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We show that a chiral nonlinear sigma model coupled to degenerate neutrons exhibits a ferromagnetic

phase at high density. The magnetization is due to the axial anomaly acting on the parallel layers of neutral

pion domain walls spontaneously formed at high density. The emergent magnetic field would reach the

QCD scale �1019 ½G�, which suggests that the quantum anomaly can be a microscopic origin of the

magnetars (highly magnetized neutron stars).
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I. MAGNETARS AND HIGH-DENSITY
NEUTRON MATTER

The phase diagram of QCD is a mystery to be uncovered.
Even though the problem is theoretically well posed with
QCD Lagrangian, so far it remains difficult to reveal a
specific region of the phase diagram, the region at low
temperature and high baryon number density � [1].

One of the promising systems where such a high-density
region is realized in nature is the deep interior of compact
stars, such as neutron stars. Observations of various prop-
erties of these stars should give us crucial constraints on
high-density matter. In particular, the magnetars, which are
considered to be neutron stars with a very strong magnetic
field �1015 ½G� at their surface, are of particular interest
[2,3]. The mechanism for generating such a strong mag-
netic field is so far not established: Among various pro-
posals, including the dynamo formation model and the
fossil-field model [2], nuclear ferromagnetism associated
with the solidification of the neutron star core, which was
originally proposed right after the discovery of the pulsar
[4], is an interesting possibility for generating a large
intrinsic magnetic field. However, modern quantum
many-body calculations on the neutron matter and asym-
metric nuclear matter with realistic nuclear force have
shown that these systems stay in the liquid phase at high
density without having spontaneous ferromagnetic transi-
tion [5]. Another interesting possibility is the ferromagne-
tism of the quark liquid in the central core of a neutron
star [6]; a spin-polarized quark phase, similar to that in
the low-density electron gas, may be realized in a certain
window of baryon density due to the Fock term of the
gluon exchange between quarks.

In this paper, we propose a novel mechanism which
leads to a spontaneous magnetization of the neutron mat-
ter, based on the nonlinear chiral Lagrangian of pions
coupled to degenerate neutrons. Two basic ingredients
are (i) the neutron spin density induced on a pion domain
wall in dense matter [7] and (ii) the baryon number induced
on the pion domain wall by an external magnetic field

through axial anomaly [8]. We show that layers of �0

domain walls are spontaneously generated by a small
seed of an external magnetic field. Then, an intrinsic
magnetic field is induced from the layers which have net
magnetization. If this mechanism takes place inside the
core of a neutron star above a certain threshold density,
it acquires a large magnetic field and becomes a magnetar.

II. CHIRAL LAGRANGIAN AND PION
DOMAIN WALLS

We use the chiral Lagrangian for low-energy pions and
nucleons with the Weinberg parametrization [9]:

L ¼ �N½i��ð@� þ i� � V� þ i�5� �A�Þ �mN�N

þ 1

2
jD��j2 � 1

2
ðm2

� þ ��N
�NNÞ �2

1þ�2=4f2�
: (1)

Here N is the nucleon field [isospin SUð2Þ doublet], �
is the pion (triplet), f� is the pion decay constant, gA is
the axial charge of the nucleon, and m� is the pion mass.
Also, V�� 1

4f2�
ð1þ�2=4f2�Þ�1ð��@��Þ, A�� gA

2f�
D��,

with D�� � ð1þ�2=4f2�Þ�1@��.

In Ref. [7], neutrons are integratedwith neutron chemical
potential, and �0 domain wall solutions are studied. Here
we generalize the system to include the charged pion and
obtain the in-medium chiral Lagrangian up to Oðp2Þ [10]:

Leff ¼�
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with i ¼ 1, 2, 3. We have defined the charged pion �þ �
�1 þ i�2, and D��þ � ð@��þ þ i	�0�I�þÞ=ð1þ
j�j2=4f2�Þ, where �I is the isospin chemical potential
defined as the difference �I � �p ��n. The correction
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due to the background neutrons is in the coefficients �, �,

~�, ~� (and �1;2;3;4), which are equal to unity (zero) in the

absence of the nucleons. They are given by one-loop cal-
culations (see Ref. [7] for � and �):

� � 1� g2Am
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Here we consider the pure neutron matter for simplicity, so

that x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

N

q
=mN, with kF being the Fermi momen-

tum of the neutron. The neutron number density is related to
the Fermi momentum as �n ¼ k3F=ð3�2Þ. To estimate the
influence of the effective mass of the neutron m�

N qualita-
tively, we replace mN with m�

N in the above expressions.
In Fig. 1, we plot � as a function of �n=�0 for the range

0:5<m�
N=mN < 0:7, with�0 ¼ 0:16 ½fm�3� being the nor-

mal nuclear matter density. An important feature seen in
Fig. 1 is that� is a monotonically decreasing function of �n

and vanishes at a certain density above �0. The density at
which � becomes zero increases as m�

N decreases. We note
that there are further uncertainties for � originating from
in-medium low-energy constants and from the short-range
correlation of the neutrons. Therefore, one should consider
Fig. 1 only as a qualitative estimate. As for the other
coefficients, � and ~� do not vary much in density, while
~� has a faster decrease within the same approximation.
A classical solution of Eq. (2) is a domain wall of the

in-medium neutral pion [7],

�3 ¼ 2f�

sinh ½m�x
3=

ffiffiffiffiffiffiffiffiffiffiffiffi
�=�0

p � ; �1 ¼ �2 ¼ 0: (3)

Note that this �0 domain wall interpolates the vacua 
 ¼ 0
and 
 ¼ 2�, where tan 


2 � j�j=2f�. Interestingly, the

domain wall can reduce its weight in the neutron matter:
�0 stays positive at all x, while� approaches zero as shown

in Fig. 1, so that the tension E=S of the domain wall is
significantly reduced for � ! 0,

E=S ¼ 8
ffiffiffiffiffiffiffiffiffi
��0

p
f2�m�; (4)

where S is the domain wall area. We will show that the
parallel layers of the domain walls would populate at high
baryon density due to the reduction of the tension and the
accumulation of baryon number on the domain wall.

III. EMERGENT MAGNETIC FIELD ON PIONIC
WALLS FROM AXIAL ANOMALY

Let us first discuss how spontaneous magnetization
occurs in high-density neutron matter. There are three steps
for this to happen: (i) The in-medium domain wall becomes
light, and at the same time it acquires finite baryon density
due to axial anomaly under an external magnetic field.
Then the system with a domain wall becomes energetically
favorable to the uniform neutron matter above a certain
density. (ii) The domain wall is magnetized due to the spin
alignment of surrounding neutrons, so that it creates spon-
taneous magnetization which enlarges the original mag-
netic field. (iii) The enhanced magnetic field creates more
domain walls. The cycle ðiÞ ! ðiiÞ ! ðiiiÞ ! ðiÞ is repeated
and leads to a stable configuration with many parallel
layers of thin domain walls with a high magnetic field.
All the spins are aligned, so the system is ferromagnetic.
We now explain the mechanism of inducing the baryon

charge following Ref. [8]. In a background constant mag-
netic field, the QCD axial anomaly term in the chiral
Lagrangian reads

LWZW ¼ ie

16�2
AðBÞ
0 B3 tr½�3ðU@3U

y þ @3U
yUÞ�; (5)

where AðBÞ
0 is the temporal component of a gauge potential

for the baryon number symmetry, B3 is the background
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FIG. 1 (color online). � as a function of �n=�0. We use the
low-energy constants in the vacuum f� ¼ 93 ½MeV� and gA ¼
1:27. The effective mass of the nucleon is taken in the range
0:5<m�

N=mN < 0:7, which corresponds to the shaded region in

the figure.
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magnetic field along x3, and U � cos 
þ i� � �̂ sin 
 with

�̂ ¼ �=j�j. Since the pion-dependent part can be eval-
uated (for �1 ¼ �2 ¼ 0) as

tr½�3ðU@3U
y þ @3U

yUÞ� ¼ �4i
D3�3

f�
¼ �4i@3
; (6)

we immediately see that the domain wall, which interpo-
lates 
 ¼ 0 and 
 ¼ 2�, can obtain a baryon charge per
unit area [8],

NB=S ¼ eB3=2�: (7)

If the domain wall is not parallel to the magnetic field, the
induced baryon charge is reduced to Bin̂i, where n̂ is the
unit vector perpendicular to the domain wall. Note that
the formula in Eq. (7) is valid even for � � 1.

Combining Eq. (7) with Eq. (4), the domain wall energy
per unit baryon charge is

E=NB ¼ 16�f2�m�

eB3

ffiffiffiffiffiffiffiffiffi
��0

p
: (8)

The system with a domain wall is more favorable than the
uniform neutron matter when the domain wall energy per
baryon becomes smaller than the neutron chemical potential
[8], i.e., B3>

ffiffiffiffiffiffiffiffiffi
��0

p �ð16�f2�m�=�nÞ�
ffiffiffiffiffiffiffiffiffi
��0

p �1019 ½G�.
Here, the factor �, which was not taken into account in
Ref. [8], is important. Due to this �, the threshold magnetic
field for the domain wall creation is parametrically small
compared to that of Ref. [8]. This fact, together with the
induced spin on the domain wall, leads to the spontaneous
generation of the magnetic field with a small seed. Such a
mechanism has not been proposed before. Since �ð�nÞ is a
monotonically decreasing function of �n, an adiabatic in-
crease of the density�n inevitably hits the critical value of�
at which the domain wall is created.

Once the pionic wall is formed, neutron spins on the wall
align in the direction perpendicular to the domain wall [7].
The spin density of the neutrons is a spatial part of the axial

current jðAÞi ¼ h �c n�i�5c ni. It was evaluated in Ref. [7], in
the same approximation, as

s3=S ¼ 2�ð�� 1Þf2�; (9)

which is the third component of the neutron spin density
per unit area of the domain wall.

We note here that neutrons have a magnetic moment
� ¼ ges3=2mN, where g��3:8 is the neutron g factor.
So the total magnetic moment (which is the magnetization
M) per unit volume at �� 0 is

M ¼ �jgjef2�
mN

1

d
; (10)

where d is the separation between adjacent domain walls.
Therefore, the domain wall phase is ferromagnetic.

The magnetization M is larger for smaller separation d
among the domain walls. This d is intimately related to the

induced baryon density due to the domain wall, and in fact
this is a driving force for developing a strong magnetic
field. From Eq. (7), we know that the averaged baryon
number density induced by the domain walls is

�dw ¼ eB3

2�

1

d
: (11)

The total baryon number density � is given as a sum of �dw

and the remaining neutron density �n. (This �n cannot
vanish, since the � correction needs background neutrons.)
Combining Eq. (11) with Eq. (10), we obtain

M ¼ 2�2jgjf2��dw

mNB3

: (12)

Once the background B3 becomes larger, the domain wall
energy cost [Eq. (8)] becomes smaller. So more domain
walls parallel to the original ones are created more easily,
and the domain wall separation d becomes smaller. Then,
from Eq. (10), the magnetizationM increases and helps the
B3 to increase. So, this system is a self-enhancement
mechanism of the magnetic field. Equilibrium can be
reached at B3 ¼ M, which is our critical induced magnetic
field,

B3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2jgjf2��dw=mN

q
� 3� 1019 ½G�; (13)

supposing a typical value for �� �dw � �n. The value of
the magnetic field is quite large (

ffiffiffiffiffiffi
B3

p � 102 ½MeV�) and
close to the QCD deconfinement scale around which our
approximation breaks down [11]. The magnetization is
expected to stop increasing somewhere before reaching
this value.
In addition to the neutron spin alignment, the WZW

term [Eq. (5)] itself may provide a magnetization [12] of
the same sign. Details will be presented in our forthcoming
paper [13].
Finally, we briefly comment on the stability of the

domain walls. Our domain wall is topologically trivial,
because the target space of the nonlinear sigma model
is SUð2Þ ’ S3, on which the two vacua 
 ¼ 0, 2� are the
same point (south pole); see Figs. 2 and 3. Therefore,
the domain walls can be created spontaneously, but on
the other hand, they can decay through the fluctuations
along�1;2 directions. Indeed, it was shown that the domain

wall is stable only for B3 > 1019 ½G� at � ¼ ~� ¼ 1 by
analyzing its local and global stability [8]. As we have
shown after Eq. (13), the above condition is replaced by
B3 >

ffiffiffiffiffiffiffiffiffi
��0

p � 1019 ½G�. This implies that the global stabil-
ity is guaranteed for smaller B3 when � ! 0. The analysis
of the local stability is more involved, especially where

�> 0 and ~�< 0 (see Fig. 1): In this case, the charged

pion condensation�þ ¼ a exp ð�i��tþ i ~k � ~xÞ should be
considered together with the �0 domain wall. We leave the
analysis to our future work [14].
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IV. IMPLICATION FOR MAGNETARS

A schematic picture of the core region of the neutron star
is shown in Fig. 4. Only at the core region, because of the
high density (or rather, the large value of the neutron
chemical potential), the domain walls are present. At the
boundary of the domain walls, neutrons drip from the wall
boundary so that the total baryon number is conserved [15].
As the domain wall layers (the ferromagnetic region) are
present only at the core of the neutron star, the magnetic
field does not reach the value in Eq. (13) at the surface of
the neutron star, but it would be strong enough to explain
the magnetars.

The magnetic field at the surface of the neutron star is
smaller than that of the domain wall core, as Bsurface ¼
BcoreðRcore=RNSÞ3 at the north pole. Rcore is the radius of the
domain wall core (assumed to be spherical and to have a
homogeneous ferromagnetism inside), and RNS is the
radius of the neutron star. The average of the magnetic
field magnitude on the neutron star surface is Baverage ¼

0:69Bsurface. The core-radius dependence of the surface
magnetic field is shown in Fig. 5. If the core is sufficiently
small such that Rcore=RNS � 1=10, the surface magnetic
field may reduce to Bsurface �Oð1016Þ ½G�.
The mechanism suggests that there are two kinds of

neutron stars: one which reaches the critical density and
has the domain wall layer structure, and the other which
does not have it. The former would have a strong magnetic
field, but the latter would not have it. It is interesting that
the recent data [3] of the magnitude of the magnetic field
on the surfaces of neutron stars show two categories,
magnetars and the others.
It is important to construct more realistic models with

nuclear forces, as our model uses free neutrons. For ex-
ample, the neutron superfluidity can coexist with the

FIG. 3 (color online). The topological path of the neutral pion
domain wall. The sphere represents the target space S3 of the
sigma model. On S3, the thick line with an arrow represents the
domain wall solution [Eq. (3)]. It rounds the sphere but is
topologically trivial. The plane beneath the sphere is the pa-
rameterization space of �3 and �1;2. There is a one-to-one

correspondence between a point on the sphere and a point on
the plane.
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FIG. 5 (color online). The magnetic field at the neutron star
surface. Rcore is the radius of the domain wall layer core
(assumed to be spherical), and Rsurfce is the radius of the neutron
star. At the core, the critical magnetic field [Eq. (13)] is assumed.
For the 1:41M� neutron star with the standard APR equation of
state [18], Rcore=RNS ¼ 0:1 corresponds to the critical density of
the pionic wall formation, 3:2�0.

�0.5 0.0 0.5 1.0 1.5 2.0 2.5

FIG. 2 (color online). The solution of multiple domain walls
written by 
ðx3Þ. Each wall interpolates adjacent vacua, 
 ¼
0; 2�; 4�; . . . . For the exact solution, see for example Ref. [17].

FIG. 4 (color online). A schematic figure of the neutron star
with domain wall layers at the core. Scales should not be taken
seriously.
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domain wall, since at higher densities the spin-aligned
neutron pairing 3P2 is known to be favored. Furthermore,
the structure of the solitonic core of neutron stars would
influence the equation of state and may be sensitive to the
mass-radius map of the neutron stars. A large magnetic
field 	 1019 ½G� may lead to a gravitational instability:
For example, an order-of-magnitude estimate given in
Ref. [16] shows the maximum possible magnetic field,
Bmax � 1019 ½G�. The precise value of Bmax , however,
depends on the shape of the magnetic flux lines, the equa-
tion of state of dense matter, and the spatial structure of
our domain wall in the neutron star core. If the orientation of
the solitonic core is different from the rotation axis of the
neutron star, it would be a source of gravitational waves. All
details need to be explored to match the observations of the

neutron stars. We hope that our mechanism may survive
various corrections and explain observations.
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