; and the issue of proton/neutron versus isoscalar/
isovector decompositions of the structure factors. Finally,
we summarize in Sec. V and give an outlook for future
improvements of the nuclear physics of dark matter
detection.

II. WIMP-NUCLEUS INTERACTIONS

A. Chiral EFT and WIMP currents

At the WIMP-quark level, the low-momentum-transfer
Lagrangian density L for SD interactions is taken to be an
axial-vector–axial-vector coupling [5,37]:

LSD
� ¼ GFffiffiffi

2
p

Z
d3rj�ðrÞJA�ðrÞ

¼ �GFffiffiffi
2

p
Z

d3r ����5� �X
q

Aq
�c q��5c q; (1)

where GF is the Fermi coupling constant, and JA�ðrÞ and
j�ðrÞ denote the hadronic current and the leptonic current
of the WIMP, respectively. � is the neutralino field, c q are

the fields of q ¼ u, d, s quarks, and Aq the neutralino-

quark coupling constants. The temporal components can
be neglected, because the velocities of WIMPs are
expected to be nonrelativistic with v=c� 10�3. We also
neglect contributions to the Lagrangian density other than
axial-vector currents, such as polar-vector currents, which
are suppressed by the momentum transfer over the nucleon
mass p=m [5]. This approximation will be studied in a
future paper.
For the WIMP-nucleus response, the SDWIMP interac-

tion couples dominantly to a single nucleon, but also to
pairs of nucleons. At the one-nucleon level, the quark
currents are replaced by their expectation value in the
nucleon, leading to 1b axial-vector currents Ji;1b. In the

nucleus, the currents are summed over all A nucleons:X
q

Aq
�c q��5c q !

XA
i¼1

Ji;1b ¼
XA
i¼1

ðJ0i;1b þ J3i;1bÞ; (2)

with the isoscalar J0i;1b and isovector J3i;1b parts.

The coupling of the isoscalar part is given by [5]

a0 ¼ ðAu þ AdÞð�uþ�dÞ þ 2As�s; (3)

where �u, �d, �s are defined as �c q��5c q ¼ �q�=2,

with the nucleon spin �=2. Therefore, J0i;1b ¼ a0�=2, and

a0 receives contributions from the isoscalar combination of
the u and d quarks to the spin of the nucleon, as well as
from the s quark. Analogously, the isovector coupling can
be written as

a1 ¼ ðAu � AdÞð�u��dÞ ¼ ðAu � AdÞgA; (4)

where gA is the axial coupling constant. This shows that
the isovector part J3i;1b of the axial-vector WIMP-nucleon

coupling is identical, up to replacing a1 by gA, to the axial-
vector part of the weak neutral current.

B. Coupling to one nucleon

The weak neutral current was derived within chiral
EFT for calculations of low-energy electroweak reactions.
At lowest orders Q0 and Q2, there are only 1b currents.
For the isovector part of the axial-vector WIMP-nucleon
current, this leads to [15]
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J3i;1b ¼
1

2
a1�

3
i

�
gAðp2Þ
gA

�i � gPðp2Þ
2mgA

ðp � �iÞp
�
; (5)

where �3i denotes the isospin, p ¼ pi � p0
i the momentum

transfer from nucleons to neutralinos, and gAðp2Þ and
gPðp2Þ the axial and pseudoscalar couplings. The momen-
tum transfer dependence of gAðp2Þ and gPðp2Þ is due to
loop corrections and pion propagators. To order Q2, one
has [38]

gAðp2Þ
gA

¼ 1� 2
p2

�2
A

; (6)

gPðp2Þ ¼ 2g�pnF�

m2
� þ p2

� 4
mgA
�2

A

; (7)

with �A ¼ 1040 MeV, pion mass m� ¼ 138:04 MeV,
pion decay constant F� ¼ 92:4 MeV, and g�pn ¼ 13:05.

Chiral 1b currents are similar to the currents used in
previous calculations of WIMP scattering off nuclei [5].
The differences are that the 1=�2

A terms were neglected
and the Goldberger-Treiman relation was implicitly used to

write gPðp2Þ
2mgA

� 1
m2

�þp2 . Both present few percent corrections,

but the former increases with momentum transfer.
The axial-vector part of the weak neutral currents is

isovector in the Standard Model, neglecting the strange
quark contribution to a0 in Eq. (3). Therefore, higher-order
Q2 contributions to the isoscalar WIMP-nucleon current
J0i;1b ¼ a0�=2 depend on models of currents in the

nucleon. To order Q2, these lead to 1b currents with a
form-factor mass-scale ��A [39] and without pion
propagator contributions. Because the isovector 1=�2

A

terms contribute at the few percent level for the typical
momentum transfers in WIMP scattering, we chose
to neglect higher-order isoscalar current contributions,
as opposed to introducing a model dependence at
this level.

C. Coupling to two nucleons

At order Q3, 2b currents enter in chiral EFT [40]. We
consider their long-range parts due to pion exchange,
which are predicted in chiral EFT, and for medium-mass
nuclei were found to dominate over the short-range parts
[15]. Because of their pion-exchange nature, the axial-
vector part of the weak neutral 2b current is isovector,
J2b ¼ P

A
i<j J

3
ij, with

J312 ¼ � gA
2F2

�

ð�1 � �2Þ3
 
�2 � k2

m2
� þ k22

��
c4 þ 1

4m

�
ð�1 � k2Þ

þ i
p1 þ p0

1

4
þ
�
1þ ĉ6
12m

�
ð�1 � qÞ � ð1 $ 2Þ

�!

� gA
F2
�

c3

�
�31

ð�1 � k1Þk1

m2
� þ k21

þ �32
ð�2 � k2Þk2

m2
� þ k22

�
; (8)

where ki ¼ p0
i � pi and q ¼ k1 þ k2. This improves

the treatment of the momentum-transfer dependence
compared to our previous work [15], as it does not make
the approximation of low-momentum transfers in the
currents [40]. As a result, two momentum transfers appear,
k1 and k2, and also a new term proportional to 1þ ĉ6,
which vanishes in the limit of zero momentum transfer.
As in Ref. [15], we take into account the normal-ordered

one-body part of chiral 2b currents. This is obtained by
summing the second nucleon j over occupied states in a
spin and isospin symmetric reference state or core, which
we take as a Fermi gas: Jeffi;2b ¼

P
jð1� PijÞJ3ij. The ex-

change operator Pij includes all two-body exchange con-

tributions. Normal ordering is expected to be a very good
approximation for medium-mass and heavy nuclei, be-
cause of phase-space restrictions of normal Fermi systems
at low energies [41].
The resulting effective 2b currents Jeffi;2b are derived in

detail in Appendix A. We find that the leading long-range
2b currents lead to three different contributions. First, there
is a renormalization of the axial coupling [15],

Jeff;�i;2b ð�;p;PÞ ¼ �gA�i

�3i
2

�

2F2
�

 
1

3

�
�c3 þ 1

4m

�
½I�1 ð�; jP� pjÞ þ I�1 ð�; jPþ pjÞ�

þ 1

3

�
c4 þ 1

4m

�
½3I�2 ð�; jP� pjÞ � I�1 ðjP� pjÞ þ 3I�2 ð�; jPþ pjÞ � I�1 ðjPþ pjÞ�

þ
�
1þ ĉ6
12m

��
Ic6ð�; jP� pjÞp � ðP� pÞ

ðP� pÞ2 � Ic6ð�; jPþ pjÞp � ðPþ pÞ
ðPþ pÞ2

�!
; (9)

which depends on the density �, the momentum transfer p and the total momentum P ¼ pi þ p0
i (due to the exchange

terms). Such renormalization was also found considering chiral three-nucleon forces as density-dependent two-body
interactions [42]. Second, there is a contribution to the pseudoscalar coupling,

Jeff;Pi;2b ð�;p;PÞ ¼ �gA
�3i
2
ðp � �iÞp �

2F2
�

 
2c3

m2
� þ p2

� 1

3
ðc3 þ c4Þ I

Pð�; jP� pjÞ þ IPð�; jPþ pjÞ
p2

þ
�
1þ ĉ6
12m

��
Ic6ð�; jP� pjÞ

ðP� pÞ2 þ Ic6ð�; jPþ pjÞ
ðPþ pÞ2

��
; (10)
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and third, chiral 2b currents induce pseudoscalar-type
currents depending on the total momentum,

Jeff;P1i;2b ð�;p;PÞ � gA
�3i
2
ðp � �iÞP; (11)

Jeff;P2i;2b ð�;p;PÞ � gA
�3i
2
ðP � �iÞp; (12)

Jeff;P3i;2b ð�;p;PÞ � gA
�3i
2
ðP � �iÞP; (13)

whose analytical expressions can be found in Appendix A.
The functions I�1 ð�;QÞ, I�2 ð�;QÞ, IPð�;QÞ, and Ic6ð�;QÞ
are given by integrals due to the summation over occupied
states in the exchange terms. They can be evaluated
analytically, and the explicit expressions are given in
Appendix A.

The contributions from 2b currents in Eqs. (9)–(13)
depend on the density of the reference state � ¼
2k3F=ð3�2Þ (kF is the Fermi momentum) and on the low-
energy couplings c3, c4, and ĉ6. For the density � we take
the range � ¼ 0:10 . . . 0:12 fm�3, appropriate for the
nuclei considered (see also Ref. [34]). The low-energy
couplings c3 and c4 also enter pion-nucleon and nucleon-
nucleon interactions and have been determined from data.
Here, we consider the c3, c4 values from the next-to-next-
to-next-to-leading order (N3LO) nucleon-nucleon (NN)
potentials of Entem and Machleidt (EM) [43] and
Epelbaum-Glöckle-Meißner (EGM) [44], as well as from
the NN partial wave analysis (PWA) [45]. To be con-
servative, we also consider the estimated uncertainty in
these values expected from higher-order contributions,
�c3 ¼ ��c4 � 1 GeV�1 [24]. The resulting c3 and c4
values are given in Tables I and II. We take ĉ6 ¼ 5:83
from Ref. [46].

In Table I, we study the P dependence of the 2b current
contribution to the axial coupling, which we write as

Jeff;�i;2b ð�; PÞ ¼ �gA�i
�3i
2

�
F2
�
J�ð�; PÞ, at p ¼ 0. We com-

pare J�ð�; PÞ for the Fermi gas mean value P2 ¼ 6k2F=5
and P ¼ 0 at a density � ¼ 0:10 fm�3 and for the different
c3, c4 sets considered. Table I shows that the P dependence
is very weak: J�ð�; 0Þ varies by less than 12% over the
relevant P range. For other densities in the range � ¼
0:10 . . . 0:12 fm�3 this variation is even smaller. Because
2b currents are a correction to the leading 1b currents, we
therefore set P ¼ 0 in the axial 2b current contribution,
Eq. (9). As the contributions from Eqs. (11)–(13) are
expected to be weaker, we therefore consistently set
P ¼ 0, so that only the standard pseudoscalar part,
Eq. (10), contributes. Finally to connect to our previous
work, for p ¼ P ¼ 0, both I�1 and I�2 lead to [15]

I�ð�;p¼P¼0Þ� I�1 ð�;p¼P¼0Þ¼ I�2 ð�;p¼P¼0Þ

¼1�3m2
�

k2F
þ3m3

�

k3F
arctan

�
kF
m�

�
; (14)

where I�ð�; p ¼ P ¼ 0Þ ¼ 0:58 . . . 0:60 depends only
weakly on the density in the range � ¼ 0:10 . . . 0:12 fm�3.
For P ¼ 0, the 2b current contribution to the axial part,

Eq. (9), can be written as a momentum- and density-
dependent renormalization �a1ðpÞ,

Jeff;�i;2b ¼ gA�i

�3i
2
�a1ðpÞ; (15)

with

�a1ðpÞ ¼ � �

F2
�

�
1

3

�
c4 þ 1

4m

�
½3I�2 ð�; pÞ � I�1 ð�; pÞ�

þ 1

3

�
�c3 þ 1

4m

�
I�1 ð�; pÞ �

�
1þ ĉ6
12m

�
Ic6ð�; pÞ

�
:

(16)

Similarly, we write the 2b-current contribution to the pseu-
doscalar coupling, Eq. (10), as a momentum- and density-
dependent renormalization �aP1 ðpÞ,

Jeff;Pi;2b ¼ gA
�3i
2
ðp � �iÞp�a

P
1 ðpÞ
p2

; (17)

with

TABLE II. Values for all c3, c4 sets considered of the
long-range 2b current contributions �aiðp ¼ 0Þ (axial) and
�aPi ðp ¼ m�Þ (pseudoscalar) for the density range � ¼
0:10 . . . 0:12 fm�3. The ci values are in GeV�1.

c3 c4 �a1ðp ¼ 0Þ �aP1 ðp ¼ m�Þ
EM �3:2 5.4 �ð0:26 . . . 0:32Þ 0.29. . .0.35
EMþ �ci �2:2 4.4 �ð0:20 . . . 0:25Þ 0.23. . .0.29
EGM �3:4 3.4 �ð0:19 . . . 0:24Þ 0.22. . .0.27
EGMþ �ci �2:4 2.4 �ð0:14 . . . 0:17Þ 0.16. . .0.20
PWA �4:78 3.96 �ð0:23 . . . 0:29Þ 0.26. . .0.32
PWAþ �ci �3:78 2.96 �ð0:18 . . . 0:23Þ 0.21. . .0.25

TABLE I. Comparison of J�ð�; PÞ, which describes the axial
contribution at p ¼ 0 from the normal-ordered one-body part of

the long-range 2b currents, Jeff;�i;2b ð�; PÞ ¼ �gA�i
�3
i

2
�
F2
�
J�ð�; PÞ,

evaluated at the Fermi gas mean value P2 ¼ 6k2F=5 and at P ¼ 0
for a density � ¼ 0:10 fm�3. The variation is shown for all c3, c4
sets considered, and the relative variation �J�=J� between the
Fermi gas mean value and P ¼ 0 is given. The ci and J� values
are in GeV�1.

c3 c4 J�ð�; PÞ J�ð�; P ¼ 0Þ �J�=J�

EM �3:2 5.4 3.20 2.84 0.11

EMþ �ci �2:2 4.4 2.57 2.26 0.12

EGM �3:4 3.4 2.29 2.10 0.08

EGMþ �ci �2:4 2.4 1.66 1.53 0.08

PWA �4:78 3.96 2.78 2.59 0.07

PWAþ �ci �3:78 2.96 2.15 2.01 0.06
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�aP1 ðpÞ ¼
�

F2
�

��2c3p
2

m2
� þ p2

þ c3 þ c4
3

IPð�; pÞ

þ 1þ ĉ6
12m

Ic6ð�; pÞ
�
: (18)

The ranges of �a1ðpÞ and �aP1 ðpÞ are given in Table II for
the c3, c4 values and the density range considered. We find
that �a1ðpÞ reduces the axial part of the current by 14%. . .
32% at p ¼ 0. The momentum transfer dependence is
mild, as the reduction is 15%. . .36% at p ¼ 2m�.
Moreover, �aP1 ðpÞ increases the pseudoscalar part of the
current by 16%. . .35% at p ¼ m�. At lower momentum
transfers this enhancement is weaker, while it is more
significant for higher p. These results are consistent with
studies of Gamow-Teller transitions and double-beta de-
cays [34]. As discussed in Ref. [15], in addition to the long-
range 2b pion-exchange currents, there are short-range 2b
currents for the isoscalar and isovector parts, which are
included as contact terms in chiral EFT. The isovector
short-range 2b parts only lead to small contributions [34].
Therefore, we neglect short-range 2b currents at this level,
which is also consistent with neglecting higher-order
(short-range) 1b isoscalar currents; see Sec. II B.

D. Combined response

Combining the 1b and the long-range 2b currents to
order Q3 in chiral EFT (replacing gA by a1 for the latter),
the isovector part of the axial-vector WIMP current at the
normal-ordered one-body level is given by [15]

J3i;1bþ2b ¼
1

2
a1�

3
i

��
gAðp2Þ
gA

þ �a1ðpÞ
�
�i

þ
�
� gPðp2Þ

2mgA
þ �aP1 ðpÞ

p2

�
ðp � �iÞp

�
: (19)

III. WIMP-NUCLEUS SCATTERING AND
STRUCTURE FACTORS

A. WIMP-nucleus scattering

The differential cross section for SD WIMP elastic
scattering off a nucleus in the initial state jii to the final
state jfi can be obtained from the low-momentum-transfer
Lagrangian density of Eq. (1). A detailed derivation is
performed in Appendix B. The final result is [5]

d�

dp2
¼ 1

ð2Ji þ 1Þ�v2

X
sf;si

X
Mf;Mi

jhfjLSD
� jiij2

¼ 8G2
F

ð2Ji þ 1Þv2
SAðpÞ;

(20)

where the sum sf, si ¼ �1=2 is over neutralino spin

projections, and the sum Mf, Mi is over the projections

of the total angular momentum of the final and initial states
Jf, Ji, respectively; v is the WIMP velocity, and SAðpÞ the

axial-vector structure factor. The structure factor can be
decomposed as a sum over multipoles L with reduced
matrix elements of the longitudinal L5

L, transverse electric

T el5
L , and transverse magnetic T mag5

L projections of the
axial-vector currents:

SAðpÞ ¼
X
L>0

jhJfkL5
LkJiij2 þ

X
L>1

ðjhJfkT el5
L kJiij2

þ jhJfkT mag5
L kJiij2Þ: (21)

The multipole contributions are obtained from the WIMP-
nucleus currents JAðrÞ. At the effective one-body level,
chiral 1b and 2b currents lead to (see Appendix B for the
definition of the multipole operators and details of the
derivation)

L5
LðpÞ¼

iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ1

p XA
i¼1

1

2

�
a0þa1�

3
i

�
1þ�a1ðpÞ

� 2g�pnF�p
2

2mgAðp2þm2
�Þ
þ�aP1 ðpÞ

��
�
h ffiffiffiffiffiffiffiffiffiffiffiffi

Lþ1
p

ML;Lþ1ðpriÞþ
ffiffiffiffi
L

p
ML;L�1ðpriÞ

i
; (22)

T el5
L ðpÞ ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Lþ 1
p

�XA
i¼1

1

2

�
a0 þ a1�

3
i

�
1� 2

p2

�2
A

þ �a1ðpÞ
��

�
h
� ffiffiffiffi

L
p

ML;Lþ1ðpriÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

p
ML;L�1ðpriÞ

i
;

(23)

T mag5
L ðpÞ ¼ XA

i¼1

1

2

�
a0 þ a1�

3
i

�
1� 2

p2

�2
A

þ �a1ðpÞ
��

�ML;LðpriÞ: (24)

The matrix elements of the operator ML;L0 ðpriÞ ¼
jL0 ðpriÞ½YL0 ðr̂iÞ�i�L (with L0 and � coupled to L) are given
in Appendix C.

B. Parity constraints

The different multipoles in Eqs. (22)–(24) have
well-defined parity �, which can be deduced from the
definitions given in Appendix B, Eqs. (B6)–(B8), and the
transformations under parity of

�ðrÞ¼�1; �ðYLMÞ¼ ð�1ÞL; �ðYM
LL1Þ¼ ð�1ÞL;

and the parity of axial-vector one-body currents �ðJAÞ ¼
þ1. For elastic scattering, where the initial and final states
of the nucleus are identical (J ¼ Ji ¼ Jf), only the multi-

poles with positive parity (� ¼ þ1) contribute to the
structure factor, so that we have
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�ðL5
LÞ ¼ ð�1ÞLþ1 ) L odd;

�ðT el5
L Þ ¼ ð�1ÞLþ1 ) L odd;

�ðT mag5
L Þ ¼ ð�1ÞL ) L even:

Hence, for elastic scattering only the odd-L multipoles of
the longitudinal and transverse electric operators and only
the even-L multipoles of the transverse magnetic operator
contribute. This is also the case for inelastic scattering
between initial and final states of the same parity. For
inelastic scattering involving different parity states, the
above constraints get reversed.

C. Time-reversal constraints

For elastic scattering, time-reversal invariance also con-
strains the multipoles that contribute to the structure factor.
We can write the reduced matrix elements of the sum over
one-body operators OLðiÞ as [13]

hJkXA
i¼1

OLðiÞkJi �
X
j;j0

�Jðj; j0ÞðhjkOLkj0i

þ ð�1Þj�j0 hj0kOLkjiÞ; (25)

where �Jðj; j0Þ denotes the one-body density matrix, and
the sum is over single-particle total angular momenta j, j0
(for simplicity, we have suppressed the sums over radial
quantum numbers n, n0 and orbital angular momenta l, l0).
Therefore, the symmetry properties of the matrix elements
under exchange of initial and final states determine the
allowed L contributions to elastic scattering. The relevant
operator for SD WIMP-nucleus scattering is ML;L0 ,

whose matrix elements are given in Appendix C. They
transform as�

n0l0
1

2
j0kML;LðpriÞknl 12 j

�
¼ ð�1Þjþj0

�
nl

1

2
jkML;LðpriÞkn0l0 12 j

0
�
; (26)

�
n0l0

1

2
j0kML;L�1ðpriÞknl 12 j

�
¼ ð�1Þj�j0

�
nl

1

2
jkML;L�1ðpriÞkn0l0 12 j

0
�
: (27)

Therefore, from Eq. (25) it follows that only the multipoles
with ML;L�1 contribute to elastic scattering. Considering

the different multipoles in Eqs. (22)–(24), we thus have

hJkT mag5
L kJi ¼ 0; (28)

so that the transverse magnetic multipoles do not contrib-
ute to elastic scattering.

D. Structure factor for elastic SD scattering

As a result, the structure factor for elastic SD WIMP
scattering off nuclei is given by [5]

SAðpÞ ¼
X
L odd

ðjhJkL5
LðpÞkJij2 þ jhJkT el5

L ðpkJij2Þ; (29)

and only odd-L longitudinal and electric transverse
multipoles contribute.

IV. RESULTS

A. Spectra

The calculation of the structure factors requires a reli-
able description of the nuclei involved in the scattering
process. We perform state-of-the-art large-scale shell-
model calculations of the nuclear states using the code
ANTOINE [47]. For each nucleus, we solve the many-body

problem in an appropriate valence space, which depends on
the nuclear mass region. In all calculations, we use nuclear
interactions that have been previously employed in nuclear
structure and decay studies. To test the quality of the
structure calculations, we first compare the theoretical
with the experimental spectra for all relevant isotopes.

1. 129Xe, 131Xe, 127I

For the heaviest nuclei for SD WIMP scattering, 129Xe,
131Xe and 127I, the valence space for both protons and
neutrons comprises the 0g7=2, 1d5=2, 1d3=2, 2s1=2, and

0h11=2 orbitals on top of a
100Sn core. For 131Xewe perform

an exact diagonalization in this space. However, in order to
make the calculations feasible for 129Xe, the number of
particle excitations from the lower-lying 0g7=2, 1d5=2 orbi-
tals into the 1d3=2, 2s1=2, and 0h11=2 orbitals was limited

to three. With these restrictions the matrix dimension for
this space is 3:5� 108. Similarly, for 127I the number of
excitations into the 1d3=2, 2s1=2, and 0h11=2 orbitals was

limited to four, leading to a matrix dimension of 4:3� 108.
For this valence space we have used the so-called
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FIG. 1 (color online). Comparison of calculated spectra of
129Xe and 131Xe with experiment.

P. KLOS et al. PHYSICAL REVIEW D 88, 083516 (2013)

083516-6



GCN5082 interaction [48,49], which is based on a
G-matrix with empirical adjustments, mainly in the mono-
pole part, to describe nuclei within this region. The same
interaction and valence space have been used to study
nuclear structure and double-beta decays in Refs. [48–51].

Figure 1 shows the excitation energies of the lowest-
lying states of 129Xe and 131Xe in comparison with experi-
ment (all energies are measured from the ground state).
These spectra have been previously presented in Ref. [15].
In Fig. 2, we show the spectrum of 127I. For all three cases,
the experimental ground state and the overall ordering of
the excited states are very well described. This represents
a clear improvement with respect to previous work [23],
and validates the interaction and valence space used. Note
that for 127I the spin and parity assignment for some
experimental states are not known. These states are absent
in our calculated spectra, which suggests that they have
significant contributions from orbitals lying outside the
valence space considered in the present calculations.

2. 73Ge

For 73Ge, the valence space for both protons and neu-
trons comprises the 1p3=2, 0f5=2, 1p1=2, and 0g9=2 orbitals

on top of a 56Ni core. The calculations are performed in the
complete space. We compare results for two different
interactions, the so-called GCN2850 interaction [48,49]
(Int. 1 in the following) and the RG interaction [52]
(Int. 2). Both are also based on a G-matrix, with mainly
monopole empirical adjustments for this region. They have
been employed in beta and double-beta decay studies,
Refs. [48,49] for Int. 1 and Refs. [52,53] for Int. 2. The
former was also used in a smaller valence space for the
description of 73Ge in Ref. [13].

In Fig. 3 we compare the resulting spectra with experi-
ment. We find that the ground state and the overall ordering
of states is much better reproduced by the Int. 2 interaction.
In particular, the structure of three of the lowest-lying

states and the gap between them and the higher-lying states
are well described. In contrast, the Int. 1 interaction pre-
dicts a 1=2� ground state, in disagreement with experi-
ment, and the general spacing of the spectrum is not well
described. Consequently, the Int. 2 interaction will be the
preferred one in this work. Nevertheless, we will also keep
the Int. 1 case, in order to study the sensitivity of the
structure factor to the different nuclear interactions. It is
important to note that the first excited state, which is a
5=2þ state, is at too high excitation energy in both calcu-
lations. This suggests that an extended valence space,
probably including the higher-lying 1d5=2 orbital, is needed
to account for this state. This was also observed in
Ref. [17]. A reliable description of the 5=2þ state will be
crucial for the study of inelastic scattering off 73Ge.

3. 19F, 23Na, 27Al, 29Si

The valence space of the four lighter nuclei 19F, 23Na,
27Al, and 29Si is the sd shell, which comprises the 0d5=2,
1s1=2, and 0d3=2 orbitals, with a

16O core. Full calculations

in this valence space are easily performed. In previous
works [13,17,18,20,21], the USD interaction [54] was
employed. This interaction consists of a best fit to selected
nuclei in this mass region. Here, we use the more recent
USDB interaction [55], which is an improved version of
USD. The difference between the two interactions is small;
see Sec. IVB. In Figs. 4 and 5 the positive-parity excited
states of all four nuclei are shown compared to experiment
(in the sd shell only positive-parity states can be obtained).
The agreement with experiment is very good in all cases,
both for the ordering and the quantitative reproduction of
the excitation energies.

B. Spin expectation values

In the limit of low momentum transfer, p ¼ 0, the
structure factor for elastic SD WIMP scattering is given
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by the proton and neutron spins Sp ¼ P
Z
i¼1 �i=2 and

Sn ¼
P

N
i¼1 �i=2 in the nucleus [5]:

SAð0Þ ¼ 1

4�
jða0 þ a01ÞhJkSpkJi þ ða0 � a01ÞhJkSnkJij2

(30)

¼ð2Jþ1ÞðJþ1Þ
4�J

jða0þa01ÞhSpiþða0�a01ÞhSnij2; (31)

where a01 ¼ a1ð1þ �a1ð0ÞÞ includes the effects from
chiral 2b currents. The spin expectation values are defined
as hSn;pi ¼ hJM ¼ JjS3

n;pjJM ¼ Ji.
We list our calculated spin expectation values hSn;pi in

Table III in comparison to previous calculations. As ex-
pected for odd-mass nuclei with even number of protons
(129;131Xe, 73Ge, and 29Si) jhSnij 	 jhSpij, while for

odd-mass nuclei with an even number of neutrons
(19F, 23Na, 27Al, and 127I) jhSnij 
 jhSpij. As a result,

the WIMP coupling to the even species will be suppressed.

Moreover, the sensitivity to the precise value of the even
species spin is very weak when chiral 2b currents are
included. This is shown in Sec. IVC. Chiral 2b currents
lead to an interaction of neutrons and protons that over-
whelms the direct WIMP coupling to the suppressed spin
expectation value, so that the structure factors are almost
entirely determined by the dominant hSn=pi (for odd neu-

tron/proton isotopes).
The spin expectation values of the lighter nuclei, 19F,

23Na, 27Al, and 29Si in Table III are very close to those of
Refs. [13,17,18,20,21] due to the similarity of the USD
and USDB interactions. This indicates that the structure
for these nuclei is under good control. For 73Ge we find a
weak sensitivity of the dominant hSni value comparing
the preferred Int. 2 interaction (‘‘This work’’) to the Int.
1 interaction. This range is smaller than the one in
previous calculations of Refs. [13,17,19,22], suggesting
that the latter may have an even larger variation in
the spectra due to truncations or deficiencies in the
interactions used. Also for the heavier nuclei, 129;131Xe,
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FIG. 5 (color online). Comparison of calculated spectra of
27Al and 29Si with experiment.

TABLE III. Calculated spin expectation values for protons hSpi and neutrons hSni of 129;131Xe, 127I, 73Ge, 29Si, 27Al, 23Na, and 19F,
compared to the previous calculations of Refs. [13,17–23].

129Xe 131Xe 127I 73Ge 29Si 27Al 23Na 19F

hSni hSpi hSni hSpi hSni hSpi hSni hSpi hSni hSpi hSni hSpi hSni hSpi hSni hSpi
This work 0.329 0.010 �0:272 �0:009 0.031 0.342 0.439 0.031 0.156 0.016 0.038 0.326 0.024 0.224 �0:002 0.478

(Int. 1) 0.450 0.006

[20] (Bonn A) 0.359 0.028 �0:227 �0:009 0.075 0.309 0.020 0.248

[20] (Nijm. II) 0.300 0.013 �0:217 �0:012 0.064 0.354

[18] 0.030 0.343

[17] 0.468 0.011 0.13 �0:002
[19] 0.378 0.030

[23] 0.273 �0:002 �0:125 �7� 10�4 0.030 0.418

[22] 0.038 0.330 0.407 0.005 0.020 0.248

[21] 0.133 �0:002 0.020 0.248 �0:009 0.475

[13] 0.248 0.007 �0:199 �0:005 0.066 0.264 0.475 0.008 0.020 0.248 �0:009 0.475
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and 127I, we have performed calculations in the largest
spaces to date and with tested interactions. For 129;131Xe,
the comparison to previous results is discussed in detail
in Ref. [15]. For the dominant hSni values for 129;131Xe,
and the dominant hSpi value for 127I, the difference to

previous calculations of Refs. [13,20,22,23] is about 25%
(and 55% for 131Xe). We attribute these differences to the
sizable truncations of the valence spaces in those calcu-
lations and because the interactions used have not been
as well tested.

C. Structure factors

1. Isoscalar/isovector versus proton/neutron

The structure factor SAðpÞ can be decomposed in terms
of its isoscalar and isovector parts SijðpÞ, characterized by

the isoscalar and isovector couplings a0 and a1:

SAðpÞ ¼ a20S00ðpÞ þ a0a1S01ðpÞ þ a21S11ðpÞ: (32)

However, it is common in the literature to use the struc-
ture factors SpðpÞ and SnðpÞ, which are referred to as

‘‘proton-only’’ and ‘‘neutron-only,’’ respectively. They
are defined by the couplings a0 ¼ a1 ¼ 1 (‘‘proton-
only’’) and a0 ¼ �a1 ¼ 1 (‘‘neutron-only’’) and are thus
related to the isoscalar and isovector structure factors by

SpðpÞ ¼ S00ðpÞ þ S01ðpÞ þ S11ðpÞ; (33)

SnðpÞ ¼ S00ðpÞ � S01ðpÞ þ S11ðpÞ: (34)

The origin of the ‘‘proton/neutron-only’’ structure factors
can be understood from Eq. (31). When 2b currents are
neglected, at p ¼ 0 the ‘‘proton/neutron-only’’ structure
factors are determined entirely by the proton/neutron spin
expectation values. Moreover, when the higher-order iso-
vector parts in 1b currents are neglected, this separation
also holds for p > 0. Because for odd-mass nuclei there is
a clear hierarchy of the spin expectation values (with either
jhSnij 	 jhSpij or jhSpij 	 jhSnij), the proton/neutron

decomposition is useful to capture the dominant parts of
SAðpÞ. For this reason, and because it is common experi-
mentally, we will also largely consider the proton/neutron
decomposition here. This is merely a convenient choice of
a0, a1 couplings, but the notation ‘‘proton/neutron-only’’ is
misleading, because it does not imply that the coupling is
to protons/neutrons only. Strong interactions between nu-
cleons in 2b currents, as well as the isovector nature of
pseudoscalar and other Q2 1b currents, mean that WIMPs
effectively couple to protons and neutrons in nuclei. In fact,
with 2b currents, both SpðpÞ and SnðpÞ are determined by

the spin distribution of the odd species.
In the following, we present structure factors as a

function of u ¼ p2b2=2 with harmonic-oscillator length

b ¼ ðℏ=m!Þ1=2 and ℏ! ¼ ð45A�1=3 � 25A�2=3Þ MeV.
When 2b currents are included, we provide theoretical error

bands due to the uncertainties in WIMP currents in nuclei;
see Table II. This takes into account the uncertainties in
the low-energy couplings c3, c4 and in the density range
� ¼ 0:10 . . . 0:12 fm�3.
For 129Xe and 131Xe the predicted isoscalar/isovector

structure factors S00ðuÞ, S01ðuÞ, and S11ðuÞ were discus-
sed in detail in Ref. [15], and they were compared to the
previous calculations of Refs. [20,23] (see also Sec. IVB).
Here, we present in Fig. 6 the proton/neutron structure
factors SpðuÞ. At the 1b current level, the results at

p ¼ 0 are determined by the spin expectation values.
Chiral 2b currents provide important contributions to the
structure factors, especially for p & 100 MeV, where we
find in Fig. 6 a significant increase of SpðuÞ. This is because
with 2b currents, neutrons can contribute to the ‘‘proton-
only’’ (a0 ¼ a1 ¼ 1) coupling due to the axial �a1ðpÞ
contribution in Eq. (31). For SnðuÞ, 2b currents lead to a
small reduction in the structure factor, depending on the
momentum transfer. This is caused by the combined
effect of the axial �a1ðpÞ and the pseudoscalar �aP1 ðpÞ
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FIG. 6 (color online). Structure factors SpðuÞ (solid lines) and
SnðuÞ (dashed) for 129Xe (top panel) and 131Xe (bottom panel) as
a function of u ¼ p2b2=2. The harmonic-oscillator lengths are
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contributions. To better understand how these different
contributions enter, we study a multipole decomposition
of the structure factors.

2. Multipole decomposition

In Fig. 7 we show the transverse/longitudinal decom-
position of the results with 1b as well as 1b plus 2b

currents for the isovector structure factor S11ðuÞ of 131Xe
(the long-range 2b currents are isovector). The different
2b current contributions can be clearly seen in Fig. 7.
In the middle panel, where only the transverse electric
multipoles are taken into account, 2b currents reduce the
1b result due to the negative axial �a1ðpÞ values in
Table II. We observe that the relative reduction depends
on u and becomes more important at higher momentum
transfer. The bottom panel shows the longitudinal multi-
poles, where both axial �a1ðpÞ and pseudoscalar �aP1 ðpÞ
2b current contributions enter. At zero momentum trans-
fer we find a reduction of the structure factor, driven by
�a1ðpÞ, but at u� 0:7, p� 100 MeV, this turns into an
enhancement due to �aP1 ðpÞ. In the upper panel, the full

1b plus 2b band is given, where the final reduction or
enhancement over the 1b result, for a given u value,
depends on the relative impact of the transverse electric
and longitudinal multipoles.
It is interesting to study the transverse/longitudinal de-

composition at the 1b level, as shown in Fig. 8 for SnðuÞ
and SpðuÞ of 131Xe. While both multipoles contribute to

SnðuÞ (their relative importance depends on u), SpðuÞ is
completely dominated by the longitudinal multipoles

0 1 2 3 4 5 6 7 8 9 10
u

10
-5

10
-4

0.001

0.01

S 11
(u

)

S
11

(u) 1b currents
S

11
(u) 1b transv.

S
11

(u) 1b long. 
S

11
(u) 1b + 2b long.

1 2 3 4 5 6 7 8 9

10
-5

10
-4

0.001

0.01

S 11
(u

)

S
11

(u) 1b currents
S

11
(u) 1b transv.

S
11

(u) 1b long. 
S

11
(u) 1b + 2b transv.

1 2 3 4 5 6 7 8 9

10
-5

10
-4

0.001

0.01

S 11
(u

)
S

11
(u) 1b currents

S
11

(u) 1b transv.
S

11
(u) 1b long. 

S
11

(u) 1b + 2b currents

131
Xe

131
Xe

131
Xe

FIG. 7 (color online). Decomposition of the isovector structure
factor S11ðuÞ for 131Xe. At the 1b current level, the full result
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(dashed, blue) and from longitudinal (dot-dashed, green) multi-
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except at p ¼ 0. In 131Xe almost all of the spin is carried by
neutrons, so Spð0Þ is very small at the 1b level. However,

for p > 0 the (isovector) pseudoscalar currents allow neu-
trons to contribute to SpðuÞ, leading to a steep increase in

the longitudinal contribution to SpðuÞ. Because pseudosca-
lar currents only contribute to the longitudinal multipoles,
the transverse part from the protons also remains very
small for p > 0.

Another way to decompose the structure factors is in
terms of the different L values of the multipoles.
Because the ground state of 129Xe is 1=2þ, only L ¼ 1
contributes. For 131Xe, with a 3=2þ ground state, L ¼ 1
and L ¼ 3 multipoles enter (even-L multipoles are for-
bidden due to parity; see Sec. III B). The L decomposi-
tion of the 131Xe structure factor SnðuÞ is shown in
Fig. 9, for simplicity at the 1b current level. We observe
that the L ¼ 3 multipoles dominate for 1:5 & u & 5. As
a result, the structure factors fall off considerably more
slowly for 131Xe compared to 129Xe, where only L ¼ 1
contributes.

3. 73Ge

Figure 10 shows the structure factors for 73Ge for the
different Int. 1 and Int. 2 interactions (the latter is preferred
based on the spectra; see Fig. 3). The structure factor SnðuÞ
differs by less than 10% between the two interactions.
At the 1b current level, SpðuÞ for low momentum transfers

is substantially smaller for Int. 1, due to the very small hSpi
value. However, when 2b currents are included, also for
SpðuÞ the contributions from neutrons are dominant, which

translates to similar structure factors for the two interac-
tions. This is because of the similar hSni values (see
Table III) combined with the neutron-proton coupling
through 2b currents.

4. 127I, 19F, 23Na, 27Al, 29Si

In Figs. 11–13, we show the structure factors SnðuÞ and
SpðuÞ for 127I, 19F, 23Na, 27Al, and 29Si at the 1b current

level and including 2b currents. The dominant structure
factor is the one for the odd species. Therefore, for 29Si
SnðuÞ dominates, while for the other isotopes SpðuÞ is the
main component. All the features discussed for 131Xe in
Sec. IVC 2 translate to these isotopes as well: the structure
factors for the nondominant ‘‘proton/neutron-only’’ cou-
plings are strongly increased when 2b currents are in-
cluded. For the dominant structure factor, 2b currents
produce a reduction, by about 10%–30% at low momen-
tum transfers, which at large u can turn into a weak
enhancement due to the 2b current contribution to the
pseudoscalar currents. This is most clearly seen for 19F in
the top panel of Fig. 12, where we also show the isoscalar/
isovector structure factors S00ðuÞ, S01ðuÞ, and S11ðuÞ. Note
that the structure factor S01ðuÞ vanishes at the point where
SpðuÞ and SnðuÞ cross.
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SnðuÞ (dashed) for 73Ge calculated using the Int. 1 (GCN5028,
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at the 1b current level, and also including 2b currents. The
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V. CONCLUSIONS AND OUTLOOK

This work presents a comprehensive derivation of SD
WIMP scattering off nuclei based on chiral EFT, including
one-body currents to order Q2 and the long-range Q3 two-
body currents due to pion exchange, which are predicted in
chiral EFT. Two-body currents are the leading corrections
to the couplings of WIMPs to single nucleons, assumed in
all previous studies. Combined with detailed appendixes,
we have presented the general formalism necessary to
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FIG. 12 (color online). Structure factors for 19F as a function
of u ¼ p2b2=2 with b ¼ 1:7608 fm. Top panel: Isoscalar/iso-
vector S00ðuÞ (solid line), S01ðuÞ (dashed), and S11ðuÞ (dot-
dashed) decomposition. Bottom panel: Proton/neutron SpðuÞ
(solid line) and SnðuÞ (dashed) decomposition. In both panels
results are shown at the 1b current level, and also including 2b
currents. The estimated theoretical uncertainty is given by the
red [S11ðuÞ, SpðuÞ] and blue [S01ðuÞ, SnðuÞ] bands.
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FIG. 13 (color online). Structure factors SpðuÞ (solid lines) and
SnðuÞ (dashed) for 23Na (top panel), 27Al (middle panel), and
29Si (bottom panel) as a function of u ¼ p2b2=2, with harmonic-
oscillator lengths b ¼ 1:8032 fm (23Na), b ¼ 1:8405 fm (27Al),
and b ¼ 1:8575 fm (29Si). Results are shown at the 1b current
level, and also including 2b currents. The estimated theoretical
uncertainty is given by the red [SpðuÞ] and blue [SnðuÞ] bands.
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describe both elastic and inelastic WIMP-nucleus
scattering.

We have performed state-of-the-art large-scale shell-
model calculations for all nonzero-spin nuclei relevant to
direct dark matter detection, using the largest valence
spaces accessible with nuclear interactions that have
been tested in nuclear structure and decay studies. The
comparison of theoretical and experimental spectra dem-
onstrate a good description of these isotopes. We have
calculated the structure factors for elastic SD WIMP scat-
tering for all cases using chiral EFT currents, including
theoretical error bands due to the nuclear uncertainties of
WIMP currents in nuclei. Fits for the structure factors are
available upon request.

We have studied in detail the role of two-body currents,
the contributions of different multipole operators, and the
issue of proton/neutron versus isoscalar/isovector decom-
positions of the structure factors. The long-range two-body
currents reduce the isovector parts of the structure factor at
low momentum transfer, while they can lead to a weak
enhancement at higher momentum transfers. Moreover, we
have shown that for odd-neutron (odd-proton) nuclei, two-
body currents lead to a significant increase of the ‘‘proton-
only’’ (‘‘neutron-only’’) structure factors, because of
strong interactions between nucleons through two-body
currents that allow the odd species carrying most of the
spin to contribute. This implies that WIMPs effectively
couple to protons and neutrons in nuclei, so that the nota-
tion ‘‘proton/neutron-only’’ is misleading. In fact, with 2b
currents, both ‘‘proton/neutron-only’’ structure factors are
determined by the spin distribution of the odd species.

Future improvements of the nuclear physics of dark
matter detection includes developing shell-model interac-
tions based on chiral EFT, where the present frontiers are
semimagic nuclei up to the calcium region [56–61],
ab initio benchmarks for the lightest isotope 19F, and
expanding the valence spaces (especially for germanium).
In addition, a full treatment of the one- and two-body
currents would require us to renormalize them to the
valence space of the many-body calculation, which can
lead to additional contributions to the currents. This and
going beyond the normal-ordering approximation will be
pursued in future work. Moreover, we plan to investigate

other responses [13] based on the same large-scale nuclear-
structure calculations presented here.
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APPENDIX A: CALCULATION OF THE
EFFECTIVE ONE-BODY CURRENT Jeffi;2b

We calculate the normal-ordered 1b part of 2b currents
by summing the second nucleon over occupied states of a
spin and isospin symmetric reference state or core, which
we take as a Fermi gas:

Jeffi;2b ¼
X
j

ð1� PijÞJ3ij; (A1)

where the sum is over occupied states, J3ij is the 2b current

defined in Eq. (8), and Pij is the exchange operator. In this

approximation, the momenta k1 and k2 in the direct (d)
and exchange (ex) contributions are given by

kd
i ¼ p0

i � pi ¼ �p; (A2)

kex
i ¼ Pk

ijk
d
i ¼ pj � P� p

2
; (A3)

kd
j ¼ p0

j � pj ¼ 0; (A4)

kex
j ¼ Pk

ijk
d
j ¼ �pj � Pþ p

2
; (A5)

where we have used that the initial and final momenta of
the nucleon in the occupied state are identical, pj ¼ p0

j.

The nonvanishing contributions to Jeffi;2b can be grouped

into five terms, arising from Eq. (8): the direct (d) and
exchange (ex) terms of the c3 term, as well as from the
exchange c4, p1, and ĉ6 terms. They read

Jeff;di;2b ðc3 termÞ ¼ � gA
2F2

�

�3i
2

1

ð2�Þ3
Z kF

0

c3
m2

� þ p2
ðp � �iÞpd3pj ¼ � gA�

F2
�

�3i
2
2c3

ðp � �iÞp
m2

� þ p2
; (A6)

Jeff;exi;2b ðc3 termÞ ¼ � gA
F2
�

�3i
2

4

ð2�Þ3
1

2

�Z kF

0

c3
m2

� þ ðkex
i Þ2

ðkex
i � �iÞkex

i d
3pj þ

Z kF

0

c3
m2

� þ ðkex
j Þ2

ðkex
j � �iÞkex

j d
3pj

�

¼ �gA�

F2
�

�3i
2

1

6
c3½I�1 ð�; jP� pjÞ�i þ IPð�; jP� pjÞðð dP� pÞ � �iÞð dP� pÞ þ I�1 ð�; jPþ pjÞ�i

þ IPð�; jPþ pjÞðð dPþ pÞ � �iÞð dPþ pÞ�; (A7)
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Jeff;exi;2b ðc4 termÞ ¼ gA
F2
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¼ gA�

F2
�
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c4 þ 1

4m
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4m

�
4

ð2�Þ3
1

2

�Z kF

0

p� ð�i � kex
i þ ikex

i Þ
m2

� þ ðkex
i Þ2 d3pj þ

Z kF

0

p� ð�i � kex
j � ikex

j Þ
m2

� þ ðkex
j Þ2 d3pj

�

¼ gA�

mF2
�

�2
2

1þ ĉ6
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where the integrals I�1 ð�;QÞ, I�2 ð�;QÞ, IPð�;QÞ, IP1;2;4ð�;QÞ, and Ic6ð�;QÞ are given by the following expressions:
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APPENDIX B: DERIVATION OF THE STRUCTURE FACTOR SAðpÞ
We start from the Lagrangian density for spin-dependent WIMP-nucleus scattering Eq. (1). WIMPs are expected to be

nonrelativistic with velocities of the order v=c� 10�3, so the time components of the currents can be neglected.
Evaluating the Lagrangian density between initial and final states leads to

hfjLSD
� jii ¼ �GFffiffiffi

2
p

Z
d3re�ip�r ��f��5�iJ

A
fiðrÞ; (B1)

where e�ip�r ��f��
5�i ¼ h�fjjðrÞj�ii represents the matrix element of the leptonic current of the WIMP and JAfiðrÞ that of

the hadronic current.
We can expand the leptonic current in terms of spherical unit vectors [62]:

��f��
5�ie

�ip�r ¼ le�ip�r ¼ X

¼0;�1

l
e
y

e

�ip�r; (B2)

with spherical unit vectors with a z axis in the direction of p

e�1 � � 1ffiffiffi
2

p ðep1 � iep2Þ e0 � p

jpj ; (B3)

l�1 ¼ � 1ffiffiffi
2

p ðl1 � il2Þ l
¼0 � l3: (B4)

We can also expand the product ey
e
�ip�r in Eq. (B2) in a multipole expansion [62]. This leads to

hfjLSD
� jii¼�GFffiffiffi

2
p hJfMfj
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½T el5
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ðpÞþ
T mag5

L�
 ðpÞ�
�
jJiMii;

(B5)

where jJiMii, jJfMfi denote the initial and final states of the nucleus and p ¼ jpj. The electric longitudinal, electric
transverse, and magnetic transverse multipole operators are defined by [62]

L5
LMðpÞ ¼

i

p

Z
d3r½r½jLðprÞYLMð�rÞ�� � JAðrÞ; (B6)

T el5
LMðpÞ ¼

1

p

Z
d3r½r� jLðprÞYM

LL1ð�rÞ� � JAðrÞ; (B7)
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T mag5
LM ðpÞ ¼

Z
d3r½jLðprÞYM

LL1ð�rÞ� � JAðrÞ; (B8)

with spherical Bessel function jLðprÞ. The vector spherical harmonics are given by

YM
LL01ð�rÞ ¼

X
m


hL0m1
jL01LMiYL0mð�rÞe
: (B9)

Since JAðrÞ ¼ P
A
i¼1 J

A
i ðrÞ�ðr� riÞ, the multipole operators can be written as a sum of one-body operators:

L5
LMðpÞ ¼

i

p

XA
i¼1

½r½jLðpriÞYLMðriÞ�� � JAi ðriÞ

¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p XA
i¼1

½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

p
jLþ1ðpriÞYM

LðLþ1Þ1ðriÞ þ
ffiffiffiffi
L

p
jL�1ðpriÞYM

LðL�1Þ1ðriÞ� � JAi ðriÞ; (B10)

T el5
LMðpÞ ¼

1

p

XA
i¼1

½r� jLðpriÞYM
LL1ðriÞ� � JAi ðriÞ

¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p XA
i¼1

½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

p
jL�1ðpriÞYM

LðL�1Þ1ðriÞ �
ffiffiffiffi
L

p
jLþ1ðpriÞYM

LðLþ1Þ1ðriÞ� � JAi ðriÞ; (B11)

T mag5
LM ðpÞ ¼ XA

i¼1

jLðpriÞYM
LL1ðriÞ � JAi ðriÞ: (B12)

The structure factor SAðpÞ is obtained from jhfjLSD
� jiij2 by summing over the final neutralino spin and over the nucleus

final-state angular momentum projections, and by averaging over the initial configurations. It is thus useful to work with
reduced matrix elements that do not depend on projection numbers:

hJfMfjOLMjJiMii ¼ ð�1ÞJf�Mf
Jf L Ji

�Mf M Mi

 !
hJfkOLkJii; (B13)

with 3j coefficients and where O is a tensor operator of rank L. This gives for the sum and average [62]

1

2ð2Jiþ1Þ
X
sf;si

X
Mf;Mi

jhfjLSD
� jiij2¼G2

F

4

1

ð2Jiþ1Þ
X
sf;si

�X
L>0

4�l3l
�
3jhJfkL5

LkJiij2þ
X


¼�1

l
l
�



X
L>1

2�jhJfkT el5
L þ
T mag5

L kJiij2
�
;

¼G2
F

4

4�

ð2Jiþ1Þ
X
sf;si

�X
L>0

l3l
�
3jhJfkL5

LkJiij2þ
X
L>1

�
1

2
ðl � l�� l3l

�
3ÞðjhJfkT el5

L kJiij2

þjhJfkT mag5
L kJiij2Þ� i

2
ðl� l�Þ3ð2RehJfkT el5

L kJiihJfkT mag5
L kJ�i iÞ

��
; (B14)

where we have assumed that the neutralino spin is 1=2, and the cross terms vanish due to the orthogonalization properties
of the 3j coefficients. For the sum over neutralino spin projections one has for �, � ¼ 1, 2, 3

�X
si;sf

l�l
�
� ¼ X

si;sf

��sf ðpfÞ���5�siðpiÞ ��siðpiÞ�5���sf ðpfÞ;

¼ X
si;sf

ð�sf
� ðpfÞ ��sf

� ðpfÞð���5Þ��si
ðpiÞ ��si

� ðpiÞð�5��Þ��Þ;

¼ Trð���5�5��Þ ¼ �4���; (B15)

which follows from the completeness relationX
s

�s
�ðpÞ ��s

ðpÞ ¼
�
p��

� þm

2Ep

�
�

� ��; (B16)

valid for nonrelativistic WIMPs. Combined, this gives the final result:
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1

2ð2Jiþ1Þ
X
sf;si

X
Mf;Mi

jhfjLSD
� jiij2 ¼G2

F

2

8�

ð2Jiþ1Þ
�X
L>0

jhJfkL5
LkJiij2þ

X
L>1

ðjhJfkT el5
L kJiij2þjhJfkT mag5

L kJiij2Þ
�
: (B17)

The specific formof themultipoles depends on the formof theWIMPcurrentsJAi ðrÞ. They contain either axial-vector terms
[�i] or pseudoscalar ones [ðp � �iÞp]. For axial-vector currents, the response will be proportional to the following operator:

MM
L;L0 ðpriÞ ¼ jL0 ðpriÞYM

LL1ðriÞ � �i;

¼ jL0 ðpriÞ
X
m


hL0m1
jL01LMiYL0mðriÞ�1

i ;¼ jL0 ðpriÞ½YL0 ðriÞ�i�L: (B18)

Pseudoscalar currents, which are proportional to the momentum transfer p, only contribute to the longitudinal multipoles
[see Eq. (B5)]. Moreover, in these we can replace ðp � �iÞp by p2�i, because of

ðp � �iÞp ¼ p2�i þ p� ðp� �iÞ; (B19)

and the second term is perpendicular to p, so it vanishes for the longitudinal multipoles. As a result, pseudoscalar currents
can also be expressed in terms of MM

L;L0 ðpriÞ.
In summary, including chiral 2b currents at the normal-ordered one-body level in Eq. (19), we have for the multipoles

L5
LðpÞ ¼

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p XA
i¼1

1

2

�
a0 þ a1�

3
i

�
1þ �a1ðpÞ �

2g�pnF�p
2

2mgAðp2 þm2
�Þ

þ �aP1 ðpÞ
��

� ½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

p
ML;Lþ1ðpriÞ þ

ffiffiffiffi
L

p
ML;L�1ðpriÞ�; (B20)

T el5
L ðpÞ ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Lþ 1
p XA

i¼1

1

2

�
a0 þ a1�

3
i

�
1� 2

p2

�2
A

þ �a1ðpÞ
��

½� ffiffiffiffi
L

p
ML;Lþ1ðpriÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

p
ML;L�1ðpriÞ�; (B21)

T mag5
L ðpÞ ¼ XA

i¼1

1

2

�
a0 þ a1�

3
i

�
1� 2

p2

�2
A

þ �a1ðpÞ
��

ML;LðpriÞ: (B22)

Note that the p2=�2
A terms cancel in the longitudinal response and only contribute to the transverse multipoles.

APPENDIX C: REDUCED MATRIX ELEMENTS OF ML;L0 ðpriÞ
To calculate the structure factor, we need the matrix elements of the one-body operator ML;L0 ðpriÞ ¼ jL0 ðpriÞ�

½YL0 ðr̂iÞ�i�L between the single-particle states of the many-body basis used for the description of the nuclear states.
The reduced matrix elements can be obtained as a function of 3j and 9j symbols and matrix elements of the spherical
Bessel functions jL0 ,

�
n0l0

1

2
j0
�����ML;L0 ðpriÞ

�����nl 12 j
�
¼ X

n00l00
hn0l0kjL0YL0kn00l00i

�
n00l00

1

2

������i

�����nl 12
�
½ð2jþ 1Þð2j0 þ 1Þð2Lþ 1Þ�12

8>><>>:
l0 l L0
1
2

1
2 1

j0 j L

9>>=>>;
¼ hn0l0jjL0 jnlihn0l0kYL0 knli

�
1

2

������i

�����12
�
½ð2jþ 1Þð2j0 þ 1Þð2Lþ 1Þ�12

8>><>>:
l0 l L0
1
2

1
2 1

j0 j L

9>>=>>;
¼ hn0l0jjL0 ðpriÞjnlið�1Þl0

ffiffiffiffiffiffiffi
6

4�

s
½ð2l0 þ 1Þð2lþ 1Þð2j0 þ 1Þð2jþ 1Þ�12½ð2L0 þ 1Þð2Lþ 1Þ�12

� l0 L0 l

0 0 0

 !8>><>>:
l0 l L0
1
2

1
2 1

j0 j L

9>>=>>;: (C1)
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