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Effect of transverse gluons on chiral restoration in excited mesons
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The effect of transverse gluons on the chiral symmetry patterns of excited mesons is studied in a
Coulomb gauge QCD model. The linear rising static quark-antiquark potential and the transverse gluon
propagator known from lattice studies are input into the model. The nonperturbative quark propagator,
which enters the meson bound state equations, is derived from the Dyson-Schwinger equations and a
complete set of mesons for general spin quantum number is presented. From analyzing the bound state
equations for large spins it is demonstrated that chiral and axial symmetry are restored. In this limit a
complete degeneracy of all multiplets with given spin is observed. The effect of the transverse gluon
interaction is shown to vanish rapidly as the spin quantum number is increased. For vanishing dynamical
quark mass the expected meson degeneracies are recovered.
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I. INTRODUCTION

Understanding the two cornerstones of nonperturbative
QCD——confinement and chiral symmetry breaking—is one
of the most important challenges of modern particle physics.
The hadron spectrum offers a unique possibility to get insight
into the underlying mechanisms of both these phenomena
and their interplay. For instance, we certainly know that for
the low energy quark sector of QCD the chiral symmetry and
its spontaneous breaking are crucially important. Quark
condensation in the vacuum breaks the Uy (Ng) X Ur(Ng)
symmetry group of massless QCD to the vector subgroup
Uvy(Ng), preventing the ground state parity partners from
having equal masses and giving rise to N2 pseudoscalar
Goldstone bosons. The mass of the i’ particle is shifted up
due to the anomalous breaking of the U, (1) symmetry.

However, higher states in the light hadron spectrum
show a different picture: mesons and baryons tend to
form chiral multiplets, signaling the “‘effective” restora-
tion of the U,(Ng) symmetry [1]; see Ref. [2] for an
overview. However, for a final proof missing states have
to be experimentally confirmed. The physical picture is the
following: for high-lying states the valence quarks should
become unaffected by the condensate, since one enters the
semiclassical regime, where the quantum fluctuations are
suppressed; see Ref. [3]. This phenomenological picture
has been tested, however, with only a static quark-
antiquark Lorentz-vector confining potential entering the
system, which has either been chosen to be of harmonic
oscillator type [4] or linearly rising [5]. Here we close a gap
and show that highly excited high-spin mesons form ap-
proximately degenerate chiral multiplets also for a trans-
verse gluon type of interaction.

The Nambu—Jona-Lasinio type mechanism of spontane-
ous breaking of chiral symmetry has been successfully
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analyzed in effective potential models (Refs. [6-8]), how-
ever, with the low energy chiral properties of the theory
predicted too low. It has been observed that an additional
transverse gluon exchange increases the values of the quark
condensate and dynamical quark mass substantially to-
wards their phenomenological values (Refs. [9-13]).
Most recently, in Ref. [12] this has been shown by applying
the variational approach to the quark sector of Coulomb
gauge QCD. Since transverse gluons have a significant
effect on chiral symmetry breaking we here ask the ques-
tion if they also affect high-spin mesons, where chiral
symmetry is expected to be effectively restored.

In Refs. [5,14] it has been shown that in a model with
chiral quarks and a color-Coulomb linear potential mesons
fall into parity multiplets for large spins. Here we general-
ize the model and include transverse gluons. We demon-
strate that the additional interaction respects chiral
UL (2) X Ur(2) symmetry as well.

The organization of the paper is as follows: in Sec. II we
review the model Hamiltonian generalized to transverse
gluon interaction and specify the interaction kernels
from lattice Coulomb gauge studies. In Sec. III the quark
propagator dressing functions are obtained from the
Dyson-Schwinger equations in a rainbow truncation and
the infrared divergencies of these quantities are discussed.
The symmetry properties of noninteracting quarks are
listed in Sec. IV. A complete spectrum of meson Bethe-
Salpeter equations for arbitrary orbital quantum number
are presented in Sec. V. The limit of vanishing dynamical
quark mass is discussed in Sec. VI. In Sec. VII the
equations are studied for large spins J. It is shown by
numerically analyzing the angular integrals of the coupled
system that the effect of transverse gluons rapidly vanishes
for increasing spin. Effective chiral symmetry restoration
is found to persist for such an interaction. In Sec. VIII
we summarize our main findings. Irreducible tensor rela-
tions and the Bethe-Salpeter equations are collected in
Appendixes A and B.
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II. MODEL HAMILTONIAN

The model Hamiltonian generalized to transverse gluons
is defined as (see Refs. [9,14])

H = HF + HI’ HI = HC + HT, (1)

where
Hyp = j Pyt @) (—ie -9+ Bm)y(x) ()

is the free Hamiltonian of the quark field ¢ (x). Here a, 8
are the usual Dirac matrices satisfying {a;, @;} = §;; and
{B, @;} = 0, my is the current quark mass. The interaction
Hamiltonian Hj is split up into the instantaneous linear
confining Coulomb term

Hc:% [ Pxdypt (T Ve (x — y) T ()T s (y),

3)

with T¢ being the Hermitian generators of the gauge group
SU(N) in the fundamental representation and the trans-
verse gluon interaction of the form

Hy = _% fd3xd3y¢T(x)aiT“¢/(x)
X D& (lx — yD gt (e, TP ¢ (y). 4)

Here a comment is in order: the interaction Hamiltonian (3)
arises naturally in Coulomb gauge QCD from the kinetic
energy of the longitudinal modes after resolving Gauss’s
law. Using a perturbative gluon propagator and integrating
out the gluonic degrees of freedom leads to an additional
quark interaction due to transverse gluons, Eq. (4). A recent
Coulomb gauge study supports such an interaction kernel.
Using the so-called variational approach to QCD in
Coulomb gauge, a quark vacuum wave functional is
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FIG. 1 (color online).
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suggested, which goes beyond the typical BCS approxima-
tion and includes a coupling between quarks and transverse
gluons; see Ref. [12]. The additional transverse gluon in-
teraction increases the chiral condensate and the constituent
quark mass of about 20%—-60%. These findings are in
agreement with the study of Ref. [13], where a potential
of the form (4) is used to describe transverse gluons. For a
gluon propagator which vanishes for small momenta,
both these approaches lead to a constituent quark mass of
~200 MeV. In Fig. 1 on the left-hand side the dynamical
quark mass is plotted and compared to the cases without the
additional transverse gluon interaction and to most recent
lattice Coulomb gauge data; see Ref. [15]. For the purpose
of our work it is much more convenient to use a model
Hamiltonian as considered in Eq. (4).

We now specify the interaction kernels V& (|x — y|) and
D;‘}’(Ix —y|), appearing in Egs. (3) and (4). Both are
diagonal in color space. From the variational approach to
Coulomb gauge (Refs. [16,17]), one finds a potential which
at large distances rises linearly:
r — o0

Ve(r) = ocr, , r=lx—yl. ()

The same behavior is found on the lattice (Ref. [18]), with
a Coulomb string tension o¢ of

oc=2...3)ow, (6)

where /oy = 440 MeV is the Wilsonian string tension. It
is well known that the linearly rising confinement potential
Vc(r) in Eq. (3) leads to infrared divergences in momentum
space, which, however, cancel from the observable quan-
tities as shown in Ref. [8]. For the actual computation we
introduce an (infrared) cutoff parameter, which, in the end
of the calculation, is sent to zero. For the definition of the
infrared regular confinement potential we adopt the con-
vention of Refs. [9,14], given as (in momentum space)

0.45 -
* lattice *
04 ﬁ{{ Gaussian functional — —— |
035 | "' Non-Gaussian functional T

Left panel: Dynamical quark mass for oc = 20w and ,/ow = 440 MeV comparing the results from the

variational approach to QCD in Coulomb gauge (Ref. [12]) to the lattice data obtained in Ref. [15]. The dashed curve is obtained with
the additional coupling of quarks to transverse gluons while the dash-dotted curve is obtained using the color-Coulomb potential only;
for details see Ref. [12]. Right panel: Instantaneous transverse gluon propagator D(p). Data points show the lattice results of Ref. [19].
The dashed curve is the result of the variational analysis using a Gaussian vacuum (Ref. [16]) and the full curve shows the extension to

non-Gaussian wave functionals. The plot is taken from Ref. [20].
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with o the Coulomb string tension and g the infrared
cutoff parameter. Due to asymptotic freedom the color-
Coulomb potential also has an ordinary short-range 1/r
part, which influences the UV part of the dynamical quark
mass. Since we want to investigate the role of transverse
gluons for chiral symmetry restoration in highly excited
mesons, the Coulomb potential is not required and can be
neglected.

As static transverse gluon propagator D(p) in Eq. (4) we
use the result from lattice studies (Ref. [19]) in Coulomb
gauge QCD, which can nicely be fitted by Gribov’s
formula

Velp) = (N

D?/b(P) = 5abtij(P)D(P), with

7 (8)
D™!(p) = 2‘/172 + %,

where Mg = 880 MeV is a mass scale referred to as
Gribov mass and the transverse projector is defined as

t;j(x) = fd3p(8ij — pipye’?™,
Po= L . _p

= @m Pl

On the right-hand side of Fig. 1 the transverse gluon
propagator is presented and compared to results in the
variational approach to QCD (Refs. [16,20]).

9)

III. QUARK PROPAGATOR AND GAP EQUATION

Due to the static interaction kernels (3) and (4), the
dressed inverse quark propagator can be decomposed as

v pB(p) —Alp), (10

with A(p), B(p) denoting scalar and vector dressing func-
tions. Within this large-N- model only the rainbow dia-
grams contribute to the gap equation (see Refs. [7,8] for a
detailed derivation)

iS™'(po, P) = Yopo —

(q)

=m 3
A(p)=m + 1 ]ddwm+2mm1() (11)
Bp) = lpl+5 [ @V @
+wm@mwmﬂ% (12)

with k = p — q and w?(p) = A%(p) + B*(p). We stress
that the quark-gluon vertex is taken to be bare and it is
assumed that no infrared divergence occurs in the trans-
verse gluon sector. Spontaneous chiral symmetry breaking
reflects itself in a nonvanishing scalar dressing function
A(p) and in an infrared finite dynamical quark mass func-
tion M(p), which is defined as (see Fig. 1)
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A(p)
B(p)’

The plateau value at zero momentum M (0) is interpreted as
constituent quark mass. For highly excited states, where
the typical quark momentum is large, the valence quarks
become less affected by the quark condensate; hence in this
regime the behavior of the quark dressing functions (11)
and (12) for large momenta p is essential. At tree level in
the chiral limit they approach

M(p) = |pl = (13)

A(p — ) — 0, B(p — o) — |p|, (14)

and the dynamical quark mass M(p) goes to zero. For later
purpose it is important to project out the infrared diver-
gences, which has explicitly been done in Ref. [14] for the
case of a purely linear color-Coulomb potential and is not
changed by the additional transverse gluon interaction. We
therefore quote the result of Ref. [14], given as

Ap) =2 AP 4 4 o), (15)
2R (U(P)

B =22\ g, (16)
w(p)

w@)=§£§~+wﬂpx 17)

with Ag(p), Br(p), wp(p) being infrared-finite.

IV. SYMMETRY PROPERTIES OF
NONINTERACTING QUARKS

Before we proceed with deriving the meson bound state
equations, we discuss the expected degeneracies in case of
nonbroken chiral symmetry. The two-quark amplitudes
then follow from Poincaré invariance and Uy (2) X Ug(2)
symmetry. The complete list of Gg-meson SUj (2) X
SUR(2) multiplets is given as (see Refs. [1,2] for a detailed
explanation) (k = 1,2,...)

(1/2,1/2),: 1,0~ <0,0"*
J=0: (18)
(1/2,1/2),: 1,07 <0,0°*
(0, 0): 0,J = —=0J"
1/2,1/2);; 1L,J * 0,0t
J=2k:-(/ /2) (19)
(1/2,1/2),: 1LJt* —0,J°F
LO, D@ (1,0: 1LJ* 1,7
((0,0): 0,J < 0,J "
1/2,1/2);;  1L,J*~ 0,0~
J=2k—1:{(/ /2 (20)
(1/2,1/2),: 1L,J = —0,J*"
LO,D®(1,0: 1,J ~ 1,7
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The axial U,(1) symmetry mixes the states from the
(1/2,1/2), and (1/2,1/2), chiral multiplets with
the same isospin but opposite parity. Moreover, from
theoretical arguments (Ref. [21]) and from the analysis
with a color-Coulomb potential in the limit J— o
(Ref. [14]), one expects an even higher degree of
degeneracy

[0, 1/2) @ (1/2,0)] X [(0,1/2) @ (1/2,0)];  (21)

i.e., all states with given spin should become degenerate.

Next we turn to the interacting case, where the quark
self-energy breaks chiral and U,(1) axial symmetry.
Chiral symmetry restoration then means that the splittings
within the multiplets vanish in the limit J — oo. It will be
interesting to observe if the transverse gluon interaction
still allows for such a degeneracy for large orbital quan-
tum numbers. To investigate the effect of transverse glu-
ons we derive bound state equations for the model
Hamiltonian (1).

V. BETHE-SALPETER EQUATIONS
FOR MESONS

The homogeneous (Gg)-meson Bethe-Salpeter equation
(BSE) with total and relative four momenta P, p and
individual momenta g *= P/2 of the (anti)quarks is con-
veniently set up in momentum space:

[ d*q
X(P.p)=—i [ oK (P.p.0S@+PIDXP.q)S(=P/2),
22)

with K(P, p, q) the Bethe-Salpeter kernel, S(q = P/2) the
quark propagator and (P, p) the meson vertex function.
Dirac and color indices are suppressed. As a first step one
usually chooses the rest frame, where the (anti)quark mo-
menta have equal magnitude, so that P* = (u, p = 0).
Due to the instantaneous interactions of our model the
Bethe-Salpeter kernel and the vertex function depend
only on three-momentum and the BSE (in the ladder
approximation, which is exact within this large-N- model)
simplifies as (see Ref. [9])

J

w((p) =5 [ Ea(veldo + 2000, (p-d)

2
W)+ goss@) |
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4
X, p) = —i ] (;qu)Ll V(k)705<q<> + % q)x(u, q)

© [ d*q
>< S - = + —Di' k i
(qo > q)m ’[(277)4 (k) y

X S(czo + % q)X(M, q)S<qo - % q)v,-- (23)
This equation is solved in the standard fashion: the ¢° integral
is taken explicitly, the vertex function y(u, q) of a given
meson type is expanded in terms of all possible Poincaré-
invariant amplitudes (see Appendix B) and, by applying
appropriate traces of Dirac matrices, the independent tensor
components y; [see Egs. (B1)—(B3)] are projected out. Since
we are interested in meson bound states for general orbital
excitations J, irreducible tensor products occur in the con-
struction of the independent vertex components, which can
be simplified by using formulas listed in Appendix A.

As in Ref. [14] three different types of mesons with
total angular momentum, parity and C-parity JXC are
constructed:

Cat . J™ T, J=2n

ategory 1:

goy JT, J=2n+1
JTr, J=2n

J 7, J=2n+1
J7, J=2n+1)
JT, J=2n+1.

Category 2:[

Category 3:[

A fourth possible category with 2n)™~, 2n + 1)~ " is
absent in a system with only instantaneous interactions.
In Appendix B the coupled integral equations for all meson
categories are presented.

In Ref. [14] it has been shown that in the limit J — oo all
states for a given J are completely degenerate. Here we
repeat the calculation for an additional transverse gluon
interaction and investigate if the same degree of degeneracy
is still present. As a first step towards this study we have to
analyze the BSEs regarding the infrared limit p — O.
Mesons of category 1 are described by two coupled integral
equations [see Eqs. (B7a) and (B7b) (k = p — ¢q)

(24a)

[0~ 2 Lot = ni) 5 [ qveo]

A(p)A(@)P,(p-§) + B(p)B(q) 5Py (P §) +5757P—1 (P~ é))}g(q)

4o(p) w(p)w(q)
5.4 JH+1 _J
1 [ L2 (k) {A(p)A(q)PJ(p q) + B(p)B(q) 57 F + 2,+1G1)}g(q), (24b)
2 w(p)w(q)
where we have defined the following quantities:
k-g
Fo= S ple - )~ lalPy (5 ) @5)
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(k- §)

G J—
T

—1qlP;—1(p - @) (26)

which appear for the transverse gluon interaction. With help of Egs. (15)—(17) we rewrite Eqs. (24a) and (24b) as

<>h<p>——g<p [ £ q(Ver(k) + 2DU)P,( - Dhg), (27a)

AP)A(QP;(p - §) + B(p)B(@) (T Py (P~ §) + 5755 Pr—1(P - ‘I))} @)
w(p)oly) o

orPep) = h(p) + 5 [ Eqveeif

1 A(p)A(@)P;(p - § + B(p)BQ) G Fi + 557 Gy)
- f d qu(k){ o)) } (q). (27b)
In addition we have used that
li MR 3 3
tim B8 [ s 1@ = [ a0 - 9@ = 1) 28)
Verlk) = Velk) — %(277)35(@ and that the integral
1 2
3 [ €02D0P6 - D 3220 ~ O 29)

vanishes in the limit uz — 0. We note that the transverse gluon propagator D(k) [Eq. (8)] is finite for ur — 0.
Four linearly independent equations (B14a)-(B14d) describe mesons in category 2 given in the infrared limit as
[Py = P;(p-§)]

2 ED)
wF(P)hl(P)zﬂ—gl(P)+lfd34Vc,F(k){<ﬁPJ+1 +2JJ-:11 P, 1) 1(q )"‘I:)((Z)) ;(JJ++11 (P _PJ—I)hZ(q)}
T+1 Alg) JTT+D) D,
=5 [ pw|(575 R 6+ SR 6 i), (300)
B(p)B(q)P, + A(p)A(q)(-—P, . p

or P (P = )+ [ Vgt [PPEOLIEADR i 2P0,

2(&)))) ;(JJ:ll (Pys1 _PJ—I)gZ(q)}

H _J JHL
1 [d3q2D ® {B(P)B(q) f +A(Zé;i)((; ;HFZ + MGz)g1 @ (q)) \/;(JJ++11 Fi—Ges (q)}’ (306)
B(p)B(q)P; + A(p)A(q)(LLP, P,_

wp(p)hy(p) = gz(p)+ f d3qVCF(k){ (P)B@)P, + (pzu(g)if(’;)l s gy 1)hz(q)

L A@VIUFT)

w(q) 2+1 (PJ+1 _PJ—1)h1(‘I)}

B(p)B(q)P; + A(p)A(Q) L Fi + 572+G)) Alg) JIT+1) J+1

5 [0 P 210y, ) - AT D 1, - @), o)

wr(p)g2(q) =hy(p) + 5 fd3qVCF(k){(2Jj:_11 Py + 2J{i- IPJ 1) 2(q) +2((Z;£(JJ:(PJ+1 _PJ—1)81(4)}
I J Alg) JIU+1)
[‘3‘3612D k){(2J~I— T +2]+ 1 1)82(‘1) +@W(F2 - Gz)g1(4)}, (30d)

with the quantities F, F, [Egs. (25) and (26)],

Fy, = %UPKPJKIA’ @)= P-9P,p-q) +1ql(p-@PP;1\(p-q) — P,y(p-q)] (3D
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G, = %[lpl(Ph—l(ﬁ @ —P-@P,p-9) + lql((p-9P;—1(p-§) — P;(p-q)] (32)
and
H = %((ﬁ “@P;(p-q — Py1(p- Q) (33)

entering the transverse gluon part. We note that for the 0" * state several vertex function components in Eq. (B2) are absent
and therefore only two independent functions /,(p) and g,(p) remain.

Finally, let us turn to the Bethe-Salpeter equations (B18a) and (B18b) for mesons of category 3, which for ur — 0 have
the form

we(p)g(p) = h(p) + ! [ d‘3q<vc(k)P J(p - §) +2D(k) E)g(q), (342)
wp(p)h(p) == g(p [ Pqv (k){A(p)A(q)PJ(p q) + B(p)B(Z))((;j)z(l;;ﬂ(p @+ 5P (p- q))}h(q)
1 [ £q2D(k) {A(p)A(q)§ + Bp)B@ i Fa + 3751 G2) (q)}’ G
w(p)w(q)

where we have used the definitions (31)—(33). For the state 0~ ~ there would only be one independent vertex tensor
component; see Eq. (B3). However, inserting it into the BSE gives zero. Hence, such a state is absent in our instantaneous
model (Ref. [14]).

All equations listed in this section now serve as a laboratory to study the influence of transverse gluons on mesons for
large orbital excitations. By analyzing the occurring angular integrals we are going to observe that the transverse gluon
interaction is suppressed for highly excited meson states.

VI. CHIRAL SYMMETRY STRUCTURE OF THE BETHE-SALPETER EQUATIONS FOR THE
NONINTERACTING CASE

In this section we discuss the special case of noninteracting quarks and show that the BSEs fulfill the expected meson
degeneracies [Eqgs. (18)—(20)]. For vanishing dynamical quark mass M(p) = O the integral equations (27a) and (27b) for
mesons of category 1 simplify as [using Eq. (14) and w(p) = |pl]

2
or(ph(p) = g(p) + 3 > [ @atvest + 2000, - nta) (35)
wrPlep) =)+ 5 [ Vel P @+ 3 P Dsta)
f e 2D(k){ ZJ] 111 +2]J+ 1G,}g(q) (35b)

with F; and G given in Egs. (25) and (26). Inserting the tree-level dressing functions into the last two equations for mesons
of category 2 [(30c) and (30d)] yields

2
wrPha(p) =B o) + 5 [ EalVer) + 20002, - hsla), (362
orPga@) = halp) + 5 [ VertO(Z 2 Pralh - D + 57 P D)0
J+ 1 J
-5 [eapw (5 - 6 e, (36b)

and one ends up with identical equations, which yield the expected degeneracies J~+ — J**(J =2n) and
J*~ - J"~(J =2n + 1). The remaining two equations (30a) and (30b) for mesons of category 2
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2 J+1
o (p) = g1(p) + 5 [ @ Vsl g Prealp @)+ P @)la)
X J+1
f a q2D(k)<2 St G )@ G7)
H
wrP)gi(p) = n(p) + 5 [ @q(VertoP, (o d) + 20007 )eila), (37b)
then coincide with the equations for mesons of category 3:
2 1 J J+1
wrPhp) = o(p) + 3 [ qVerto(57 5 Prap- @)+ 5 P D))
\ J+1
[ P qu(k)<2J Rt 1G2>h(q), (38)
orPg(p) = p) + 5 [ @o(Vertor, (o d) + 20007 (o) (38b)

The meson degeneracies J~~ — J*"(J=2n+ 1) and J™" < J ~(J = 2(n + 1)) follow from these equations. The
state 0** only applies for the last two equations of category 2, Egs. (36a) and (36b), as shown in the last section. We have
thus shown that for vanishing dynamical mass the BSEs fall into the expected chiral multiplets and SU; (2) X SUR(2)
and U, (1) are recovered. Next we analyze this question for the interacting case and discuss the role played by
transverse gluons.

VIL. EFFECTIVE CHIRAL SYMMETRY RESTORATION FOR LARGE ORBITAL ANGULAR MOMENTUM

The transverse gluon interaction influences the meson states in two ways, namely via the BSEs and via the quark
dressing functions. In this section we analyze the BSEs in order to answer if transverse gluons change the asymptotic
degeneracy for high-spin bound states.

By comparing mesons of category 1 and 3 [Egs. (27a), (27b), (34a), and (34b)], in the limit of large spins J for a purely
linear interquark potential V, the degeneracy of all chiral multiplets [Eq. (21)] has been demonstrated in Refs. [5,14]. Here
we discuss the effect of the additional transverse gluon interaction [Eq. (4)] for the degeneracy within these two categories
in the limit J/ — oo. For mesons in category 3 [Egs. (34a) and (34b)], we make the replacement (p) — 5 ¢(p). For a clear
reading we once again list the equations for category 1,

2
orPh(p) =) + 5 [ EaVer) + 20W)P,(p - ita), (39

A(p)A(QP;(p - §) + B(p)B(@)(F Py (P~ §) + 5755 P1—1(P - ‘I))} @)
w(p)(g) s

orPe(p) = hp) + 5 [ @ qVeriof

.y d3q2D(k){A(p)A<q>P,@-a> +j,(f>’2)3($)(’—117 m,c)} W o0)
and for category 3,
o) = g(p) + 3 [ oVt o + 20007 Yitq), (40a)
wF(p)g(p)=h(p)+5 f d3ch(k){A(p)A(q)P’(p qHB(p)B(‘g((;’)z(I;;H(p @) 3P b q))} (q)

using the definitions (25), (26), and (31)—(33). Let us start with exploring Egs. (39a) and (40a). The color-Coulomb
interaction V(k) enters in both equations with the Legendre polynomial P;(p - §); hence for any spin quantum number J
the equations agree with each other. However, for the transverse gluon interaction the situation is different: two different
contributions P;(p - §) and ? occur, which do not coincide for arbitrary J. However, we now demonstrate that for large spin
quantum number J both these contributions vanish.
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We use spherical coordinates ( [d*q =2 [ ¢*dq 1z,
with z=cosf® = p-q) and write down the one-
dimensional integral equations

2
wr(p)h(p) = —g(p) 5 (21)2 / q*dqh(q)

X / dz(Ver(p* + ¢* — 2pqz)
-1

+2D(p? + ¢*> — 2pqz))P,(2), (41)
2 11
wp(p)h(p) = %g(p) 5 G f q*dqh(q)
X j 1 dz(Vc,p(p2 +q* = 2pqz)P,(2)
-1
+2D(p* + ¢*> — 2pqz) M) 42)

We calculate the angular integrals for the transverse gluon
interaction

Avi(p,q) = an? f dzD(p* +q* —2pqz)P;(z),  (43)
Aws(p,q) = (2 el f dzD(p* + ¢* —2pq2)H(p, 4, 2)
_ I pq D(p*+q* —2pqz)
CQm)?J {/_1dz p>+q*—2pgz (2P, ()
~Pra@) (44)

where in the second line we have explicitly used the
definition for H, Eq. (33). For a tree-level gluon propagator
the integrals can be calculated analytically.1 Using as
transverse gluon propagator D the lattice result [Eq. (8)],

'"Using a tree-level gluon propagator

1
Dyy(k) = IR

the angular integrals (43) and (44) can be analytically performed.
The integral (43) then simplifies as

D(k) —

el -0+ =)

The maximum of the function Iyy(p, p
increasing J as 575 +1 For the angular integral (44) the extre-
mum at p = ¢ can af’so be shown to vanish as

1 1
2J+1p
It is interesting to note that the angular integral (44) for the
individual contributions zP; and P,,; does not converge, only

the difference gives a well-defined integral for the tree-level
gluon propagator.

AUV,M] (P, Q)

= g, J) vanishes for

AUV,M3 (P) ~

PHYSICAL REVIEW D 88, 076010 (2013)

the angular integrals (43) and (44) are performed
numerically. The scale is fixed by the Wilsonian string
tension ,/ow = 440 MeV. The fact that the first integral,
Eq. (43), vanishes for J — o0 is not surprising and comes
from the properties of the Legendre polynomials. In Fig. 2
we plot this integral for fixed values of g. It can be seen that
the function values fast become smaller for larger values of
J. The same calculation is performed for Eq. (44); see
Fig. 3. Again, the contributions decrease as J is increased.
On the right-hand side of Fig. 3 the values of the maximum
(p = q) are evaluated for different orbital quantum num-
bers J. Moreover, going to larger values for the outer
momentum p gives smaller values for given J. We can
conclude that for large J both these integrals (43) and (44)
vanish and the integral equations (41) and (42) are in the
limit J — oo completely determined by the color-Coulomb
interaction V¢ [Eq. (3)].

Let us turn to the second system of equations, (39b) and
(40b). For the color-Coulomb potential part, the term on
the right-hand side with the scalar quark dressing function
A(p) coincides for both equations. In the terms which
enter with the vector dressing function B(p) we get the
contributions

J+1 J
—P +——P 45
1 141D - ) 7 1h (P9, (45
and
J+1
—P +—P 4
27+ 1 s+1(P - q) 1" (P q), (46)

which coincide for J— oo, as already outlined in
Ref. [14]. For the transverse gluon interaction part we
get two contributions. For the terms with the scalar dress-
ing function A(p) on the right-hand side of the Egs. (39b)
and (40b) we have the contributions P; and }H, which
have already been shown to vanish for large J. The remain-
ing terms are

J+1 J

_l’_
i1 Tayy O @D
and
J J+1
F, + . 4
2J+1° 2 2J+1G2 “48)

We write down the angular integrals of the two Eqs. (39b)
and (40b) for the transverse gluon part:

Byvi(p,q) = B )22 f dzD(p* + ¢* —2pqz)
pz—q J
P’ +q —2pqz{2j+1[ppj(z) qP;11(2)]
+ o pPio) - a2 (49)
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FIG. 2. Integral (43) for different values of spin J and g/ /o fixed at 1, 10.
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FIG. 3 (color online). Left panel: Integral (44) for different values of spin J and fixed g/./ow = 20. Right panel: The same integral

at the maximum (p = g) for different values of spin J.

1 1 1 p
Bus(p.g) === | dzD(p>+q*—2
3P, @) (277)22f71 zD(p” + q PqZ)p2+q
J+1
My 1[p(Pm(z) — 2P;(2)) + q(zP;-1(2)

using the definitions (25), (26), (31), and (32). The func-
tions do not coincide for arbitrary spin quantum number J;
however, they vanish for large J. In Fig. 4 on the left-hand
side By (p, ), Eq. (49) is shown. It has a minimum at
p = g and the maxima flatten for larger values of J. For
J — o0 all Legendre polynomials can be replaced by P,
P;_1 — P; and the integral (49) approaches

1 1 [
G2 3 [71 dzD(p* + ¢* — 2pqz)

(rz—q)p —q)

PJ—»oo(Z)-
P>+ q* —2pqz

(D

2 —2pgz
- Pj(z))]},

{2 JJ+ T [P(Ps-1(2) = 2Ps(2)) + q(zPy:1(2) = Py(2))]

(50)

The decrease of By (p, ¢) for large J can nicely be seen by
plotting the individual integral contributions. The integral

1 1 M
—— | dzD(p* + 4> -2
o2 f_l zD(p* + g% — 2pqz)
pz(p — q)
P’ +4a* —2pgz
is shown on the right-hand side of Fig. 4. For the function
Byis(p, @) [Eq. (50)], the situation is analogous; see the
left-hand side of Fig. 5. It has a minimum at p = ¢, which
goes to zero as J is increased. In the case of J — oo the
integral approaches

Pjeo(2) (52)
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Integrals (49) (lhs) and (52) (rhs) for different values of spin J and fixed ¢/./ow = 20.
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9
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207 s N e
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-6x10” .

40
172
p/oy,

100

FIG. 5. Integrals (50) (lhs) and (53) (rhs) for different values of spin J and fixed ¢/./ow = 20.

11

1
——— | dzD(p*+ 4> -2
(27)22f_1 zD(p* + q* = 2pqz)

_rpmq)
p* +4* = 2pgz
which is plotted on the right-hand side of Fig. 5.

For mesons in category 2 [Egs. (30a)-(30d)], similar
angular integrals appear, which can be shown to give
vanishing contributions for large J by repeating the same
steps as above. Hence, by analyzing the angular integrals
of the meson BSEs we find that transverse gluons have a
vanishing effect on gg-bound states for large angular ex-
citation and thus do not alter the symmetry patterns at

J — oo. All mesons with the same J fall into the expected
chiral multiplets [Eq. (21)].

(1 = 2)Pj(2), (53)

VIII. SUMMARY AND CONCLUSIONS

In the previous work, Refs. [5,14], a very fast effective
chiral restoration with increasing meson spin was

established in a chirally symmetric model, that relies on
the linear instantaneous Lorentz-vector confining potential
of the Coulomb type. Chiral symmetry in the vacuum is
broken in the standard way via the gap equation.
Consequently, the quarks acquire a dynamical
momentum-dependent mass that decreases at higher
momenta. At larger spin of a meson the typical momenta
of quarks in the meson increase because of the centrifugal
repulsion in the system. Hence, the mass of the meson is
determined by the dynamical quark mass at larger
momenta. The larger the typical momentum of quarks in
the meson, the smaller the effect of chiral symmetry
breaking in the vacuum on the meson mass and the wave
function. This leads to the chiral restoration in mesons at
large J.

In the present paper we have extended the model and
included the effect of transverse gluons. The transverse
gluons influence the dynamics in two ways. First, they
enforce chiral symmetry breaking in the vacuum and
shift the chiral condensate towards a more realistic
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value (Ref. [12]). Still the dynamical mass of quarks
decreases very fast with momentum and vanishes at
large momenta. Second, they contribute also to the
kernel of the Bethe-Salpeter equations for mesons.
We have shown that this additional contribution of
transverse gluons in meson masses dies out very fast
with increasing J. Hence at J — o the effect of trans-
verse gluons on the meson masses vanishes and chiral
symmetry is restored in the same way as without trans-
verse gluons. The physical reason is that transverse
gluons influence the interaction between quarks only
at short distances, while the centrifugal repulsion at
large J cuts off the meson wave function at short
distances.
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APPENDIX A: SPHERICAL HARMONICS AND
IRREDUCIBLE TENSOR RELATIONS

The irreducible tensor product {M; ® N, },,; of two
irreducible tensors M, and N, is defined as [22]

{M'Il ® sz}/M Z Cj]”‘l]./zﬂ’le‘/ﬂnlN.lzn'h’ (A1)
my,nmy

with my = _Jl,...,.ll, my = _J2,.. .12 and lemljzmz

the Clebsch-Gordan  coefficients. For instance,

(@) ® vl =
irreducible tensors is defined as

My Ny =Y (=DM"MyN;_y.
M

_7411_#7' p. The scalar product of two

(A2)

In addition to the irreducible tensor relations listed

Discussions with R.F. Wagenbrunn are greatly in Ref. [14] we here use the following relations which
acknowledged. This work was supported by the appear for a transverse gluon interaction of the form (4)
Austrian  Science Fund (FWF) through Grant  and canbe defived using appropriate formulas in Ref. [22]
No. P21970-N16. (k=p—q,k=k/k|):

49T R A R v % |p|PJ(p q) |q|PJ—1(ﬁ ' Q))’ Jl =J-1
2J+1{YJ,(P)®k}J'YJ(‘I)= 1 o (A3)
\/ 7 (plPy(p-q) —1qlP,; (P~ q), Ji=J+1
(51w (PP (D - @) — 1gIPy-1(P - §)), Ji=h=J-1
IO+ P A A

4 — NI L (plPy(p- @) — 1glP(p- @), Sy =T 11 =T+1

ek @ea, -1 L (A%)
— ST 1|(|P|PJ(I7 @) —qlPy(p-q), Ji=J+1,1,=J-1
g g (PIPs (D - @) — 1gIPyi (P - @), Ji=hL=J+1
A7
27+ 1‘{YJ1 (p)® k}J {r,(@ e k}J
(o5 e (U2 + 102,15 @) = 1Pl (257 - P12 = 1Pso - D)), Sy == d 1
— D PPy (B @) — 21pllglPy(p - @) + 1Py (P - §). h=T- 1L =J+]1
= =D L (1pPP, (5 @) — 21pllalP P - @) + 1aPPy (5 - D) J= T4 =1
IR (<|p|2 PP ) = pllal(F B P (b @)+ L PP D)) ==+ 1
L211+1 | —P;1(p- Q) Jy=0=J
(A5)
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(kP -~ lglP, (- @), Ty =T—1,1,=1]
Vi plPr (@) — lglPy(p- @), Sy =JJ=J—1
T (pIPr B @ — lglPy (B @), =01y =1T+]1

Vo (PP, (B~ @) = lglPyi(B-), Sy =J+1LJ,=J

3
T, 5) ® ¢ D) ® 6,
1! E €Y, (p) @ &}y - {Y},(§) ® &}, |kl| B
=1

-~
&

(A6)
dm . 3 Ao s ook ki
®eé.}; - ® 2=
2J + llj’k‘zl:1 ]kl{YJI(p) e./}.] {YJZ(Q) k}l |q| |k|
(L (P (B - @) — (- PP - 9)), L=J—-10=1
B + \/{—kL(Ipl(Pj(p' Q—p-PP;(p-9) +lql((p-@PP;(p-§ —Pyi(p-q), Ji=JJ,=J—1
%kL(lpl(PJ(p Q=P PP, (p-9) +1ql((p-9P,(p-@) —P;1(p-q), Sy =], =J+1
i VL Py (B @) — (B PP - 9 J=J4 L=
(A7)

APPENDIX B: COUPLED INTEGRAL EQUATIONS

The independent tensor components for an instantaneous interaction are derived in Ref. [14]. We list them for each
category. Mesons of category 1 are described by

X ) = vsYiu (D) x1(p) + wyoysY (P x2(p) + wyoysiYi1(8) ® ¥hmxs(p) + wyoysi¥i—1(p) ® vhmxa(p),

(B1)
with Y;,,(p) denoting the spherical harmonics. The vertex function for mesons of category 2 is decomposed as
Xou( p) = Yy (D) x1(p) +{Y;41(B) ® vhmx2(p) +{Y,-1(P) ® vhmxs(p) + wys{Y,(P) ® vimxa(p)
+ wyolYse1(P) ® Yhmxs(p) + nyolYs—1(P) ® ¥hmxs(p), (B2)

and for mesons in category 3 we have

Xom(e, p) = pdY;(P) @ Yhmx1(p) + vs{¥ie1(B) ® Yhmx2(p) + vs{¥,—1(B) ® vmxs(p) + volY,(B) ® ¥hmxa(p).
(B3)

The coupled integral equations are derived using standard techniques by plugging the independent tensor components
into the left- and right-hand sides of Eq. (23). By applying appropriate traces of Dirac matrices and the irreducible
tensor relations listed in Egs. (A3)—(A7) and [14] we end up with a system of coupled integral equations for each
category.

In the following subsections it is shown that the same linear combinations of vertex functions y; appear for color-
Coulomb and transverse gluon interactions for all meson categories. By choosing appropriate (infrared finite) linear
combinations of these vertex functions, the number of coupled equations is reduced.
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1. Mesons of category 1

For mesons in category 1 we end up with a coupled system of four integral equations, given as

nip =y g R (")) P a>[ ()0 (@)+ 312 A @ xala) - 2B<q><,/2j+ S R e XM))]

(B4a)

xolp) = [ w (A-AA(("))[ X1@)+ A@xale) B <q>(,/y+ P mmﬂ (Bab)

x3(p)=— W’JJF f VoK) Py 1 (p-q)—2Dk)(|pIPy(p-q)— qIPy 1 (p- q))(’fki])B(q)
3 2J+1 w2(q)_T a)(q)

X |:%X1 (@) + A(g@)x2(q) — B(q) (‘/211_4;11)(3 (q)— "NJ—HXM)) ] (B4c)

Vek)P,—1(p-q) —2DK)(IplP,(p-§) — |qIP;—(p- ‘I)) |k| B(q)
xa(p)= ‘/2]+ f

w(g)— & w(q)

|: x1(q) +Alg) x2(q) — B(q)<‘/2 T X%(Q) ‘/2 T X4(¢I)>] (B4d)

Setting the transverse gluon interaction to zero, D(k) = 0, the equations coincide with the result given in Ref. [14]. There
are only two different linear combinations of the vertex components y;(p). Introducing the two infrared-finite functions
(see Ref. [14])

»(p)

__ 1 h(p) B [7+1 [
g(p) = o) ”Tz |:w(p) + 2A(p) x2(p) 2B(q)( m)m(p) 71 1X4(p))], (B6)

one ends up with a system of two coupled integral equations

2

wphp) =35 [@atveto +20000P,- D o) + 20| (B72)
_ 3 A(p)A(@Q)P,(p-§) + B(p)B(q) G Pri(P- @) + 575 Ps—1 (P - §))
[0 = 320 Jetw) =t +5. [ avean] T Jst@

1 f P qZD(k){A(p)A(q)PJ(ﬁ-é)+B(p)B(q)(ﬁF, + 745G, )} @
o(p)w(q) ’

where we have used the definitions (25) and (26). For the special case of pions (J = 0) the equations (24a) and (24b)
simplify as

(B7b)

L P
wpI(p) =5 [ Patvete) + 20600 o) + 72 ea) | (BSa)

_ 3 A(p)A(g) + B(p)B(q)(p - §)
[0 = 2 Jetr) = i)+ [aqvew {220 EDEAG D,
Ly A(p)A(g) + B(p)B(g)(k - §)(k - p)
5 [ s qZD(k){ o(p)o(a) }g(q),

and agree with the results obtained in Ref. [9]. The infrared finite BSEs for mesons of this type are collected in Egs. (27a)
and (27b).

(B8b)
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2. Mesons of category 2

For mesons of category 2 we use the vertex functions (B2) and have a system of six coupled integral equations:

k , [
)(l(p)=% d3qw (“A)%{B(q)xl(q)JrA(q)( ZJJ—J;IIXz(q)— ﬁ){s(q))

wg) — &

%2 (\/ijTll)(s(q) - ‘/ZJIJrl)(s(q))}, (B9a)
o) =5 [@q Jﬁ?ﬂzjﬂw m{w@)2fil<¢UQTMM) Jfokxw)

e [ﬁ D+ o0 (J;Jillm(q) - \[2%;(3@)}

+%2 2JJ+ 1[%)(401) @) (F s(@) + \/2]—+‘1X6(q))j|

i % 281)) \/211111 (\/2JJ_:-11X5(‘I) \/;)“(q))}

—%fd%] 22(Z(k) { (q) 2J+1 z(\/ZJJJr x@+ \/;Tll)a(q))

- ol ST, [ﬁ((gm@ o (\/E @) - \/; 3(q>)]

+%2 NJ—+1F2|:%XM) A((Z)) (F s(q) + \/21—+1)(6(q)):|

_%22(((¢11))\/2JJJ;11F1 (\/zjjill)“(q) \/ZJTIX6(‘I))} (B90)
x:(p) =%fd3q wz‘(/;)(k)%PJ (- q){w(q) 2];;11(\/2]1 le(Q)+\/2]JT+11X3(Q)>

— (g 2((‘(11)) 7T l[i((‘;))xl(q) +%<m){z(c}) —\/%Xs((ﬁ)]
s [Mm(q) A(q)< @+ \/;Xs(q))]

2V +1 w(q) (q)
wrAlg) | J \/J +1 ( 7
2 w(g V27 + 1\ V27 + 1% 9 - \/ZJ @
! 2D(k) JU+) J [1+1
-3 fd3q ) _MZ{‘”( ) 7 +1° (J2J+ 1)(z(q) T 1)(3(q)>
Alg) B(q) Alg) fJ +1 - , 7
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w* [J+1 | Blg) Alg)
Y 2J+1G|: @@t (q)<\/21+1 Xs(@) + \/2]+1X6(q))]

uwAlg) | 7 J+1
= 2 w2 +1” (\/21+ Xs(@) — X6 ‘1))} (BYc)
_1 Vc(k) . |1 Blg) J+1
Xs(p) = 5 fd3qw2(q) - %sz(p q){ (@) ( )(z(q) + 1’ XS@)

w(q )%[B((gm(q) A((Z)) (\/;XS(Q) +\/;X6(q)):|}
o [ 22(;(k)%H{%Tq< e+ “’“;@:;))
+ w(q)% [%Z)) xa(g) + A(q) ( )(s(q )i” (B9d)
xs(p) = fd3qw2‘(/;)(k_)ﬂ Prap- ){; 2((‘51)) 2JJ+ 1(\/21+ G \/T 3(q)
+%\/ZJJI+11|:§Z)) 1(q) + 2((‘(11)) (J;Xz(q) \/;)a(q)ﬂ
A((“II)) (9) 2JJ+1|:%Z))X4(¢1) A((‘g (\/7)(5() \/;Xﬁ(q)ﬂ
+0lg) zjjill(\/;ﬁllm(q) \/NTI)@@)}
A feaon e (e - ()
Sy [iiw s (s )
Sl 2o 5 (e + o)
+ w(g) ;]—:_11F1 (J;;;ll)(s(q) —\/N—Tl)m(q))}, (B9e)
Xo(p) =%f‘i3‘1 z‘(/;)(k_) pRai ){; 2((‘;)) ZJJ—:-II(\/ZJ]-F @t 211111’(3("))
_| F [@ + AW (F (g) - F TERTe q))]
2V27 + 1| w(g)¥ wlg \V27+1% 2J+1
(( )) 0 J+1 |:B(q) )+ A(q) (F \/EX6(,I)>:|

Xs(q) +

\o)
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J J+1 [ J
— w(gq) 5T+ 1<\/2]+ 1)(5((1) 7T 1X6(q)>}
2D(k 1AG@ [J+1 \/ J @+ J+1 @
"2 ] (g — £ 2 ol V27 + 192\ Vo + 129 g e
1 B(q) A(q) J+1
i 1Gl|:Tq) w(q)<V (@)~ V21+1 ):|
Alg) B(q) Alg)
+T w(q) 2[ (q))m(q) @) <‘/2J+ ]Xs( q) + ‘/NJF 1)@(«1))]
Jo [ []7+1 / J
+ w(q)\/zJ n 1\11<\/2J+ 1)(5(«1) 7T 1X6(q)>}

with the definitions (25) and (31)—(33). We use the following functions,

21+1X2(P) + VZJJ++1X3(P)
o(p)

hi(p) =

o)1 (p) + 258 xa(p) + 25},?;,;( ﬁm(p) ;,:axﬁ(p»]

gi(p) =

w*(p) —
_ s+ S5 (Eer) — )
hy(p) = w(p)
w(p)[hy(p) + 2(,/21111)(5(17) 1/zm)(é(p))]
g(p) = )

in order to reduce Egs. (B9a)—(B9f) to a system of four coupled integral equations [P; = P;(p - §)]

(p)hl(p)——fd‘3q Velk {<2JJ+ [P +2JJ—J;11PJ—1>< 1(g) + Z(zq)gl(q)>

A(q) U+ 1 (PJ+1 PJ—1)(h2(¢I) + 45(‘1) 82(‘1))}

cu(q) 21
[ d3q2D(k){(2J ity C )( (@) + 4M(2q) § 1("))
A (‘f])) U D, 6 )(mla) + 4“—()g2<q>)},
(00~ 32 Yot = oy + 5 [ g [PPEDLLEARR G P 2375 )
2(5) )) \/‘ZEC—T_(PJ+1 - ijl)gz(q)}
-2 [ d‘3q2D(k){B(p Bla)g+ A(Z ﬁ;‘g((jlf)l Ft 575G) (g
- % W(Fl - Gogla)
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JH1 _J 2
o(pla(p) = [ aqveto A AL P LD )+ B gg)

A(Q) m( Py — PJ—I)( 2 )}

hi(q) + mgl(ﬁ

a)(q) 2+ 1
— D (5, G (i) + Lsa@)) (B14c)
(o) = 2 oot = ot + 5. [ vl P+ 577 P ot
f,if,))ﬁ (ro = P Dsi@) - f d3q2D(k){<2 B lGl)gz(q)
HADTTED 1, — G ) (B14d)

As pointed out in Sec. V for the state 0" only the last two equations apply.

3. Mesons of category 3

For mesons of category 3 we use the set of functions (B3), apply the standard projection procedures and arrive at a
system of four integral equations:

Ve(k)P,(p - §) + 2D(k) 2
Y R [aﬂ(q)xl(q) +15() (,/ﬁqu) i ,/2%11)(3(«1)) . %Aw»@(q)}

(B15a)

/ Vek)Pyy(p - §) — 2D(k)Fz B(q)

xp) = 27 +12 / w(q)(w(q) — w(q)
|: w?xi(q) + (q)(1/2]+ 1)(z(q) ‘/2J+ 1X%(¢1)) +A(q)X4(q)] (B15b)

o) = J+11 3ch(k)P171(ﬁ - §) — 2D(k)G, B(q)

R 12 0@~ @
X [; w?x1(q) + B(g) (‘/ZJJJFIXz(q) + \/ZJJJ;II)(s(q)) + A(q))a(q)], (B15¢c)

1 s Vek)Py(p-q) — 2D(k)H (q)

X+(p) =5 fd‘q @) @) — ) w(q)[ wxi(g) + B(q)<\’2j+ 1)(z(q) ‘/2]+ 1X3(4)> +A(q))(4(q)i|-

(B15d)

The infrared finite functions

B(p) Alp)
_ ol (\/ml)(z(q) + \/2’,11)(3(4)) ) X4(I7)

w(p)

(B16)

and
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w(p)[h(p) + 2x(p)]
W (p) — &

g(p) = (B17)

fulfill the equations

(w(p) g(p) = h(p) + = ] a’ (Vc(k)PJ(P 4) + 2D(k) )g(q) (B18a)

2

w(p))

" L A(P)A(QP; + B(p)B(@) 757 Prer + 3551 Pr-1) %
i) =5 [ eaveinf S (h( )+ o )g<q>)}

with F,, G,, H givenin Egs. (31)—(33). For J = 0, which corresponds to a0~ ~ meson, we have only the component y,(p);

see Eq. (B3). However, Eq. (B15b) comes with an overall factor, so such a meson does not occur in a model with

2J+1
instantaneous interaction, which goes in line with the findings of Ref. [14].
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