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Lorentz violation in the weak sector would affect the �-decay lifetimes of pions. The decay amplitude

may be rendered anisotropic, but only an isotropic violation of boost invariance can affect the net lifetime

in the center-of-mass frame. However, since the rest frames of the pions that produce the NuMI neutrino

beam at Fermilab vary with the rotation of the Earth, it is possible to constrain anisotropic Lorentz

violation using prior analyses of sidereal variations in the event rate at the MINOS near detector. The

resulting bounds on weak-sector Lorentz violation are at the 10�4 level, a substantial improvement over

previous results. The highly relativistic character of the pions involved is responsible for the improvement.
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I. INTRODUCTION

There has recently been a significant degree of interest
in the possibility that the fundamental Lorentz and CPT
symmetries of the standard model might not hold exactly.
There has not so far been any significant experimental
indication that these symmetries are broken in nature.
However, the possibility is interesting because, if such
symmetry breaking did exist, it would be indicative of a
completely new regime of fundamental physics.

Lorentz and CPT violation involving standard model
quanta can be described using the machinery of effective
field theory. The general field theory that describes these
effects is known as the standard model extension (SME).
It contains all possible translation-invariant but Lorentz-
violating operators that may be constructed out of known
standard model fields. The effects of the Lorentz-violating
operators are parametrized by tensor-valued coefficients
[1,2]. If Lorentz symmetry is broken spontaneously, these
are related to the vacuum expectation values of dynamical
fields with tensor indices.

The minimal SME—a restricted version of the theory
that contains only renormalizable operators—is now the
standard framework used for describing the results of
experimental tests of isotropy, boost invariance, and CPT
symmetry. Important tests of these symmetries have
included studies of matter-antimatter asymmetries for
trapped charged particles [3–5] and bound state systems
[6,7], measurements of muon properties [8,9], analyses of
the behavior of spin-polarized matter [10], frequency stan-
dard comparisons [11–14],Michelson–Morley experiments
with cryogenic resonators [15–17], measurements of neu-
tral meson oscillations [18–22], polarization measurements
on the light from cosmological sources [23,24], high-
energy astrophysical tests [25–28], precision tests of
gravity [29,30], and others. Up-to-date information about
the status of the relevant constraints may be found collected
in Ref. [31].

Motivated by the claim from OPERA [32] that neutrinos
might have been moving faster than light, we previously
looked at the effects of leptonic Lorentz violation on the
pion decay rate. It turned out that the kind of modification
to the neutrino dispersion relation that would have been
necessary to explain the purported OPERA result would
have also led to drastic modifications to the pion decays
that produced the neutrinos and thus to the experiment’s
beam structure. More recently, there has been interest in
constraining Lorentz violation in the weak sector using
analyses of � decays [33,34]. Studies of the energetics of
isotopes’ �-decay endpoints can also provide sensitivity to
other types of Lorentz violation [35].
This work is a generalization of our previous analyses

[36,37] of how Lorentz violation could affect leptonic
meson decays, such as �� ! �� þ ���. The previous

work dealt with Lorentz violation for the second-generation
fermions. Our new results account for the possibility that the
W propagator may also be modified by a Lorentz-violating
background tensor ���. This provides an interesting way to
constrain weak sector Lorentz violation, and it turns out
that working with relativistic pions provides significant
improvements in sensitivity relative to studying the decays
of stationary particles.
The outline of this paper is as follows. The decay rate for

a pion in the presence of weak-sector Lorentz violation is
evaluated in Sec. II. In Sec. III, this result is combined
with existing analyses of MINOS near detector data to
place new constraints on the Lorentz violation coefficients
involved. Section IV discusses these result in context,
including a critique of some previously claimed constraints
on a number of the same coefficients. An Appendix extends
the calculations in Sec. II to show how measuring particle
spins could theoretically provide sensitivity to additional
coefficients, although this is experimentally impractical.

II. LORENTZ VIOLATION IN PION DECAY

The present calculations will assume that Lorentz
violation only exists in the pure weak and Higgs sectors.*baltschu@physics.sc.edu
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This means the tensor structure of the W propagator will
be modified, but the kinematics of the parent and daughter
particles will not. The calculation may be carried out in
the rest frame of the pion, and all the kinematical factors
associated with both the incoming and outgoing particles
are unchanged from the usual case. So only the modified
matrix element needs to be calculated, and its modified
form is actually quite simple. A similar calculation, but
assuming a real, traceless � that was isotropic in the
laboratory frame, was performed in Ref. [38]. Naturally,
since any real Lorentz violation is a fairly small effect,
we may neglect all effects beyond leading order. The
modifications uncovered in the present calculation may
therefore simply be added to those found in Ref. [37] if
there is relevant Lorentz violation in both the weak and
muon sectors.

The specific form of Lorentz violation we shall consider
is a CPT-even modification of the W propagator. In the
Feynman gauge, and in the limit in which the exchanged
momentum is negligible compared to the W boson mass
(jp2j � m2

W), the propagator becomes

D��ðp ! 0Þ ¼ �i
g�� þ ���

�m2
W

: (1)

The complex tensor ��� is an effective construction,
related to Lorentz violation coefficients that arise in the
pure gauge and Higgs boson sectors [34,39]. In the present
limit, with the exchanged W far off shell, � takes the form

��� ¼ �k
��
�� � i

2g
k
��
�W þ 2p�p�

m2
W

k
����
W : (2)

The tensors k��, k�W , and kW describe CPT-even forms of

Lorentz violation in the Lagrangian; they relate to the
Higgs sector, to Higgs-weak mixing, and to the pure W
sector, respectively. After spontaneous symmetry breaking,
when the Higgs field acquires a vacuum expectation value,
coupling terms between the scalar field and theW produce
operators that are simply bilinear in the W field and so
contribute to the W propagator. There are additional terms
in this propagator related to each of the k��, k�W , and kW
tensors, but those appearing in Eq. (2) are the dominant
contributions from each of those tensors; further terms are
suppressed by relative powers of p2=m2

W . In the rest frame
of a decaying pion, where the W momentum is purely
timelike, the momentum-dependent kW term in Eq. (2)

becomes 2ðm2
�=m

2
WÞk0�0�

W . More generally, the structure
of the kW contribution to the effective � will depend on
the experimental conditions, and so results from different
decays will provide complementary sensitivities. Without a
detailed understanding of how the Lorentz violation
arises, it is unknown what the relative sizes of the back-
ground tensors should be. However, we shall make the
naive assumption that the sizes of k�� and kW are

similar. Then the first-order dependence of � on kW is
comparable to higher-order corrections to the k�� and

k�W dependences, so we shall mostly treat experimental

results pertaining to � as providing constraints on the two-
index tensors k�� and k�W . Hermiticity ensures that the

symmetric part of ��� is real and the antisymmetric part is
purely imaginary. Note that, while k�� has both real sym-

metric and imaginary antisymmetric parts, k�W is strictly

real and antisymmetric. Consideration of isotropic, boost-
invariance-violating � terms dates back to Refs. [38,40],
but the analysis here will include anisotropic terms as well.
Observables in experiments that do not involve low-energy
W-mediated interactions will depend on different linear
combinations of the SME coefficients than those described
by �.
In general, calculations of scattering cross sections and

decay rates for reactions with Lorentz violation can be
tricky. The methods for performing such calculations
were worked out in Ref. [41]. Kinematic modifications,
which are determined by the energy-momentum relations
for the incoming and outgoing particles, are often more
important than any changes to the matrix element.
However, the pion, muon, and neutrino dispersion relations
are all conventional in this case, and so the calculations
simplify considerably. All that is necessary is to compute
the matrix element using the modified propagator (1)
instead of the usual one, in the usual tree-level Feynman
diagram that describes the pion decay.
In the rest frame of a decaying pion, the decay rate can

only depend on isotropic forms of Lorentz violation—
those that only violate Lorentz boost symmetry. The reason
is that the unperturbed decay is isotropic in the center-of-
mass frame. Effects that break rotation symmetry will
produce a decay amplitude that depends on the momentum
directions of the outgoing particles. However, when the
decay rate is integrated over all angular channels, the
anisotropies will cancel out; an increased rate for a daugh-
ter particle to be emitted in one direction will be canceled
by a decreased rate for a decay along a different direction.
In a general theory, it is difficult to demonstrate this fact
explicitly; the angular dependence of the decay amplitude
is quite complicated. However, when the only source of
Lorentz violation for this process is in the weak sector, the
calculation of the angular dependence is simple enough to
do explicitly. We shall therefore include all forms of
isotropy breaking in our present calculations, with the
expectation that they will all cancel out in the final
expression for the pion decay rate. The tensor ��� consists
of a symmetric real part and an antisymmetric imaginary
part, and since the latter has no isotropic component, it
will be expected not to contribute to the final integrated
decay rate.
In our partial evaluation of the matrix element, any

factors related to the pion structure will be neglected.
These factors are common to decays with and without
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Lorentz violation. Moreover, in the center-of-mass frame,
the only vector or axial vector than can be associated with
the parent particle is its momentum, p� ¼ ðm�; 0; 0; 0Þ.
This simplifies the determination of the Lorentz-violating
modifications considerably. However, the daughter parti-
cles do have spatial momenta, which will complicate the
determination of the leptonic part of the matrix element
somewhat. The momenta of the outgoing muon and anti-
neutrino are p� ¼ ð½1þ �2�m�=2; ½ð1� �2Þm�=2�p̂Þ and
p� ¼ ð½1� �2�m�=2;�½ð1� �2Þm�=2�p̂Þ, where � ¼
m�=m� is the muon-pion mass ratio. (The labels � and

� in these momenta denote the particle type and are not
Lorentz indices; to avoid confusion, other letters will be
used to denote Lorentz indices in expressions involving
these vectors.) With no Lorentz violation in the purely
leptonic sector, the expressions for p� and p� are conven-

tional, and there are no changes to the kinematics of the
decay.

The relevant part of the matrix element is given by

M / p�
�

�
g�� þ ���

�m2
W

�
�v�ðp�Þ	�ð1� 	5Þu�ðp�Þ: (3)

Squaring this gives

jMj2 / m2
�

m4
W

½ �v�ðp�Þð	0 þ �0�	�Þð1� 	5Þu�ðp�Þ �u�ðp�Þ

� ð1þ 	5Þð	0 þ ��0			Þv�ðp�Þ�: (4)

The sum over the outgoing spins can be evaluated using
standard fermion closure relations. The effects of any
leptonic Lorentz violations were already evaluated in
Ref. [37], and, in any case, existing constraints in the lepton
sector [31] rule out such effects at the sensitivity level
being probed here. Dropping the m� and mW prefactors,
the closure sums give

X
s;s0

jMj2 / trf6p�ð	0 þ �0�	�Þð1� 	5Þð6p� þm�Þð1þ 	5Þð	0 þ ��0			Þg (5)

¼ 2ðg0� þ �0�Þðg0	 þ ��0	Þ trf6p�	� 6p�		 � 6p�	�	5 6p�		g (6)

¼ 8f½2ðp�Þ0ðp�Þ0 � p� � p�� þ ð�0� þ ��0�Þ½ðp�Þ0ðp�Þ� þ ðp�Þ�ðp�Þ0 � ðp� � p�Þg0��
þ ig0	ð�0� � ��0�Þ
���	ðp�Þ�ðp�Þ�g: (7)

The term proportional to 
���	 vanishes. While it was

expected that the imaginary part of � would not contribute
to the total decay rate (because of its intrinsic anisotropy),
it actually makes no leading-order contribution to the spin-
summed jMj2, even prior to an angular integration over p̂.
The reason is that the g0	
���	 ensures that there is no

contribution from the timelike components of p� and p�;

then since the spacelike components of these vectors
are antiparallel, they also give an identically vanishing
contribution when simultaneously contracted with the
Levi–Civita tensor.

There is, however, a dependence on the imaginary part
of � in the spin structure of the cross section. Sensitivity to
the imaginary part of � is equivalent to sensitivity to k�W

and to the imaginary part of k��. Any such dependence on

��� � ���� must be related to muon spin correlations,
since the neutrino has only a single interacting spin state.
The W boson only interacts with a single chirality state of
the muon, but for a massive particle, 	5 does not commute
with the free-particle Hamiltonian, so both muon spin states
are involved in the reaction. The expectation value of the
spin provides an additional vector that may be contracted
with the Levi–Civita tensor, along with��� � ���� and p�.
The details of the dependence on the spin and the imaginary
part of � are discussed in the Appendix.

The remaining anisotropic term in the spin-summed
cross section does not vanish at this stage. Splitting the �
terms into separate spatial and temporal parts and using
p� � p� ¼ m2

�ð1� �2Þ=2, the decay rate is proportional to

X
s;s0

jMj2 / ð1þ �00 þ ��00Þm2
�

�2ð1� �2Þ
2

� ð�0j þ ��0jÞp̂jm
2
�

�2ð1� �2Þ
2

(8)

¼ ð1þ �0� þ ��0�Þm��
2ðp�Þ�: (9)

This describes the anisotropy of the decay; the rate depends
on the alignment of the outgoing particles with the axis
described by <f�0jg. However, when integrated over all
angles, the p̂ term in Eq. (8) clearly gives a vanishing
contribution. The net change to the pion decay rate is thus

� ¼ �0ð1þ 2�00Þ; (10)

where �0 is the rate in the absence of �.
The contribution of � to the modified decay is simpler

than the contribution of a similar coefficient cL in the left-
handed fermion sector. The modification due to cL includes
a dependence on the mass ratio �. However, it is not
surprising that the effects of fermionic Lorentz violation
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are more intricate because cL affects the phase space
available to the outgoing fermions in a way that the weak
parameter � does not.

III. CONSTRAINTS ON WEAK-SECTOR
LORENTZ VIOLATION

The result (10) depends only on the component of � that
is isotropic in the pion rest frame. However, pions with
different velocities will see different values of �00 and will
decay at different rates. Thus, there can actually be sub-
stantial anisotropy. Pions with different boosts relative to
the laboratory will decay at different rates, and for a pion
beam fixed to the Earth, the decay rate will exhibit sidereal
oscillations.

To study this anisotropy, we must refer to the � coef-
ficients in a standard coordinate frame. The conventional
choice for such a frame (in which experimental constraints
on the SME parameters are usually expressed) uses Sun-
centered celestial equatorial coordinates [42]. The Z axis
for these coordinates lies parallel to the Earth’s axis, the X
axis indicates the direction of the vernal equinox point on
the celestial sphere, and the Y axis is set by the right-hand
rule. The capital indices J and K used below will refer to
spatial coordinates in this specific frame. The choice of
time coordinate is less essential; there is a standardized
choice T, but it is usually advantageous to introduce an
offset and use a local time coordinate T�, chosen so that the
laboratory y axis and the Y axis lie parallel at T� ¼ 0.

The isotropic �00 in the pion rest frame is related to the
tensor components in the Sun-centered frame by a boost.
If the pion is moving ultrarelativistically (with a Lorentz
factor 	� � 1) along the direction v̂�, the boosted rela-
tionship is

�00 ¼ 	2
�½�TT þ �ðTJÞðv̂�ÞJ þ �JKðv̂�ÞJðv̂�ÞK�; (11)

using the notation �ð��Þ ¼ ��� þ ���. The size of the

effect in the pion rest frame depends on 	2
� and thus

increases quite rapidly with the energy. This serves to
enhance the sensitivity of measurements made with fast-
moving pions. Note that, for an Earthbound laboratory and
a beam of relativistic pions, there is no need to distinguish
between the pion velocity relative to the lab and the veloc-
ity relative to the Sun-centered frame; any effects that
distinguish between the two are suppressed by powers of
	�. At highly relativistic energies, the decay products are
also beamed into a narrow pencil of angles around the
direction v̂�. This effectively washes out the anisotropy
due to terms such as �0j þ ��0j.

Searches for evidence of Lorentz-violating neutrino
oscillations in the NuMI beam using the MINOS near
detector have already been done [43,44]. The analyses
looked for sidereal variations in the number of charged
current events in the detector. However, as noted in
Ref. [37], this can alternatively be interpreted as a search
for directional variations in the neutrino beam strength.

The signature of a direction-dependent pion decay rate
would be a variation in the number of charged current
events seen in the detector. This idea, along with the
sidereal analysis from Ref. [43], has already been used to
constrain the Lorentz-violating cL coefficients for the
second-generation leptons.
The techniques used here shall be quite similar, and

much of the analysis is completely analogous. However,
in both cases, there are additional complications, and the
results should be seen as order of magnitude estimates. The
primary concern is that, in particle physics experiments,
the Lorentz violation may affect not just the rate at which a
given interaction or decay occurs, but it may also change
the efficiency with which the outgoing products are
detected and identified. These kinds of detection issues
are frequently sidestepped, as in Ref. [45], which consid-
ered Lorentz violation for t quarks but did not address the
way the forms of Lorentz violation involved would also
affect the b quark jets used to tag the t events.
In the process being considered in this paper, the �

coefficients will generally modify not just � but also the
rate at which the NuMI beam neutrinos interact with the
detector material. The charged current interactions that
give rise to detectable signals are more complicated than
the simple leptonic decay we have been discussing.
However, there is good reason to believe that the interac-
tions in the detector are less affected by the Lorentz
violation than is the pion decay. The sensitivity of a
weak process to the Lorentz violation coefficients goes as
E2, where E is the lab frame energy. Since a decay neutrino
carries off, on average, less than half of each pion’s energy,
the reactions at the detector are anticipated to be at least
four times less sensitive to the observable components of
�. Moreover, the effects of � in the detector are generally
expected to enhance, not diminish, the final observable.
Because the boosted momenta that the ��� will ultimately
be contracted with tend to point in roughly the same
direction in the original pion decay and in the interaction
at the detector, an enhancement of one reaction will gen-
erally be accompanied by an enhancement of the other as
well. The net result is that the effect of neglecting mod-
ifications to the detector interactions should only be a
modest loosening of the bounds that we shall be able to
derive.
Of course, the intensity of the neutrino beam does not

provide a direct measurement of �=�0 either. What is
effectively being measured is actually the total number of
pions that manage to decay in the neutrino beam produc-
tion region. The length D of the decay pipe determines the
magnitude of the variations in the neutrino beam strength.
For example, if the decay pipe is very long, essentially all
the pions will have time to decay, and the sensitivity to
�=�0 will be lost. Conversely, if the pipe is very short, the
number of decays will be directly proportional to �=�0;
however, the beam intensity will be low, and the detection
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statistics will suffer accordingly. In general, as D grows,
the fractional sensitivity to �=�0 decreases, but the statis-
tics improve.

Measured in the laboratory frame, the pion decay rate is
�=	�, with the usual time dilation factor to account for
the pions’ relativistic motion; this factor is separate from
those appearing in Eq. (11). Of pions moving with a speed
v� 	 1 along the decay pipe of length D, a fraction

PðDÞ ¼ 1� e��D=	� has sufficient time to decay.
Therefore, a fractional change �=�0 in the instantaneous
decay rate produces a fractional change in PðDÞ of

�
1

P

dP

d�

���������¼�0

�
�� ¼

�
��

�0

�
�0D=	�

e�0D=	� � 1
: (12)

In Eq. (12), a factor of �0=�0 has been inserted to make the
expression into a product of two dimensionless quantities.

The decay pipe for the NuMI beam is 677 m long. This
length was chosen to be comparable to the mean decay
length for pions with GeVenergies, which means the factor

�0D=	�ðe�0D=	� � 1Þ appearing in Eq. (12) will be Oð1Þ.
In fact, for a 6.0 GeV pion (representative of the peak of the
pion distribution), the value of the factor is 0.31.

Following the reasoning from of Ref. [37], we can
determine the manner in which the dependence of � on
� will produce sidereal variations in the NuMI beam
intensity. The MINOS near detector is located at colatitude
’ ¼ 42:18
 at Fermilab, and we will use spherical coor-
dinates ð�;�Þ describing the angle between the beam
direction and the local zenith direction (� ¼ 93:27
) and
the azimuthal angle in the plane of the Earth’s surface,
measured starting eastward from south (� ¼ 203:91
).
This makes the beam direction at a local sidereal time
T� ¼ 0,

v̂� ¼ N1X̂ þ N2Ŷ þ N3Ẑ (13)

¼ ðcos’ sin � cos�þ sin’ cos�ÞX̂ þ ðsin � sin�ÞŶ
þ ð� sin’ sin � cos�þ cos’ cos�ÞẐ (14)

¼ �0:715X̂ � 0:405Ŷ þ 0:571Ẑ: (15)

The revolution of the beam around the Ẑ direction causes
the the quantity �00 upon which � depends to vary as

�00 ¼ 	2
�½A0 þA! cos ð!�T�Þ þB! sin ð!�T�Þ

þA2! cos ð2!�T�Þ þB2! sin ð2!�T�Þ�; (16)

where !� is the Earth’s sidereal rotation frequency. The
Fourier coefficients appearing in this expression are

A0¼�TTþN3�ðTZÞ þN2
3�ZZþ1

2
ð1�N2

3Þ½�XXþ�YY�
(17)

A!¼N1�ðTXÞ þN1N3�ðXZÞþN2�ðTYÞþN2N3�ðYZÞ (18)

B! ¼ �N2�ðTXÞ � N2N3�ðXZÞ þ N1�ðTYÞ þ N1N3�ðYZÞ
(19)

A2! ¼ 1

2
ðN2

1 � N2
2Þ�� þ N1N2�ðXYÞ (20)

B2! ¼ �N1N2�� þ 1

2
ðN2

1 � N2
2Þ�ðXYÞ; (21)

with �� ¼ �XX � �YY . (Since all the combinations
appearing in the Fourier coefficients are symmetric, the
expressions are all manifestly real.)
The neutrino beam intensity varies with the value of �00

in the pion frame. The amplitudes of the beam strength
oscillations are given by theA andB coefficients, times a
common sensitivity factor

S ¼ 2	2
�

�
�0D=	�

e�0D=	� � 1

�
¼ 1:2� 103: (22)

The factor of 2 in Eq. (22) comes directly from the
expression for �=�0; the 	2

� (which is the dominant con-
tribution) is derived from Eq. (16); and, as discussed above,
the final factor in parentheses relates how a variation in
�=�0 affects the total number of pion decays.
An analysis of � based on the MINOS data mirrors the

analyses from Refs. [37,43]. There is no evidence (at a 3
level) for any of the oscillation amplitudes in the charged
current event rate to be nonzero. The fractional level of
statistical noise in the data was characterized by a 1
dispersion in the power values of 1:8� 10�2. We therefore
assign 3 constraints on the quantities SA and SB at the
5:4� 10�2 level. This corresponds to constraints on the
four separate oscillations amplitudes A!, B!, A2!, and
B2! of 4:5� 10�5. By assuming only one component of �
is nonzero at a time, the constraints on theA andB linear
combinations can be translated into bounds on separate
coefficients. The results are given in Table I. The table also
includes the basic SME coefficients that are equivalent to
the specified components of �.

TABLE I. Constraints on the magnitudes of the individual �
(and equivalent k��) coefficients in the Sun-centered reference

frame, assuming only a single coefficient is nonvanishing.

Coefficient SME expression Bound

j�ðTXÞj j � 2<fðk��ÞTXgj 6:3� 10�5

j�ðTYÞj j � 2<fðk��ÞTYgj 6:3� 10�5

j��j jðk��ÞYY � ðk��ÞXXj 1:6� 10�4

j�ðXYÞj j � 2<fðk��ÞXYgj 1:6� 10�4

j�ðXZÞj j � 2<fðk��ÞXZgj 1:1� 10�4

j�ðYZÞj j � 2<fðk��ÞYZgj 1:1� 10�4
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IV. DISCUSSION

The constraints on the ��� coefficients are at the 10�4

level, representing an improvement over those discussed in
Ref. [34], which were at the 10�3 level. The bounds cover
both �ðJKÞ and �ðTJÞ coefficients. However, none of these

constraints are particularly tight, compared with bounds in
other sectors of the SME. Moreover, these bounds are not
on precisely the same � parameters as might be measured
in different processes because of the momentum depen-
dence in the kW term of Eq. (2). The present bounds are
also comparable to those obtained on �TT in Ref. [38] by
comparing the pion decay rate at different energy scales.
Overall, there is ample room for improvement in this
poorly constrained region of parameter space.

The bounds in Table I were derived under the assump-
tion that only a single component of � was nonvanishing.
In reality, the MINOS data constrains the four linear com-
binationsA!,B!,A2!, andB2!. By measuring sidereal
changes in intensity using pion beams with a uniform
energy but different terrestrial orientations, the sensitivity
could be expanded to cover the six-parameter subspace
considered spanned by �TX, �TY , �XY , �XZ, �YZ, and ��.
The remaining real coefficients, which determine A0,
could be constrained by varying the pion energy. Varying
the energy only (but not the beam direction) gives sensi-
tivity to �TT ; this was essentially the approach taken in
Ref. [38], in which isotropy was assumed. Varying both
direction and energy provides sensitivities to the three
remaining quantities �TZ, �ZZ, and �XX þ �YY , which
describe violations of isotropy and boost invariance in
which the Z axis represents the sole preferred direction.
Finally, using different meson species and different
energies, would make it possible to disentangle the kW
coefficients from the others than make up the effective
quantity �.

There has actually been some confusion about how well
the k��, k�W , and kW that make up � are known. In

Ref. [39], much stronger bounds on some of the same
SME coefficients were quoted. However, those bounds
are not really accurate. There is a particular class of
CPT-even SME coefficients—the c coefficients for fermi-
ons, k�� in the Higgs sector, subsets of the kF, and kW
for electromagnetic and weak fields—that are observable
only as differences between different sectors. Coordinate
redefinitions can actually move the coefficients from one
sector to another, but the differences between sectors are
invariant under such transformations [46]. In some cases,
such as analyses of the thresholds for ordinarily forbidden
electron-photon processes like 	 ! e� þ eþ, it is easy to
identify unambiguously the specific difference involved.
The threshold for the photon decay depends on the differ-
ence between photon-sector and electron-sector coeffi-
cients because a comparison is effectively being made
between the electron and photon dispersion relations.

However, in many low-energy experiments, precisely
which sectors are being compared is not clear. In atomic
clock experiments, the coefficients that are actively being
studied are really being compared with some sort of
aggregate coefficients for bulk matter. These aggregate
coefficients are linear combinations of the coefficients for
photons, electrons, protons, and neutrons (the latter two
themselves being combinations of gluon and quark coef-
ficients). In many cases, the comparison of different
sectors is left implicit; it is assumed that there is only
Lorentz violation for a single standard model field, and
bounds are quoted for the corresponding coefficients in
that sector.
However, only the coefficients for those sectors that are

actually involved in a given process can be constrained by
studying that process. In Ref. [39], the authors took con-
straints on various coefficients (which were not quoted as
differences) as if they represented absolute bounds on the
coefficients in a single sector. Then they used coordinate
transformations to move the Lorentz violation to the weak
sector and reinterpreted the experimental results as con-
straints on weak-sector Lorentz violation. Unfortunately,
this methodology is not correct. It must be remembered
that the experimental results really constrain only differ-
ences between coefficients in various sectors and that the
weak sector is not included as part of any of those differ-
ences. Since the differences between sectors are invariant
under the redefinitions used in Ref. [39], the physical
observables cannot be interpreted as depending on weak-
sector SME coefficients.
The constraints in Ref. [39] on these CPT-even coeffi-

cients are not wholly meaningless, however. The weak
sector does affect the physics of ordinary matter, through
electroweak mixing and radiative mixing. The bounds
quoted in Ref. [39] actually provide rough estimates of
how large Lorentz violation in the weak sector can be
without additional fine-tuning. There are not known to be
any straightforward models that will lead naturally to
Lorentz violation as a predominantly weak sector phe-
nomenon. If Lorentz violation in the weak sector were
much larger, there would need to be unnatural cancella-
tions to prevent the large Lorentz violation from being
transmitted to other sectors. Constraints based on the
imposition of naturalness conditions are discussed in
Ref. [47] for isotropic coefficients such as �00. The iso-
tropic bounds derived in that analysis are numerically more
stringent than the direct ones presented here. Similar con-
straints for the anisotropic effects would be even stronger,
approaching the levels quoted in Ref. [39], since it is
generally easier to test for anisotropy in the matter sector
than boost invariance violation. However, it is crucial to
remember that naturalness, or the absence of fine-tuning, is
an aesthetic condition, not a rigorous one.
Considerations of naturalness and direct constraints

via measurement therefore provide complementary
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approaches. Direct bounds on Lorentz violation, such as
those discussed in this paper, are more currently rigorous.
It should be possible to place rigorous indirect constraints,
using precision tests of Lorentz invariance in nonweak
processes, by taking measurements at different values of
the virtual momentum transfer Q2. This would provide
weak-sector sensitivity because the heavy bosons make a
contribution to the renormalization group evolution of
observable couplings; however, this kind of data has not
yet been collected, and it is unclear what levels of
precision could be expected for the high-energy experi-
ments needed. This makes results like those given here a
very important part of the developing analysis of the
SME—especially in the weak sector, which is, so far, quite
poorly constrained.
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APPENDIX: DEPENDENCE ON
THE IMAGINARY PART OF �

We return now to the theoretical question of how spin
measurements can add sensitivity to the imaginary part of
the � tensor describing weak and Higgs sector Lorentz
violations. We shall replace the spin summed u �u in Eq. (5)
with the expression corresponding to the specific outgoing
spin state.

Throughout this paper, we have assumed that the initial
pion was negatively charged, so that the daughter particles

were �� and ���. This choice was made simply for

definiteness, and the result for the total decay rate � is
not affected by the choice. This is the case because the real
part of � is invariant under charge conjugation (C).
However, the imaginary part changes sign under C, so
the charges of the particles involved in the process are
significant. In this Appendix, we shall continue to assume
that the parent particle is a ��; however, if it were a �þ,
all the effects of the imaginary part of � would have their
signs reversed.
Since the chirality matrix 	5 plays a prominent role

in the matrix element, it is convenient to use the Weyl
representation of the Dirac matrices. With relativistic
normalization, the spinor for a fermion of momentum
~p� ¼ p�3ẑ is

uðp�Þ ¼
2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� � p�33

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� þ p�33

p
�

3
5 ¼

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� � p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� � �
p

�

3
5; (A1)

where  ¼ ð1; ~Þ and � ¼ ð1;� ~Þ. The two-spinor
� ¼ ½�1; �2�t determines the spin state.
The quantity that appears in jMj2 is

u �u ¼ uuy	0

¼
2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� � p
��y ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� � �
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� � p
��y ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� � p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� � �

p
��y ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� � �
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� � �
p

��y ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� � p

3
5:

(A2)

This can be expanded in terms of the explicit spinor � and
momentum p�. For example, the upper left block is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� � p

��y ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� � �

q
¼

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� � p�3

p
�1�

�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� þ p�3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� � p�3

p
�1�

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� � p�3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� þ p�3

p
�2�

�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� þ p�3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� þ p�3

p
�2�

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� � p�3

p
3
5 (A3)

¼
"

m��1�
�
1 ðE� � p�3Þ�1�

�
2

ðE� þ p�3Þ�2�
�
1 m��2�

�
2

#
: (A4)

The other blocks reduce in a similar fashion.
It is also necessary to cast the quantities �j�

�
k in a more

convenient form. The two-spinor product ��y may be
concisely expressed in terms of the expectation value
h ~i ¼ �y ~� of the Pauli spin vector in the two-
dimensional spinor space. It is important, however, that
this is not the same as the expectation value of the full

muon spin h ~�i ¼ ð2E�Þ�1uy ~�u. For the component of the

spin along the direction of the motion, h�3i ¼ h3i, since
the helicity component of the spin commutes with a boost
along the momentum direction. However, the expectation
values of the transverse spin components are suppressed by

relativistic effects, so that h�ji ¼ m�

E�
hji for j ¼ 1 or 2.

We shall return to this fact presently. However, for the
moment, we shall simply make use of the expression

��y¼
"
�1�

�
1 �1�

�
2

�2�
�
1 �2�

�
2

#
¼1

2

"
1þh3i h�i
hþi 1�h3i

#
; (A5)

with � ¼ 1 � i2.
The full 4� 4 matrix u �u is still rather cumbersome, and

it can be expanded using the sixteen Dirac matrices as a
basis. However, when this expression replaces ð6p� þm�Þ
in the trace (5), only those terms that are constructed from
odd numbers of 	 matrices can contribute. This means
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the terms proportional to 	� or 	5	�; equivalently, the
only contributions come from the portion of u �u that is
block off-diagonal. (In fact, because of the way u �u is
sandwiched by chiral projectors, only a single off-diagonal

block will ultimately contribute; however, it is computa-
tionally simpler to keep both off-diagonal blocks.) The
block off-diagonal portion is given by (dropping the
subscripts from m�, E�, and p�3 for brevity)

u �u ¼ 1

2

� � � ðE� pÞð1þ h3iÞ mh�i

ðEþ pÞð1þ h3iÞ mh�i
mhþi ðEþ pÞð1� h3iÞ

mhþi ðE� pÞð1� h3iÞ � � �

2
66664

3
77775: (A6)

The expansion of this in terms of Dirac matrices is now
straightforward. Leaving off the terms that will not
contribute, we have

u �u ¼ 1

2
ðE�	0 � p�3	3 þ p�3h3i	5	0 � E�h3i	5	3

�m�h1i	5	1 �m�h2i	5	2Þ þ � � � : (A7)

Note that the spin-independent term in Eq. (A7) is simply
the 6p� that was already present in Eq. (5). However,
there is also a new vector contracted with 	5	�. With
w ¼ ð ~p� � h ~�i; E�h ~�iÞ, we have

u �u ¼ 1

2
ð6p� þ w�	5	�Þ þ � � � : (A8)

So the analog of Eq. (6) without the spin sum is

jMj2 / ðg0� þ �0�Þðg0	 þ ��0	Þ trf6p�	�ð6p� � wÞ		

� 6p�	�	5ð6p� � wÞ		g: (A9)

Whatever basis is chosen, the two muon spin states have

opposite values of h ~�i, so summing over both of them
sends the w-dependent terms to 0. For a nonrelativistic
muon, there are substantial contributions from both
helicity states; however, if the muon is ultrarelativistic
(m� ! 0), the key quantity p� � w vanishes for the

positive helicity states, and there are (as expected) no
contributions from right-handed muons.

The w vector influences both the ��� þ ���� and
��� � ���� terms in jMj2. However, our main purpose
here has been to obtain the dependence on the latter, since
the imaginary part of � is detectable only through spin
correlations. The relevant term in the spin-dependent
generalization of Eq. (7) is

4ig0	ð�0����0�Þ
���	ðp�Þ�ð�w�Þ¼8E� ~� � ð ~p��h ~�iÞ;
(A10)

where �j ¼ ð�0j � ��0jÞ=2i. Since the kinematics are not

affected by the muon spin in any way, the anisotropic
structure in Eq. (A10) carries through to appear in the
final spin-dependent differential decay rate. Only the spin
components orthogonal to the momentum ~p� ¼ � ~p�

contribute to the expression. Therefore, the effect does
not grow with energy; the factor of E� only serves to

balance the relativistic suppression of the transverse part

of h ~�i.
Measuring this term would be extremely challeng-

ing experimentally, but its existence is nonetheless
theoretically interesting, and we have definitively
demonstrated that the imaginary part of � is, in prin-
ciple, an observable quantity. This is in contrast with
some other SME parameters, which may naively ap-
pear to be physically significant but, in fact, cannot be
observed at all.
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(1997).

[2] D. Colladay and V.A. Kostelecký, Phys. Rev. D 58,
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[18] V. A. Kostelecký, Phys. Rev. D 61, 016002 (1999).
[19] Y. B. Hsiung, Nucl. Phys. B, Proc. Suppl. 86, 312 (2000).
[20] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 86,

3228 (2001).
[21] J.M. Link et al., Phys. Lett. B 556, 7 (2003).
[22] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.

96, 251802 (2006).
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