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The inclusion of Dirac fermions in Einstein-Cartan gravity leads to a four-fermion interaction mediated

by nonpropagating torsion, which can allow for the formation of a Bardeen-Cooper-Schrieffer condensate.

By considering a simplified model in 2þ 1 spacetime dimensions, we show that even without an excess of

fermions over antifermions, the nonthermal distribution arising from preheating after inflation can give

rise to a fermion condensate generated by torsion. We derive the effective Lagrangian for the spacetime-

dependent pair field describing the condensate in the extreme cases of nonrelativistic and massless

fermions, and show that it satisfies the Gross-Pitaevski equation for a gapless, propagating mode.
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I. INTRODUCTION

Unlike scalar and vector fields, fermions do not sit nicely
in the standard metric formalism of general relativity.
Since spinors live in SU(2) one can instead introduce
vierbeins1 eI�, which provide a connection between space-

time indices (Greek) and the internal Lorentz indices
(Latin). These are related to the metric by g�� ¼
�IJe

I
�e

J
�. The components of any tensor object can be

expressed in an orthogonal basis or a coordinate basis. In
the former case, the covariant derivative r� is defined in

terms of the spin connection !�
I
J so that

r�X
I
J ¼ @�X

I
J þ!�

I
KX

K
J �!�

K
JX

I
K:

The metric compatibility condition (rg ¼ 0) implies
!�IJ ¼ �!�JI. For consistency in the case of a mixed

basis (i.e. a combination of indices I and �) we require the
tetrad postulate

r�e
I
� ¼ @�e

I
� � ��

��e
I
� þ!�

I
Je

J
� ¼ 0;

to be satisfied, irrespective of the properties of the coor-
dinate basis connection ��

��. In particular, we can consider

the situation in which the torsion tensor, defined by
T��

� ¼ ��
�� � ��

��, is nonzero.

Without fermions, it is the variation of the action with
respect to the connection that gives the torsionless condi-
tion. The covariant derivative of fermions necessarily in-
volves the spin connection, and thus when fermions are
included there is an extra term, which, upon repeating the
procedure, gives rise to an extra four-fermion interaction;
an observation first noted by Kibble in 1960 [3]. This can
be found by considering both the standard Einstein-Hilbert
action (written in terms of vierbeins) as well as the Holst
term, involving the dual of the Riemann tensor (cf. [4,5],

and references therein). The strength of this interaction
depends on the coupling constant of this term, the
Barbero-Immirzi parameter �, which (if real) is uncon-
strained.2 However, the particular combination that is rele-
vant for the action is G�2=ð1þ �2Þ, so in any case it is
extremely weak. For simplicity, in this work, the gravita-
tional sector is described by the Einstein-Hilbert action.
Given an extra interaction between fermions, one can

investigate the consequences. There are two approaches in
the literature: either to consider the modifications to the
fermionic fluid due to the self-interaction [4,6–8] or form a
condensate [9,10]. The latter approach is of interest, espe-
cially in the case of neutrinos, as there is the possibility of
finding a connection between the neutrino mass scale and
dark energy,3 thereby at least easing the cosmological
constant problem. (See [12–14] for related work utilizing
other interactions.) With this aim, Alexander and collabo-
rators [15–18] have investigated the formation of a
Bardeen-Cooper-Schrieffer (BCS) condensate. They con-
sider the pairing of neutrinos in order to derive the gap
equation that is related to the change in the vacuum energy
of the system.
However, the analogy with condensed matter means that

the neutrino BCS condensate model requires the same
basic conditions for the formation of a condensate as in
low-temperature superconductors: degenerate fermions,
i.e. it is assumed that there is a substantial chemical po-
tential. In low-temperature superconductors, a Fermi sur-
face at � ¼ � can form in momentum space, below which
the occupation number is approximately 1 and above

*joel.weller@kit.edu
1We follow the sign convection used in [1], corresponding to

��� in the classification of Misner et al. [2] and use upper-
case latin indices for components of tensors in a local orthonor-
mal frame.

2In four-dimensions, the fermion interaction induced in this
way is A-A (A is the axial current) It is also possible for the
interaction to have V-A (vector-axial current) and V-V interac-
tions, in the case of a nonminimal coupling of the fermions to
gravity. The interaction strength is then also dependent on the
nonminimal coupling constant.

3Current interest in neutrino condensates notwithstanding,
study of the interaction between neutrinos and the gravitational
field goes back at least to work by Brill and Wheeler in
1957 [11].
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which it is 0. Cooper pairs form in a small region (of
momentum space) in the vicinity of the Fermi surface
where a phonon mediated interaction becomes positive.
The presence of an attractive force, no matter how small,
leads to the formation of pairs. In Alexander et al., the
authors integrate out the fermions and write an effective
potential for the pair field �, however, unlike the standard
BCS case (where the interaction is attractive only in a finite
region) this involves a divergent integral over momentum
space. Regularizing the potential introduces a new scale
that, although unconstrained, determines the energy den-
sity of the condensate. The motivation for treating the
regularization scale as physical is that the interaction is
nonrenormalizable (although this is not obvious from the
original form of the action) but this results in a loss of
predictive power.4

A serious obstacle is that the conditions for the forma-
tion of a BCS condensate via Cooper pairing do not appear
to be satisfied in the early universe. The density is certainly
high, so a gravitational strength interaction is more rele-
vant that at the present time, however, the temperature is
also extremely high, so� � T would require an enormous
excess of fermions. The chemical potentials of different
species are tightly constrained: for charged species�=T �
np=n� � 10�10 and for neutrinos j��=Tj< 0:07 [19].

While the universe expands adiabatically, the ratio �=T
is unchanged, so although the chemical potential is larger
in the early universe, it is not significant.

In search of a large chemical potential in the early
universe, one could consider an out-of-equilibrium situ-
ation in a yet earlier epoch. Models of inflation of all types
face the problem of recovering the initial conditions of the
hot big bang model after the period of quasiexponential
expansion ceases. In scalar field models this can be real-
ized with a period of reheating, in which the scalar field
(inflaton) decays perturbatively into lighter fields while
undergoing oscillations about its potential. It was realised
by Kofman and collaborators that in addition, the field can
decay by parametric resonance, in which the number den-
sity of created particles is amplified by an exponential
factor in particular resonance bands [20]. The decay prod-
ucts (which are necessary relativistic due to their lightness
compared to the inflaton field) then subsequently thermal-
ize. At first it was thought that this process was only
possible for bosons, as Pauli blocking places a bound on
the occupation number of fermions. However, it was found

[21] not only that fermionic preheating is possible, but that
it can be extremely efficient. In the case of an expanding
universe, the created fermions can be thought of as

stochastically filling a Fermi sphere defined by kF ¼
q1=4m�, where m� is the inflaton mass. The parameter q

is defined by q ¼ h2�2
0=m

2
�, where �0 is the amplitude of

the inflaton oscillations and h the (Yukawa type) coupling
between the inflaton and the fermions.
Models of far-from-equilibrium phenomena indicate

that the particles undergo prethermalization on time scales
dramatically shorter than the thermal equilibration time,
giving rise to a constant ‘‘kinetic temperature’’ Tkin ¼
ðEkinðtÞ=Ekin;eqÞTeq, even though the system is not yet in

thermal or chemical equilibrium [22]. One can think of this
as arising due to the loss of phase information resulting
from the smoothing of the rapidly oscillating fermion
distribution function generated by the inflaton. In contrast,
the ‘‘mode temperatures,’’ defined by equating the mode
numbers to a Fermi-Dirac distribution, are not constant for
all modes until thermalization occurs, so the distribution
can differ significantly from a thermal one. More detailed
studies of fermions produced during preheating [23] indeed
show that the distribution is approximately thermal for IR
modes, with a temperature determined by the total energy
density of fermions. However, for modes larger than the
scale set by the amplitude of the background oscillations
�0, the occupation falls off with a shape reminiscent of a
Fermi-Dirac distribution with a chemical potential. Over
time, the decay products of the inflaton will thermalize
completely and, except for changes due to, for example,
baryogenesis, the final distribution will be determined al-
most exclusively by the temperature. Since the torsion-
generated four-fermion interaction is not confined to a
small region in phase space, as in the BCS case, it is
interesting to consider the possibility that any Cooper pairs
formed during such a nonthermal period could persist after
thermalization.
In this paper we address the problem by considering a

simplified model in 2þ 1 spacetime dimensions. Three
dimensional gravity has been a focus of study for many
decades due to its interesting and surprising properties
(cf. [24,25] for discussions and further references). Static
and stationary solutions of Einstein-Cartan gravity in
2þ 1 dimensions have been investigated in [26,27]. In
our case, the reduced dimensionality makes it possible to
obtain analytical expressions for the coefficients entering
the effective action for the pair field. We implement the
effect of the nonthermal distribution by splitting the mo-
mentum integrals at the Fermi surface corresponding to

kF ¼ q1=4m� and assigning high and low temperatures to

the low and high momentum modes respectively. This
produces an effect similar (but opposite) to y-distortion
in the cosmic microwave background (CMB), which oc-
curs when Compton scattering becomes less efficient,
leading to a decrease in temperature for low energy

4Another problem is the violation of Lorentz invariance, which
is inherent in the use of a homogeneous chemical potential. So
we must position ourselves in the cosmic frame, which is rather
unsatisfactory. A related problem is that the condensate itself
defines a preferred frame. It has been suggested by Alexander
et al. that neutrino oscillations could result from a MSW-like
effect due to their interaction with the condensate. However, this
would require the torsion (i.e. a gravitational degree of freedom)
to have flavor dependence.
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photons and a corresponding increase for high energy
photons.

We begin in Sec. II with the simpler problem of deriving
the effective Lagrangian for the spacetime dependent pair
field in the extreme case of nonrelativistic fermions using
this prescription (described in detail in Sec. II B). In
Sec. III we derive the gravitational four-fermion interac-
tion explicitly in 2þ 1 dimensions and comment on the
possible interaction channels. Using this result, in Sec. IV
we derive the effective Lagrangian for the opposite ex-
treme—massless fermions—and close in Sec. V with a
discussion of the implication of the results.

II. NONRELATIVISTIC FERMIONS

A. Preliminaries

As a stepping stone to understanding the effect of a
nonthermal distribution of fermions on the formation of a
BCS condensate, we consider a nonrelativistic toy model
in 2þ 1 dimensions in which the temperature entering the
momentum integrals differs for large- and small-scale
modes. Following the review paper by Schakel [28] we
use the nonrelativistic Lagrangian

L ¼ c �
" ½i@0 � �ð�irÞ�c " þ c �

# ½i@0 � �ð�irÞ�c #
þ �0c

�
" c

�
# c #c "; (2.1)

where �ð�irÞ ¼ �ð�irÞ ��0 with �ð�irÞ ¼ �r2=2m
and �0 is a positive coupling constant characterizing the
attractive four-fermion interaction. The metric signature is
(þ;�;�). Introducing the auxiliary field

� ¼ �0c #c "; (2.2)

and integrating out the fermions one gets

Z ¼
Z

D��D�exp

�
iSeff � i

�0

Z
x
j�j2

�
; (2.3)

where the effective action is given by the formal expression

Seff ¼�i tr
Z
x

Z
k
eik�x log

p0��ðpÞ �

�� p0þ�ð ~pÞ

 !
e�ik�x;

(2.4)

and the integrals are abbreviated as
R
x ¼

R
t;x ¼ R

dtd2x

and
R
k ¼

R
k0;k

¼ R
d3k
ð2	Þ3 . When the pair field is spacetime

dependent we need to perform a derivative expansion on
the logarithm. Shifting the momentum operators to the
right using

fðxÞp�gðxÞ ¼ ðp� � i@�ÞfðxÞgðxÞ; (2.5)

where the derivative @� ¼ ð@0;�rÞ acts only on the next

object to its right, we obtain the following quadratic and
quartic terms

Sð2Þeff ¼ i
Z
x

Z
k

1

k0 þ �ðkÞ
1

~k0 � �ð~kÞ�
��; (2.6)

Sð4Þeff ¼
i

2

Z
x

Z
k

1

½k20 � �2ðkÞ�2 j�j
4; (2.7)

where ~k� ¼ ðk0 � i@0;kþ irÞ. The temperature is

included by going to imaginary time t ! �i
 and
substituting Z dk0

2	
gðk0Þ ! i��1

X
n

gði!nÞ;

where n is an integer, !n ¼ 	��1ð2nþ 1Þ is the (fermi-
onic) Matsubara frequency and � ¼ 1=T. This gives the
finite temperature (Euclidean) action

SEeff ¼
Z �

0
d


Z
x

Z
k
��1

X
n

�
1

i!n þ �ðkÞ

� 1

i!n þ @
 � �ðkþ irÞ�
��

þ 1

2

1

½!2
n � �2ðkÞ�2 j�j

4

�
; (2.8)

where the Euclidean action is related to the Minkowski
action by

S ¼ �i
Z �

0
d


Z
x
Lð�i
;xÞ ¼ SE:

B. Deriving the effective Lagrangian

Using the expressions for the sums over the Matsubara
frequencies given in the appendix, we can expand the
integrand to get a time-independent Lagrangian of the form

Leff ¼ ��ðcr2 þ aÞ�� 1

2
bj�j4: (2.9)

The distribution (see Fig. 1) is such that low momentum
modes approximately follow a thermal distribution with a
large temperature related to the total energy, while high
momentum states are not yet filled. To take account of the
distortion from a true thermal distribution, we split the
momentum integral into two parts and replace all instances
of � by �=� for k satisfying � ¼ k2=2m��< 0 and ��
for k satisfying � ¼ k2=2m��> 0 i.e.

�ðkÞ ¼
�
�=� � < 0

�� � > 0
(2.10)

The effect is similar (but opposite and more extreme) to
y-distortion in the cosmic microwave background, which
occurs when Compton scattering becomes less efficient,
leading to a decrease in temperature for low energy pho-
tons and a corresponding increase for high energy photons
(cf. [29]). To model the sharp decrease in occupation
number at � ¼ 0, we consider � � 1. In particular, we
assume

c1 � ��

2�
	 1; c2 � ���

2
* 1; (2.11)
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which are used frequently in the following sections. Thus,
the effect of replacing the temperature for high momentum
modes by a smaller value is that the effect of the chemical
potential is no longer negligible. It should be stressed that
the chemical potential term considered here is unrelated to
any excess of fermions, but is merely a parameter used
to describe the fermion distribution, and corresponds

roughly to a value �� kF ¼ q1=4m� below which the

bulk of the fermion modes were created during preheating.
Thermalization in this situation would correspond to the
limit � ! 1.

Both � and � have physical interpretations relating to
the underlying physics. In this simplistic scenario, the end
product of the nonperturbative parametric resonance decay
of the inflaton is represented by a two-parameter toy
model. �, which acts as the chemical potential, is related
to the inflaton mass because it is this mass scale that
determines the limit in momentum space below which
most of the fermions are created by parametric resonance.
� is not related directly to the parameters in the inflaton
Lagrangian, but instead depends on the physics of the
decay process in a nontrivial way. It is a measure of
the extent to which parametric resonance prefers low-
momentum fermions, and cannot be too large (or too
small) without failing to accurately represent the phenome-
nology of the full calculation.

So if � is not undetermined, what value should it take?
Because � ¼ 1 corresponds to a thermal distribution, any
deviation requires that �> 1; because the distortion has
been shown to be large in detailed lattice calculations, �
must also be large to reflect this. In this toy model � need
only be large enough to ensure that the conditions (2.11)
are satisfied, so as to cause significant distortion of the
(eventual) thermal distribution.

The key dimensionless parameter is actually c2, not �,
as it is the degree to which c2 exceeds unity that parameter-
izes the importance of the chemical potential � and

controls the resulting distribution for high-momentum
modes. For the chemical potential to be significant for
high-momentum modes, c2 * 1 is necessary. However,
this parameter too is constrained by the requirement to
capture the post-preheating physics; extremely large values
(c2 � 1) would lead to an unnaturally sharp cutoff in the
distribution function and should not be considered.
An alternative way to parameterize the distortion of the

number density for high-momentum fermions would be to
employ a momentum-dependent chemical potential �ðpÞ.
The form of �ðpÞ should satisfy the following properties:
(i) As thermalization occurs, �ðpÞ ! 0.
(ii) �ðpÞ< 0 in order to enhance the exponential part of

the Fermi-Dirac distribution.
(iii) j�ðpÞj is an increasing function of p, so that the

suppression of the number density is enhanced for
large momentum modes.

(iv) To avoid deviations from the thermal distribution
for low-momentum fermions, p should not become
positive for small p.

The effect of such a function would be closer to that of
�-distortion in the CMB. An example of a function that
satisfies these criteria and gives rise to the power law decay
fðpÞ � p�4 for high-momentum modes characteristic for
strong turbulence (as reported in [23]) is

�ðpÞ ¼
(
0; p < p0

�½�4��1 log ðe1
4�Eðp0Þp=p0Þ þ EðpÞ�; p > p0

(2.12)

where p0 is the point at which the suppression takes effect
and thermalization occurs in the limit � ! 0. For the
remainder of this work, however, we shall use the tem-
perature distortion prescription (2.10), for which the coef-
ficients in the effective Lagrangian can be calculated
analytically.
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FIG. 1 (color online). Left: number distribution of massless fermions produced after preheating (from Berges, Gelfand and Pruschke
(2011) [23] with kind permission). The different curves indicate the result of the inclusion of leading order (LO) and next-to-leading
order (NLO) effects in the calculation. Right: Distribution functions fðpÞ ¼ ½exp ð�ðEðpÞ ��ÞÞ þ 1��1 (red, dashed) and fðpÞ ¼
½exp ð��ðEðpÞ ��ÞÞ þ 1��1 (blue, solid) with � ¼ 40, � ¼ 0:1, � ¼ 1 and m ¼ 0:01.
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C. The quadratic term a

We expand the ��� term in (2.8) in gradients using

1

i!n � �ðkþ irÞ ¼ 1

i!n � �ðkÞ þ
1

½i!n � �ðkÞ�2
ik � r
m

þ
�

1

½i!n � �ðkÞ�2
��r2

2m

�

� 1

½i!n � �ðkÞ�3
�
k � r
m

�
2
�
þ � � �
(2.13)

The term proportional to ðk � rÞ��� will not contribute
as we integrate over all k. For the quadratic term we have

a ¼ 1

4	

Z ffiffiffiffiffiffiffiffi
2m�

p

0

dkk

�
tanh ð��=2Þ

þ 1

4	

Z 1ffiffiffiffiffiffiffiffi
2m�

p dkk

�
tanh ð��=2Þ � 1

�0

; (2.14)

where we have split the integral at the point � ¼ k2=2m�
� ¼ 0. Following the standard BCS treatment, we swap
the coupling constant for the binding energy of a fermion
pair �a. The two quantities are related by

1

�0

¼ 1

2
�ð0Þ ln

�
2��
�a

�
; (2.15)

where �� ¼ �2=2m (� is a momentum cutoff) and �ð0Þ ¼
m=2	 is the 2d density of states per spin degree of free-
dom. Next, we apply the temperature prescription (2.10)
and use the substitution

x ¼
�
��=ð2�Þ � < 0

���=2 � > 0
(2.16)

where x is unrelated to the spacetime coordinates. This
gives

a ¼ 1

2
�ð0Þ

�Z 0

�c1

X

x
dxþ

Z ����=2

0

X

x
dxþ ln

�
�a
2��

��
;

where we define X ¼ tanh ðxÞ and c1 and c2 are defined in
(2.11). Since c1 	 1 we can neglect the contribution from
the first integral. Making use of (A5) with �� ! 1 the
second integral can be rewritten

Z ����=2

0

X

x
dx ! ln

�
2����e

�

	

�
;

so

a ’ 1

2
�ð0Þ ln

�
T0

T

�
; (2.17)

with

T0 � ��ae
�

	
: (2.18)

This takes the same form as the standard BCS formula but
with a different transition temperature (the standard case
has T0 ¼ e�

ffiffiffiffiffiffiffiffiffiffiffiffi
2��a

p
=	).

D. The quartic term b

Using (A2), the quartic term is found to be

b ¼ � 1

4

Z d2k

ð2	Þ2
1

�

d

d�

�
tanh ð��=2Þ

�

�
: (2.19)

Splitting the integral into two parts and using (2.10) and
(2.16) gives

b ¼ ��ð0Þ�2

16

�
1

�2

Z 0

�c1

dx

x

d

dx

�
X

x

�
þ �2

Z 1

0

dx

x

d

dx

�
X

x

��
:

Neglecting the first integral as before and using (A9) we
find

b ’ 7�ð0Þ�2�2

16	2
ð3Þ: (2.20)

E. The gradient term

From (2.13) we see that the gradient term has two
contributions. Performing the sum using (A3), the first
can be rewritten

� 1

8m

Z d2k

ð2	Þ2
d

d�

�
tanh ð��=2Þ

�

�

¼ ��ð0Þ��
16m

�
1

�2

Z 1

�c1

dx
d

dx

�
X

x

�
þ
Z 1

0
dx

d

dx

�
X

x

��
:

Similarly, using (A4), the second integral is

� 1

32	m2

Z 1

���=2
dkk3

�
tanh ð��=2Þ

�3

þ �

2

d

d�

�
cosh ð��=2Þ

�

��

¼ ��ð0Þ��
16m

�
1

�2

Z 1

�c1

dxðxþ c1Þ
�
X

x3
þ d

dx

�
Y

x

��

þ
Z 1

0
dxðxþ c2Þ

�
X

x3
þ d

dx

�
Y

x

���
;

where Y � sech2ðxÞ. Since X=x3 þ ðY=xÞ0 is smooth at
x ¼ 0 we can let c1 ! 0 in the integrand and denominator.
Combining the two parts gives the gradient term as

c ’ ��ð0Þ��
16m

�Z 1

0
dx

�
X

x2
� Y

x

�
þ
�
X

x
þ Y

�1
0

�
;

¼ �ð0Þ��
16m

: (2.21)
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F. Time-dependence

To take account the time-dependence, we must return to

the quadratic term (2.6), using ~k0 ¼ i!n þ @
 ¼
i!n � i!‘. The dynamical part of the action is then found
by expanding

Qði!‘Þ ¼ Sð2Þeffð ~k ¼ 0; k0 ¼ i!n; ~k0 ¼ i!n � i!‘Þ
� Sð2Þeffð ~k ¼ 0; k0 ¼ i!n; ~k0 ¼ i!nÞ;

after analytic continuation to the real axis with the pre-
scription i!‘ ¼ q0 þ i� [30]. The dynamical part of the
effective Lagrangian is then given by [28]

Ldyn ¼ ½Q0ði@0Þ � i	Q00ði@0Þ����; (2.22)

with

Q0ðq0Þ ¼ �
Z
k

q0 tanh ð��=2Þ
2�ð2�þ q0Þ ;

Q00ðq0Þ ¼ �
Z
k
�ð2�þ q0Þ tanh

�
1

2
��

�
;

(2.23)

where �R stands for the principal part (the Q0 integral has a
single pole at � ¼ q0=2). Expanding the integrand about
q0 ¼ 0 gives

where in the second line

� � 1þ 2
Z 1

0
XY ln ðxÞdx 
 0:7905; (2.25)

is a constant and the principal value integrals have been
evaluated using (A13). In the third line, we have neglected
the subdominant term ��2 ln ðc1Þ ¼ ��2 ln ðc2��2Þ 	 1
as � is large. The expansion to second order in q0 is
performed in Appendix D.

The delta function in (2.23) picks out � ¼ � 1
2q0, which,

as q0 	 �, is extremely close to � ¼ 0 where the tem-
perature jumps according to the prescription (2.10). To
avoid unphysical features arising from the treatment of
the jump as a step-function we take �ðkÞ ¼ � here, which
gives

Q00ðq0Þ ¼ 1

2
�ð0Þ tanh

�
�q0
4

�
’ 1

8
�ð0Þ�q0: (2.26)

After integrating by parts, the dynamical part of the
Lagrangian is then

L dyn ’ ��ð0Þ
8

��ð��i� 	Þ@0�: (2.27)

G. The effective Lagrangian

Putting these parts together gives the effective
Lagrangian

L eff ¼ 1

2
�ð0Þ

�
��
�
ln

�
T0

T

�
þ �

4
ð��i� 	Þ@0

þ ��

8m
r2

�
�� 7�2�2

16	2
ð3Þj�j4

�
: (2.28)

Considering only the potential terms, one can see from the
expression for the transition temperature (2.18), that if � is
large enough, T < T0. The quadratic term in the effective
potential will then be negative while the quartic term is
positive; there is then a minimum at

j�min j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16	2

7�2�2ð3Þ ln
�
���ae

�

	

�s
; (2.29)

and the value of the potential at the minimum is negative

Vðj�min jÞ ¼ � 2�ð0Þ	2ln 2ð���ae�	 Þ
7�2�2ð3Þ : (2.30)

Analysis of the time-independent part thus suggests
that the effect of the nonthermal distribution function—
implemented quantitatively with � � 1—is to give rise to
a shift in the ground state of the system.
However, the form of the time-derivative terms is un-

usual. The interpretation of the real part of the��@0� term
is that high energy fermion pairs can break up as in the
standard BCS model with weak coupling; the imaginary
part indicates that � has a propagating part. Time-
derivative terms with complex coefficients can also occur
in the weak coupling limit of the BCS-BEC crossover, as a
result of a starting Lagrangian that is not particle-hole
symmetric [30]. An important difference here is that the
real part is subdominant. To better understand the effect of
the time-derivative terms, it is necessary to repeat the
analysis with a relativistic Lagrangian: this will be the
subject of the following sections.

III. RELATIVISTIC FERMIONS

In this section, we apply the methods of the previous
section to a 2þ 1 dimensional model with relativistic
fermions described by the Dirac Lagrangian. Following
some preliminary comments on the treatment of fermions
in 2þ 1 dimensions, we explicitly derive the gravitational
four-fermion interaction and use the result to calculate the
effective Lagrangian for the pair field.
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A. Fermions in 2þ 1 dimensions

To treat the case where the fermions are relativistic, our
starting point must be the Dirac Lagrangian. However, in
2þ 1 dimensions this comes hand-in-hand with several
nonintuitive features arising from the fact that in odd
spacetime dimensions there are two inequivalent represen-
tations of the gamma matrices, which can be written in
terms of the Pauli matrices as: �0 ¼ �3, �

1 ¼ i�1, �
2 ¼

�i�2. (Note that the Dirac spinors have only two compo-
nents.) Following [31], we refer to the þi�2 case as the A
representation and �i�2 case as the B representation.

The solutions5 of the Dirac equation in the A and B
representations are not independent, but are related by a

parity transform P : ðc AÞP ¼ �i�1c Be
i�P and ðc BÞP ¼

�i�1c Ae
�i�P , where�P is a phase, which converts a spin-

up particle (antiparticle) to a spin-down particle (antipar-
ticle) and vice versa [32].

Thus in order to describe fermions with both spins, we
need the (parity invariant) Lagrangian

L ¼ �c Aði6@A �mÞc A þ �c Bði6@A þmÞc B; (3.1)

where the slashed notation 6@A in this equation indicates
contraction with the 2� 2 gamma matrices in the A
representation. This can be written in the form L ¼
�c ði6@�mÞc using the four-component representation

�0 ¼ �3 0

0 ��3

 !
; �1 ¼ i�1 0

0 �i�1

 !
;

�2 ¼ i�2 0

0 �i�2

 !
;

(3.2)

and c ¼ ðc A c BÞT . Since there are only three gamma
matrices, we have sufficient freedom to define the follow-
ing matrices

�3 ¼ 0 I

I 0

 !
; �5 ¼ i

0 I

�I 0

 !
; (3.3)

which anticommute with ��. From these we can define the
Hermitian matrix

�35 � i�3�5 ¼ 1 0

0 �1

 !
; (3.4)

which commutes with �� and anticommutes with �3, �5.
In order to derive the equivalent Lagrangian to that used

in the nonrelativistic case, we shall rewrite the Lagrangian

in the Nambu-Gorkov basis (cf. [33]) with a nonzero
chemical potential � i.e.

L ¼ 1

2
��NG

i6@�mþ �0� 0

0 i6@�m� �0�

 !
�NG:

(3.5)

The Nambu-Gorkov spinor is

�NG ¼ c

c c

 !
; ��NG ¼ �c �c c

� 	
; (3.6)

where the superscript c indicates the charge conjugate,
given (up to an overall phase) by

c c ¼ C �c T; �c c ¼�c TCy; C¼ �2ei�C�
35
; (3.7)

where �C is a phase.6

B. Derivation of the interaction term

To derive the interaction term, we will consider mini-
mally coupled fermions in curved space in the Vielbein-
Einstein-Palatini formulism, in which the spin connection
�!�

I
J and the vielbein e�I are taken as independent varia-

bles. The Lagrangian is

L ¼ e

�
Mpl

2
e�I e

�JR��
I
J

þ i

2
½ �c e�I r�c � ðr�

�c Þe�I �Ic � �m �c c

�
; (3.8)

where e ¼ j det ðeI�Þj and Mpl ¼ ð8	G3Þ�1 is the reduced

Planck mass in three spacetime dimensions. R��
I
J and the

covariant derivatives of the fermions are given in terms of
the spin connection by

R��
I
J ¼ @� �!�

I
J � @� �!�

I
J þ �!�

I
K �!�

K
J � �!�

I
K �!�

K
J:

(3.9)

and

r�c ¼ @�c þ 1

4
�!�IJ�

½I�J�c ;

r�
�c ¼ @�c � 1

4
�c �!�IJ�

½I�J�:
(3.10)

The spin connection can be decomposed into the
symmetric Levi-Civita spin-connection !�

I
J (which is

5The particle and antiparticle solutions in the A representation,
which satisfy ði6@A �mÞc A ¼ 0 with �2 ¼ þi�2, can be pro-
jected out with the operator �� ¼ ð�6pA þmÞ=2m. Here, the
corresponding solutions in the B representation, satisfying
ði6@B �mÞ�B ¼ 0 with �2 ¼ �i�2, are written as �B ¼
��2c A, as �þc A and �þc B correspond to particles with
opposite spins.

6The unusual form of C arises because the solutions of the
Dirac equation in the A and B representations describe particles
and antiparticles of the same spin, so the charge conjugation
operator does not mix the fields corresponding to the inequiva-
lent representations. Hence there are two independent phases �A

C

and �B
C corresponding to the operations ðc AÞC ¼ �2ð �c AÞTei�A

C

and ðc BÞC ¼ �2ð �c BÞTei�B
C , and only one linear combination can

appear as an overall phase in (3.7). This has been shown to be an
important consideration when considering the bound states in
quantum electrodynamics in three spacetime dimensions [34].
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torsionfree and metric compatible i.e. r��IJ ¼ 0) and an

antisymmetric part D�
I
J as

�!�
I
J ¼ !�

I
J þD�

I
J;

so that the Lagrangian can be rewritten as L ¼ LLC þ
Ltorsion, where LLC takes the same form as (3.8), but with
covariant derivatives and R��

I
J given purely in terms of

the Levi-Civita spin connection !�
I
J. The second term

Ltorsion contains the torsion-dependent parts of the original
gravitational and fermion Lagrangians and is given explic-
itly by

Ltorsion ¼ e

�
Mpl

2
e�I e

�JðD�
I
KD�

K
J �D�

I
KD�

K
JÞ

þD�IJA
�IJ

�
; (3.11)

(plus a total divergence) with

A�IJ � i

8
e
�
K
�c f�½I�J�; �Kgc ¼ 1

4
e
�
K�

IJKð �c�35c Þ:
(3.12)

In the second equality of (3.12) we have used the identity

f�½I�J�; �Kg ¼ 2�IJK�3�5 ¼ �2i�IJK�35. We can now
find an explicit expression for the antisymmetric part of
the spin-connection by considering the equation of motion
obtained from Ltorsion [35]. Defining the tensors

E�
�
� � e�I e

K
�D�

I
K; and A��� � e�Ke

�
LA

�KL; (3.13)

the Lagrangian can be written

L torsion ¼ eE���

�
1

2
MplðE��� � g��E

�
��Þ þ A���

�
:

(3.14)

Varying with respect to E��� yields

E��� þ E��� � g��E
�
�� � g��E

�
�� ¼ ~A���; (3.15)

where ~A��� ¼ � 2
Mpl

A���. E��� has three independent

traces: c1 ¼ E��
�, c2 ¼ E��

� and c3 ¼ E�
�
�.

Substituting these into (3.15) and contracting indices
with g�� and g�� yields the relation

c2 ¼ c3 þ 2 ~A�
��;

so (3.15) can be rewritten in terms of ~A��� and an arbitrary

vector U� ¼ c3 as

E��� þ E��� ¼ ~A��� þ 2g�� ~A
�
�� þ g��U� þ g��U�:

Cyclically permuting indices gives two further equations,
which combine to give

E��� ¼ 1

2
ð ~A��� þ ~A��� � ~A���Þ þ ðg�� ~A�

��

þ g�� ~A
�
�� � g�� ~A

�
��Þ þ g��U�;

¼ 1

2
~A��� þ g��U�; (3.16)

where in the second line we have used the fact that ~A��� is

totally antisymmetric, as can been seen from (3.12).
Substituting this back into the Lagrangian (3.14) gives

Ltorsion ¼ � e

2Mpl

A���A���; (3.17)

where the symmetric part vanishes due to the antisymmetry
of A���, as it should since it is a gauge artifact [35].
Substituting the definition of A��� in (3.12) and using the
identity �IJK�

IJK ¼ 6 yields the interaction term

Ltorsion ¼ � 3e

16Mpl

ð �c�35c Þ2: (3.18)

To make contact with the fermion Lagrangian in the
Nambu-Gorkov basis (3.5) we shall rewrite Ltorsion in
terms of the charge-conjugated fields (3.7) using the
Fierz identities given in Appendix B. Applying (B6) gives

Ltorsion ¼ �0

2
½ð �c c cÞð �c cc Þ þ ð �c�35c cÞð �c c�35c Þ

þ ~�y ~�þ ~�y
�
~���; (3.19)

where

�0 ¼ 3

32Mpl

¼ 3

4
	G3; (3.20)

and the doublets ~� and ~�� are defined in (B7). In what
follows, for simplicity we shall focus on the effect of the
scalar and �35 interactions.7

C. Integrating out the fermions

Following the procedure used in the nonrelativistic case,
we remove the four-fermion interaction by inserting the
following terms in the Lagrangian,

� 1

2�0

f½�1 � �0
�c cc �y½�1 � �0

�c cc �
þ ½�2 � �0

�c c�35c �y½�2 � �0
�c c�35c �g;

which correspond to multiplying the path integral by a
Gaussian integral in the auxiliary fields, and thus do not

7Note that the term involving the axi-pseudovector ~�y
�
~��,

carrying as it does a sum over Lorentz indices, may be reason-
ably expected to be a higher energy channel. Considering the

axi-pseudoscalar ~�y ~�, defined in (B7), in isolation leads to a
similar form for the gap equation to that found using the scalar or
�35 channels, however, using all three together leads to interac-
tion terms amongst the various auxiliary fields.
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affect the equations of motion. Variation with respect to�y
1

and �y
2 show that �1 and �2 describe fermion pairs

coupled in the scalar and �35 channels

�1 ¼ �0
�c cc ; �2 ¼ �0

�c c�35c : (3.21)

Rather than work directly with �1 and �2, we redefine as
follows

�A ¼ 1

2
ð�1 þ�2Þ; �B ¼ 1

2
ð�1 � �2Þ; (3.22)

so the interaction Lagrangian is

Lint ¼ 1

2
��NG

0 0 �A 0

0 0 0 �B

�y
A 0 0 0

0 �y
B 0 0

0
BBBBB@

1
CCCCCA�NG

� 1

�0

ðj�Aj2 þ j�Bj2Þ; (3.23)

where each entry indicates a 2� 2 block. The advantage of
this is that the complete Lagrangian may be split into two
parts, composed of c A and c B spinors respectively, as

L ¼ LA þLB ¼ ðLc
A þLtree

A Þ þ ðLc
B þLtree

B Þ
with

Lc
A ¼ 1

2
��NG
A

i6@�mþ �0� �A

�y
A i6@�m� �0�

 !
�NG

A ;

(3.24)

Lc
B ¼ 1

2
��NG
B

i6@þmþ �0� ��B

��y
B i6@þm� �0�

 !
�NG

B ;

(3.25)

and

Ltree
A ¼ � 1

�0

j�Aj2; Ltree
B ¼ � 1

�0

j�Bj2: (3.26)

IV. THE MASSLESS CASE

In this section, we specialize to the extreme case of
massless fermions. For simplicity, and because we consider
only the very short time scales relevant for the preheating
process, we do not consider the effect of a curved back-
ground. Preheating occurs when the homogeneous zero
mode of the inflaton field is exhibiting oscillations about
the minimum of its potential, so that the dominant effect of
including spacetime curvature is to introduce an additional
friction term that damps the oscillations. Whilst this does
have an effect on the process of parametric resonance used
to produce the fermions, on very small time scales, one can
treat the background as constant.

In this case, the covariant derivatives in the Dirac
Lagrangian (taken with the Levi-Civita spin connection)
reduce to partial derivatives. Here, as in (3.1), the 2� 2
gamma matrices are �0 ¼ �3, �

1 ¼ i�1 and �2 ¼ i�2.
Considering only the A parts,8 we can integrate out the

fermions to get

Z ¼
Z

D�y
AD�A exp

�
iSeff � i

�0

Z
x
j�Aj2

�
; (4.1)

where Seff is the one-loop effective action

Seff ¼ �iTr ln ½Kðp; xÞ�
¼ �i tr

Z
x

Z
k
eik�x ln ½Kðp; xÞ�e�ik�x: (4.2)

Anticipating the derivative expansion [28], we write
Kðp; xÞ as

Kðp; xÞ ¼ G�1
0

�
I �G0

0 ��A

��y
A 0

� ��
; (4.3)

with

G0 ¼
Gþ 0

0 G�

 !
;

G� ¼ 1

ðp0 ��Þ2 � p2

p0 �� �ip1 � p2

�ip1 þ p2 �p0 ��

 !
:

(4.4)

Here p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

q
. Dropping the logG�1

0 term, which is

independent of �A and does not contribute to the effective
action, we can expand as

Seff ¼
X1
‘¼1

Sð‘Þeff ¼ iTr
X1
‘¼1

ð�1Þ‘
‘

0 Gþ�A

G��
y
A 0

 !
‘

: (4.5)

As in the nonrelativistic case only the even powers give a
nonzero contribution. For ‘ ¼ 2 we get

Sð2Þeff ¼ iTr

� ðk0 ��Þð~k0 þ�Þ � k1 ~k1 � k2 ~k2

½ðk0 ��Þ2 � k2�½ð~k0 þ�Þ2 � ~k2��
y
A�A

þ ðk0 þ�Þð~k0 ��Þ � k1 ~k1 � k2 ~k2

½ðk0 þ�Þ2 � k2�½ð~k0 ��Þ2 � ~k2��A�
y
A

�
; (4.6)

where ~k� ¼ ðk0 � i@0; ki þ iriÞ. An important subtlety

here is that the derivatives here act only on the next object

on their right, meaning that after expanding in ~k�, the first

derivatives in the first term in (4.6) pick up a minus sign
from integration by parts when the term is expressed in the

form / �y
A@��A. We include the quartic terms without

derivatives, so p� can be treated as a c-number, giving

8In the massless case, the result for �B will be the same as that
for �A, since only even terms contribute in the gradient
expansion.
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Sð4Þeff ¼
i

2
Tr

�
1

½k20 � �ðkÞ�2 þ
1

½k20 � ��ðkÞ�2
�
j�Aj4: (4.7)

Here we have introduced the useful notation

�ðkÞ ¼ k��; ��ðkÞ ¼ kþ�: (4.8)

The time-independent part of the Euclidean action is then

SEeff ¼
Z 0

�
d


Z
x

Z
k
��1

X
n

��
MQ1r2 þMQ2ð ~k � ~rÞ2

� 1

!2
n þ �2

� 1

!2
n þ ��2

�
j�Aj2

þ 1

2

�
1

½!2
n þ ��2 þ

1

½!2
n þ ���2

�
j�Aj4

�
; (4.9)

where the coefficients ML, MQ1
and MQ2

are defined in

Appendix C. We have not included the linear term (pro-
portional to ik � r) since it vanishes when we integrate
over all k.

A. Deriving the effective Lagrangian

In deriving the effective Lagrangian for �A, we proceed
along the same lines as in Sec. II B, applying the tempera-
ture prescription (2.10) with � ¼ k��. Each of the terms
in the Lagrangian (2.9) can be split into terms involving
only � and ��, as can already be seen in (4.9). The latter,
involving the combination kþ�, arise from the antifer-
mions (cf. [36–38]) and, as we shall see, represent only
subdominant contributions.

1. The quadratic term a

Using the Matsubura sums in Appendix A, the quadratic
term is

a ¼
Z d2k

ð2	Þ2
�
tanh ð12��Þ

�
þ tanh ð12� ��Þ

��

�
� 1

�0

;

� a� þ a �� �
1

�0

: (4.10)

We can treat the � and �� parts separately. Starting with the
first term, we apply the temperature prescription (2.10)
to get

a� ¼ 1

4	

�Z �

0
dkk

tanh ð �2� �Þ
�

þ
Z �

�
dkk

tanh ð��2 �Þ
�

�
;

¼ 1

4	

�
2�

�

Z 0

�c1

dxðxþ c1ÞXx
þ 2

��

Z ���=2

0
dxðxþ c2ÞXx

�
; (4.11)

where c1 and c2 are defined in (2.11),� is a UV cutoff, and
we have used x ¼ ��=ð2�Þ in the first integral and x ¼
���=2 in the second. In the limit c1 ! 0 the first integral
can be neglected. Thus

a� ’ 1

2	��

�
ln ðcosh ð���=2ÞÞ þ c2 ln

�
2���e�

	

��
;

’ �

4	
þ 1

2	��

�
c2 ln

�
2���e�

	

�
� ln 2

�
: (4.12)

Returning to the �� integral, we proceed in a similar fashion
and split the integral at k ¼ �. Using the substitutions x ¼
� ��=ð2�Þ and x ¼ �� ��=2 and the definition (4.8) we get

a �� ¼ 1

4	

�
2�

�

Z 2c1

c1

dxðx� c1ÞXx
þ 2

��

Z ���=2

2c2

dxðx� c2ÞXx
�
;

’ �

4	
þ 1

2	��

�
�c2 ln

�
2���e�

	

�

� ln 2�
Z 2c2

0
dxðx� c2ÞXx

�
;

’ �

4	
þ 1

2	��

�
�c2 ln

�
2���e�

	

�

þ c2 ln

�
4e��2c2

	

��
; (4.13)

where, as before, we have neglected the first integral in the
limit c1 ! 0. In the last line we used the fact that c2 * 1 to

simplify the integral using
R2c2
0 Xdx ’ 2c2 � ln 2 and (A5).

The quadratic function can then be written

a ’ �

2	
þ 1

2	��

�
c2 ln

�
4e��2c2

	

�
� ln 2

�
� 1

�0

: (4.14)

In the nonrelativistic calculation, the explicit dependence
on the cutoff was removed by expressing the coupling
constant �0 in terms of the binding energy in vacuum,
obtained by solving the Schrödinger equation for a fermi-
onic pair in vacuum. Since in this case we deal with
massless fermions, this cannot be done. Nevertheless, it
is instructive to consider the equivalent problem for rela-
tivistic bound states using the instantaneous Bethe-Salpeter
equations. For spinless fermion-fermion bound states with
a scalar interaction, the scalar part of the reduced wave
function �S satisfies [39]

E

k2
ðE2 � �2BÞ�SðkÞ ¼

Z
~k0
VS�Sð ~k0Þ; (4.15)

where E ¼ k2 þm2, and the bound state has a mass 2�B <
2m. As in the nonrelativistic case, we consider for sim-
plicity an attractive scalar contact interaction �0�ð ~xÞ
(cf. [28]) which gives

1

�0

¼ 1

2	

Z �

0
dk

k3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
ðm2 þ k2 � �2BÞ

’ �

2	
� m

2	

�
1þ 1� B2

B
arctanhðBÞ

�
þOð��1Þ;

(4.16)
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where B ¼ �B=m. In the limit of small m with B finite we
see the same dependence on the cutoff as exhibited in
(4.14), with corrections of OðmÞ. This suggests that (for
c2 * 1) the leading term in a is the logarithm and the
coefficient is approximately given by

a 
 c2
2	��

ln

�
4e��2c2

	

�
: (4.17)

We postpone a discussion on the validity of this approach
until Sec. V.

2. The quartic term b

Using (A2), the quartic term is

b ¼ � 1

4

Z d2k

ð2	Þ2
�
1

�

d

d�

�
tanh ð12��Þ

�

�

þ 1
��

d

d ��

�
tanh ð12� ��Þ

�

��
: (4.18)

Repeating the steps taken in the evaluation of a, we obtain

b ¼ � ��

16	

�Z 1

0
dx

�
xþ c2

x

�
d

dx

�
X

x

�

þ
Z 1

2c2

dx

�
x� c2

x

�
d

dx

�
X

x

��
;

¼ ��

16	

�
1þ tanh ð2c2Þ

2c2
� c2

Z 2c2

0

dx

x

d

dx

�
X

x

��
;

¼ ��

16	

�
1þ tanh ð2c2Þ

8c2
þ sech2ð2c2Þ

4
þ c2

Z 2c2

0
dx

XY

x

�
;


 ��

16	

�
1þ 7ð3Þ

	2
c2

�
; (4.19)

where in the third line we have used (A8). In the fourth
line, we have neglected the subdominant tanh term (which
is <0:12 for c2 > 1) and used (A7) and (A14).

3. The gradient term

From (4.9) it can be seen that there are two contributions
to the coefficient of the gradient term in the Lagrangian.
(The linear term ML need not be considered as it vanishes
when we perform the angular integral.) Taking account of
the factor of 1

2 arising from the cos 2� in the scalar product,

the coefficient is

M ¼ �X
n

�
MQ1

þ 1

2
k2MQ2

�
¼ M� þM ��;

where the coefficientsMQ1
andMQ2

are given by (C1) and

M� ¼ 1

64	

Z 1

0
dk

�
�2k

�
sech2

�
1

2
��

�
tanh

�
1

2
��

�

þ ��
sech2ð12��Þ

�2
þ 2ð���Þ

��3
tanh

�
1

2
��

��
;

¼ �

64	�

Z 0

�c1

dx ~M� þ ��

64	

Z 1

0
dx ~M�: (4.20)

In the first line we have evaluated the Matsubura sums
using (C2) and in the second applied the prescription
(2.10). Similarly, the second term is

M �� ¼ �

64	�

Z 2c1

c1

dx ~M �� þ
��

64	

Z 1

2c2

dx ~M ��; (4.21)

where the integrands are given by

~M� ¼ 2ðxþ c2Þ
x

XY þ c2
Y

x2
þ
�
x2 � c22

c2

�
X

x3
; (4.22a)

~M �� ¼ 2ðx� c2Þ
x

XY � c2
Y

x2
�
�
x2 � c22

c2

�
X

x3
; (4.22b)

and we have evaluated the Matsubura sums using (C2).
Neglecting the c1 integrals

9 we find

M ¼ ��

64	

�
2sech2ð2c2Þ þ

Z 2c2

0
dx ~M�

�
;

¼ ��

64	

�
1þ 1

8c2
½tanh ð2cÞ þ 6sech2ð2c2Þ�

þ 1

c2

Z 2c2

0
dxðc22Y þ 1ÞX

x

�
; (4.23)

where in the second line we have used (A10). We can make
use of use of (A5) and (A7) to obtain the following ap-
proximation

M ’ ��

64	

�
1þ 7ð3Þ

	2
c2 þ 1

c2
ln

�
8c2e

�

	

��
; (4.24)

which is valid for c2 * 1.

4. Time-dependence

Following the procedure discussed in Sec. II F, the time-
dependent part of the effective Lagrangian is

Ldyn ¼ ½Q0
ðþÞði@0Þ � i	Q00

ðþÞði@0Þ��y
A�A

þ ½Q0
ð�Þði@0Þ � i	Q00

ð�Þði@0Þ��A�
y
A; (4.25)

9Unlike the previous two cases, to see this one has to consider
both the � and �� parts. Replacing the integrands by their

Maclaurin series ~M�; �� ¼ � 4c1
3 � 1

c1
þ 2x� ð3215 c1 þ 1

3c1
Þx2 þ

Oðx3Þ for small c1 one has

Z 0

�c1

dx ~M� þ
Z 2c1

c1

dx ~M �� ¼ 8

3
c21 þOðc41Þ;

which can be neglected as c1 ! 0.
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with

Q0
ð�Þðq0Þ ¼ � q0

4

�
�
Z

~k

tanh ð12��Þ
�ðq0 � 2�Þ þ �

Z
~k

tanh ð12� ��Þ
��ðq0 � 2 ��Þ

�
; (4.26a)

Q00
ð�Þðq0Þ ¼ � 1

2

Z
~k

�
tanh

�
1

2
��

�
�ðq0 � 2�Þ � tanh

�
1

2
� ��

�
�ðq0 � 2 ��Þ

�
: (4.26b)

The barred integral indicates that the principal part should be computed. Expanding (4.26a) in q0 to first order and applying
the prescription (2.10) gives

where in the second line we have applied the prescription
(2.10) and converted to x as before, combining integrals
where possible. Since, using (A13b) we have

and the other c1 integrals are Oðc1Þ, we can neglect their
contribution. Using (A5), (A13a), and (A15), when c2 * 1
we get

Q0
ð�Þðq0Þ ¼ �Q0

ðþÞ ’
q0
16	

�
�c2 þ ln

�
8e�þ1=2c2

	

��
:

(4.28)

Turning to the Q00 terms, we see from (4.26b) that the
second delta functions pick out k ¼ ��þ 1

2q0 and k ¼
��� 1

2q0. As q0 	 �, both of these are always negative

so these terms vanish. The first delta function picks out k ¼
�� 1

2q0 in Q00
ðþÞðq0Þ and k ¼ �þ 1

2 q0 in Q00
ð�Þðq0Þ. As in

the nonrelativistic case, by the nature of the expansion
q0 	 � and these values are extremely tiny shifts in k
on either side of the temperature jump at k ¼ �. Thus, to
avoid an unphysical artefact of the step function prescrip-
tion, we evaluate 1=T at the midpoint 1=T ¼ �, giving

Q00
ðþÞðq0Þ ¼

1

4	

�
�� 1

2
q0

�
tanh

�
�q0
4

�
’ ��

16	
q0 þOðq20Þ;

(4.29a)

Q00
ð�Þðq0Þ ¼

1

4	

�
�� 1

2
q0

�
tanh

�
�q0
4

�
’ ��

16	
q0 þOðq20Þ:

(4.29b)

Substituting (4.28) and (4.29) into (4.25), and integrating

the �y
A�A term by parts, we find that the Q00

ð�Þ parts cancel,
giving

L dyn ’ i

8	
�y

A

�
�c2 þ ln

�
8e�þ1=2c2

	

��
@0�A: (4.30)

B. The effective Lagrangian arising from
massless fermions

Combining equations (4.17), (4.19), (4.24), and (4.30)
we arrive at the effective Lagrangian for �A

Leff ’ �y
A

�
1

8	

�
�c2 þ ln

�
8e�þ1=2c2

	

��
i@0

þ c2
16	

�
1þ 7ð3Þ

	2
c2 þ 1

c2
ln

�
8c2e

�

	

�� r2

2�

þ �

4	
ln

�
4e��2c2

	

��
�A

� c2
16	

�
1þ 7ð3Þ

	2
c2

�
1

�
j�Aj4: (4.31)

We recall at this point that, from Eqs. (3.20) and (3.22), �A

is related to the Planck mass by

�A ¼ 3

64Mpl

ð �c cc þ c c�35c Þ: (4.32)

The value of the pair field is then necessarily small, which
is consistent with our approach (as in neglecting the time
derivatives in the quartic term, we have implicitly assumed
q0 � j�Aj.) The Lagrangian (4.31) may be compared with
the time-dependent Ginzburg-Landau theory [28,40], also
given in terms of an auxiliary field consisting of a fermion
bilinear multiplied by a weak, dimensionful coupling pa-
rameter. In that case, the effective Lagrangian depends on
the fermion mass, the chemical potential and the coupling
strength, the latter entering the effective Lagrangian only
via the transition temperature in the quadratic term (which
involves the expression for the binding energy). Here, the
entire Lagrangian depends only on one dimensionful pa-
rameter �, which is related to the inflaton mass (and thus
should be much smaller than the Planck scale).
For fixed temperature, c2 is a dimensionless constant so

we can perform the field redefinition

�̂ A ¼
�
1

8	

�
�c2 þ ln

�
8e�þ1=2c2

	

���
1=2

�A; (4.33)

JOEL M. WELLER PHYSICAL REVIEW D 88, 083511 (2013)

083511-12



involving the numerical factors � 
 0:79 and c2 * 1, so
that

Leff ’ �̂y
A

�
i@0 þ �̂þ r2

2m̂

�
�̂A � �̂j�̂Aj4; (4.34)

where

m̂ � 2��

�
1þ ln ð8c2e�þ1=2=	Þ

�c2

��
1þ 7ð3Þ

	2
c2

þ 1

c2
ln

�
8c2e

�

	

���1
; (4.35)

�̂ � 2� ln

�
4e��2c2

	

��
�c2 þ ln

�
8e�þ1=2c2

	

���1
; (4.36)

�̂ � 4	c2
�

�
1þ 7ð3Þ

	2
c2

��
�c2 þ ln

�
8e�þ1=2c2

	

���2
:

(4.37)

In this form we see that the effective theory for the auxil-
iary field �A is that of a weakly interacting Bose gas,
described by the Gross-Pitaevski theory (see [41] for a
review). The mass of the bosons is of the order of the
mass scale �, which is comparable to the inflaton mass.
The dependence of these coefficients on the value of c2 is
shown in Fig. 2. It is important to note that for c * 3:26, �̂
is positive, allowing for the formation of a condensate.

In the strong coupling limit of the BCS-BEC crossover
in 2þ 1 dimensions, one finds a similar Gross-Pitaevski
equation [42]. In that case the effective chemical potential
�̂ is a function of the binding energy but the repulsive
interaction depends only on the density of states, reflecting
the statistical interaction due to the Pauli principle. What is
striking about our case is that this form arises even though
the gravitational coupling is extremely weak. Since we
work with massless fermions, (4.34) is independent of

any binding energy between the fermions: the formation
of the condensate is determined only by the magnitude
of the departure from thermal equilibrium, as parametrized
by c2.
While the final result may take a simple form, it is not

immediately obvious that the effective Lagrangian for �A

would describe a propagating field. The presence of an
extremely weak coupling and an effective low-temperature
limit might lead one to expect BCS condensate behavior
(as discussed in other studies involving condensates with
the gravitational four-fermion interaction term) a charac-
teristic feature of which is the breaking up of Cooper pairs
at high energy. In this case, the opposite happens: the
fermions pairs can be treated as propagating bosons even
at high energies. It is the combination of the temperature
ansatz (that renders low-momentum modes irrelevant) and
the absence of a tight cutoff in momentum space (a con-
sequence of the gravitational nature of the interaction term)
that give rise to this behavior in spite of the BCS-like
starting point.

C. Heuristic explanation

In both the nonrelativistic and massless cases the qua-
dratic and quartic potential terms in the effective
Lagrangian for the pair field have appropriate signs for
the formation of a condensate. This is possible partly
because the four-fermion interaction is attractive, which
gives the correct sign for the bare quadratic term, and
partly because the nonthermal distribution generates con-
ditions equivalent to the presence of a Fermi surface for
high-momentum modes i.e. a nonnegligible chemical po-
tential and low effective temperature. The latter is impor-
tant both because it prevents the range of integration
(which depends on the combination ��) used in deriving
the coefficients from vanishing in the high temperature
limit and because the transition temperature that enters
the logarithm in the quadratic term is enhanced by a factor
�. Heuristically, this is a result of the fact that the interac-
tion is not confined to a small region in momentum
space as in the standard BCS case—i.e. it is a contact
interaction—so the contribution of high-momentummodes
is important.
It is also important to emphasize here that the torsion

mediated interaction does not introduce a new coupling
constant: the dependence of �0 on the Planck mass arises
purely as a result of considering Einstein-Cartan gravity.
The fermions themselves source the (nonpropagating)
torsion, as they have intrinsic spin.
The kinetic terms of the two examples differ: the mass-

less fermion condensate has a purely propagating mode
while the nonrelativistic case has a small, real, dissipative
part. This would be dominant in the standard BCS case;
here the asymmetry between the effective temperature felt
by the modes on either side of the Fermi surface gives rise
to an additional imaginary term. Although one also obtains

FIG. 2 (color online). The combinations �̂=� (solid, blue),
m̂=� (dot-dash, red) and �̂� (dashed, black) as a function of c2.
�̂=� is negative for c2 <	e2��=	 
 3:26.
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a Gross-Pitaevski equation in the strong coupling limit of
the BCS-BEC crossover, there these terms are absent be-
cause the chemical potential is negative, and the tightly-
bound pairs cannot beak up. The difference arises in this
model due to the inclusion of antifermions in the relativ-
istic case, which cancel the real first order derivative terms
entering the Lagrangian.

V. DISCUSSION

The starting action was (with the addition of the neces-
sary curvature squared terms) renormalizable, however, in
integrating out the antisymmetric part of the connection we
have obtained an apparently nonrenormalizable four-
fermion term. The status of this term seems a little different
from the standard BCS case, in which the bare coupling
constant �0 is renormalized by the considering the effec-
tive action for the fermions up to one-loop order. As this
procedure could have been performed after renormaliza-
tion of the gravitational constant, �0 is already written in
terms of renormalized quantities. As mentioned in the
introduction, different approaches to this issue have been
taken in the literature. A consistent approach would per-
haps be to renormalize the entire Lagrangian (gravitational
and fermion) simultaneously, although since the four-
fermion interaction term is naively nonrenormalizable, it
is not clear whether in this case � would simply be deter-
mined by the experimentally observed value. Here, despite
the fact that integrating out D�

I
J can be done exactly, we

have treated the resulting Lagrangian as an effective field
theory valid up to a scale �, taken to be of the order of the
scale defined by the inverse coupling ��1

0 �Mpl.

This is important when treating the quadratic term in the
effective Lagrangian for the pair field, since it is this term
that represents a correction to the bare coupling. In the
nonrelativistic calculation, the logarithmic dependence on
the cutoff does not enter the effective Lagrangian explic-
itly, as the� terms cancel when one expresses ��1

0 in terms

of the binding energy �a, calculated using the Schrödinger
equation. In the relativistic calculation, since we have
treated the fermions as massless fields, this is not possible.
In Sec. IVA1, it is shown that there is in this case a linear
dependence on �=2	, making it difficult to estimate the
magnitude of this term. Consideration of the instantaneous
Bethe-Salpeter equations for a spinless fermion-fermion
bound state with a scalar interaction suggests that the
combination that appears in this term, ��1

0 ��=2	,
should involve only negligible corrections of the order of
the fermion mass. The form of the quadratic term aj�Aj2 is
then logarithmic, as in the nonrelativistic case. For a rig-
orous treatment, one should include the mass from the
beginning, however, since this introduces complications,
we defer this to future work.

The equivalent calculation in the relativistic massive
case would also be interesting because it would introduce
another physical scale, the fermion mass, into the

calculation. As mentioned in the introduction, many au-
thors have focused on neutrino condensates with a view to
relating the neutrino mass scale to dark energy. The con-
densation mechanism presented here is not particular to
neutrinos, so one may think that if neutrinos can condense,
so can other species. However, neutrinos are unusual in that
they are the only known fundamental neutral fermions, so
there is less competition between the gravitational interac-
tion and gauge interactions compared to other species
(cf. [14]).
The result (4.34) takes the form of a Gross-Pitaevski

theory describing a weakly interacting composite Bose gas.
In the BCS-BEC crossover using nonrelativistic fermions,
one finds a similar equation in the strong coupling regime
[28], where the bosons have twice the fermion mass. In this
case, the mass of the boson is of the order of the only mass
scale in the theory (with the exception of that defined by
the coupling ��1

0 �Mpl) which is directly related to the

inflaton mass. Thus, the mass of the boson in the effective
field theory arises from the kinetic energy of the fermions.
In the standard case, the appearance of a purely propagat-
ing mode in the BEC limit is related to the spontaneous
breaking of the global U(1) symmetry i.e. � is a (pseudo)
Goldstone mode. To fully understand and interpret the
calculation presented here, it is therefore important to
identify the role played by symmetry breaking. This is
also particularly important in order to be able to comment
on the change of vacuum energy of the system.
In our ansatz, thermalization corresponds to the limit

� ! 1, at which point the fermions have a thermal distri-
bution characterized by a high temperature T ¼ 1=�, such
that�� is negligible. It is important to note that one cannot
take this limit directly in (4.34), since the assumptions
(2.11) have been repeatedly used in the derivation. Since
in this calculation � is merely a scale used to parametrize
the nonthermal distribution felt by the fermions subsequent
to their creation in the preheating process, after thermal-
ization this should be replaced by a chemical potential term
relating to any excess of fermions over antifermions, which
should be zero.10

Despite the fact that the inflaton field � is also coupled
to the fermions (perhaps indirectly) since the latter are
produced by its decay, in this simplified description we
have not included its effect directly. Although, like the
four-fermion interaction (3.19), the Yukawa interaction
h� �c c is attractive, the effects of the two terms differ as

10Since the pair field consists of fermions, rather than being of
the form �c c , the possibility that a small fraction of bosons
could survive thermalization is particularly interesting. If the
density of bosons were small, the bound fermions would not be
able to annihilate with their antiparticles in the same way as their
free counterparts, which could give rise to a lepton number
violation that could be converted to a baryon number violation
by sphaleron processes in the early universe. However, this
possibility seems unlikely.
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� acts like a mass term for the fermions, coupling �c and
c . To properly treat the thermalization limit, one would
need to include the effect of energy exchange between the
fermions and the �-bosons; however, this is beyond the
scope of this work.

To summarize, by considering a simplified model in
2þ 1 spacetime dimensions, we have shown for the first
time that the nonthermal distribution of fermions arising
from preheating after inflation can give rise to a fermion
condensate. By considering the effective Lagrangian for
the spacetime dependent pair field in the extreme cases of
nonrelativistic and massless fermions, we have shown that
it describes a gapless, propagating mode.
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APPENDIX A: INTEGRALS AND SUMS

The sums over the Matsubara frequencies are

��1
X
n

1

!2
n þ �2

¼ tanh ð��=2Þ
2�

; (A1)

��1
X
n

1

ð!2
n þ �2Þ2 ¼ � 1

4�

d

d�

�
tanh ð��=2Þ

�

�
; (A2)

��1
X
n

1

i!nþ�

1

ði!n��Þ2¼�1

4

d

d�

�
tanhð��=2Þ

�

�
; (A3)

��1
X
n

1

i!n þ �

1

ði!n � �Þ3

¼ � tanh ð��=2Þ
8�3

� �

16

d

d�

�
sech2ð��=2Þ

�

�
: (A4)

We make use of the integralZ a

0

X

x
dx ¼ tanh ðaÞ ln ðaÞ þ ln ð4e�=	Þ þ

Z 1

a
Y ln ðxÞdx;

(A5)

where X � tanh ðxÞ and Y � sech2ðxÞ and � ¼
0:577216 . . . is the Euler-Mascheroni constant. Setting a
to 0 gives the resultZ 1

0
Y ln ðxÞdx ¼ � ln ð4e�=	Þ: (A6)

Also, the definite integral

Z 1

0

XY

x
dx ¼ 7

	2
ð3Þ (A7)

can be combined with

Z a

0

dx

x

d

dx

�
X

x

�
¼ 1

2
a�2½tanh ðaÞ � a sech2ðaÞ�

�
Z a

0

XY

x
dx; (A8)

to give

Z 1

0

dx

x

d

dx

�
X

x

�
¼ � 7

	2
ð3Þ: (A9)

Using this

Z 1

0
x�3½X� xY�dx¼�

Z 1

0

dx

x

d

dx

�
X

x

�
¼ 7

	2
ð3Þ: (A10)

Principal value integrals with singularity and lower bound-
ary occurring at 0 can be treated with the formula [43]

Taking p ¼ 1 and p ¼ 2 and fðxÞ ¼ XðxÞ gives

Using (A12b) we obtain

(A13a)

Here, � 
 0:7905 is a constant. For a * 1 one can use the
leading term of the asymptotic series approximation for the
exponential integral, E1ðzÞ ¼ e�z

z

P
N�1
n¼0

n!
ð�zÞn , with N ¼ 1

to derive the following useful approximations
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Z 1

a

XY

x
dx ¼ �4

X1
n¼1

ð�1Þnn2E1ð2naÞ

’ 1

2a
sech2ðaÞ; ða * 1Þ; (A14)

a
Z 1

a

X

x2
dx ¼ 1� 2

X1
n¼1

ð�1Þn½e�2na þ 2naE1ð2naÞ�

’ 1þ 4

1þ e2a

 1: ða * 1Þ: (A15)

APPENDIX B: FIERZ IDENTITIES

To derive the Fierz identities for the four-component
representation, one can consider the basis:

fI; ��; �35��; �3��; �5��; i�3; i�5; �35g:
However, the bilinears involving �3 and �5 do not trans-
form simply under parity and charge conjugation, but
instead transform as doublets. We have

� ¼
�c i�3c

�c i�5c

 !
; �� ¼

�c�3��c

�c�5��c

 !
; (B1)

which are termed axi-scalar and axi-vector respectively in

[34], as under parity they transform as ð�ÞP ¼ RP� and

ð��ÞP ¼ ��
�RP�

� with ��
� ¼ diagð1;�1; 1Þ and

RP ¼ � cos ð2�PÞ sin ð2�PÞ
sin ð2�PÞ cos ð2�PÞ

 !
:

Introducing the shorthand

s1 ¼ ð �c 4c 2Þð �c 3c 1Þ s2 ¼ ð �c 4c 1Þð �c 3c 2Þ
v1 ¼ ð �c 4�

�c 2Þð �c 3��c 1Þ
v2 ¼ ð �c 4�

�c 1Þð �c 3��c 2Þ
a1 ¼ ð �c 4�

35��c 2Þð �c 3�
35��c 1Þ

a2 ¼ ð �c 4�
35��c 1Þð �c 3�

35��c 2Þ
x1 ¼ ð�yÞð4;2Þð�Þð3;1Þ x2 ¼ ð�yÞð4;1Þð�Þð3;2Þ
y1 ¼ ð�y

�Þð4;2Þð��Þð3;1Þ y2 ¼ ð�y
�Þð4;1Þð��Þð3;2Þ

z1 ¼ ð �c 4�
35c 2Þð �c 3�

35c 1Þ
z2 ¼ ð �c 4�

35c 1Þð �c 3�
35c 2Þ

where the subscripts on the � and �� terms indicate the
arrangement of the fermion bilinears that comprise the
doublet, the Fierz identities are11

s1

v1

a1

x1

y1

z1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
¼ � 1

4

1 1 1 �1 �1 1

3 �1 �1 �1 3 3

3 �1 �1 1 �3 3

�6 �2 2 �0 0 6

�2 2 �2 0 0 2

1 1 1 1 1 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

s2

v2

a2

x2

y2

z2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

(B2)

When the four fermion fields are equal c 1 ¼ c 2 ¼ c 3 ¼
c 4 ¼ c , we can drop the subscripts on the variables s1 to
z1 and obtain the relationship

3ðsþ zÞ þ ðaþ vÞ ¼ 0: (B3)

Since the bilinears s and z are even under charge conjuga-
tion, and v and a are odd, we can conjugate one of the
bilinears in each combination to get

3ðs1 þ z1Þ � ða1 þ v1Þ ¼ 0; (B4)

where c 2 ¼ c 4 ¼ c and c 3 ¼ c 1 ¼ c c. Using (B2) we
find

v2 þ a2 ¼ 0; (B5)

which can be substituted back into the identity for z1 to
give

m ¼ m1 ¼ � 1

4
½s2 þ x2 þ y2 þ z2�:

More explicitly, this is

ð �c�35c Þ2 ¼ � 1

4
½ð �c c cÞð �c cc Þ þ ð �c�35c cÞð �c c�35c Þ

þ ~�y ~�þ ~�y
�
~���; (B6)

with

~� ¼
�c ci�3c

�c ci�5c

 !
; ~�� ¼

�c c�3��c

�c c�5��c

 !
: (B7)

APPENDIX C: EXPANSION TERMS

The quadratic part of the spatial Lagrangian can be
expanded to second order in gradients as�

MQ1
r2 þMQ2

ð ~k � ~rÞ2 � 1

!2
n þ �2

� 1

!2
n þ ��2

�
j�Aj2;

where

11The Fierz identities for the other two linear combinations of
the i�3 and i�5, and �3�� and �5�� bilinears form a closed
system and need not be considered here.
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MQ1
¼ �ð!2

n þ � ��Þð2!2
n þ �2 þ ��2Þ

ð!2
n þ �2Þ2ð!2

n þ ��2Þ2 ; (C1a)

MQ2
¼ 4½ð!2

n þ � ��Þ2 �!2
nð�� ��Þ2�ð2!2

n þ �2 þ ��2Þ
ð!2

n þ �2Þ3ð!2
n þ ��2Þ3

� 4ð!2
n þ � ��Þ

ð!2
n þ �2Þ2ð!2

n þ ��2Þ2 : (C1b)

The relevant Matsubara sums are

��1
X
n

MQ1
¼ �

8ð�þ ��Þ
�
sech2ð12��Þ

�
þ sech2ð12� ��Þ

��

�

� 1

4ð ��� �Þ
�
tanh ð12��Þ

�2
� tanh ð12� ��Þ

��2

�
;

(C2a)

��1
X
n

MQ2
¼ � �2

4ð�þ ��Þ2
�
sech2ð12��Þ tanh ð12��Þ

�

þ sech2ð12� ��Þ tanh ð12� ��Þ
��

�

� �

4ð�þ ��Þ3
� ��þ 3�

�2
sech2

�
1

2
��

�

þ 3 ��þ �
��2

sech2
�
1

2
� ��

��

þ 1

2ð ��2 � �2Þ
�
tanh ð12��Þ

�3
� tanh ð12� ��Þ

��3

�
:

(C2b)

APPENDIX D: THE TIME-DEPENDENT
LAGRANGIAN TO SECOND ORDER

1. Nonrelativistic case

Using (A13), the terms second order in q0 in (2.23) are
12

where in the third line, we have neglected the subdominant
term 1=ð�4c1Þ ¼ 1=ð�2c2Þ 	 1 as � is large. After inte-
grating by parts, the dynamical part of the Lagrangian to
second order is

L ð2Þ
dyn ’

�
m

2	

�
7�2�2ð3Þ

32	2
��@20�: (D2)

2. Relativistic case

If we were to expand up to second order in q0 in (4.29)
the integration by parts gives a relative plus sign. The q20
terms cancel exactly and we have only to evaluate the
hypersingular integral Q0

�ðq0Þ and the integral Q0
��
ðq0Þ,

given by

where in the second line we have evaluated the principal
value integrals using (A12), keeping only the nonvanishing
terms as c1 ! 0, and

This is valid for c2 * 1 as in the second line we have integrated by parts and used (A14), and in the third line noted that the
expression is a decreasing function of c2. Combining (D3) and (D4), we have

Q0
�ðq0Þ þQ0

��
ðq0Þ 
 �q20��

32	

�
ln ðc1Þ
�2

þ 7ð3Þ
	2

c2

�

 �q20��

32	

7ð3Þ
	2

c2; (D5)

modulo corrections by subdominant numerical factors �Oð1Þ inside the parentheses. In the second approximation, we
have used the fact that for large � we have

12There is no Q00ðq0Þ term as the next to leading order term in the expansion of the tanh function in (2.26) in Oðq30Þ.

FERMION CONDENSATE FROM TORSION IN THE . . . PHYSICAL REVIEW D 88, 083511 (2013)

083511-17



ln ðc1Þ
�2

þ 7ð3Þ
	2

c2 ¼ ln ðc2=�2Þ
�2

þ 7ð3Þ
	2

c2 ! 7ð3Þ
	2

c2;

so the second term is dominant. The correction to the Lagrangian (4.30) is then

L ð2Þ
dyn 


�
�

2	

�
7�2�2ð3Þ

32	2
�y

A@
2
0�A: (D6)

Comparing with (D2) it can be seen that the scale� enters in the sameway as the mass of the fermions in the nonrelativistic
case. In the nonrelativistic case, the Lð2Þ

dyn represents the second term in series expansion in q0=T, which appears in the
Lagrangian as the Cooper pairs can break up. The presence of an equivalent term in the relativistic case suggests that the
weakly interacting bosons described by (4.34) are not stable, although this is most important for the higher energy modes.
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