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We examine models in which the accelerated expansion of the Universe is driven by a scalar field

rolling near an inflection point in the potential. For the simplest such models, in which the potential is of

the form Vð�Þ ¼ V0 þ V3ð���0Þ3, the scalar field can either evolve toward � ¼ �0 at late times,

yielding an asymptotic de Sitter expansion, or it can transition through the inflection point, producing a

transient period of acceleration. We determine the parameter ranges which produce each of these two

possibilities and also map out the region in parameter space for which the equation of state of the scalar

field is close to �1 at all times up to the present, mimicking �CDM. We show that the latter can be

consistent with either eternal or transient acceleration. More complicated inflection point models are also

investigated.
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I. INTRODUCTION

Cosmological data [1–7] indicate that roughly 70% of
the energy density in the Universe is in the form of a
negative-pressure component, called dark energy, with
roughly 30% in the form of nonrelativistic matter
(including both baryons and dark matter). The dark energy
component can be parametrized by its equation of state
parameter, w, defined as the ratio of the dark energy
pressure to its density:

w ¼ p=�: (1)

A cosmological constant, �, corresponds to the case
w ¼ �1 and � ¼ constant.

While a model with a cosmological constant and
cold dark matter (�CDM) is consistent with current ob-
servations, there are many realistic models of the Universe
that have a dynamical equation of state. For example, one
can consider quintessence models, with a time-dependent
scalar field, �, having potential Vð�Þ [8–11]. (See
Ref. [12] for a review).

In order to produce a present-day value ofw close to�1,

we require p � ��, so that _�2 � Vð�Þ at present. One
way to achieve this is for � to be located in a very flat
portion of the potential, so that�

1

V

dV

d�

�
2 � 1: (2)

Several previous papers have investigated such models in
which Eq. (2) is satisfied when the potential is close
to linear [13,14] or close to a local maximum [15] or
minimum [16].

Here we examine the next higher-order extension of this
idea: quintessence with a scalar field evolving near an
inflection point of the potential. Scalar field models with
an inflection point in the potential have been investigated
previously in connection with inflation [17–31] and have
been dubbed ‘‘inflection point inflation.’’ The major

difference between these inflation models and the inflec-
tion point quintessence models we examine here is that
inflation takes place in a scalar-field-dominated universe,
while for the case of dark energy, we are interested in the
evolution of the quintessence field at low redshift, when the
Friedman equation must include both the scalar field and
nonrelativistic matter. Thus, results from inflection point
models for inflation will not necessarily carry over into
inflection point quintessence.
In investigating the evolution of inflection point quin-

tessence, there are two important questions to address. The
first is whether the scalar field rolls slowly enough near the
inflection point to generate the observed value of w near
�1, for consistency with the observations. The second
issue is whether � evolves to a constant value at the
inflection point, generating a model for which w ! �1
asymptotically, and yielding a model essentially indistin-
guishable from a cosmological constant, or whether� rolls
through the inflection point, so that w deviates away from
�1 eventually. The latter possibility would produce a
transient stage of acceleration, rather than an asymptotic
de Sitter evolution. This is of interest because an eternally
accelerating universe presents a problem for string theory,
inasmuch as the S matrix in this case is ill defined [32,33].
Consequently, some effort has gone into the development
of models in which the observed acceleration is a transient
phenomenon [34–43]. Our model represents another ex-
ample of this sort of transient acceleration for the case in
which � evolves through the inflection point.
In the next section, we present the general models under

discussion. Unlike the linear and quadratic potentials ex-
amined in Refs. [13–16], the simplest version of inflection
point quintessence, with a cubic term in the potential, does
not yield a simple analytic expression for the evolution, so
we solve it numerically in Sec. II A and determine the
regions in parameter space for which the model produces
transient or eternal acceleration. We also determine the
range of parameters for which w � �1 at all times up to
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the present. In Sec. II B, we examine other inflection
point models, demonstrating that some of these do have
analytic descriptions for their behavior. Our conclusions
are summarized in Sec. III.

II. THE INFLECTION POINT
QUINTESSENCE MODEL

We assume that the dark energy is given by a minimally
coupled scalar field, with equation of motion

€�þ 3H _�þ dV

d�
¼ 0; (3)

where the dot indicates the derivative with respect to time,
and H is the Hubble parameter, given by

H2 ¼
�
_a

a

�
2 ¼ �� þ �M

3
; (4)

where we assume a flat Universe and consider only times
sufficiently late that the expansion is dominated by matter
and dark energy. (We take ℏ ¼ c ¼ 8�G ¼ 1 throughout).
In Eq. (4), the scalar field energy density is

�� ¼ 1

2
_�2 þ Vð�Þ; (5)

and the matter energy density is

�M ¼ �M0a
�3: (6)

The scalar field pressure is

p� ¼ 1

2
_�2 � Vð�Þ; (7)

and the equation of state parameter, w, is given by Eq. (1).
We will consider the general case of potentials with an

inflection point in the potential. The simplest example of
such a model is a potential of the form

Vð�Þ ¼ V0 þ V3ð���0Þ3; (8)

which has an inflection point with dV=d� ¼ 0 at � ¼ �0.
This is the potential that we will investigate in the next
section. It is not only the simplest inflection point quintes-
sence model, but as we shall see, it also produces some of
the most interesting behavior.

The potential in Eq. (8) can be generalized in several
ways. For instance, one can add linear and quadratic terms
to obtain

Vð�Þ ¼ V0þV1ð���0ÞþV2ð���0Þ2þV3ð���0Þ3:
(9)

It is also possible to consider more general inflection
points produced by models with other powers of � in the
potential, i.e., potentials of the form

Vð�Þ ¼ V0 þ Vnð���0Þn: (10)

We will examine the models given by Eqs. (9) and (10) in
Sec. II B.
Since we are interested in the behavior of the scalar

field near the inflection point, we will take Eqs. (8)–(10)
to refer only to the behavior of Vð�Þ in the region near the
inflection point and make no assumptions about what the
rest of the potential looks like. Thus, our results will be
more general than if we had assumed that these were the
exact forms for the potential for all values of �.
Furthermore, the fact that these potentials are not bounded
from below as � ! �1 is not pathological, since we do
not assume that Eqs. (8)–(10) apply in this limit.

A. The cubic inflection point model

Consider first the potential given by Eq. (8). Equation (3)
becomes

€�þ 3H _�þ 3V3ð���0Þ2 ¼ 0: (11)

The evolution of� is specified by four parameters, namely

the initial values of � and _�, and the values of V0 and V3.
However, some simplifications are possible.
We first note that the value of �0 has no effect on any

physically observable quantities, so we can redefine the
field to take �0 ¼ 0, and Eq. (11) becomes

€�þ 3H _�þ 3V3�
2 ¼ 0; (12)

with H given by

H2 ¼ 1

3

�
�M0a

�3 þ 1

2
_�2 þ V0 þ V3�

3

�
: (13)

In order for the models examined here to be consistent with
current observations, they must closely resemble �CDM,
which is possible only if V0 corresponds to the observed
present-day dark energy density. Having fixed V0, we can
completely specify the models by the value of V3=V0. We

will further assume for simplicity that _�i ¼ 0; i.e., the field
is initially at rest. For many models of interest the damping

term in Eq. (3) will tend to drive _� to 0 at early times,
giving the initial condition we consider here.
Hence, we are left with a model that is completely

specified by V3=V0 and by the initial value of the scalar
field, �i. We have numerically integrated Eqs. (12) and
(13) to determine the behavior of �ðtÞ as a function of
V3=V0 and �i. We find two distinct possible behaviors
for �: the field can either evolve past the inflection point
at � ¼ 0, or else it can evolve smoothly to � ¼ 0 as
t ! 1. These two different types of behavior are shown
in Fig. 1. The two �ðtÞ trajectories in this figure both have
V3=V0 ¼ 1, but slightly different initial values of �,
resulting in nearly identical evolution until the field ap-
proaches the inflection point, where the trajectories diverge
to give very different asymptotic behaviors.
We find that for fixed �i, a sufficiently large value

of V3=V0 causes the scalar field to evolve through the
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inflection point, while for smaller values of V3=V0 the
field evolves asymptotically to � ¼ 0 as t ! 1. This is
illustrated in Fig. 2. The region above the solid (black)
curve gives a field that evolves through the inflection point,
while the region below this curve has � ! 0 as t ! 1.
Note, however, that for sufficiently small values of V3=V0,
the field never transitions through the inflection point for
any value of �i so the solid curve becomes a horizontal
line for large �i. We can define a critical value, ðV3=V0Þc,
below which evolution through the inflection point be-
comes impossible. Our numerical results indicate that
0:77< ðV3=V0Þc < 0:78.

Note that a similar study was undertaken by Itzhaki and
Kovetz [25], who explored the asymptotic evolution of the
scalar field in inflection point inflation. Their study differs
from ours in that we include nonrelativistic matter, which
alters the evolution ofH in Eq. (12). However, we find that
matter is subdominant as � ! 0 for the model parameters
lying along the transition regime defined by the black curve
in Fig. 2. Hence, we would expect our results to agree with
Ref. [25] with regard to the existence of a critical value of
V3=V0 below which the field can never cross the inflection
point, and Itzhaki and Kovetz do, indeed, observe such
behavior. They find ðV3=V0Þc ¼ 0:7744, in agreement with
our results for the quintessence model.
The results displayed in Figs. 1 and 2 show that the

inflection point quintessence model can lead to two very
different future evolutionary paths for the Universe. When
� asymptotically goes to zero, we are left with a model
essentially identical to �CDM, with a de Sitter evolution.
However, the second possibility, in which � evolves
through the inflection point, yields a model in which the
accelerated expansion of the Universe is a transient phe-
nomenon. As noted earlier, we make no assumptions about
Vð�Þ far from the inflection point, so the future evolution
of the Universe in this case will depend on the particular
form for Vð�Þ with �< 0.
Clearly the first possibility can be made consistent with

the observations, since the current observational data is
well fit by �CDM. A more interesting question is whether
the models with transient acceleration, in which � passes
through the inflection point, can be made consistent with
the observations. Here we demonstrate a stronger result:
models with transient acceleration can mimic�CDM at all
times up to the present. In our model, w ¼ �1 initially,

since the field begins with _� ¼ 0. As the field begins to roll
down the potential, w increases away from �1. In Fig. 2
we have mapped out the regions in parameter space for
which �1<w<�0:95 at all times up to the present
(which we take to correspond to �� ¼ 0:7); this is the

region below the green dashed curve. The region below the
red dotted curve defines the set of parameters for which
�1<w<�0:9 at all times up to the present. Thus, the
region between the black curve and the green curve is
essentially indistinguishable from �CDM on the basis of
current observations, and yet it results in an evolution in
which the current accelerated phase of the expansion will
eventually come to an end.

B. Other inflection point models

Although the simplest inflection point potential is the
cubic potential considered in the previous section, more
general models of the form

Vð�Þ ¼ V0 þ Vn�
n; n odd;

Vð�Þ ¼ V0 þ Vnsgnð�Þ�n; n even;
(14)
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FIG. 2 (color online). For the scalar field potential Vð�Þ ¼
V0 þ V3�

3, the curves divide regions with different behaviors
for � as a function of the initial value of the field, �i, and the
ratio of V3 to V0. Above and to the right of the black (solid)
curve, the field evolves through the inflection point at � ¼ 0,
while below and to the left of this curve, � ! 0 as t ! 1. The
regions below the green (dashed) and dotted (red) curves closely
mimic �CDM. The region below the green curve has an equa-
tion of state parameter for � satisfying �1<w<�0:95 at all
times up to the present, while the region below the red curve
corresponds to �1<w<�0:9.
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FIG. 1 (color online). The evolution of the scalar field � as a
function of time t for the potential Vð�Þ ¼ V0 þ V3�

3, with
V3=V0 ¼ 1. Black (solid) curve is for �i ¼ 1:76; red (dashed)
curve is for �i ¼ 1:78.
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are also possible. Models of this sort were discussed briefly
in Ref. [25] in the context of inflation.

Consider first the case n ¼ 2. The evolution of a
quintessence field in a potential of the form

V ¼ V0 þ V2�
2 (15)

was analyzed in Ref. [16], based on the results of Ref. [15],
for a universe containing both matter and a scalar field, in
the limit where

1

V

dV

d�
� 1: (16)

In this limit, two behaviors are possible, based on the value
of ð1=VÞðd2V=d�2Þ at the minimum of the potential. When
ð1=VÞðd2V=d�2Þ< 3=4 at the minimum of the potential,
the scalar field asymptotically approaches 0, while for
ð1=VÞðd2V=d�2Þ> 3=4, the field oscillates around the
minimum [16].

The n ¼ 2 case of Eq. (14) is identical to Eq. (15) for
�> 0, so the results of Ref. [16] carry over directly to
the inflection point case: for ð1=VÞðd2V=d�2Þ< 3=4 the
scalar field will never cross the inflection point, while
for ð1=VÞðd2V=d�2Þ> 3=4 the field will evolve across
the inflection point and the accelerated expansion will be
transient.

In terms of the parameters V0 and V2 in Eq. (14), the
condition for evolution through the inflection point
becomes

V2

V0

>
3

8
: (17)

Conversely, when Eq. (17) is not satisfied, the scalar
field evolves to � ¼ 0 asymptotically. The ‘‘slow-roll’’
condition for the results of Ref. [16] to be valid [Eq. (16)]
will be satisfied for

2V2�

V0

� 1: (18)

Note, however, that as � ! 0, Eq. (18) is always eventu-
ally satisfied, so Eq. (17) provides the correct condition for
evolution through the inflection point for arbitrary initial
values of �; we have verified this result numerically.

Thus, the evolution of � for the n ¼ 2 case of Eq. (14)
qualitatively resembles the results shown in Fig. 2 for the
cubic inflection point potential when the latter has large�i,
albeit with a different critical value for Vn=V0. Thus, while
the n ¼ 2 case is somewhat unnatural, it does provide
insight into the qualitative behavior of the more interesting
n ¼ 3 case.

However, the behavior of these two models is quite
different for small �i. In this case, transition through
the inflection point for n ¼ 3 requires increasingly large
values of V3=V0 as �i ! 0, while for n ¼ 2 the critical
value for V2=V0 remains constant for all �i.

Now consider larger values of n. The evolution of scalar
field potentials of the form

Vð�Þ ¼ Vn�
n (19)

for the case of a matter-dominated expansion was previ-
ously examined in Ref. [10]: for n > 6, the field evolves
smoothly to � ! 0 as t ! 1 (see also the discussion in
Ref. [44]). In the case considered here, we have an addi-
tional contribution to H in Eq. (3): the contribution of the
scalar field energy density, which now also includes the
additional constant term, V0, in the scalar field potential.
However, this additional contribution to the friction term in

Eq. (3) can only serve to decrease _� as the scalar field rolls
toward the inflection point, making it more difficult for
the field to reach � ¼ 0. Thus, we can conclude from the
results of Ref. [10] that inflection point potentials of the
form given in Eq. (14) with n > 6 never transition through
the inflection point.
The cases n ¼ 4, 5, 6 are neither as interesting as n ¼ 3

nor as amenable to analytic solution as n ¼ 2 or n > 6,
so we will not discuss them in detail here. However,
numerical integration indicates that, like the n ¼ 3 case,
they can yield either evolution of the scalar field through
the inflection point, or attraction to the inflection point,
depending on the model parameters.
The simple cubic inflection point model given by Eq. (8)

can also be generalized by adding linear and quadratic
terms as in Eq. (9). Note that the quadratic term can be
eliminated by a suitable translation of�, and we can set the
corresponding (new) value of �0 to zero as in the previous
section, to yield

Vð�Þ ¼ V0 þ V1�þ V3�
3: (20)

The evolution of�will then depend on the sign ofV1. For
V1 > 0, the potential has no local minima, and the field will
always transition through the inflection point at � ¼ 0.
However, for sufficiently small V1, one can still have a
model arbitrarily close to �CDM. Thus, in this variant of
inflection point quintessence, the accelerated expansion of
the Universe is always a transient phenomenon.
On the other hand, if V1 < 0, the potential develops a

local minimum at � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�V1=3V3

p
and a local maximum

at � ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�V1=3V3

p
. Depending on the parameter values

and initial conditions for �, it is possible for the field to
transition through the local maximum, so that the accel-
erated expansion of the Universe is transient, or to get
trapped in the local minimum, producing eternal accelera-
tion. This behavior resembles the evolution of the scalar
field in the Albrecht-Skordis model [45], in which the
potential is given by the product of an exponential and a
polynomial, producing local minima in Vð�Þ. In the
Albrecht-Skordis model, the accelerated expansion of the
Universe can be either permanent or transient, depending
on the model parameters [34].
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III. CONCLUSIONS

Inflection point quintessence represents an interesting
new model for the dark energy that drives the accelerated
expansion of the Universe. Even the simplest form of this
model, with the potential given by Eq. (8) and the scalar
field initially at rest, displays a variety of intriguing behav-
iors. For large initial values of �, the asymptotic behavior
of � becomes independent of �i and depends only on
V3=V0, while for small �i, the behavior depends on both
V3=V0 and �i. In either case, it is possible to have asymp-
totic evolution for which � ! 0, and the Universe under-
goes eternal de Sitter expansion, or, conversely, for � to
transition through the inflection point, leading to transient
acceleration.

It is interesting to note that this potential can yield
an attractor at � ¼ 0 despite the fact that Vð�Þ has an
inflection point, rather than a local minimum, at � ¼ 0.

On the other hand, it is possible to construct models very
close to �CDM today which nonetheless evolve away
from accelerated expansion in the future.
Inflection point quintessence shows, within the context

of a very simple model, that current data may never be
sufficient to determine whether the Universe will acceler-
ate forever or simply pass through a transient period of
acceleration. While we have not explored in similar detail
the more general inflection point models given by Eq. (20),
these models, too, can give rise to either eternal de Sitter
expansion or transient acceleration, but in this case the
asymptotic behavior depends strongly on the sign of the
linear term.
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