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Lepton masses and mixings in an A, multi-Higgs model with a radiative seesaw mechanism
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We propose a renormalizable multi-Higgs model with Ay ® Z, ® Z/, symmetry accounting for the
experimental deviation from the tribimaximal mixing pattern of the neutrino mixing matrix. In this
framework we study the charged lepton and neutrino masses and mixings. The light neutrino masses are
generated via a radiative seesaw mechanism, which involves a single heavy Majorana neutrino and neutral
scalars running in the loops. The obtained neutrino mixings and mass squared splittings are in good
agreement with the neutrino oscillation experimental data for both normal and inverted hierarchy. The
model predicts an effective Majorana neutrino mass mgg = 4 and 50 meV for the normal and the inverted
neutrino spectrum, respectively. The model also features a suppression of CP violation in neutrino
oscillations, a low scale for the heavy Majorana neutrino (few TeV) and, due to the unbroken Z,

symmetry, a natural dark matter candidate.
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L. INTRODUCTION

The existence of three generations of fermions, as well
as their particular pattern of masses and mixing cannot be
understood within the Standard Model (SM), and makes it
appealing to consider a more fundamental theory address-
ing these issues. This problem is especially challenging in
the neutrino sector, where the striking smallness of neu-
trino masses and large mixing between generations suggest
a different kind of underlying physics than what should be
responsible for the masses and mixings of the quarks.
Unlike in the quark sector, where the mixing angles are
very small, two of the three neutrino mixing angles, the
atmospheric 6,3 and the solar 6, are large, while the
reactor angle 6,5 is comparatively small [1-9].

In the literature there has been a formidable amount of
effort to understand the origin of the leptonic flavor
structure, with various proposed scenarios and models of
neutrino mass generation. Among those approaches to
understand the pattern of neutrino mixing, models with
discrete flavor symmetries are particularly popular (for
recent reviews see Refs. [10-12]). There is a great variety
of such models, some with multi-Higgs sectors [13-60],
extra dimensions [61-68], grand unification [69] or
superstrings [70]. Another approach attempts to describe
certain phenomenological features of the fermion mass
hierarchy by postulating particular zero-texture Yukawa
matrices [13].
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In this context, the groups explored recently in the
literature include A4 [23-42,63,65,66], A(27) [55-60], S5
[43-50], S, [21,22,51-53,64,67] and A5 [54]. These mod-
els can be implemented in a supersymmetric framework
[19-22,42], or in extra-dimensional scenarios with S,
[64,67] or A4 [63,65,66].

The popular tribimaximal (TBM) ansatz for the leptonic
mixing matrix

A
Um=| ~% 5 — 5 o))
A

can originate, in particular, from A,. TBM corresponds to
mixing angles with (sin262)rpm = 5, (sin?623)pm = 3,
and (sin?6,3)tgy = 0. On the other hand the T2K [2],
MINOS [3], Double Chooz [4], Daya Bay [5] and RENO
[6] experiments have recently measured a nonvanishing
mixing angle 63, ruling out the exact TBM pattern. The
global fits of the available data from neutrino oscillation
experiments [7-9] give experimental constraints on the
neutrino mass squared splittings and mixing parameters.
We use the values from [7] shown in Tables I and II for the
cases of normal and inverted hierarchy, respectively. It can
be seen that the data deviate significantly from the TBM
pattern.

Here we present a renormalizable model with A, ® Z, ®
Z’2 discrete flavor symmetry, which is consistent with the
current neutrino data for the neutrino masses and mixings
shown in Tables I and I and which has less effective model
parameters than other similar models, as discussed in
Sec. IV. We choose A, since it is the smallest symmetry
with one three-dimensional and three distinct one-
dimensional irreducible representations, where the three
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TABLE 1.
the case of normal hierarchy.
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Range for experimental values of neutrino mass squared splittings and leptonic mixing parameters taken from Ref. [7] for

Parameter Am3, (1075 eV?) Am3, (1073 eV?) (Sin2612)exp (8in 2623 )exp (Sin 2613 )exp
Best fit 7.62 2.55 0.320 0.613 0.0246

1o range 7.43-7.81 2.46-2.61 0.303-0.336 0.573-0.635 0.0218-0.0275
20 range 7.27-8.01 2.38-2.68 0.29-0.35 0.38-0.66 0.019-0.030
30 range 7.12-8.20 231274 0.27-0.37 0.36-0.68

TABLE II. Range for experimental values of neutrino mass squared splittings and leptonic mixing parameters taken from Ref. [7] for

the case of inverted hierarchy.

Parameter Am3, (1075 eV?) Am?, (1073 eV?) ($in2612)exp (8in 2623 )exp ($in 2613 )exp
Best fit 7.62 243 0.320 0.600 0.0250

1o range 7.43-7.81 2.37-2.50 0.303-0.336 0.569-0.626 0.0223-0.0276
20 range 7.27-8.01 2.29-2.58 0.29-0.35 0.39-0.65 0.020-0.030
30 range 7.12-8.20 2.21-2.64 0.27-0.37 0.37-0.67 0.017-0.033

families of fermions can be accommodated rather natu-
rally. Thereby we unify the left-handed leptons in the A,
triplet representation and assign the right-handed leptons to
A, singlets. This type of setup was proposed for the first
time in Ref. [18]. In our model there is only one right-
handed SM singlet Majorana neutrino N, and the scalar
sector includes three A, triplets, one of which is a SM
singlet while the other two are SU(2); doublets. We further
impose on the model a Z, discrete symmetry, in order to
separate the two A, triplets transforming as SU(2); dou-
blets, so that one of them participates only in those Yukawa
interactions which involve right-handed SU(2); singlets
er, R, Tr, While the other one participates only in those
with the right-handed SM sterile neutrino Nj. Finally, a
(spontaneously broken) Z, symmetry is introduced to for-
bid terms in the scalar potential with odd powers of the SM
singlet scalar field y, the only one transforming nontri-
vially under Z). We assume that the Z, symmetry is not
affected by the electroweak symmetry breaking. Therefore
the scalar fields coupled to the neutrinos have vanishing
vacuum expectation values, which implies that the light
neutrino masses are not generated at tree level via the usual
seesaw mechanism, but instead are generated through loop
corrections in a variant of the so-called radiative seesaw
mechanism. The loops involve a heavy Majorana neutrino
and neutral scalars, which in turn couple through quartic
interactions with other neutral scalars in the external lines.
The smallness of neutrino masses generated via a radiative
seesaw mechanism is attributed to the smallness of the loop

factor and to the quadratic dependence on the small neu-
trino Yukawa coupling. The scale of new physics can
therefore be kept low, with the heavy Majorana neutrino
mass of a few TeV. The radiative seesaw mechanism has
been discussed in Refs. [26,27] in the context of a similar
A, model, but with a field content quite different from ours:
We introduce only one SM singlet Majorana neutrino
instead of an A, triplet, with the lepton doublets as A,
triplets, as in Ref. [23] and many other models, but not as in
Ref. [26], where they are assigned to A, singlets. Our scalar
content is also distinct, with one additional A, triplet (and
no A, singlets), which acquires a VEV in a different
direction of the group space.

The paper is organized as follows. In Sec. I we outline
the proposed model. The results, in terms of neutrino
masses and mixing, are presented in Sec. III. This is
followed by a numerical analysis in Sec. IV. We conclude
with discussions and a summary in Sec. V. Several techni-
cal details are presented in appendixes: Appendix A col-
lects some necessary facts about the A, group, Appendix B
contains a discussion of the full A, invariant scalar poten-
tial, and Appendix C deals with the mass spectrum for the
physical scalars that enter in the radiative seesaw loops.

II. THE MODEL

Our model is a multi-Higgs doublet extension of the SM,
with the full symmetry G experiencing a two-step sponta-
neous breaking

G =SUQB)c®SUR),@U(1)y®A;®Z, ®Z, | Ajy, SUB)c® SU(2);, ® U(l)y ® Z, | AgwSUB3)c © U(1),,, ® Z,.
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We extend the fermion sector of the SM by introducing
only one additional field, a SM singlet Majorana neutrino,
Npg. The scalar sector is significantly enlarged and contains
the six SU(2), doublets CI)(1122§ and three singlets y;,3. We
group them in triplets of A,. The complete field content and
its G assignments are given below

®H=12:(1,2,1,3, (- DK 1), x: (LL1L31,-1),

3)

I;:(1,2-1,311), @)

er: (L1, -2,1,1,1), pre (L1, =211, 1), )
e (L1, —=2,17,1,1),

Ne: (1,1,0,1, -1, 1). (6)

Here the numbers in boldface are dimensions of represen-
tations of the corresponding group factor in Eq. (2), the
third number from the left is the weak hypercharge and
the last two numbers are Z, and Z) parities, respectively.
The three families of the left-handed SM doublet leptons
Iy*3 are unified in a single A, triplet [, while the right-
handed SM singlet charged leptons eg, pg, T are accom-
modated in the three distinct A4 singlets 1, 1/, 1”. The only
right-handed SM singlet neutrino Ny introduced in our
model is assigned to 1 of A, in order for its Majorana
mass term to be invariant under this symmetry. The pres-
ence of this term is crucial for our construction as
explained below. Note that neither the 1’ nor 1” singlet
representations of A, satisfy this condition as can be seen
from the multiplication rules in Eq. (A2).

The two SM doublet A, triplet scalars ®*=12) are dis-
tinguished by their Z, parities (—1)*. We require that this
Z, symmetry remains unbroken after the electroweak sym-
metry breaking. Therefore, ®" | which transforms non-
trivially under Z,, does not acquire a vacuum expectation
value. The preserved Z, discrete symmetry also allows for
stable dark matter candidates, as in [14,15]. In our model
they are either the lightest neutral component of ®") or the
Majorana neutrino Np. We do not address this question in
the present paper. We introduce two SM doublet A, triplets,
in order to ensure that one A, scalar triplet ®? gives
masses to the charged leptons, while the other one @),
with vanishing VEV, couples to the SM singlet neutrino
Npg. Thus neutrinos do not receive masses at tree level. The
SM singlet A, triplet y is introduced in order to generate a
neutrino mass matrix texture compatible with the experi-
mentally observed deviation from the TBM pattern. As we
will explain in the following, the neutrino mass matrix
texture generated via the one-loop seesaw mechanism is
mainly due to the VEV of the SM singlet A, triplet scalar
(X) = Aiy, which is assumed to be much larger than the
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scale of the electroweak symmetry breaking A;, >
Agw = 246 GeV. In this way, the contribution associated
with the (1, 1, 1) direction in A, space that shapes the
charged lepton mass matrix is suppressed and effectively
absent in the neutrino mass matrix, leading to a mixing
matrix that is TBM to a good approximation. The Z)
discrete symmetry is also an important ingredient of our
approach, as will be shown below. Once it is imposed it
forbids the terms in the scalar potential involving odd
powers of the SM singlet A, triplet scalar y. This results
in a reduction of the number of free model parameters and
selects a particular direction of symmetry breaking in the
group space. The Z, symmetry is broken after the y field
acquires a nonvanishing vacuum expectation value.

With the field content of Eqgs. (3)-(6), the Yukawa part of
the model Lagrangian for the lepton sector takes the form

Ly =y, ([, V) Ng + MyNgN§ + 3,1, ®?),ex
+ y,u.(l_LcD(Z))l"lu‘R + yT(l_Lq)(Z))l’TR + H.c, (7)

with ®¥ = jg,(®®)* (k = 1, 2). The subscripts 1, 1/, 1”
denote projecting out the corresponding A, singlet in the
product of the two triplets.

Note that the assignment of the charged right-handed
leptons (5) to different A4 singlets leads, as can be seen in
Eq. (7), to different Yukawa couplings y, ,, , of the electri-
cally neutral components of the ®®° to the different
charged leptons e, w, 7. The lightest of the ®?° should
be interpreted as the SM-like 125 GeV Higgs observed at
the LHC [71], and the mentioned nonuniversality of its
couplings to the charged leptons is in agreement with the
recent ATLAS result [72], strongly disfavoring the case of
coupling universality.

As can be seen from Appendix C, the masses of all the
neutral scalar states from the A, triplets ®D and O?,
except for the SM-like Higgs ®@°, are proportional to
() = Aje > Agw = 246 GeV and consequently are very
heavy. Our model is not predictive in the scalar sector
having numerous free uncorrelated parameters in the scalar
potential. We simply choose the scale A;,, such that the
heavy scalars are pushed outside the LHC reach. The loop
effects of the heavy scalars contributing to certain observ-
ables can be suppressed by the appropriate choice of the
other free parameters. All these adjustments, as will be
shown in Sec. IV, do not affect the neutrino sector, which is
totally controlled by three effective parameters depending
in turn on the scalar potential parameters and the lepton-
Higgs Yukawa couplings.

The scalar fields CI)(W’I) can be decomposed as

o [ el i)
D, = ® ® W | k=12 m=1273
\/LE(Um + Pm + ”7m )

®)
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with

(pWy = (%) = (W) = (£¥y =0,
k=12, m=1,23. 9

The Higgs doublets and the singlet fields can acquire
vacuum expectation values:

(k) 0
<(I’m > = v%) ’ <X> = (le’ Vxy UXS)’

vz

k=12, m=1273. (10)
Our requirement [see (2)] that Z, is preserved implies,
according to the field assignment of (3), that

vW=0 m=123. (11)
This can be achieved by having a positive squared mass
term of @V in the scalar potential. As a consequence of (7)
and (11) neutrinos do not acquire masses at tree level. As
will be discussed in more detail in Sec. I11, their masses are
radiatively generated through loop diagrams involving
virtual neutral scalars and the heavy Majorana neutrino
in the internal lines. The aforementioned virtual scalars
couple to real scalars due to the scalar quartic interactions,
leading to the radiative seesaw mechanism of neutrino
mass generation [14,15].

We assume the following VEV pattern for the neutral
components of the SM Higgs doublets cI>£3> (m=1,2,3)
and for the components of the A, triplet SM singlet
scalar y:

v v
v = o = =5 W=-200-D. (12

3 V2

Here v = Agw and v, = Ajy. This choice of directions in
the A, space is justified by the observation that they
describe a natural solution of the scalar potential minimi-
zation equations. Indeed, in the single-field case, A, in-
variance readily favors the (1, 1, 1) direction over e.g. the
(1, 0, 0) solution for large regions of parameter space. The
vacuum (®?) is a configuration that preserves a Z; sub-
group of A4, which has been extensively studied by many
authors (see for example Refs. [20,23,26,28,29,51,63]). In
our model we have more fields, but there are also classes of
the A, invariants favoring respective VEVs of two fields
in orthogonal directions, as desired for our analysis.
Therefore our assumption is essentially that the quartic
couplings in the potential involving y and ®?® are within
the range of the parameter space where these directions are
the global minimum. More details are presented in
Appendix B, where the minimization conditions of the
full scalar potential of our model are considered, showing
that the (y) vacuum (12), together with the (®®) vacuum
(12), are consistent.
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As follows from Egs. (7) and (8), the neutrino Yukawa
interactions are described by the following Lagrangian:

Vv - . - .
Los = \/_%[VIL(p(ll) + in")Ng + 2 (p3 + ins )Ny

+ 73, (pl" + in{")Ng] + H.c, (13)

We consider the scenario where v, > v. A moderate
hierarchy in the VEVs is quite natural, given that y is a
SM gauge singlet and its VEV does not have to be related
to the electroweak scale. The scale of v, is ultimately
controlled by the y squared mass term in the potential.
From Egs. (7) and (C24) it follows (for details see
Appendix C) that the neutrino Yukawa interactions, in
terms of the physical scalar fields, can be approximately
written as

yye'’
-EVDS ==

v [(HY — A) + i(HY + AY)INg

—iy

Y€

+ 22 50 (HY + iAYN, +

V2
+i(H? + A9)INg + Hec. (14)

When the subleading effects are considered, there is some
mixing between the scalar states, so that H9, A9 will appear
in the Yukawa couplings of 7,;, ¥5;, and the other scalars
will also appear in the Yukawa couplings to 7,;. As
described in more detail in Appendix C, the parameter
is given by

py [(H) — AY)

tan 24 = , (15)

in terms of the masses M o (m=1,2,3) of the neutral
CP-odd scalar fields.
III. LEPTON MASSES AND MIXING

From Eq. (7), and by using the product rules for the A,
group given in Appendix A, it follows that the charged
lepton mass matrix is given by

M, = V;rLdiag(me, m,, m;),

| 1 1 1 (16)
Vi=—=|1 o o?] 0=t
- \/§ 1 0? o

The neutrino mass term does not appear at tree level due to
vanishing VEV of the ®!) field (11). It arises in the form of
a Majorana mass term

1
— 5 PM, + He. (17)

from radiative corrections at one-loop level. The leading
one-loop contributions to the complex symmetric
Majorana neutrino mass matrix M, are derived from
Egs. (14) and (C25). The corresponding diagrams are
shown in Fig. 1.
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X X
Ux™ < < s Ux /UXX N s X Ux UXX N s X Ux
7/
0 o 0 o 0 T
H, el Hy, H A9 A9
V1,3 Nr Ng V1,3 V1,3 Nr  Ng V1,3 V1,3 Nr Ng V1,3
, X X X0
Ux~ < < s Ux Ux"« ) s Ux UXX N s X Ux
0 . 0 0 0 o
Az, Az H; Hy A9 A3
V1,3 Ngr Ng V1,3 1] Ng Np Va %] Ngr Npg )
FIG. 1. One-loop Feynman diagrams contributing to the entries of the neutrino mass matrix.

In the approximation discussed in Appendix C we obtain
A*r 0 A
M, = 0 B 0 ,
A0 Ae

(18)

where

2 sv? M 0 M 40
il a3 ()
1677 MN 1 2 2 MN MN

2 M 40 M 0
(o0 ) -2 Gy}
3 2 2 MN MN

(19)

8= emsan, (i) -2}
167 MN MN MN

Here & is a dimensionless parameter, which takes into
account the difference between a pair of quartic couplings
of the scalar potential (see Appendix C for details). We
introduced the function [16]

(20)

—1+x%2—1nx?
(1 —x%)?

Since M, depends only on the square of the VEVs, even a
moderate hierarchy in the VEVs significantly suppresses
contributions related to @@ . Furthermore, because {y,) =
0, |(M,),,] and |(M,),;| are only generated through ®?
and are then much smaller than |(M,)5] and |(M,),,,xl
(m =1, 2, 3). Consequently the zero entries in Eq. (18)
become

Dy(x) = 21

2
(M2~ (M)~ 5 (M,)15 22)
X

and are strongly suppressed in comparison to the other
entries if v, > v, as assumed in our model. Note that a

similar neutrino mass matrix texture was obtained in
Ref. [30] from higher-dimensional operators.

The neutrino mass matrix given in Eq. (18) depends
effectively only on three parameters: A, B and /. As seen
from Eqgs. (19) and (20), the parameters A and B contain the
dependence on various model parameters. It is relevant that
A and B are loop suppressed and are approximately inverse
proportional to My. As seen from Egs. (19) and (20), a
nonvanishing mass splitting between the CP-even HY and
CP-o0dd AY neutral scalars is crucial. Its absence would lead
to massless neutrinos at one-loop level. Note also that
universality in the quartic couplings of the scalar potential,
which would correspond to & = 0, would imply B ~ 0 and
lead to only one massive neutrino. For simplicity, we
parametrize the nonuniversality of the relevant couplings
through the parameter ¢ defined in Eq. (C1). As will be
shown below, the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing matrix depends only on the parameter ¢,
while the neutrino mass squared splittings are controlled by
parameters A and B.

A complex symmetric Majorana mass matrix M, as in
Eq. (17), can be diagonalized by a unitary rotation of the
neutrino fields so that

V=V, v ViM,VHT = diag{m,, m,,, m,} with
v,vi =1, (23)

where m ; 5 are real and positive. The rotation matrix has
the form

cosf 0 sinfe ¢
Vv, = o 1 0 |P, with
—sinfei® 0 cosf

P, = diag(ei®1/2, ¢i2/2, gies/2), = t%, b=—2¢.

(24)

We identify the Majorana neutrino masses and Majorana
phases for the two possible solutions with § = 7 /4, — /4
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with the normal (NH) and inverted (IH) mass hierarchies,
respectively. They are

NH: 0= +2:m, =0,

1 m,, = B, m,. = 2A,

3

a; = a, =0, az = ¢, (25)
IH: 0 = —g: m, = 2A, m,, = B, m,, = 0,
a = a3z =0, a = —o. (26)

Note that the nonvanishing Majorana phases are ¢ and
— ¢ for normal and inverted mass hierarchies, respectively.

With the rotation matrices in the charged lepton sector
V. given in Eq. (16), and in the neutrino sector V,, given in
Eq. (24), we find the PMNS mixing matrix:

cos @ 1 cosf 4 e"?sing

NG NG NG NG NG

142 2w 2im —id
3sinf e 3 e3 cos&_;’_e '?sin6 P (27)
;}3 :;’% ;}3 :;3 v

ip—2T . 2im _2im —id
3sinfl e3 e 3cos€+e '?sinf

3 BB B V3

From the standard parametrization of the leptonic mixing
matrix, it follows that the lepton mixing angles are [1]

sin26,, = U, _ 1
21— U 2Fcosd’
1
sin6,; = |Usl? = 5(1 + cos ¢), (28)
1200 — U2 2% (cosdp + +Bsin )
B U 47T 2cos ¢ ’

where the upper sign corresponds to normal (6 = +7/4)
and the lower one to inverted (§ = —/4) hierarchy,
respectively. The PMNS matrix (27) of our model repro-
duces the magnitudes of the corresponding matrix ele-
ments of the TBM ansatz (1) in the limit ¢ = 0 and
¢ = ar for the inverted and the normal hierarchy, respec-
tively. In both cases the special value for ¢ implies that the
physical neutral scalars originating from ®(!) are degener-
ate in mass. Notice that the lepton mixing angles are
controlled by the Majorana phases *¢, where the plus
and minus signs correspond to normal and inverted mass
hierarchy, respectively.

The Jarlskog invariant and the CP-violating phase are
given by [1]

1
J = Im(UelUluzUzzU;l) = — ?/3_ cos 26,
37 (29)

cos 013 sin 20, sin 26,5 sin 205

siné =

Since # = £ 7, we predict J =0 and 6 = 0 for v, > v,
implying that in our model CP violation is suppressed in

neutrino oscillations.

PHYSICAL REVIEW D 88, 076014 (2013)
IV. PHENOMENOLOGICAL IMPLICATIONS

In the following we adjust the free parameters of our
model to reproduce the experimental values given in
Tables I and IT and discuss some implications of this choice
of the parameters.

As seen from Egs. (25)—(28) we have only three effec-
tive free parameters to fit: ¢, A and B. It is noteworthy that
in our model a single parameter (¢) determines all three
neutrino mixing parameters sin 263, sin26;, and sin26,;
as well as the Majorana phases «;. The parameters A and B
control the two mass squared splittings Amlzj Therefore we
actually fit only ¢ to adjust the values of sin26; » while A
and B for the NH and the IH hierarchies are simply

NH: m, =0, m,, = B =/Am}; =9 meV,

(30)
m,, =2A =4Am}, = 51 meV;

IH: m,, = B =4Amj}; + Am}; = 50 meV,

m, =2A=

€29

Am3; =~ 49 meV, m,, =0,

as follows from Egs. (25) and (26) and the definition
Amg; = mi — m3. In Egs. (30) and (31) we assumed the
best fit values of Am;; from Tables I and II.

Varying the model parameter ¢ in Eq. (28) we have fitted
the sin 26, ; to the experimental values in Tables I and II.
The best fit result is

NH: ¢ = —0.877m,  sin26,, ~ 0.34,

(32)
sin%60,; =~ 0.61, sin?6,; =~ 0.0246;
H: ¢ = 0.127,  sin26,, ~ 0.34,
(33)
Sin2023 = 06, Sin2913 = (0.025.

Comparing Egs. (32) and (33) with Tables I and IT we
see that sin?f5 and sin?6,; are in excellent agreement
with the experimental data, for both NH and IH, with
sin 26}, within a 20" deviation from its best fit values.

The effective parameters A, B and tan ¢ depend on
various model parameters: the SM singlet neutrino
Majorana mass My, the quartic and bilinear couplings of
the model Lagrangian (7) and (B1), as well as on the scale
of A4 symmetry breaking v, . It is worth checking that the
solution in Egs. (30)—(33) does imply neither fine-tuning or
very large values of dimensionful parameters. For this
purpose consider a point in the model parameter space
with all the relevant dimensionless quartic couplings in
Egs. (B1) and (C1) given by

)l:Ti:)\blzalzl\al_S"’l, (34)

compatible with the perturbative regime (A/47 <1).
Absence of fine-tuning in this sector favors & ~ 1. Using
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Egs. (C16)—(C22) one may derive an order of magnitude
estimate

A vy
A~B~(22) 200 €)X, 35
(477) « E)MN (35)

where the function z(A, &) ~ 1 for the values chosen in
Eq. (34). In this estimation we assumed u; = v, and
v, > v. Let us also assume that the neutrino and electron
Yukawa couplings in Eq. (7) are comparable y,, ~ y,. From
Egs. (7), (8), and (12) and the value of the electron mass we
estimate

Yy~ ¥e ~ 107 (36)
Then from Egs. (30), (31), and (35) we roughly estimate
v
m, ~A~B~—X.meV. 37)
My

Therefore for any value My ~ v, > v ~ 250 GeV and
without special tuning of the model parameters we are in
the ballpark of the neutrino mass squared splittings mea-
sured in neutrino oscillation experiments (Tables I and II).
Both the scale of new physics v, related to the A4 sym-
metry, and the SM singlet Majorana neutrino mass My
could be comparatively low, around a few TeV.

With the values of the model parameters given in
Egs. (30)—(33) derived from the oscillation experiments,
we can predict the amplitude for neutrinoless double beta
(OvBB) decay, which is proportional to the effective
Majorana neutrino mass

mgg = > Uxm,, (38)
]

where U? ; and m,, are the PMNS mixing matrix elements
and the Majorana neutrino masses, respectively.

Then, from Egs. (24)—(27) and (30)—(33), we predict the
following effective neutrino mass for both hierarchies:

2¢)_l4meV for NH

39
2 50 meV forIH. (39

1
mBB =§<B +4Acos

This is beyond the reach of the present and forthcoming
neutrinoless double beta decay experiments. The presently
best upper limit on this parameter mgg = 160 meV comes
from the recently quoted EXO-200 experiment [73]
T7/YP(1%Xe) = 1.6 X 10% yr at the 90% C.L. This limit
will be improved within the not too distant future.
The GERDA experiment [74,75] is currently moving
to “phase II,” at the end of which it is expected to
reach T?}’f B(16Ge) = 2 X 10% yr, corresponding  to
mgp = 100 MeV. A bolometric CUORE experiment using
130Te [76] is currently under construction. Its estimated

sensitivity is around Tlo}'f B(130Te) ~ 102 yr correspond-

ing to mgg =50 meV. There are also proposals for
ton-scale next-to-next generation Ov 33 experiments with

PHYSICAL REVIEW D 88, 076014 (2013)

136Xe [77,78] and "°Ge [74,79] claiming sensitivities over
T?}’f B —10%"yr, corresponding to m pp ~ 12-30 meV. For
recent experimental reviews, see for example Ref. [80] and
references therein. Thus, according to Eq. (39) our model
predicts T?}’ZB B at the level of sensitivities of the next
generation or next-to-next generation Qv 38 experiments.

V. CONCLUSIONS

We have presented a simple renormalizable model that
successfully accounts for the charged lepton and neutrino
masses and mixings. The neutrino masses arise from a
radiative seesaw mechanism, which explains their small-
ness, while keeping the scale of new physics A;, at the
comparatively low values, which could be about a few TeV
(for the single SM singlet neutrino Ng). The neutrino
mixing is approximately tribimaximal due to the sponta-
neously broken A, symmetry of the model. The experi-
mentally observed deviation from the TBM pattern is
implemented by introducing the SM singlet A, triplet y.
Its VEV (x) = Ay, > Apw breaks A, symmetry and
properly shapes the neutrino mass matrix at one-loop level.
CP violation in neutrino oscillations is suppressed.

The model has only three effective free parameters in the
neutrino sector, which, nevertheless, allowed us to repro-
duce with good accuracy the mass squared splittings and
all mixing angles measured in neutrino oscillation experi-
ments for both normal and inverted neutrino spectrum.

The model predicts the effective Majorana neutrino
mass mgg for neutrinoless double beta decay to be 4 and
50 meV for the normal and the inverted neutrino spectrum,
respectively.

The lightest neutral scalar of our model ®@° interpreted
as the SM-like 125 GeV Higgs boson observed at the LHC
has nonuniversal Yukawa couplings to the charged leptons
e, i, 7. This is in agreement with the recent ATLAS result
[72], strongly disfavoring the case of Yukawa coupling
universality.

An unbroken Z, discrete symmetry of our model also
allows for stable dark matter candidates, as in
Refs. [14,15]. The candidate could be either the lightest
neutral component of ®!) or the right-handed Majorana
neutrino N;. We do not address this possibility further in
the present paper.
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APPENDIX A: THE PRODUCT RULES FOR A, (3®3);, = (xay; — X372, X3 — X153, X1Y2 — X2¥1),
The following product rules for the A4 group were used 3®3)y = x1y; + ©*xy; + wx3y3, (AS5)
in the construction of our model Lagrangian:

where @ = e¥. The representation 1 is trivial, while the
nontrivial 1/ and 1" are complex conjugate to each other.
Comprehensive reviews of discrete symmetries in particle
1981=1, 1’91 =1, physics can be found in Refs. [10-12,81].

(A2)
el =1/ 171" =1.

3e3=303,0101' 01" (A1)

APPENDIX B: SCALAR POTENTIAL
Denoting (x, y;, z;) and (x,, y,, z») as the basis vectors for

two A, triplets 3, one finds The scalar potential of the model is constructed of the

three A4 triplet fields ®? and y in the way invariant

(B ®3); = x1y; + x2y; + x3y3, (A3)  under the group G in Eq. (2).
For convenience we separate its terms into the three
(3®3)3. = (x2y3 + X3¥2, X3y1 + X1¥3, X1y2 + X01), different groups as
B ®3)y = x1y; + wxy; + @ x3y3, (A4) vV =V(@®D, d?) + V(dD, 2, y) + V(y), (BI)
where

2
V@0, D) = ST @D) D), + k(D)D) (DY DD), + oy (BO)F D)y (D)D),
=1

+ 7 (@D TOO)3 (PN TDD)55 + 5,((D)TDD)3, (V)T DD)3,] + ¢ (DV)TOD)3 (D) OP)5
+ H(@D)TOW)3, (PD)T D@3, + L[(PD)TDW); ()T DOD)ys + (D)D) (D)1 D)y]
+ 4((@)TOW); (PD)T D)y + [7 (M) T DD)3 (@) T DW)5, + H.c ]

+ [n (@) T PP, ()T DW)3, + 73(PM)TDD);, (P@)TDWD)5 + Hoc]

+ (@) D) ()T OW); + 75(PM)TDD) (D) T DDy + 76(PD)T D)1 (D) TDWD)y,

(B2)
2
V(@W, d2), ) = Z{/\al((q)(l))T(D(l))l(XX)] + Al (@) TDD) 1 (xx)pr + (@) TDD) 1 (xx)y ]
I=1
+ al((q)(l))*q)(l))k()(/\/)% + [Blei%((q)(l))f(D(l))3a(/\/)()3s + H.C.]}, (B3)
V(x) = D*(xx)1 + dilxx)1(xxr + 2o (o) + ds(ox)ss(xx)ss: (B4)

Where all parameters of the scalar potential have to be real.

Now we are going to determine the conditions under which the VEV pattern for the components of the A, triplet y given
in Eq. (12) is a solution of the scalar potential, assuming that the (®®)) vacuum preserves the appropriate Z; subgroup of
Ay as in Eq. (12). Then, from the previous expressions and from the minimization conditions of the scalar potential, the
following relations are obtained:

A% 1 1,2

x|~ 2v,, 5)\“21)2 +D*+(2d, — dy +4d;) (v}, +v3,) +2(d) +dy)vy, |+ gozz(v)(2 +v,)v*=0, (BS)
m=1,23 - B

Vv 1 2 2 2 2 2 1.2 2

a—/\/z ()(m)=v)(,,,:2v)(2 E)\azv +D +(2d1 _d2+4d3)(vX1 +‘UX3)+2(d1+d2)'UX2 +§a2(v)(l +'UX3)U :O, (B6)
m=1,23 n .

Vv 1 2 2 2 2 2 1.2 2

a—/\/:; <)(m):u)(m:2,l))(3 5)1”21) +D +(2dl _d2+4d3)(UX1 +UX2)+2(dl "‘dz)l//\/3 +§a2(v)(l +UX2)U =0. (B7)

m=1,23

From the expressions given above, and using the vacuum configuration for the components of the A, triplet y given in
Eq. (12), the following relation is obtained:
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1 1 v?

D2 = _<§ )\az - gaz)vz - (4dl + dz + 4d3)7/\/, (BS)
which clearly shows that the hierarchy between the VEVs depends on the y y mass term (D?), and that the Z invariant
(®@) vacuum given in Eq. (12) satisfies the minimization conditions of the scalar potential, in a way that is consistent with
the desired direction for ( y) This demonstrates that the VEV directions in Eq. (12) are consistent with a global minimum of
the scalar potential (B1) of our model, for a not fine-tuned region of parameter space.

APPENDIX C: MASS SPECTRUM OF THE NEUTRAL SCALAR FIELD
CONTAINED IN THE A, TRIPLET ®W

In this section we proceed to compute the squared mass matrix for the neutral scalars coming from the A, triplet &),
We assume, to simplify the analysis, that the couplings are nearly universal, i.e.

A= T = /\bl =ap = /\al - &, i = (1—6) (Cl)

In practice the coefficients do not need to be equal and indeed nonuniversality is required, with nonzero &, necessary to
generate two neutrino mass squared differences. Using the simplified assumptions a semianalytical treatment is possible.
As mentioned in the text, we restrict to the scenario to v Y > . Then, the dominant contribution to the mass Lagrangian

for the neutral scalars contained in @V will come from w?((®1)TdW); + V(DM @), y). Using the relations

1

(@) D) = L) + (€07 + () + () m=1,2,3, (€2)
(@I ((rx)) = @)Y + (@)D + (@)1 @] (©3)
2
v
(@D (O = S U@ D + (@) + (@)1 + w), (C4)
2
v
(@M1 R){Oep)r) = S L@ + (@) TR + (@) TN + w2), (C3)
(@ TDD)3((xx)3s) = —vi[w 0l + V] + pi" o + iV p{] (C6)
B1eF (@)1 DM)5 (xx)s) + Hee. = 48,03 01 — p{'ni), ()
2
v
(@) D)y (@)D, + (ST )3y (B)T @0y + He. D == (002" + ol 3" + o) (C8)
2
v
((q)(]))’rq)(z))l((q)(z))fq)(l))l ) r/g(p(ll)p(ll) + p(zl)p(zl) + pgl)pgl) + 2p(31)p(21) + 2p(11)p(21) + 2p(11),0(31)), (C9)
((q)(l))T@(2))],((q)(2))’rq)(1))1,, + ((q)(l))T@(2))1,,((@(2))‘r@(1))],
20?2
D 7P+ ey 08 = o6 = pien — o3, (C10)
we obtain that the mass Lagrangian for the neutral scalars contained in ®(!) is given by
2 2 2
neutral M +ev 3/\1}
— L™ ==+ (08 + (08 + (0P 4 (0 + (P14 =2 00 + () + (07 + ()]
A2 )

1 1 1 1 1 1 1 1 1 1 1 1 1
+4B103 (03 0\ = o my") — AL\ + i )]+—4ﬁ(3p1 P\ +3050% +3p p}

#2008+ 2011+ 251 1) i
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The squared mass matrix for the neutral scalars (p{, pa, 3, 71, T2, M3) is given by

2402 2 2
mrt+ev 3Av A2 Ay . 2
(alon g P a A 0 0 28,02
? ,U,%+SU/2\/ 2
M A2 pytev 302 2
M~ 5 R Tt 2By 0 0 (C12)
+sv 3)\1.' A2
0 0 282 My 0 A
X 2 ) ) 2
0 0 0 0 Hitevy 0
2
2 A2 ul+ev? 3102
\ —2Bv} 0 0 7 0 )

Our near-universality assumption (C1) allows for an approximate analytical diagonalization of this squared mass matrix by
a rotation matrix R:
M2

Mg, M3, M2y, M2). (C13)

RTM?R ~ diag(M?> 1"

HO’ HO;
Due to the structure of the dominant y VEV (12), the rotation matrix mixes the first and third components of the scalars. If
we lift the universality condition on the quartic couplings, there will be subleading mixing of the second component of the
scalars as well. Within the near-universality approximation, the rotation matrix R is

( cos i cos 0, __sinf,; __cosfsiny _ sinyg 0 _cosa,l/\
2 N 2 2 2
cos i cos B, sinf; — sin ¢ sinfh, cosf;cosfh, —cosb,sinsinf; — cos ¢ sin b, 0 0 0
cos 0, sin 4 cos i sin 0 sin 6, cos 0 sin cos ycosf, _ sinisinfsinb, __cos i 0 sin
R N 7 TV 7 7 B 77
cos 6, sin 4 cos i sin 0 sin 6, cos 6 sin 6, cos cos By _ sin i sin 6 sinh, cos 0 - sinyg |’
2 2 2 2 V2 V2 N
0 0 0 0 1 0
cos ¢ cos 6, _ sin6,; __cosfsiny sin ¢ 0 cos ¥
— 7 NS 7 3 7/
(C14)
with
A 2 02 42%v
tan2¢f =~ ——, tan 26, = , tan26, =~ . (C15)
4B, V6(3A — 8))v2 V6(9A2 — 6482)v,,
The masses of the physical neutral scalars are given by
2+ p? 2 —p? + 1 2abA
M2y~ M2+ | — (@ — DB | 7 28" ~abA + _2abAB | (C16)
‘ ‘ A2+ 1682 Yx A2+ 1682
2 > 17, 2 TN R 2
MH(, ~ MA(, + Z[a (B3A —88;) + b*(BA + 88;) +2(a* + b )T + 4ab/\]U , (C17)
2 2
X
2+ p? 2 —p? + 1 2abA
I e (@ = P)By | 28” —gabA === Pl (C18)
’ ’ ,/,\2 + 1682 Yx A2+ 1682
1
Mi? ~ Z(Z,u,% + 2ev3 + 3Av5 — 24/A% + 16B7v3), (C19)
2 2
) M + vy
MAg T a— (C20)
1
Mig ~ Z(2,u,% + 203 + 3Avy + 2\/)12 + 1687v3), (C21)
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where

oA

V6(3A - 8B)) V6(9A7 — 64B7)

It is worth mentioning that the last five terms of Eq. (B2) involving distinct A, invariant contractions are responsible for the
mass splitting between the CP-even and CP-odd neutral scalars.
From the previous expressions we obtain the relation connecting the parameter iy with the neutral scalar masses:

(C22)

1
tan 2 = . (C23)

M2, —M?

O

A
9(M2 +M2 ,2M2 )2
3 l 2

The physical scalars HY, HY, HY, A, AY and AY are given by

cos i cosf,sinf; — sin ¢ sin 6§,

cos Y cos b c0s02sin1//+cos¢sin01sin02 cosﬂzsin¢/+cos¢sin015in02 0 cos Y cos b
[ =t et 4 omsng \

(H?\ 2 V2 2 V2
__siné, cos 6 sinf, cos 6 sinf, __siné,
H(z) 7 cosf;cosf, 5 v 0 ot
0 __cosfsing : . _ . coscosf, _ sinysinf;sinh, cosycosf, _ siniysinh;sinb __cosfysiny
H; - —\1/5— cosf,sin iy sinf; —cos ¢sinf, NG 2 ﬁl 2 N/l 2 ﬁl 2.0 \]/5
A(l) __siny 0 __cosiy cos i 0 sin i
20 N 7 7 N
2 0 0 0 0 1 0
Ag) K __cosy 0 sin ¢ __sinyg 0 cos i )
2 N N 77
1
)
1
Y
(1
P3
X o (C24)
M
1
2

\n/

After y getsits VEV, v, and neglecting terms suppressed by powers of v /v » the part of the Lagrangian that is obtained
from the quartic interactions with y becomes

v2 2
- et o (b3, - a3+ SN + 9P+ XL + )+ (423, = w23, + Y92 + a2
(C25)
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