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We consider different methods to probe the chameleon scalar field with slow neutrons. Chameleons

modify the potential of bouncing neutrons over a flat mirror in the terrestrial gravitational field. This

induces a shift in the energy levels of the neutrons which could be detected in current experiments like

GRANIT. Chameleons between parallel plates have a field profile which is bubblelike and which would

modify the phase of neutrons in interferometric experiments. We show that this new method of detection is

competitive with the bouncing neutron one, hopefully providing an efficient probe of chameleons when

strongly coupled to matter.

DOI: 10.1103/PhysRevD.88.083004 PACS numbers: 95.36.+x, 03.65.�w, 03.75.Be

I. INTRODUCTION

The accelerated expansion of the Universe has now
been firmly established and confirmed by several cosmo-
logical observables [1]. However, the nature of the dark
energy driving the late time acceleration of the Universe
is still a mystery. In its present form, the concordance
model of cosmology includes a dark energy component
simply realized as a cosmological constant. Dynamical
models of dark energy use mostly a scalar field, known as
quintessence, rolling down along its potential before
nearly stopping in the recent past of the Universe [2].
In this case, the energy of the quintessence field is
dominated by its potential energy and its effective pres-
sure becomes almost opposite to its energy density. This
is enough to generate the acceleration of the expansion of
the Universe. Unfortunately, this comes at a price which
is the existence of a long range scalar interaction which
could upset the tests of gravity in the Solar System, if the
quintessence field is coupled to standard model particles.
Successful models of screened modified gravity have
been introduced to alleviate this problem [3]. Indeed,
when coupled to matter, the new fifth force mediated
by the quintessence field becomes screened in dense
environments preventing its potential detection in the
very stringent laboratory tests of the existence of fifth
forces. One particularly conspicuous class of quintes-
sence with a screening mechanism is the chameleon
model [4].

In this context, slow neutron experiments where neu-
trons are produced nonrelativistically offer an important

possibility to test chameleon models. Indeed it turns out
that such neutrons are not screened and therefore feel the
full strength of the chameleonic interaction. In the case
of bouncing neutrons over a flat mirror subject to the
terrestrial gravitational field, the chameleons perturb
the Newtonian potential and change the energy levels
of the neutron. This could potentially be detected by
the GRANIT experiment for large enough values of the
coupling of chameleons to matter. A similar sensitivity to
the presence of chameleons can be achieved using neu-
tron interferometry where slow neutrons traverse a cham-
ber where the chameleon profile is bubblelike. This
disturbs the interference patterns and could therefore
give a clear signature of the existence of chameleons.
As both setups are sensitive to relatively large values of
the coupling to matter, we investigate the physics of
chameleons in a gas further and show that above a certain
density dependent coupling, the chameleon field in a gas
cannot be taken to be a homogeneous constant but devel-
ops bubbles between the nuclei. When bubbles form, the
sensitivity of the interferometry experiment decreases
drastically.
This article is organized as follows: in Sec. II we recall

details of chameleon models. In Sec. III we use a numerical
integration of Schrödinger’s equation in the presence of
chameleons to evaluate the sensitivity of the quantum
states of bouncing neutrons to the chameleonic interaction.
In Sec. IV we propose to use neutron interferometry as a
novel way of detecting chameleons. In Sec. V we study the
transition from a homogeneous description of the chame-
leon field in a gas to a bubblelike situation where the
heterogeneities in the gas are seen by the chameleon. We
then apply this result to neutron interferometry. Finally we
conclude in Sec. VI.
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II. CHAMELEONS

Quintessence models accounting for the recent accelera-
tion of the Universe suffer from one major problem as the
field generating the acceleration has a very low mass. This
leads to the existence of a fifth force when matter couples
to dark energy. Solar System tests of gravity being very
stringent, screening mechanisms of the fifth force have
been devised. In that respect, chameleons have been intro-
duced to model the acceleration of the expansion of the
Universe [4–6] using a scalar field (called the chameleon)
whose fifth force is screened very efficiently in the
presence of dense matter. The chameleon dynamics are
governed by a potential Vð’Þ which depends on a single
scale �:

Vð’Þ ¼ �4fð’=�Þ; (1)

where � is determined by the present value of the dark
energy, �4 ¼ 3��0H

2
0M

2
Pl � ð2:4� 10�12 GeVÞ4, where

H0 is the Hubble rate now and MPl ¼ 2:44� 1018 GeV is
the reduced Planck mass. When the field is large enough
’ � �, the function converges to one, i.e. f ! 1, which
can be realized within a large class of runaway potentials.
Moreover, f is assumed to be monotonic (decreasing) and
convex guaranteeing that the second derivative of V is
positive, i.e. that the mass of the scalar field (in the absence
of matter) is positive. One can choose for instance a
Ratra-Peebles model [6],

Vð’Þ ¼ �4 þ�4þn

’n ; (2)

where n > 0 is the Ratra-Peebles index. For such a model,
dark energy is realized when ’ � � in the absence of
coupling to matter and the equation of state can be close to
w ¼ �1. The mass of the scalar field is then always less
than � implying that the range of the scalar interaction is
always larger than one millimeter (and very often much
larger). Hence, this model of dark energy leads to the
existence of a long range scalar force which could be
detected in laboratory experiments or Solar System tests
of gravity, and therefore has to be screened. However, the
presence of matter has a direct effect on the potential which
becomes the effective potential

Veffð’Þ ¼ Vð’Þ þ �

MPl

’�; (3)

where � is the mass density of matter and � is the dimen-
sionless coupling constant of chameleons with matter. This
effective potential is drastically different from Vð’Þ as it
possesses a density-dependent minimum ’ð�Þ with a mass
Mð�Þ which increases with the density of matter. More
precisely we have that

’ð�Þ ¼ �

�
n�3MPl

��

�
1=ðnþ1Þ

(4)

and the mass is given by the curvature of the effective
potential at the minimum

Mð�Þ2 ¼ V 00
effð’ð�ÞÞ ¼ nðnþ 1Þ �nþ4

’nþ2ð�Þ : (5)

In the following we will consider chameleons in a gas, and
we will see that treating the gas density as homogeneous is
only an approximation valid when the coupling � and the
matter density � are not too high.
In a dense environment, the mass increases with the

matter density and can become very large. This explains
why chameleons cannot be seen in the Solar System.
Indeed inside large (and screened) objects such as the
Sun, the field generated by an infinitesimal element is
Yukawa suppressed and does not reach the outer region
of the compact body. Only a thin shell generates any field,
which is therefore heavily depleted outside, leading to a
negligible deviation fromNewton’s law. It turns out that�0

in the Ratra-Peebles potential �4þn
0 =’n such that all the

gravitational tests are evaded must be �0 � � [4]. Hence,
chameleons can both generate the acceleration of the ex-
pansion of the Universe and satisfy the gravity tests of
Newton’s law with a single scale �.

III. QUANTUM STATES OF
BOUNCING NEUTRONS

Ultracold neutrons bouncing over a mirror show a quan-
tum behavior when the bouncing height is about 10 �m
[7]. Namely, the energy of the vertical motion is quantized
as for any quantum particle in a potential well.
Experiments are being set up to measure precisely the
discrete energy levels of the bouncing neutrons. We have
already shown that strongly coupled chameleons could
have an influence on the energy levels [8], taking benefit
of the fact that neutrons are not subject to the chameleon
screening mechanism. Using earlier experiments we have
set a limit on the chameleon coupling to matter of �<
1011, depicted by the blue line in Fig. 8. Recently the
QBounce collaboration has reported a measurement of
the resonant transitions between low lying quantum states
in agreement with the standard theory, from which they
derived the limit �< 5� 109 [9]. This limit is also re-
ported in Fig. 8.
In [8] we have treated the effect of the chameleon field

on the energy spectrum at first order in perturbation theory.
We will confirm the validity of this previous calculation
with an exact treatment. In the absence of the chameleon,
the bouncing neutron potential is �ðzÞ ¼ mgz with m the
neutron mass and g ¼ 9:806 m s�2 is the acceleration of
gravity in Grenoble. In the presence of the chameleon
interaction, the chameleon field acquires a universal profile
independent of � above the mirror. The interaction poten-
tial is then modified:

�ðzÞ ¼ mgzþ �Vnð�zÞ�n (6)
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with Vn¼ðm=MPlÞ�ðð2þnÞ= ffiffiffi
2

p Þ2=ð2þnÞ and �n¼2=
ð2þnÞ. The stationary Schrödinger equation for the verti-
cal motion (along z) of the bouncing neutron becomes

� ℏ2

2m

d2

dz2
c þ�ðzÞc ðzÞ ¼ Ec ðzÞ; (7)

where c is the wave function [with c ð0Þ ¼ 0 on the
mirror] corresponding to the quantum state of energy E.
Without the chameleon, the unperturbed wave functions of
the neutron in the terrestrial gravitational field are given by
the Airy functions

c kðzÞ ¼ ckAi

�
z

z0
� �k

�
(8)

andEk ¼ E0�k, where ck is a normalization constant,E0 ¼
mgz0 ¼ 0:6 peV and z0 ¼ ð ℏ2

2m2g
Þ13 ¼ 5:87 �m. The values

of �k are the zeros of the Airy function f�kgk¼1;2;... ¼
f2:338; 4:088; 5:521; 6:787; 7:944; 9:023; . . .g.

Treating the chameleon potential as a perturbation, the
shifted energy levels are given by

�Ek ¼ �Vnhc kjð�zÞ�n jc ki; (9)

where jc ki is the kth level wave function. Thus, the shift
on an energy level at first order in perturbation theory can
be obtained using the matrix elements

Okð�Þ ¼ hc kj
�
z

z0

�
�jc ki: (10)

These overlap functions are tabulated in Table I.
Now let us go beyond perturbation theory and compute

the energy eigenvalues exactly in the presence of the cha-
meleon field. The numerical resolution of the Schrödinger

TABLE I. Overlap functions.

n 1 2 3 4 5 6 7 8

�n
2
3

1
2

2
5

1
3

2
7

1
4

2
9

1
5

O1ð�nÞ 1.31 1.22 1.16 1.13 1.11 1.09 1.08 1.07

O2ð�nÞ 1.89 1.59 1.44 1.35 1.29 1.25 1.22 1.19

O3ð�nÞ 2.31 1.85 1.62 1.49 1.40 1.34 1.30 1.26
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FIG. 1 (color online). Calculated wave function for energies
close to E3, for the gravitational field only.
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FIG. 2 (color online). Energy spectrum of the neutron quantum
bouncer as a function of the chameleon coupling �9 ¼ 10�9 �
� calculated at first order in perturbation theory (dashed line)
and with the numerical procedure described in the text (bold
lines).
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equation (for z ¼ 0 to 1) for any energy can be done
numerically (here with Numerov’s method [10]) starting
from c ð0Þ ¼ 0 and c 0ð0Þ ¼ 1. For the energy correspond-
ing to the quantum level k, the wave function converges
toward zero after the k extrema (see Fig. 1). The method to
find the energy levels E�

k is therefore the following:

(i) If the wave function has less than k extrema, it
cannot be the solution of the equation for E�

k.

(ii) If the wave function has at least k extrema, and if
after them it has another extremumwithout changing
sign, then E< E�

k and the wave function diverges.

(iii) If the wave function has k extrema, and if it con-
verges towards zero, then E ¼ E�

k.

(iv) If the wave function has at least k extrema, and if
after them it changes sign, thenE> E�

k and thewave

function either diverges, or has another extremum.
Applying this dichotomic method, we can stop the numeri-
cal calculation very quickly and converge towards the
value of E�

k. This allows us to find the energy levels E�
k ¼

E0�
�
k by dichotomy for the chameleon correction to the

potential.
We have solved numerically Schrödinger’s equation for

�ðzÞ ¼ mgz and obtained the numerical solutions for the
zeros �k of the Airy function Ai using Numerov’s method.
An integration step of 0:01 �m and a z range of 100 �m
gives a 10�5 precision on �k. We have compared the energy
shifts predicted by perturbation theory to the numerical
solution of the 1D-Schrödinger equation (see Fig. 2), for
the first four energy levels of the bouncing neutron.

The validity of the perturbation analysis breaks down for
�> 1010 and full numerical results are compulsory. For
�< 1010 the accuracy of the perturbation theory is good
enough to estimate the limits of chameleon couplings,
which validates the previous analysis [8]. Using our nu-
merical results, we are able to calculate the shift induced
by the chameleon potential on the energy of transition (see
Fig. 3). In GRANIT, the gap between two energy states

such as k ¼ 3 and k ¼ 1 will be precisely measured with
an estimated accuracy of 0.01 peV compared to the nomi-
nal energy E3 � E1 ¼ 1:91 peV [11]. By requiring that the
chameleonic shift does not exceed the expected sensitivity,
we get a bound on the coupling � which depends on n.
Figure 8 plots the part of the parameter space which will be
covered by the GRANITexperiment. Coupling strengths in
the range � � 108 are within reach of the expected sensi-
tivity of GRANIT. The precision of the quantum levels is
set by the observation time according to Heisenberg’s
relation. Ultimately, the precision will be limited by the
neutron lifetime and the associated relative precision is
about 10�7. In this case, for an experiment storing neutrons
in quantum states for several minutes, coupling strengths of
� � 103 could be detected.

IV. NEUTRON INTERFEROMETRY

Neutron interferometry provides a second method to
probe the chameleon field. It has been recently proposed
to develop a Loyd’s type interferometer with very cold
neutrons which can be sensitive to the chameleon potential
gradient in the vicinity of a mirror [12]. Such a method
could in principle be sensitive to chameleon couplings
down to � ¼ 107, but the cold neutron interferometer
technique has yet to be developed. As an alternative, we
propose to use triple Laue-case interferometers with slow
neutrons that have been operated routinely for decades in
several neutron facilities.
The sketch of a typical setup is depicted in Fig. 4. A

monochromatic neutron beam with a wave number of k ¼
23 nm�1 is split into two coherent beams using a mono-
crystal silicon plate. Then part of these two beams are
recombined using two additional similar parallel plates.
The neutron detector measures the flux resulting from the
interference of neutrons going through path I and path II. A
phase flag (usually an aluminum plate with variable angle)
is introduced in path II to record the interference pattern:
the neutron flux measured by the detector is an oscillating
function of the phase flag angle. A sample is introduced in
path I. Measuring the interference pattern with and without
the sample, one can extract the phase shift of the sample.
For the purpose of detecting chameleons, the sample

will consist of a cell with parallel plates normal to the
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FIG. 3 (color online). Calculated energy shift due to chame-
leon in the transition 3 ! 1.

FIG. 4 (color online). Sketch of the neutron interferometer
setup.
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neutron beam as shown in Fig 4. We will assume that the
transverse dimension of the cell is infinite and denote the
distance between the plates by 2R. For numerical studies
we will set 2R ¼ 1 cm as in the experiment performed at
NIST [13]. When the cell is filled by no gas, i.e. in vacuum,
a chameleon bubblelike profile ’ðxÞ, �R< x < R, will
appear in the cell, inducing the potential �m=MPl’ðxÞ
for the neutrons. One can then show (see e.g. [14]) that
the phase shift due to the chameleon bubble is given by

�� ¼ m

kℏ2

Z R

�R
�

m

MPl

’ðxÞdx: (11)

We will calculate the chameleon bubble integralR
’ðxÞdx and show that it can be suppressed when intro-

ducing a gas at moderate pressure in the sample cell. The
chameleon profile ’ðxÞ in the sample cell satisfies the 1D
chameleon equation,

d2’

dx2
¼ V 0ð’Þ þ �

MPl

�; (12)

where � is the mass density of the gas inside the sample
cell. We will assume the boundary condition ’ð�RÞ ¼
’ðRÞ ¼ 0, which proves to be valid when ’c � ’0 where
’c is the field value inside the plate bulk and ’0 ¼ ’ð0Þ is
the maximum of the field in the sample cell.

The problem in the case of perfect vacuum in the cell
� ¼ 0 has been addressed in [15]. They found an analytical
form for the chameleon field profile:

’ðxÞ ¼ �ðR�Þ2=nþ2

�
nþ 2

2
ffiffiffi
2

p ½1� ðz=RÞ2�
�
2=nþ2

(13)

which is exact for n ¼ 2 and valid with an accuracy better
than 4% for n > 2. We plot the vacuum solution (13) in
Fig. 5 in the case 2R ¼ 1 cm. It is apparent that the
chameleon field forms bubbles in vacuum. We have also

represented the field profile in 2D obtained numerically in
Fig. 6 when the transverse dimension of the chamber is
finite. We find that bubbles still form in this geometry.
Let us now elaborate in the case � > 0. First we trans-

form Eq. (12) into

dz

d’
¼ 1ffiffiffi

2
p

�
Vð’Þ � Vð’0Þ þ ��

MPl

ð’� ’0Þ
��1=2

: (14)

The maximum’0 can be calculated by the implicit relationZ ’0

0

dz

d’
d’ ¼ R: (15)

Then one can evaluate the bubble integralZ R

�R
’ðxÞdx ¼ 2

Z ’0

0
’

dz

d’
d’

¼ ffiffiffi
2

p Z ’0

0

’d’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð’Þ � Vð’0Þ þ ��

MPl
ð’� ’0Þ

q :

(16)

Let us now apply these results to the case of the Ratra-
Peebles potential for chameleons (2). We define

Knð�Þ ¼
Z 1

0

u1þn=2duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� un þ n�unðu� 1Þp ; (17)

Jnð�Þ ¼
Z 1

0

un=2duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� un þ n�unðu� 1Þp : (18)

Furthermore with y0 ¼ ’0=�, Eq. (15) becomes

ffiffiffi
2

p
R� ¼ yn=2þ1

0 Jn

�
��

MPl�
3

ynþ1
0

n

�
: (19)
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FIG. 5 (color online). Chameleon bubble profile in vacuum
between two plates separated by a distance of 1 cm.
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This is an implicit equation determining the bubble maxi-
mum y0. Then the bubble integral (16) can be expressed as
a function of y0 as

Z R

�R
’ðxÞdx � ffiffiffi

2
p

yn=2þ2
0 Kn

�
��

MPl�
3

ynþ1
0

n

�
: (20)

Two limiting cases can be considered: the low pressure and
high pressure cases.

With perfect vacuum in the cell � ¼ 0, Eq. (19) is not
implicit anymore and the bubble integral (20) can be ex-
pressed exactly as

Z R

�R
’ðxÞdx ¼ ffiffiffi

2
p � ffiffiffi

2
p

R�

Jnð0Þ
�nþ4

nþ2
Knð0Þ: (21)

In the high pressure case, when the range of the chame-
leon (5) becomes smaller than the cell size R, the field ’
settles at the minimum of the potential V 0

effð’Þ ¼ 0.
Indeed, by inspection, Eq. (19) shows that the argument
of the Jn function approaches unity for high �. Then the
bubble integral (20) at high pressure becomes

Z R

�R
’ðxÞdx � 2R�

�
nMPl�

3

��

�
1=nþ1

: (22)

This result is valid as long as the gas does not become a
heterogeneous medium for chameleons, which happens at
large coupling and/or large pressure. We will reassess this
calculation for the heterogeneous case at very large cou-
pling in the following section.

To calculate the phase shift (11) due to the chameleon
bubble in the intermediate pressure regime, when the cha-
meleon range is similar with the size of the cell, we have
solved numerically Eqs. (19) and (20). Assuming helium in
the cell we find numerically

��

MPl�
3
¼ 23�9

P

1 mbar
; (23)

where P is the pressure of the gas (helium) and �9 ¼
10�9�. The result is shown in Fig. 7. Since the typical
sensitivity of neutron interferometers is �� ¼ 1 deg ¼
17 mrad, this technique can probe chameleon couplings
in the range 108–109 depending on the value of the Ratra-
Peebles index n. Within this range, it is possible to sup-
press the chameleon bubble if the cell is filled with helium
with a pressure as low as 10�1 mbar. This feature makes it
possible to switch on and off the chameleon bubble. Since
almost all neutron interferometer experiments are carried
out at atmospheric pressure, a dedicated experiment
searching for a ‘‘phase shift of the vacuum’’ is needed.
The sensitivity of such an experiment is depicted by the
green zone labeled ‘‘neutron interferometry’’ in Fig. 8
assuming a sensitivity of �� ¼ 1 deg and a cell size of
2R ¼ 1 cm.

V. CHAMELEON BUBBLES

When the coupling and/or the density of a gas becomes
high enough, the homogeneous approximation which we
have used so far, i.e. assuming that the density of matter is
supposed to be homogeneous, does not work anymore. The
substructure of the gas at the level of each atom must be
taken into account. A similar analysis has been done in [16].
Here we provide a more thorough analysis of the nonlinear
phase when the chameleon feels the atomic structure. We
then show that this alters the predictions of neutron inter-
ferometry and reduces the sensitivity of such experiments.
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A. The homogenous approximation

The effective potential in the presence of matter is
given by

Veffð’Þ ¼ Vð’Þ þ �
’

MPl

�: (24)

When the density can be considered to be homogeneous,
the effective potential has a minimum determined by the
macroscopic density ��,

�’ ¼
�
n�4þnMPl

� ��

�
1=ðnþ1Þ

(25)

when �� is the averaged density of the gas considered as a
homogeneous medium. In the case of a gas of particles, the
density is not homogeneous and can be written as

� ¼ X
i

mnucl�ðx� xiÞ; (26)

where we have approximated the density inside the nuclei
as a Dirac function. The mass mnucl is the mass of the
nuclei. Upon averaging over the motion of the atoms we
have h�i ¼ �� the macroscopic density of the gas. The
microscopic Klein-Gordon equation is

� €’þ �’ ¼ V0ð’Þ þ �

MPl

�; (27)

where the density is time dependent due to the motion of
the atoms. Expanding around �’ the Klein-Gordon equation
becomes

�� €’þ ��’ ¼ V 0ð �’þ �’Þ þ �

MPl

� (28)

whose averaged solution is the homogeneous �’. The pro-
file of �’ is due to the presence of nuclei where the density
is larger than the homogeneous one obtained by averaging
over the motion of the nuclei.

The effective potential can be expanded around the
homogeneous field �’ as

Veffð �’þ �’Þ ¼ Veffð �’Þ þ�4

�
�

�’

�
nX
p>1

cp

�
�’

�’

�
p

þ �

MPl

ð�� �’þ ���’Þ; (29)

where cp ¼ ð�1Þp nðnþ1Þ...ðnþ1�pÞ
n! . The dominant term in

�’= �’ is the mass term for p ¼ 2 as long as �’ & �’which
guarantees that higher order terms become less and less
relevant. Moreover, we shall require that the model is
perturbatively valid, i.e. that the self-coupling of the cha-
meleon is small. This is valid when the term in �’4 has a
small coupling, which occurs when �’ * �. This corre-
spond to the densities

� & �pert; (30)

where

�pert ¼ n�3MPl

�
: (31)

In this regime, we can neglect the chameleon self-
interactions and safely reduce the dynamics of ’ to the
one of a massive scalar field. As a result, the Klein-Gordon
equation for �’ reduces to

�� €’þ ��’�Mð ��Þ2�’ ¼ �
��

MPl

; (32)

where �� is the deviation from the averaged density. We
can single out one atom and its surrounding cell where no
other atom is present:

� ¼ mnucl�ðx� xjÞ þ
X
i�j

mnucl�ðx� xiÞ (33)

and the averaged�X
i

mnucl�ðx� xiÞ
�
¼ �N � 1

V
mnucl; (34)

where �N is the (very large) number of atoms in the gas and
V its volume. As �N � 1, this is equivalent to �� and there-
fore in a cell around one particular atom and working in
the coordinate frame where the atom is fixed, the Klein-
Gordon equation becomes time independent:

��’�Mð ��Þ2�’ ¼ �
mnucl

MPl

�: (35)

In fact, for all the pressure and � that we consider, we have
Mð ��ÞD � 1 where D is the interatomic distance. This
implies that the Klein-Gordon equation becomes

��’ ¼ �
mnucl

MPl

�: (36)

This description is valid as long as the value of �’ * j�’j.
This constraint is the strongest at a distance equal to the
radius of the nuclei Rnuc. The homogeneous approximation
is thus valid when

�’ * 2�MPl�N; (37)

where �N is the Newtonian potential at the surface of the
nucleus �N ¼ mnucl

8�M2
Pl
Rnucl

, where mnucl is the mass of the

nucleus. When this is the case the nuclei are not screened
and the homogeneous approximation is valid. When this is
not the case anymore, the solution cannot remain homoge-
neous and chameleon bubbles form as we shall see in the
following section.
The nuclei are not screened provided

� & �screen; (38)

where

�screen ¼ n�4þn

Mn
Pl

1

�ð2��nuclÞnþ1
: (39)
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When this is the case, the chameleon field outside the
nucleus is Coulomb-like with

’ðrÞ ¼ ’G � �mnucl

MPl

1

4�r
(40)

for distances much less than the large range of the chame-
leon force. We have represented in Fig. 9 the different
regimes as a function of the coupling � and the gas
pressure. For low enough pressures, the gas becomes het-
erogeneous at large coupling and the treatment presented
here is valid. On the other hand, for large pressures, typi-
cally larger than 1 mbar, the chameleon becomes largely
self-coupled before the gas can be considered to be het-
erogeneous and new methods beyond the one presented
here must be invoked. This is left for future work.

B. Bubble formation

When the coupling is too large and the nuclei are
screened, the field cannot be considered to be homogene-
ous. It becomes bubblelike between the nuclei with a shape
akin to the 1D profile of chameleons between two plates.
Immediately outside the nucleus the matter density cannot
be taken to be the mean field one anymore and it effectively
vanishes implying that

d2’

dr2
þ 2

r

d’

dr
¼ �n

�nþ4

’nþ1
(41)

in spherical coordinates as long as the influence of the
other nuclei cannot be felt. The solution to this equation
can be well approximated using the two regions

Rnucl < r � R?;
d2’

dr2
þ 2

r

d’

dr
¼ 0; (42)

where R? will be determined later and

r > R?

d2’

dr2
¼ �n

�nþ4

’nþ1
: (43)

This last equation is only valid up to r ¼ D corresponding
to the average interatomic distance where the field is
required to have a maximum before falling towards the
value ’nuc at the neighboring nuclei.
We find the solution outside the nucleus,

Rnucl < r � R? ’ ¼ B� C

r
(44)

and for R? � r � D

Z ’

’?

duun=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Gun

p ¼ ffiffiffi
2

p
�ðnþ4Þ=2ðr� R?Þ; (45)

where G ¼ ’02
G

2�nþ4 � 1
’n
?
. The maximum at r ¼ D is deter-

mined by its value

’n
D ¼ G�1 (46)

implying that

Z 1

’?=’D

duun=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� un

p ¼ ffiffiffi
2

p �ð4þnÞ=2

’1þn=2
D

ðD� R?Þ: (47)

Assuming that ’? � ’D and D � R? we find that

’D �
� ffiffiffi

2
p

D�ð4þnÞ=2

Jnð0Þ
�
2=ðnþ2Þ

: (48)

Matching at r ¼ Rnucl we find that

B ¼ ’nucl þ C

Rnucl

; (49)

where ’nucl ¼ ’ðRnuclÞ. The field evolves steeply outside
the nuclei and therefore ’nucl � C

Rnucl
implying that

’? � C

Rnucl

(50)

as long as R? � Rnucl. Now R? is defined by the condition
that ��������2r d’

dr

��������r¼R?

¼ n
�4þn

’nþ1
?

(51)

leading to

R3
? � 2jCjnþ2

nRnþ1
nucl �

4þn
: (52)

The solution between Rnucl and R? is such that the kinetic
energy dominates over the potential energy and therefore

’02
? � 2�4þn

’n
D

implying that

P / mbar

-710 -610 -510 -410 -310 -210 -110 1

β

610

810

1010

1210

NON PERTURBATIVE
HOMOGENEOUS

HETEROGENEOUS

neutron interferometry reach

FIG. 9 (color online). The different regimes of the chameleon
model in a gas (here helium). For low enough couplings and
pressure, the gas can be considered as homogeneous. Conversely
for large pressures and couplings, the gas becomes heteroge-
neous. The validity of the perturbative approximation in the
homogeneous case is confirmed at low enough pressure.
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C � R2
?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�4þn

’n
D

s
: (53)

Combining with (52), we find that the radius R? behaves
like

R? 	D

�
Rnucl

D

�ðnþ1Þ=ð2nþ1Þ
(54)

up to irrelevant constants. When D � Rnucl, we have that

R?=Rnucl 	 ðRnucl

D Þn=ð2nþ1Þ � 1 and R? � D validating all

the approximations. Hence, we have a complete descrip-
tion of the chameleon field outside the nuclei which is
independent of the details of the chameleon profile inside
the nuclei. On the other hand, it depends on the typical size
of the nuclei Rnucl. The chameleon profile in the gas
comprises bubbles between all the atoms. Each nucleus
is surrounded by a small region of radius R? wherein the
field behaves like a free scalar field. Outside this shell, the
field behaves like a 1D bubble whose size is determined by
the interatomic distance. In particular in the interval be-
tween R? and D, the chameleon profile is universal,

’ðrÞ � �

�ð2þ nÞffiffiffi
2

p �r

�
2=ð2þnÞ

; (55)

valid when R? � r � D. For larger distances and there-
fore well outside the shell of radius R? the feel converges
to a constant value which depends on the gas pressure. We
have represented in Fig. 10 the exact profile of chameleons
in 2D when five atoms are in a box. We can clearly see that
the bubblelike structure emerges.

C. Neutron interferometry and bubbles

The result on neutron interferometry and the phase of
neutrons traversing a chamber where the chameleon has a

nontrivial profile between the walls is only valid as long
as the gas does not become a heterogeneous medium for
chameleons, something which happens at large coupling
and/or large pressure. In this case a good approximation
for the field profile is that it behaves in a bubblelike fashion
between the atoms of the gas. We have seen that the field
profile is steep in the intervalR? � r � D. Apart from this
small region around the atoms and therefore between the
atoms, the field is nearly constantwith a value determinedby

’D �
� ffiffiffi

2
p

D�ð4þnÞ=2

Jnð0Þ
�
2=ðnþ2Þ

; (56)

where2D is the average interatomic distance. In this regimes
we have

Z R

�R
’ðxÞdx � 2R�

� ffiffiffi
2

p
D�ð4þnÞ=2

Jnð0Þ
�
2=ðnþ2Þ

(57)

which is reduced by a power ðD=RÞ2=ðnþ2Þ compared to the
single bubble case going fromonewall of the chamber to the
other one. This prefactor follows directly from the growth

rate of bubbles in r2=ðnþ2Þ, i.e. the bubbles are much smaller
as they only grow over a distance D instead of the whole
length R. As we have obviously D � R, the sensitivity of
neutron interferometry in the heterogeneous case becomes
extremely poor preventing one to test extremely coupled
chameleons. We have represented in Fig. 9 the reach of a
typical neutron interferometry experiment which lies within
the homogeneous region where the sensitivity is maximal.

VI. CONCLUSION

Chameleons are scalar fields which are candidates to
model the acceleration of the expansion of the Universe.
Cosmologically, they lead to an equation of state which is
close to w ¼ �1 and a scalar interaction which would be
detectable by laboratory and Solar System tests of gravity if
the scalar forcewere not screened in dense environments. In
this paper we have presented two methods using neutrons
which could probe the existence of chameleons experimen-
tally. The first one involves the chameleon field over a plane
mirror and the resulting perturbation of the neutron energy
levels in the terrestrial gravitational field. The second one
uses the quantum properties of neutrons too and interfer-
ometry where a sample leading to a chameleon bubble
would shift the interference patterns. In both cases the
neutrons are not screened. In the first case, the neutron
wave function in the terrestrial gravitational field is wide
enough to prevent screening while in the second case free
nonrelativistic neutrons have also a large enough Compton
wavelength to evade screening. This makes neutrons ideal
probes of new screened interactions such as the chameleon
one. However, we have found that present day sensitivities
of both experiments require low enough pressures and large
enough couplings of the chameleon to matter, typically
� * 108. In this regime, it could be that chameleons

0

1

2

3

4

5

6

0

1

2

3

4

5

6

x [mm]
-5 -4 -3 -2 -1 0 1 2 3 4 5

y 
[m

m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

0

1

2

3

4

5

6

FIG. 10 (color online). The chameleon bubbles in 2D where
the field profile is bubblelike in a square box and five nuclei
inside the gas create smaller bubbles.
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actually do not see gases as homogeneous media but a
large collection of individual atoms (and nuclei). We have
analyzed this situation and shown that above a certain
matter dependent coupling, the chameleon profile in a
gas is not homogeneous anymore but bubblelike. This
drastically affects the neutron interferometry sensitivity.
Fortunately, for pressures less than say 1 mbar for helium,

neutron interferometry can be sensitive to chameleons with
a coupling less than� & 1010 which is within the region of
parameter space not already excluded experimentally. As a
result, we expect that both the forthcoming GRANIT ex-
periment for bouncing neutrons and the newly designed
interferometry experiments will give us interesting results
on chameleons at strong coupling.
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