
Space-borne gravitational-wave detectors as time-delayed differential dynamometers

Giuseppe Congedo, Rita Dolesi, Mauro Hueller, Stefano Vitale, and William J. Weber

Department of Physics, University of Trento, and INFN, I-38123 Povo, Trento, Italy
(Received 6 June 2013; published 31 October 2013)

The basic constituent of many space-borne gravitational missions, in particular, for interferometric

gravitational-wave detectors, is the so-called ‘‘link’’ made out of a satellite sending an electromagnetic

beam to a second satellite. We illustrate how, by measuring the time derivative of the frequency of the

received beam, the link behaves as a differential, time-delayed dynamometer in which the effect of gravity

is exactly equivalent to an effective differential force applied to the two satellites. We also show that this

differential force gives an integrated measurement of curvature along the beam. Finally, we discuss how

this approach can be implemented to benefit the data analysis of gravitational-wave detectors.
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I. INTRODUCTION

With the establishment of laser interferometers as the
state-of-the-art gravitational-wave (GW) detectors, it has
become customary to describe GWs as perturbations in the
metric tensor that cause phase shifts of light beams
exchanged by free test particles. These phase shifts are
indistinguishable from those caused, in flat space-time, by
relative displacements of the test particles and are then
treated as equivalent displacements. However, GWs can
equivalently be described as perturbations in the Riemann
curvature tensor that cause tidal accelerations of free test
particles. This description, popular at the time of resonant
detectors, has been abandoned, most likely because, with
large detector baselines, light propagation delays make it
less intuitive.

In this paper, we show that the tidal force description is
as simple as the displacement description and allows
for treating each arm of an interferometric detector as an
ordinary differential dynamometer performing time-
delayed measurements. By differential dynamometer,
we mean here a device that measures the time-varying
difference between the forces applied to two test particles,
by sources external to the dynamometer, along their
joining line. This alternative viewpoint has practical
consequences as it allows for a data processing approach
that generates a time series consisting of combinations of
(time-delayed) force, per unit mass, measurements [1],
instead of relative displacements.

Force time series have some useful properties. For in-
stance, long-lived displacement transients related to the
free dynamical evolution of the system—including any
applied control forces—disappear, as they are not caused
by any external force. This is especially useful for space-
borne detectors, for which these transients may appear at
the same time scale as gravitational-wave signals. In addi-
tion, spurious force pulses appear as spikes within the force
data series, while their effect on displacement data persists
over the relaxation time of the detector. Static accelerations
appear at dc, instead of causing a quadratic runaway of

data. Spurious forces that can be calculated from the
independent measurement of some physical parameter
(e.g., a magnetic force derived from the measurement of
the magnetic field gradient) can directly be subtracted from
the data, without the need of filtering them with the transfer
function of the detector. The same direct subtraction will
be shown to apply also for known commanded forces and
calculable elastic coupling effects that are relevant to
systems employing both a satellite and an internal geodesic
reference test mass, such as will be described shortly for
space gravitational-wave detection.
All in all, these features produce a data series with a

much-reduced dynamical range and with fewer system-
atics. The subtraction of these systematics from displace-
ment data would require a substantial complication of
the fitting templates and an increase in the required number
of fitting parameters, including, for instance, the values
of initial dynamical conditions. In the following, we
also discuss the practical guidelines to develop such an
alternative data reduction approach, such as that currently
being implemented for the LISA Pathfinder mission [2].
A more pronounced reduction of data dynamic range is

obtained by data whitening, as is common, for instance,
with ground-based GW detectors. However a generic
whitening filter does not suppress the transients related to
the free dynamical evolution of the system, unless it is
explicitly designed as the series of a stage converting the
data into force, followed by a stage that whitens the force
data. An evaluation of the pros and cons of whitening
force data, in order to achieve optimal dynamic range re-
duction, goes beyond the scope of this article. We note,
however, that whitening would be difficult and even risky
for the strongly signal-dominated data expected from space-
based detectors. The large gravitational-wave signal power
prevents the accurate noise calibration required by the
whitening filter and does not allow for discriminating instru-
ment noise against the expected GW foreground. Indeed,
proposed approaches to signal extraction with space-based
GW detectors do not use data whitening and leave noise as
one of the outputs of a global signal search procedure [3].
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II. INTERFEROMETER LINK AND THE
EFFECTIVE GRAVITATIONAL FORCES

We now discuss the response of the basic constituent of a
GW interferometric detector, and of other gravitational
missions, a link composed of a satellite that we call the
‘‘emitter’’ (e) sending a laser beam to a second satellite that
we call the ‘‘receiver’’ (r).1 The (angular) frequency ! of
the beam, with phase� and wave vector k�, is measured at

both ends, and the Doppler shift, or difference of these two
measurements,

!r �!e � c

�
d�

d�r
� d�

d�e

�
¼ cðke�v�

e � kr�v
�
r Þ

¼ ckr�ðv�
e!r � v�

r Þ; (1)

carries the physical information. Here, ‘‘r’’ and ‘‘e’’ also
indicate that measurements have been done at the event of
reception and emission, respectively. We have used the
notion that, for any observer with velocity v�,

!=c ¼ d�=d� ¼ ð@�=@x�Þðdx�=d�Þ ¼ �k�v
�: (2)

In the rightmost term of Eq. (1), the symbol e ! r
indicates parallel transport along the beam from the emitter
to the receiver, an operation that does not affect scalar
products, while it converts ke� into kr�. Finally, notice

that, from Eq. (1), we get !r=!e ¼ d�e=d�r.
To switch to acceleration and force, let us compare the

derivatives of the frequency performed by the receiver and
the emitter, respectively, relative to their respective proper
times �r and �e:
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Here, we have used Eq. (1) and the fact that ordinary and
covariant derivatives are equal for a scalar. In addition, we
have used the geodesic equation to introduce the true
4-forces (per unit mass) F�

r and F�
e acting on the receiver

and the emitter, respectively.
We have also introduced the effective gravitational

forces (per unit mass) at the emitter and receiver:

G
�
e ¼ ðv�

e =v
�
e ke�Þðv�

eDke�=d�eÞ;
G�

r ¼ ðv�
r =v

�
r kr�Þðv�

rDkr�=d�rÞ:
(4)

Equation (3) shows that the effect of gravitation on the
propagation of the beam can equivalently be described as
the effect of a difference between two gravitational
‘‘forces,’’ both acting locally in space-time, one on the
emitter and the other on the receiver.

In a GW detector, true forces, which are part of noise,
are small and need only to be considered to first order and
when not multiplied by factors � 1. Thus, in Eq. (3), one
can approximate the wave vector with its flat space-time
expression and take ke� � kr� and !r � !e. In addition, as

velocities are small, the scalar product between wave
vector and 4-forces reduces to the ordinary scalar product
between their spatial parts. Then,

cðF�
e ke� � F�

r kr�Þ � ð!r=cÞn̂ � ð ~Fe � ~FrÞ; (5)

with ~Fr and ~Fe the ordinary forces (per unit mass) applied,
respectively, to the emitter at the time of emission and to
the receiver at the time of reception and with n̂ the unit
3-vector parallel to the beam. This clarifies why such a
system may be considered as a differential, time-delayed
dynamometer: any differential force, with a component
along the direction of the light beam, gives a signal
d!=dt at the receiver, in direct competition with possible
gravitational or inertial effects.
Equation (3) does not allow for a direct calculation

of the gravitational terms for a given physical situation.
To clarify how these may be calculated, we expand more
explicitly the scalar products kr�G

�
r and ke�G

�
e . Let us first

notice that �r effectively parametrizes the evolution of the
beam geodesic. The coordinates along the beam received at
time �r are �ð�; �rÞ, where � is the affine parameter along
the beam, and the wave vector k�ð�; �rÞ is a function of

both � and �r (Fig. 1).
This parameterization is similar but not identical to the

standard null congruence discussed in textbooks [4]. Here,
u�ð�; �rÞ � @��ð�; �rÞ=@�r is not a null vector, and, in
addition, due to the relative motion of receiver and emitter,
the bounds of � may vary in time so that, even if we
can always set �e ¼ 0 at the emitter, at the receiver,
instead �r ¼ �rð�rÞ. To obtain a more practical congru-
ence, we re-parametrize the beam by a new affine parame-

ter 0 � � � 1 and a ‘‘reduced’’ wave vector ~k� defined by

� ¼ �=�rð�rÞ and ~k� � @��=@� ¼ �rk
�, respectively.

The most important properties of this congruence are

u�ð� ¼ 0; �rÞ ¼ v�
e ð�eÞðd�e=d�rÞ

u�ð� ¼ 1; �rÞ ¼ v
�
r ð�rÞ; d~k�=d�r ¼ dv�=d�:

(6)

By making explicit the covariant derivatives, we can then
write that

ke�G
�
e � kr�G

�
r
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e
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r
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e v�

er�k
e
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r v�
rrrk

r
�

¼ v
�
e
!e

!r

ðu�r�k�Þ�¼0 � v
�
r ðu�r�k�Þ�¼1: (7)

We can calculate this term by noticing that

1Please notice that, throughout the paper, Latin characters
indicate generic labels, like in e and r, while Greek characters
indicate tensor indices.
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ðu�r�k�Þ�¼1 � ðu�r�k�Þ�¼0

¼
Z 1

0
ðdu�r�k�=d�Þd�

¼
Z 1

0

~k	r	u
�r�k�d�: (8)

It is straightforward to show, using the commutation
properties of the congruence and the geodesic equation
for the beam, that

~k	r	u
�r�k� ¼ u�r�

~k	r	k� þ ~k	u�R�
	��k�

¼ �rk
	u�R�

	��k�; (9)

where R�
	�� is the Riemann curvature tensor. Thus, finally,
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�
� v

�
e
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0
k	u�R

�
�	�k�d�:

(10)

To clarify the meaning of the first term on the right-hand
side of Eq. (10), notice that, in flat space-time, ke� ¼ kr�.

In the nonrelativistic limit, we also get !r � !e � ! and
d�e � d�r ¼ dx0. Then, in this limit,

Dkr�

d�r
½v�

e ð!e=!rÞ � v�
r �

� dk�

dx0
dð��

e � �
�
r Þ

dx0

� dk�

dx0
d½k�ðcL=!Þ�

dx0

¼ cL

!

dk�

dx0
dk�

dx0
¼ !L

c2
j _̂nj2 ¼ !L

c2
�2: (11)

To derive the result in Eq. (11), we have used the orthogo-
nality between k� and its time derivative, and we have

called L/c the light travel time over the link, and � is the
angular velocity at which the receiver sees n̂ rotating. By
comparing this term with Eq. (5), one can recognize the
effect of the difference of centrifugal force between
the emitter and the receiver in a frame that rotates to
keep the line joining them fixed.
Notice that Eqs. (3) and (10) do not contain approxima-

tions and are valid at any order in the metric deviation.
They can then be used to calculate the response of the link
in any gravitational experiment using electromagnetic
rays, not just for GW detection with laser interferometers.
Together, they show that the link is at once a differential
dynamometer and an instrument measuring the space-time
curvature integrated over the beam geodesic. Thus, in a
real situation within the Solar System, it allows us to
calculate, for instance, both the effect of the secularly
changing field due to Solar System bodies and the effect
of GWs.

III. FORCES DUE TO A GRAVITATIONALWAVE

Let us calculate the curvature contribution for GW.
As the quantity is a scalar, we can perform the calculation
in any reference frame. We pick the transverse traceless
frame [5], and we treat the case of a GW on a flat back-
ground on which the sole nonzero components of
the deviation h�� of the metric tensor from the flat one

are h11 ¼ �h22 ¼ hþ½x0 � x3� and h12 ¼ h21 ¼ h�½x0 �
x3�. To first order in the wave amplitudes hþ and h�, the
beam geodesic can be approximated with a space-time
straight line, and 4-velocities need only to be considered
to zeroth order. This gives

� c
Z �r

0
k
R�


00k�d�

¼ !
1

2ð1� n3Þ
�
n
n�

�
dh
�

dx0

�
x0r�x3r�Lð1�n3Þ

� n
n�

�
dh
�

dx0

�
x0r�x3r

�
: (12)

With 1 � 
, � � 3. The right-hand side of Eq. (12) is the
time derivative of the standard formula for the frequency
shift along the outgoing path in a single interferometer link
[6], with the time derivative calculated at the appropriate

FIG. 1. Space-time sketch of the congruence. The lines
marked e and r represent the emitter and receiver space-time
geodesics. The solid line joining them represents the geodesic of
the beam leaving the emitter at its proper time �e and reaching
the receiver when its proper time is �r. The dashed line repre-
sents the beam geodesics emitted at �e þ d�e and received at
�r þ d�r. A dashed arrow joins a point on the first beam
geodesic with coordinates ��ð�; �rÞ to a point on the displaced
beam geodesic with coordinates ��ð�; �r þ d�rÞ. Also shown
are the 4-velocities of emitter and receivers v

�
e and v

�
r , the beam

wave vector k�, and u� ¼ @��=@�r.
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events. This shows that, within the linear approximation,
‘‘force’’ GW templates are just the first (delayed) deriva-
tives of the corresponding frequency templates. In the same
flat background, GW corrections to the centrifugal effect in
Eq. (11) can be neglected as their leading term is of order
ð�=!GWÞh � h, where !GW is the angular frequency of
the gravitational wave.

Let us now discuss how these results apply to a full
space-borne GW detector [7], where, in its simplest con-
figuration, a central satellite, nominally in free fall, sends
two light beams to two other distant satellites also in free
fall. Each distant satellite sends back a second beam, phase
locked to the incoming one. Thus, the detector consists of
two pairs of phase-locked, counterpropagating links. In
standard operations, the measured difference between the
phases or the frequencies of the two returning links carries
the GW signal. This differential scheme effectively sup-
presses the laser frequency noise [8], as this is common to
both arms and does not require an absolute measurement of
frequency with an accuracy that currently could not be
achieved.

Equations (3) and (10) can be used sequentially, in a
straightforward way, to generate the response of the two
concatenated counterpropagating links in one arm. The
output of the arm is the derivative of the frequency of
the beam received at the central satellite. The outputs of
the two arms, in the ideal Michelson configuration, can
then directly be subtracted to generate the final signal, free
of frequency noise. For the case of unequal arms, the
frequency derivatives can be time shifted and combined,
to suppress laser frequency noise, into one of the combi-
nations of the time delay interferometry [8]. It is straight-
forward to show that all these combinations maintain the
basic results that GW signals, in the linear limit, are just the
time-delayed time derivatives of the standard frequency
signals.

IV. SYSTEM DYNAMICS AND
SIGNAL EXTRACTION

Furthermore, in a real detector, the true force ~F on each
satellite within a link, which would completely obscure
GW signals, is estimated by measuring the satellite dis-
placement relative to a free falling reference test mass.
This test mass is hosted inside the satellite and is well
shielded against spurious forces. Test-mass-to-satellite dis-
placements and satellite-to-satellite displacements are
combined in an effective relative displacement of the two
test masses, which is nominally corrupted only by the
effect of the much smaller spurious forces acting on the
test masses. We now illustrate how this correction is sim-
plified and made immune to some systematics by working
with forces instead of displacements.

The satellite and the test mass form a two-body, con-
trolled dynamical system. By controlled, we mean here
that, for some degrees of freedom, including the relative

motion of the test mass and the satellite along the line of
sight of the link, the system is stabilized by active control
loops, often referred to as ‘‘drag-free control,’’ pushing the
satellite, via a set of thrusters, to follow the test mass.
Along the remaining degrees of freedom, control loops
act instead, via electrostatic forces, on the test mass to
stabilize it relative to the satellite. To describe such a
system, we introduce the following:
(i) the generalized coordinates Q
ð1 � 
 � 6Þ of the

satellite relative to the local inertial frame (three
displacements and three angles);

(ii) the generalized coordinates q
 of the test mass
relative to the satellite;

(iii) the tensorsM
� and m
� that contain the mass and

the moments of inertia of satellite and test mass,
respectively;

(iv) the coupling tensor k
� that represents the effect of

the static force gradient and of any possible damp-
ing acting on the test mass (these are both realisti-
cally assumed here to be generated by the satellite);

(v) the force/torque (per unit mass/moment of inertia)
F
 acting on the satellite, including those applied
by the drag-free control (notice that the first three
components coincide with the force vector
discussed so far);

(vi) the applied force/torque on the test mass due to
control loops fc
 (notice that, due to imperfections
and misalignments, the control forces fc
 compo-
nents along all degrees of freedom, including one
along the direction of the link);

(vii) all remaining forces acting on the test mass.
With the definitions above, the linearized, nonrelativistic
dynamics, which is sufficient here, of this two-body system
obeys

€Q
 �M�1

�k�� 	 q� ¼ F
;

€q
 þm�1

�k�� 	 q� ¼ fe
 þ fc
 � €Q
:

(13)

The symbol 	 indicates time convolution, as the action
of these forces is not instantaneous. Notice that Eq. (13)
has nonzero solutions also for Fi ¼ fei ¼ 0, representing
the free dynamical evolution of the system. From Eq. (13)
it follows that

€q
 þ ðm�1

� þM�1


�Þk�� 	 q� � fc


� D
� 	 q� � fc
 ¼ fe
 � F
: (14)

Here, we have defined the ‘‘dynamics’’ operator of the
system D
� ¼ 
�d

2=dt2 þ ðm�1

� þM�1


�Þk�� 	 , which

is the operator that, acting on the system coordinates,
returns the forces. Putting together Eqs. (3), (5), (10),
and (14), we conclude that, to first order in real forces
and if D
� has been calibrated with a proper set of

dynamical measurements, one can generate a time series
of the effective difference of force per unit mass:
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�Fn̂ � c

!r

d!r

dtr
þ niðDe


� 	 qe� �Dr

� 	 qr�Þ

þ n
ðfc;r� � fc;e� Þ

¼ c3

!r

ðG�
e ke� �G

�
r kr�Þ þ c

!r

d!e

dte
þ n̂ � ð ~fe � ~frÞ;

(15)

with tr ¼ �r=c and te ¼ �e=c. In this way, we construct an
estimator �Fn̂—based on our measurements of the evolu-
tion of the time derivative of the measured receiver fre-
quency !r, the relative test mass satellite coordinates qe

and qri , and the applied forces f

c;e

 and fc;r
 —that estimates

the gravitational and inertial signals (G
�
e ke� �G

�
r kr�). This

estimate is corrupted by the final two noise terms created
by the frequency noise of the emitter and the relative force
(per unit mass) on the two reference test masses but is
immune to the effect of dynamical transients, cross-talk of
actuation forces, etc.

In reality, in place of the true coordinates qi, only the
signals si from real displacement sensors, either interfero-
metric or capacitive, are available. These are corrupted
both by noise sn
 and by parasitic mixing from different
degrees of freedom and can be modeled as s
 ¼ S
� 	
q� þ sn
. Here, the signal mixing tensor Sij should be

diagonal and memoryless in the absence of imperfections.
Thus, the best approximation to D
� 	 q� one can cal-

culate is D
� 	 S�1
�� 	 s�, thus requiring the calibration of

both D
� and S
�. In addition, data are corrupted not just

by true forces but also by the equivalent force D
� 	 S�1
�� 	

sn� due to the readout noise. This is, not surprisingly,

equivalent to the displacement analysis, as no linear op-
eration on the data can alter the signal-to-noise ratio.
Finally, constructing the time series in Eq. (15) requires
the knowledge of the true control forces that have been
applied to the test masses. In reality, the available infor-

mation is only about the forces ~fc;r
 and ~fc;e
 that have been
commanded to the actuators. These are related to the

former by fc;r
 ¼ Ar

� 	 ~fc;r� , fc;e
 ¼ Ae


� 	 ~fc;e� , where the

operator A
� represents delays, cross-talk, and inaccura-

cies of calibration. This operator needs also to be
calibrated.

The calibration of all these operators is also needed
when extracting GW signals from displacement time
series. The difference here is that the operators are used
to reduce the data before fitting GW templates to them,
while, in the classical approach, they must be used to
calibrate the templates.

It is also straightforward to use Eq. (15) to calculate the
response of the complete interferometer, for which the
result that the coupled free dynamics of the satellite and
the test mass is suppressed is fully maintained.

V. CONCLUDING REMARKS

The method of converting the data ‘‘at input,’’ that is,
of reducing them to force time series, is just an extension
of a classical method adopted with other dynamical
experiments like torsion pendulums [1]. It has also been
adopted for LISA Pathfinder [9], a precursor of space-
borne GW detectors developed by European Space
Agency, which carries a miniature version of an interfero-
metric arm. In both the torsion pendulum experiments and
in the simulation of LISA Pathfinder with the mission
end-to-end simulator, we observe the accurate suppres-
sion of any large-amplitude transient relaxation due to
off-equilibrium initial conditions that instead dominate
the displacement data. We also observe the resilience of
the method to large force spikes that remain short lived
within the force data, while they appear as long relaxation
transients within the displacement data series. Recent
progress in this field with LISA Pathfinder will be
reported in a separated paper.
As a final observation, we point out that the gravitational

forces in Eqs. (15) also include the secular terms due to the
quasistatic gravitational field in the Solar System. Within
force data, the amplitude ratio of these terms to the GW
signals is suppressed, with respect to that in displacement
data, by a factor of the order of the square of the ratio of
their frequencies, that is, as a minimum, by a factor of
order ð104=3� 107Þ2 � 10�7, thus reducing the dynamical
range of the data by the same factor. In addition, these
secular contributions can be calculated from the satellite
tracking data and from the Solar System ephemeris
and directly subtracted from the force data. The final
accuracy with which this subtraction can be done depends
on the effective performance of the tracking system.
Accuracy reported for Doppler tracking of satellites [10]
would likely allow us to calculate and subtract these terms
well below the residual very low-frequency noise of the
instrument due to thermal drift and other sources.
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