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Measuring the small primordial non-Gaussianity (PNG) predicted by cosmic inflation theories may help

diagnose them. The detectability of PNG by its imprint on the 21 cm power spectrum from the epoch of

reionization is reassessed here in terms of fNL, the local nonlinearity parameter. We find that an optimum,

multifrequency observation by SKA can achieve �fNL � 3 (comparable to recent Planck CMB limits),

while a cosmic-variance-limited array of this size like Omniscope can even detect �fNL � 0:2. This

substantially revises the methods and results of previous work.
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I. INTRODUCTION

The theory of cosmic inflation [1,2], advanced to solve
the cosmological horizon and flatness problems, also
explains the initial fluctuations which later gave rise to
galaxies and large-scale structure in the Universe. While
inflation generically predicts initial matter density fluctua-
tions with an approximately Gaussian random distribution,
the small deviations from Gaussianity that characterize
different inflation models have been suggested to provide
an observational probe to test and distinguish the models.
While purely Gaussian initial density fluctuations are
fully described by their power spectrum, primordial non-
Gaussianity (PNG) requires higher-order statistics to char-
acterize it, the lowest order being the 3-point correlation
function, or its Fourier transform—the bispectrum—which
is zero for the Gaussian case. Henceforth, we will describe
the level of PNG predicted by different inflation models in
terms of this bispectrum as parametrized by the dimen-
sionless ‘‘nonlinearity parameter’’ flocalNL , specialized to the
case of the so-called ‘‘local’’ template. (For further details,
see [3] and references therein.)

The standard simplest model—slow roll, single-field
inflation—predicts an extremely small level of PNG, given
by flocalNL ¼ ð5=12Þð1� nsÞ, where ns is the spectral index
of the primordial power spectrum [4–9]. Recent cosmic
microwave background (CMB) temperature anisotropy
measurements find ns � 0:96 [10], so flocalNL � 0:016.
Other more general models (e.g. multifield inflation)
predict much larger values of flocalNL .

Observational cosmology has made important progress
in constraining PNG thus far. Recent measurement of the
CMB anisotropy bispectrum by Planck has placed the most
stringent constraint so far, flocalNL ¼ 2:7� 5:8 [11]. Since,

even in the ideal noise-free limit, CMB temperature
(temperatureþ polarization) measurements can only re-
duce the error to �flocalNL � 3:5ð1:6Þ [12,13], there is great

interest in finding other methods to measure PNG; if future
observations still do not detect PNG, an error budget
�flocalNL < 1 will be necessary to rule out nonstandard infla-
tionary models conclusively. (Henceforth, we focus on this
local template and remove the label ‘‘local’’.)
PNG affects the clustering of the early star-forming

galactic halos responsible for creating a network of ion-
ized patches in the surrounding intergalactic medium
(IGM) during the epoch of reionization (EOR), which
leaves a PNG imprint on the tomographic mapping of
neutral hydrogen in the IGM using its redshifted 21 cm
radiation. We shall here investigate in detail the prospects
for constraining PNG with radio interferometric 21 cm
measurements. Our method and results differ significantly
from previous attempts in the literature [14,15], as fol-
lows: (1) we apply the ionized density bias derived by
Ref. [3] to model the effect of PNG by the excursion-set
model of reionization (ESMR); (2) we show a phenome-
nological model that can constrain PNG just as accurately,
independent of reionization details; (3) we show that a
single-epoch measurement can be tuned to the optimum
frequency for constraining PNG; (4) we show how com-
bining multiepoch measurements further reduces the fore-
cast errors.

II. PNG SIGNATURE IN THE 21 CM
POWER SPECTRUM

The 3-D power spectrum of 21 cm brightness
temperature fluctuations (hereafter, ‘‘21 cm power spec-
trum’’) in observer’s redshift space can be expressed to
linear order in neutral and total hydrogen density fluctua-
tions, ��HI

and ��H
, respectively, as the sum of powers of

�k � k � n=jkj [cosine of angle between line-of-sight
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q
, and �xHIðzÞ is the global neutral fraction. Pa;b

is the power spectrum between fields a and b. Here, we
focus on the limit where spin temperature Ts 	 TCMB,
valid soon after reionization begins. As such, we can
neglect the dependence on spin temperature, but our dis-
cussion can be readily generalized to finite Ts. We also
focus on the 21 cm signal on large scales k 
 0:15 Mpc�1,
so that linearity conditions are met (see Ref. [18] for a
summary of these conditions). When the typical size of
ionized regions is much smaller than the scale of interest,
nonlinear effects of reionization patchiness on the 21 cm
power spectrum [18] can be neglected. If we define neutral
and ionized density biases, b�HI

and b�HII
, according to

baðkÞ � ~�aðkÞ= ~��ðkÞ, i.e. ratio of density fluctuation in

field a to that of total matter density in Fourier space, then
the 21 cm power spectrum can be rewritten as

P�Tðk; zÞ ¼ f�T2
b �x

2
HI½b�HI

ðk; zÞ þ�2
k�2P��ðk; zÞ; (1)

where P��ðk; zÞ is the total matter density power spectrum.
Here, we assume the baryon distribution traces the cold
dark matter on large scales, so ��H

¼ ��.

The ionized density bias is the fundamental quantity
derived from reionization models, related to the neutral
density bias by

b�HI
¼ ð1� �xHIIb�HII

Þ= �xHI; (2)

where �xHII ¼ 1� �xHI. We model reionization with PNG,
as follows, based on the results of Ref. [3].

(i) ESMR: The basic postulate of ESMR [19] is that
the local ionized fraction within a spherical volume with
radius R is proportional to the local collapsed fraction of
mass in luminous sources above some mass threshold
Mmin , i.e. xHIIðMmin ; R; zÞ ¼ �ESMRfcollðMmin ; R; zÞ, where
�ESMR parametrizes the efficiency of this mass in releasing
ionizing photons into the IGM. For simplicity, we assume
atomic-cooling halos (ACHs), i.e. halos with virial tem-
perature Tvir * 104 K, are the only sources of ionizing
radiation.

Our methodology for ESMR with PNG is as follows. The
collapsed fraction of ACHs in Ref. [20] (see also [21]),
calculated in the non-Markovian extension to the excursion
set formalism [22–24], for a given PNG parameter, is ap-
plied to the ESMR formalism to calculate the ionized den-
sity bias, for a given efficiency, analytically, as described in
detail in Ref. [3]. Henceforth, since the functions �xHIIðzÞ and
b�HII

ðk; zÞ are set by two parameters ðfNL; �ESMRÞ, given a

fiducial cosmology, so is the 21 cm power spectrum
P�Tðk; zÞ at any z. As Fig. 1 illustrates, while �ESMR

changes the amplitude of the 21 cm power spectrum, fNL

changes the shape at small k significantly. [Note that
the reionization history is virtually independent of fNL
for �xHII > 0:1, e.g., for �ESMR ¼ 50, �xHII ¼ 0:50 at
z ¼ 10:105ð10:125Þ for fNL ¼ 0ð10Þ, respectively.] The
(nonzero) minimum of the curve for fNL < 0 is at wave
number k?, where b�HI

ðk?; zÞ � �1=3.

(ii) Phenomenological (‘‘pheno-’’) model: Just as
PNG exhibits a scale-dependent effect on halo bias
[20,21,25–30], so we also find, in Ref. [3], a scale-
dependent non-Gaussian correction to the ionized density

bias, �bðdÞ�HII
ðk; zÞ ¼ b�HII

ðk; zÞ � bG�HII
ðzÞ, where bG�HII

is the

Gaussian ionized density bias and scale independent.
[There is also a scale-independent non-Gaussian correc-

tion, �bðiÞ�HII
ðzÞ. However, �bðiÞ�HII

� bG�HII
for fNL < 10

(see [3]), so we neglect it here, similar to the neglect of a
scale-independent non-Gaussian correction to the halo bias
when constraining PNG with galaxy surveys [31].]
For the local template, we derived from the ESMR a

relation between �bðdÞ�HII
and bG�HII

in [3]. On large scales,

�bðdÞ�HII
ðk; zÞ ¼ 3fNL½bG�HII

ðzÞ � 1� �c�mðH0=cÞ2
gð0ÞDðzÞk2TðkÞ ; (3)

where �c � 1:686 is the critical density in the spherical
collapse model (in an Einstein–de Sitter universe); DðzÞ is
the linear growth factor normalized to unity at z ¼ 0;
gð0Þ ¼ ð1þ ziÞ�1D�1ðziÞ � 0:76 in our fiducial cosmol-
ogy, where zi corresponds to the initial epoch, i.e. limit of
large redshift; and TðkÞ is the matter transfer function
normalized to unity on large scales.
This relation was further tested and confirmed by

numerical solution of the linear perturbation theory of
reionization (LPTR) which includes radiative transfer
[32]. (For further details, see Ref. [3].) Henceforth,
Eq. (3) is assumed to be generic, regardless of reionization
details. In what we call the ‘‘pheno-model,’’ the 21 cm
power spectrum is set by three parameters, fNL, �xHI and
bG�HII

, at a given redshift. The latter two parameters embrace

our ignorance of reionization.

FIG. 1 (color online). The spherically averaged 21 cm power
spectrum at z ¼ 10:10, using ESMR with the values of
ðfNL; �ESMRÞ marked in the legend.
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III. OBSERVABILITY OF 21 CM
INTERFEROMETRIC ARRAYS USING

FISHER MATRIX FORMALISM

Radio interferometric arrays measure the 21 cm signal
from coordinates� � �xêx þ �yêy þ��n, where ð�x; �yÞ
mark the angular location on the sky, and �� is the
frequency difference from the central redshift z� of a
redshift bin. It is related to the 3D Cartesian coordinates
r (with origin at the bin center) by �? ¼ r?=dAðz�Þ,
and �� ¼ rk=yðz�Þ, where dAðzÞ is the comoving angular

diameter distance, yðzÞ � �21ð1þ zÞ2=HðzÞ, �21 ¼
�ðzÞ=ð1þ zÞ � 0:21 m, and HðzÞ is the Hubble parameter
at z. The Fourier dual of � is defined as u � uxêx þ
uyêy þ ukn (uk has units of time), which is related to k

(Fourier dual to r) by u? ¼ dAk? and uk ¼ ykk. The
power spectrum in u space is related to that in the k space
by P�Tðu; zÞ ¼ P�Tðk; zÞ=ðd2AyÞ.

For an interferometric array, a baselineL corresponds to
u? ¼ 2�L=�. (Note: Our convention is different from the
observer’s convention u? ¼ L=�.) Let �nðLu?Þd2L denote

the number of redundant baselines Lu? corresponding to

u?, i.e. autocorrelation of array density. Then, the noise

power spectrum in u space [33,34] is PNðu?Þ ¼ ð�Tsys

Ae
Þ2=

½t0 �nðLu?Þ�, where Tsys � ð280 KÞ½ð1þ zÞ=7:4�2:3 is the

system temperature [35], Ae / �2 (for � less than antenna
size) is effective collecting area, and t0 is total observation
time.

We adopt the following configuration of interferometric
arrays. We assume antennas are concentrated within a
nucleus of radius R0 with area coverage fraction close to
100%, with coverage density dropping like r�2 in a core
extending from R0 to Rin. We neglect the dilute antenna
distribution in the outskirts, R> Rin. Given central array
density �0, the configuration can be specified by two
convenient parameters: Nin, the number of antennas within
Rin, and 	, the fraction of these antennas that are in the

nucleus. The relations are R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	Nin=�0�

p
, Rin ¼

R0 exp ½ð1� 	Þ=ð2	Þ� [33].
Given a parameter space fpag, the Fisher matrix

for 21 cm power spectrum measurements is Fab ¼P
uð@P�T ðuÞ

@pa
Þð@P�T ðuÞ

@pb
Þ=½�P�TðuÞ�2. The 1
 forecast error of

the parameter pa is given by �pa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðF�1Þaa

p
. The power

spectrum measurement error in a pixel at u is �P�TðuÞ¼
½P�TðuÞþPNðu?Þ�=

ffiffiffiffiffiffi
Nc

p
, where Nc¼u?du?duk�B=

ð2�Þ2 is the number of independent modes in that pixel.
We adopt logarithmic pixelization, du?=u? ¼ duk=uk ¼
10%. Here,� is solid angle spanning the field of view; B is
bandwidth of the redshift bin.

We assume experimental specifications in Table I,
for MWA [36], LOFAR [37], SKA [38], and Omniscope
[39], respectively. (We note that these interferometer array
configurations were not designed to optimize the experi-
ment proposed here, so improved constraints may be

possible with other designs.) We assume residual fore-
grounds can be neglected for kk 
 kk;min ¼ 2�=ðyBÞ,
e.g., kk;min ¼ 0:055 Mpc�1 at z ¼ 10:1. This foreground

removal requirement is achievable, as demonstrated by,
e.g., [34]. (Reference [40], submitted at about the same
time as our paper, considers a somewhat more pessimistic
foreground removal scenario in constraining PNG, com-
plementary to our work.) The minimum k? is set by the
minimum baseline, k?;min ¼ 2�Lmin =ð�dAÞ. We account

for modes up to kmax ¼ 0:15 Mpc�1. Our fiducial cosmol-
ogy is as follows: �� ¼ 0:72, �M ¼ 0:28, �b ¼ 0:046,
H0¼100h kms�1Mpc�1 (h¼0:7), 
8 ¼ 0:82, ns ¼ 0:96,
consistent with WMAP7 results [41], with linear matter
power spectrum of Ref. [42]. ESMR fiducial values are
fNL ¼ 0, �ESMR ¼ 50:0, corresponding to electron scatter-
ing optical depth �es ¼ 0:08. To facilitate direct compari-
son with ESMR, the fiducial model of 21 cm power
spectrum for the pheno-model will be the same as the
ESMR fiducial model, which sets the fiducial values of
�xHI and bG�HII

for a given redshift.

IV. RESULTS

(i) Single epoch constraints: In Table II, we list forecast
errors, �fNL, marginalized over �ESMR in the ESMR, and
over �xHI and b

G
�HII

in the pheno-model. Top and bottom sets

of forecasts use information from a single redshift bin
centered at z ¼ 11:24 ( �xHII ¼ 0:25) and z ¼ 10:10 ( �xHII ¼
0:50), respectively. For the same redshift and experiment,
the values of �fNL match very well between these two
models. This demonstrates that the pheno-model, which
makes no assumptions about the connection between �xHI
and bG�HII

, can constrain fNL for a single epoch measure-

ment as accurately as a reionization model which links the
evolutions of �xHI and bG�HII

.

For the same experiment, as Table II shows, values of
�fNL differ significantly between �xHII ¼ 0:25 and 0.50,
implying a strong dependence of �fNL on �xHII. For
Omniscope, in particular, �fNL shrinks by a factor of �5
from �xHII ¼ 0:50 to 0.25. To investigate this in detail, we
use the ESMR to plot �fNL vs �xHII in Fig. 2. For MWA

TABLE I. Specifications for 21 cm interferometers. We
assume observation time t0 ¼ 4000 hours for each redshift bin
of bandwidth B ¼ 6 MHz.

Experiment Nin Lmin (m) 	 Aeðz ¼ 6=8=12Þ[m2] �[sr]a

MWAb 50 12.5 1 9=14=18 �2=Ae

LOFAR 32 100 0.8 397=656=1369 2ð�2=AeÞc
SKA 1400 10 0.8 30=50=104 �2=Ae

Omniscope 106 1 1 1=1=1 2�

aSky rotation adds an additional factor of two to the actual
observed patches.
b128 antennae total [36].
cAssume LOFAR can simultaneously observe two patches on
the sky.
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and LOFAR (both noise-dominated experiments), the
constraint is tighter at higher �xHII (i.e. lower redshift, where
the noise is smaller). However, for SKA and Omniscope
(cosmic-variance-dominated experiments), there appears
to be a ‘‘sweet spot,’’ where �fNL is minimized, at �xHII �
0:25–0:30. This sweet spot can be explained using the
pheno-model, as follows. The derivative jdP�T=dfNLj /
ð �xHII= �xHIÞ½bG�HII

� 1�jbG�HI
þ �2

kj / jð1 � bG�HI
Þð13 þ bG�HI

Þj,
using Eq. (2). In the ideal noise-free limit, the power
spectrum error �P�T / P�T / ½bG�HI

þ �2
k�2 � bG2�HI

þ
2
3 b

G
�HI

þ 1
5 , when averaged over �k. Fixing �xHI and bG�HII

,

the Fisher matrix F ¼ ð�fNLÞ�2 is peaked when bG�HI
�

�0:71. Equation (2) gives �xHII ¼ ð1�bG�HI
Þ=ðbG�HII

�bG�HI
Þ.

Since Gaussian bias bG�HII
� 6 (see Fig. 5 of Ref. [3]), the

sweet spot is at �xHII � 0:25 in the ideal noise-free limit. In
reality, finite noise is larger at higher redshifts, so the sweet
spot will occur at slightly lower redshift.

(ii) Multiepoch constraints: While a futuristic single
epoch measurement can achieve a remarkable accuracy
of �fNL ¼ 0:38ð16Þ for Omniscope (SKA), adding tomo-
graphic information can further improve the accuracy.
The pheno-model alone cannot be used to combine

multifrequency measurements because it does not specify
the redshift evolutions of �xHI and b

G
�HII

. On the other hand, a

model such as the ESMR can be used to combine multi-
frequency measurements because it fixes the reionization
history (and therefore P�T) for a given ðfNL; �ESMRÞ. We
show multiepoch constraints from the ESMR in Table III.
Specifically, if information is combined from �xHII �
0:06–0:70 (7-band, total 42 MHz bandwidth, corresponding
to z � 9:5–13:4 in the ESMR), the constraint can be signifi-
cantly tightened, i.e.�fNL ¼ 0:16 for Omniscope (ten times
smaller than an ideal CMB experiment), and�fNL ¼ 2:8 by
SKA (two times smaller than Planck). A prior of ��es ¼
0:014 from PlanckþWMAP CMB measurements [10]
corresponds to a prior of ��ESMR � 39, much larger than
allowed by SKA and Omniscope alone, so adding this �es
prior cannot improve �fNL from these experiments. If we
take a more conservative upper limit, kmax ¼ 0:10 Mpc�1

(instead of 0:15 Mpc�1 as assumed above), then �fNL for
Omniscope is �2 times larger. Since multiepoch observa-
tions tighten fNL constraints by combining information from
different frequency bands to increase the amount of data
relative to a single band, our use of the simple ESMRmodel
here, with constant efficiency parameter �ESMR, for which
reionization spans a relatively narrow range of redshift, may
be a conservative one. If reionization is more extended, as in
self-regulated reionization models [43,44], for example, the
resulting fNL constraints may be even tighter.

V. COMPARISON WITH PREVIOUS WORK

Previously, Ref. [14] reported forecasts of
�fNL ¼ ½100; 700; 50; 4� for [MWA512, LOFAR, SKA,
Omniscope] based on information from a single redshift
bin at the 50% ionized epoch. Their results can be compared
to the bottom set in Table II. Our results differ for a number
of reasons: (1) Ref. [14] computed the scale-dependent
signature of PNG in P�T by fitting their approximate semi-
numerical simulations of reionization. In Ref. [3], we
showed by our analytical derivation and numerical LPTR
calculations that this fit underestimates the scale-dependent
bias due to PNG significantly. These differences are
reflected in the smaller �fNL we obtain for LOFAR, SKA,
and Omniscope. (2) The anticipatedMWA512 configuration

TABLE II. Forecast 1
 errors at �xHII � 0:25ðz ¼ 11:24Þ
and �xHII � 0:50ðz ¼ 10:10Þ, respectively. ‘‘F.V.’’ means fiducial
values.

ESMR Pheno-model

�xHII fNL �ESMR fNL �xHI bG�HII

0.25

[F.V. 0 50.0 0 0.75 6.19]

MWA 13000 1500 14000 300 8800

LOFAR 1200 130 1200 1.1 29

SKA 16 1.8 16 0.028 0.79

Omniscope 0.38 0.040 0.38 0.00044 0.012

0.50

[F.V. 0 50.0 0 0.50 5.43]

MWA 700 63 750 17 220

LOFAR 100 8.1 96 0.16 2.0

SKA 19 1.5 18 0.030 0.37

Omniscope 1.8 0.15 1.8 0.0023 0.027

TABLE III. �fNL from multiple redshift bins, marginalized
over �ESMR. ‘‘1-band,’’ ‘‘3-band,’’ ‘‘5-band,’’ ‘‘7-band’’ means
the information of 1 bin (at z ¼ 11:24, �xHII ¼ 0:25), 3 bins
( �xHII � 0:17–0:37), 5 bins ( �xHII � 0:11–0:52), 7 bins ( �xHII �
0:06–0:70), respectively.

Experiment 1-band 3-band 5-band 7-band

MWA 13000 1800 520 200

LOFAR 1215 91 39 26

SKA 16 5.0 3.5 2.8

Omniscope 0.38 0.23 0.18 0.16

FIG. 2 (color online). 1
 error �fNL from a series of single
redshift bins, each with 6 MHz bandwidth.
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assumed by Ref. [14] was also overly optimistic, while we
adopt the current MWA128 configuration [36].

To model the effect of PNG on the 21 cm power spec-
trum, Ref. [15] assumed the simple functional dependence
of ionized fraction on local overdensity, used for illustra-
tive purposes by Ref. [45] for the Gaussian case, to derive
an ionized fraction bias bx for PNG. Unfortunately, they
incorrectly used bx to relate the 21 cm power spectrum to
the matter power spectrum (see Ref. [3]).

VI. CONCLUSIONS

This paper suggests two approaches to constrain fNL with
21 cmpower spectra from the EOR. If we take a conservative
approach, i.e. assuming nothing about �xHIðzÞ and bG�HII

ðzÞ,
then the pheno-model can be employed for a single redshift
bin to provide fNL constraints with the same precision as a
reionization model in which the reionization history is
uniquely specified by a set of model parameters. However,
using the ESMR, we demonstrate that a well-motivated
reionization model can improve �fNL in two ways: (1) a
pathfinder measurement at a single redshift can best-fit the
values of model parameters, which then can be used to

estimate the desired redshift corresponding to �xHII �
0:25–0:3, i.e. the ‘‘sweet spot’’ for cosmic-variance-
dominated experiments. This can help tune single-epoch
observations for maximum precision. (2) Multiepoch
measurements can be combined to improve �fNL. We find
that multifrequency observation by SKA can achieve
�fNL � 3, providing a new method to constrain PNG inde-
pendent of CMB measurements, but with a precision com-
parable to Planck’s. A cosmic-variance-limited array of
this size like Omniscope can achieve �fNL � 0:2, im-
proving current constraints by an order of magnitude.
These high precision observations may someday shed light
on inflationary models.
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