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The axion solution to the strong CP problem calls for an explanation as to why the Lagrangian should

be invariant under the global Peccei-Quinn (PQ) symmetry, Uð1ÞPQ, to such a high degree of accuracy.

In this paper, we point out that the Uð1ÞPQ can indeed survive as an accidental symmetry in the low-energy

effective theory, if the standard model gauge group is supplemented by a gauged and discrete R symmetry,

ZR
N , forbidding all dangerous operators that explicitly break the Peccei-Quinn symmetry. In contrast to

similar approaches, the requirement that the ZR
N symmetry be anomaly-free forces us, in general, to extend

the supersymmetric standard model by new matter multiplets. Surprisingly, we find a large landscape of

viable scenarios that all individually fulfill the current experimental constraints on the QCD vacuum angle

as well as on the axion decay constant. In particular, choosing the number of additional multiplets

appropriately, the order N of the ZR
N symmetry can take any integer value larger than 2. This has

interesting consequences with respect to possible solutions of the � problem, collider searches for

vectorlike quarks and axion dark matter.
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I. INTRODUCTION

The Peccei-Quinn (PQ) symmetry, Uð1ÞPQ, provides us
with a very attractive mechanism to solve the strong CP
problem in quantum chromodynamics (QCD) [1,2]. Up to
now, a convincing explanation for the origin of the PQ
symmetry is, however, still pending, since it is a global
symmetry and any global symmetry is believed to be
broken by quantum gravity effects [3–5]. In order for the
PQ symmetry to accidentally survive in the low-energy
effective theory, one thus has to arrange for a sufficient
suppression of all unwanted operators that explicitly break
it. The tight experimental upper bound on the QCD vac-
uum angle, �� & 10�10 [6], necessitates in particular that
this suppression be extremely efficient. One natural way to
protect the PQ symmetry is to invoke some gauge symme-
try that accidentally forbids all the operators that would
break it too severely. In this paper, we point out that, in the
context of the supersymmetric standard model, the role of
this protective gauge symmetry could be played by a
gauged discrete R symmetry, ZR

N.
Given only the particle content of the minimal super-

symmetric standard model (MSSM), any ZR
N symmetry,

except for ZR
3 and ZR

6 , is anomalously broken by SUð3ÞC
and SUð2ÞL instanton effects [7,8].1 On the supposition that
a different ZR

N symmetry, other than ZR
3 or ZR

6 , might

account for the protection of the Uð1ÞPQ, we are hence

naturally led to introduce an extra matter sector canceling

the MSSM contributions to the ZR
N anomalies. For a

particular value of N as well as k additional pairs of
vector-quark superfields charged under the MSSM gauge
group, the requirement that the shift in the QCD vacuum
angle induced by PQ-breaking operators be less than 10�10

then implies an upper bound on the axion decay constant
fa. By identifying those extensions of the MSSM that yield
an upper bound on fa above the astrophysical lower bound
of fa * 109 GeV [10], we are thus able to single out the
values of N and k that are phenomenologically viable.
Surprisingly, for each integer value of N larger than 2,
a variety of k values is admissible. Here, k can in particular
always be chosen such that the unification of the gauge
coupling constants still occurs at the perturbative level.
Moreover, for k ¼ 5, 6 and k � 8, it is possible to protect
the PQ symmetry by means of a ZR

4 symmetry. As we will

discuss, this is an especially interesting case, since a ZR
4

may not only explain the origin of the PQ symmetry, but at
the same time also allow for a simple solution of the
MSSM � problem.
The very idea to protect the PQ symmetry against grav-

ity effects by means of a gauge symmetry is, of course, not
new. Many authors have, for instance, considered exten-
sions of the standard model gauge groupGSM ¼ SUð3ÞC �
SUð2ÞL �Uð1ÞY by some continuous symmetry. Early
examples of such attempts include models based on the
gauge group GSM �Uð1Þ0 [4] or on the group E6 �Uð1Þ0
[5]. Also extensions of the gauge group by a continuous
and a discrete symmetry, such asGSM � SUð4Þ � ZN [11],
SUð3ÞC � SUð3ÞL �Uð1ÞY � Z13 � Z2 [12], or SUð5Þ �
SUðNÞ � ZN [13], have been studied in the literature.
Likewise, next to these field-theoretic models, string
constructions have been shown to give rise to accidental
PQ symmetries. By compactifying the heterotic string on
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1We restrict ourselves to generation-independent ZR
N symme-

tries, where N > 2, that commute with SUð5Þ and do not con-
sider anomaly cancellation via the Green-Schwarz mechanism
[9] coming from string theory, cf. Sec. II B.
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Calabi-Yau manifolds [14] or on Z6-II orbifolds [15], it is,
for example, feasible to retain accidental global symme-
tries in the low-energy effective theory as remnants of
exact stringy discrete symmetries. All of these approaches,
however, rely on rather speculative assumptions about the
UV completion of the standard model (SM). In particular,
they require in many cases an ad hoc extension of the
particle content of the standard model that is motivated
by the intention to eventually end up with a global PQ
symmetry in the first place. In view of this situation, it is
thus of great interest to assess what a minimal extension of
the standard model or the MSSM would look like that still
accomplishes a successful protection of the PQ symmetry.
The model presented in Ref. [16] might, for instance, be
considered a step into this direction, cf. also Ref. [17].
It forgoes any additional continuous symmetry, but only
extends GSM by a discrete Z13 � Z3. Still, it comes with a
multi-Higgs sector that, while being certainly interesting
from a phenomenological point of view, lacks a decisive
reason for its origin from a fundamental perspective.2

Now, invoking nothing but a discrete ZR
N symmetry in

order to protect the PQ symmetry rests, by contrast, on a
very sound conceptional footing. A discrete R symmetry is
an often important and sometimes even imperative ingre-
dient to model building and phenomenology in supersym-
metry (SUSY). It allows for a solution to the � problem
[19–21], prevents too rapid proton decay [22,23] and
forbids a constant term in the superpotential of order the
Planck scale which, in scenarios of low-scale SUSY break-
ing, would otherwise result in a huge negative cosmologi-
cal constant [24]. The existence of an R symmetry and its
potential spontaneous or explicit breaking is furthermore
closely linked to the spontaneous breaking of SUSY,
irrespectively of whether our present nonsupersymmetric
vacuum corresponds to a true [25] or merely metastable
ground state [26]. Finally, it is interesting to observe that
higher-dimensional supergravity theories such as super-
string theory always feature an R symmetry, which might
be naturally broken down to its discrete subgroup ZR

N upon

the compactification of the extra dimensions [27]. This last
point may again be regarded to be rather speculative, but it
does not alter the fact that discrete R symmetries surely
play an preeminent role among all conceivable symmetries
by which GSM could possibly be extended. In this sense,
the main result of this paper is that nothing but the arguably
simplest and most natural extra gauge symmetry, namely a
gauged and discrete R symmetry ZR

N , could be responsible

for shielding the PQ symmetry from the dangerous effects
of gravity.

After having outlined why we are particularly interested
in enlarging GSM by a gauged ZR

N symmetry, we shall

present in the next section our minimal extension of the

MSSM and explain (i) how the color and weak anomalies
of the discrete ZR

N symmetry force us to introduce new
matter multiplets, (ii) how these new matter multiplets
acquire masses as well as (iii) how a � term of order of
the soft masses can be generated dynamically. In Sec. III,
we will then study the phenomenological constraints on
our model and identify the viable combinations of N and k
along with upper and lower bounds on the axion decay
constant fa. Finally, we conclude with a summary of our
model and a short overview of its phenomenological
implications. Two appendices deal with the R charges of
the MSSM fields and a slight modification of our model
that manages to avoid the axion domain wall problem,
respectively.

II. MINIMAL EXTENSION OF THE MSSM
WITH A PQ SYMMETRY

We shall now demonstrate how an anomaly-free discrete
R symmetry ZR

N in combination with an extra matter sector
automatically gives rise to a global PQ symmetry. As a
preparation, let us first summarize our conventions and
assumptions regarding the MSSM sector.

A. Supersymmetric standard model sector

We take the renormalizable MSSM superpotential to be
of the following form:

WMSSM ¼ huij10i10jHu þ hdij5
�
i 10jHd þ h�ij5

�
i 1jHu

þ 1

2
Mi1i1i; (1)

where we have arranged the MSSM chiral quark and lepton
superfields into SUð5Þ multiplets, 10 ¼ ðq; uc; ecÞ and
5� ¼ ðdc; ‘Þ. Throughout this paper, we shall assume
that the tiny masses of the SM neutrinos are accounted
for by the seesaw mechanism [28]. That is why we have
also introduced neutrino singlet fields, 1 ¼ ðncÞ, in Eq. (1),
next to the actual matter content of the MSSM.3 Moreover,
Hu and Hd is the usual pair of MSSM Higgs doublets, hu,
hd and h� are Yukawa matrices and M denotes the diago-
nalized Majorana mass matrix for the heavy neutrinos
involved in the seesaw mechanism. i and j finally label
the three different generations of quarks and leptons, i.e.
i, j ¼ 1, 2, 3.
We assume the MSSM quark and lepton fields to be

unified in SUð5Þ representations in order to allow for an
embedding of the MSSM into a grand unified theory
(GUT). Note, however, that taking SUð5Þ alone to be the
full GUT gauge group is problematic. The minimal super-
symmetric SUð5Þ GUT model [22,29] namely fails to give

2A multi-Higgs sector may allow for gauge coupling unifica-
tion close to the PQ-breaking scale, though [18].

3As this sometimes falls victim to bad jargon, we emphasize
that the fermions contained in nc are left-handed. In fact, they are
the Hermitian conjugates of the right-handed neutrinos required
for the seesaw mechanism.
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GUT-scale masses to the colored Higgs triplets that are
expected to pair up with the MSSM Higgs doublets in
complete SUð5Þmultiplets. This results in too rapid proton
decay and represents what is known as the infamous
doublet-triplet splitting problem [30]. In addition to that,
the standard way to break SUð5Þ to GSM by means of a
24-plet is not compatible with the assumption of an
unbroken R symmetry below the GUT scale.4 Because of
that, we shall assume that SUð5Þ is merely a proper
subgroup of the full GUT group, SUð5Þ � GGUT. An at-
tractive possibility in this context is unification based on
the product group SUð5Þ �Uð3ÞH, which can be formu-
lated in an R-invariant fashion [24,32], while solving the
doublet-triplet splitting problem in a natural way [33].

Finally, we point out that we define the MSSM to
conserve matter parity, PM, so as to forbid all dangerous
baryon and lepton number-violating operators in the
renormalizable superpotential. This renders the actual
gauge group of the MSSM slightly larger than the one of
the standard model, GMSSM ¼ GSM � PM. One possibility
to account for the origin of matter parity is to interpret it as
the remnant discrete subgroup of a local Uð1ÞB�L symme-
try that is spontaneously broken above the electroweak
scale [34]. Here, B� L stands for the difference between
baryon number B and lepton L. Assuming the presence of
an additional Abelian factor Uð1ÞX in the GUT gauge
group orthogonal to SUð5Þ, it can be expressed in
terms of the Abelian GUT charge X and the weak hyper-
charge Y through the relation X þ 4Y ¼ 5ðB� LÞ, cf. also
Appendix A.

B. Extra matter sector required by a
non-anomalous ZR

N symmetry

As outlined in the Introduction, a discrete R symmetry
ZR
N represents a unique choice when considering possible

extensions of the MSSM gauge group. We now perform
just such an extension, such that the full gauge group G of
our model also features a ZR

N factor. A priori, we allow N,

the order of the ZR
N symmetry, to take any integer value

larger than 2. We disregard the case N ¼ 2 since a ZR
2

symmetry, i.e. R parity, is not an R symmetry in the actual
sense. By including a Lorentz rotation, it can always be
reformulated as an ordinary Z2 parity [21]. On top of that,
given only a ZR

2 symmetry, we would also be unable to

forbid a constant term in the superpotential, which would
result in a cosmological constant of the order of the Planck
scale. On the other hand, we point out that, in the case of
even N, the ZR

N symmetry contains R parity as a subgroup,
ZR
N � ZR

2 for N ¼ 4; 6; 8; . . . . Depending on the details of

the R charge assignments to the particles of our model, this

R parity coincides in some cases with the ordinary matter
parity PM. In these cases, we then do not need to addition-
ally impose matter parity by hand, as it is already included
in the ZR

N factor of the gauge group. In all other cases, we
rely on the assumption that a spontaneously broken
Uð1ÞB�L gauge symmetry gives rise to matter parity at
low energies. In summary, the gauge group of our model
is, hence, given by

G¼SUð3ÞC�SUð2ÞL�Uð1ÞY �
8<
:
ZR
N�PM; ZR

N �PM

ZR
N; ZR

N �PM:

(2)

1. Gauge anomalies of the ZR
N symmetry

We attribute the origin of the ZR
N factor in the gauge

group to the presence of a continuous gauged R symmetry
at high energies, after the breaking of which ZR

N remains as
a discrete subgroup. Thus being part of the gauge group, it
is crucial that the ZR

N symmetry be anomaly free. The
relevant anomaly cancellation conditions are those related
to the color as well as to the weak anomaly of the ZR

N , i.e.
the ZR

N½SUð3ÞC�2 and the ZR
N½SUð2ÞL�2 anomaly, respec-

tively. The anomaly coefficients for these two anomalies,

AðCÞ
R and AðLÞ

R , are given by [32,35]

AðCÞ
R ¼ 6þ Ngð3r10 þ r5� � 4Þ;

AðLÞ
R ¼ 4þ Ngð3r10 þ r5� � 4Þ þ ðrHu

þ rHd
� 2Þ:

(3)

Here, r10, r5� , r1, rHu
and rHd

denote the R charges of the

MSSMmatter multiplets and Higgs doublets andNg ¼ 3 is

the number of fermion generations in the MSSM.5 Note
that we have assumed the R charges of the matter fields to
be generation independent. Otherwise, i.e. in the case of
generation-dependent R charges, the R symmetry would
suppress some of the entries in the Yukawa matrices hu and
hd too heavily.6 We also remark that the R charges are
normalized such that the anticommuting superspace coor-
dinate � carries R charge r� ¼ 1. By choosing a different
value for theR charge of �, say, r0� � 1, we always have the
option to collectively rescale all R charges by the common
factor r0�=r�.
Besides the color and the weak anomaly, all further

anomalies involving at least one ZR
N factor also have to

vanish in order to render the ZR
N symmetry fully anomaly

free. The anomalies nonlinear in ZR
N , such as ½ZR

N�3
or ½ZR

N�2Uð1ÞY , are, however, sensitive to heavy,

4If we managed to break SUð5Þ without breaking the R
symmetry, we would be left with potentially interesting or
dangerous GSM-charged exotics whose masses would only
receive soft SUSY-breaking contributions [31].

5The authors of Ref. [8] have recently made the interesting
observation that Ng � 3 is a necessary condition for consistently
extending the MSSM gauge group by an anomaly-free discrete R
symmetry ZR

N with N > 2.
6The ZR

N symmetry might, however, be embedded into a
continuous Uð1ÞR with generation-dependent R charges;
cf. Ref. [36], in which this Uð1ÞR plays the role of a gauged
flavor symmetry of the Froggatt-Nielsen type.
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fractionally charged states at high energies [37]. Similarly,
the gravitational anomaly, ZR

N½gravity�2, also receives con-
tributions from light sterile fermions as well as from
hidden-sector fermions acquiring large masses of the order
of the SUSY-breaking scale in the course of spontaneous
SUSY breaking [7]. All of these anomalies hence highly
depend on the particle spectrum in the UVand, thus, do not
allow us to derive further constraints on our model. In
general, the ZR

N½Uð1ÞY�2 anomaly also does not yield a
useful condition because the SM hypercharge is not quan-
tized [37,38]. Only if the GUT group is semisimple, such
that the normalization of the hypercharge is dictated by the
gauge structure, the ZR

N½Uð1ÞY�2 anomaly provides a mean-
ingful constraint on the ZR

N symmetry as well as on the set
of particles charged under it.7

Obviously, we only included the contributions from the

MSSM sector to the anomaly coefficients in Eq. (3). AðCÞ
R

and AðLÞ
R could, however, still receive corrections �AðCÞ

R

and �AðLÞ
R due to new colored or weakly interacting

fermions with masses at or above the electroweak scale.
This extra matter would need to be assembled in complete
SUð5Þ multiplets in order not to spoil the unification of
the gauge coupling constants. Consequently, extra fermions

ought to equally contribute toAðCÞ
R andAðLÞ

R , such that the

corresponding corrections are equal to each other, �AR ¼
�AðCÞ

R ¼ �AðLÞ
R , and such that the difference between

AðCÞ
R andAðLÞ

R ends up being independent of the properties
of the extra matter sector. A minimal necessary condition
for rendering the ZR

N symmetry anomaly free is hence that

AðLÞ
R �AðCÞ

R ¼ rHu
þ rHd

� 4¼ðNÞ
0; (4)

where we have introduced the symbol ¼ðNÞ
as a shorthand

notation to denote equality modulo N,

a ¼ðNÞ
b , amodN ¼ bmodN , 9!‘ 2 Z: a ¼ bþ ‘N:

(5)

The condition in Eq. (4) is equivalent to rHu
þ rHd

¼ðNÞ
4.

We therefore see that an anomaly-free ZR
N symmetry auto-

matically suppresses the � term for the MSSM Higgs
doublets.

2. Constraints on the R charges of the MSSM fields

Next to Eq. (4), the requirement that the first two terms
in the superpotential WMSSM, cf. Eq. (1), be in accordance
with the ZR

N symmetry provides us with two further
constraints on the R charges of the MSSM fields,

2r10 þ rHu
¼ðNÞ

2; r5� þ r10 þ rHd
¼ðNÞ

2: (6)

The combination of all three conditions then implies

3r10 þ r�5¼
ðNÞ
0, which automatically forbids the dangerous

dimension-5 operator 10 10 10 5� in the superpotential,
which would otherwise induce too rapid proton decay
[23]. Together with matter parity, the anomaly-free ZR

N

symmetry thus bans all baryon and lepton number-
violating operators up to dimension 5 except for the
operator 5�Hu5

�Hu, which we, of course, want to retain
to be able to explain the small neutrino masses [39].
Finally, in the seesaw extension of the MSSM, we also
have to ensure that the last two terms inWMSSM respect the
ZR
N symmetry, which translates into

r5� þ r1 þ rHu
¼ðNÞ

2; 2r1 ¼ðNÞ
2: (7)

Here, as for the second condition, we have assumed zero
R charge for the Majorana neutrino mass M, which is to
say that we consider its origin to be independent of the
mechanism responsible for the spontaneous breaking of R
symmetry.
In conclusion, we find that extending the particle content

of the MSSM by three neutrino singlets, the five R charges
r10, r5� , r1, rHu

and rHd
are determined by the five con-

ditions in Eqs. (4), (6), and (7). However, due to the fact
that all of these conditions only constrain the MSSM R
charges up to integer multiples of N, they do not suffice to
fix the values of r10, r5� , r1, rHu

and rHd
uniquely. Instead,

for each value of N, there exist exactly ten different
possibilities to assign R charges to the MSSM fields.
In Appendix A, we derive and discuss these solutions in
more detail. In particular, we show that, for any given value
ofN, the different R charge assignments are related to each
other by gauge transformations. First of all, in consequence
of the SUð5Þ invariance of the MSSM Lagrangian, the ten
solutions split into two equivalence classes of respectively
five solutions. As shown in Appendix A, these two classes
are generated by the action of Z5 transformations on the
following two R charge assignments:

r10 ¼ðNÞ 1
5
þ ‘

N

2
; r5� ¼ðNÞ � 3

5
þ ‘

N

2
; r1 ¼ðNÞ

1þ ‘
N

2
;

rHu
¼ðNÞ

2� 2

5
; rHd

¼ðNÞ
2þ 2

5
; (8)

where ‘ ¼ 0, 1 and where Z5 � SUð5Þ is the center of
SUð5Þ. Furthermore, if matter parity stems from a Uð1ÞX
symmetry that is part of the gauge group at high energies,
i.e. if PM � Uð1ÞX, these two solutions are in turn related
to each other by a PM transformation, such that eventually
all ten R charge assignments end up being physically
equivalent. On the other hand, if matter parity is a subgroup
of the ZR

N symmetry, i.e. if PM � ZR
N , the two solutions in

Eq. (8) cannot be related to each other and we are left with
two inequivalent classes of solutions. Last but not least, we

7We mention in passing that neither of the previously dis-
cussed GUT gauge groups, i.e. neither SUð3Þ �Uð3ÞH nor
SUð5Þ �Uð1ÞX, is semisimple. Assuming one of these two
groups to correspond to the GUT gauge group, we are hence
not able to make use of the anomaly cancellation condition for
the ZR

N½Uð1ÞY�2 anomaly.
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remark that, for all values of ‘ and N, all of the R charges
in Eq. (8), expect for r1 in some cases, are fractional.
In Appendix A, we however show that, for each N �
5; 10; 15; . . . , there exists at least one R charge assign-
ment that is equivalent to one of the two assignments in
Eq. (8) and which only involves integer-valued R charges.
But not only that, we also demonstrate that, in a
Uð1ÞX-invariant extension of our model, all R charges in
Eq. (8) can always be rendered integer valued by means of
a Uð1ÞX transformation.

3. Anomaly cancellation owing to new matter fields

Irrespectively of the concrete R charges in Eq. (8), the
anomaly constraint in Eq. (4) in combination with the two
conditions in Eq. (6) immediately implies for the anomaly
coefficients in Eq. (3),

AðCÞ
R ¼ðNÞ

AðLÞ
R ¼ðNÞ

6� 4Ng ¼ðNÞ �6: (9)

As this result does not rely on either of the two conditions
in Eq. (7), it is independent of the fact that we extended the
MSSM particle content by three right-handed neutrinos. It
rather equally applies in the MSSM as well as in its seesaw
extension. But more importantly, it leads us to one of the
key observations of this paper: as long as the orderN of the
ZR
N symmetry is different from N ¼ 3 or N ¼ 6, we are

forced to introduce a new matter sector in order to cancel
the MSSM contributions to the color and the weak ZR

N

anomaly. In this sense, the introduction of new colored
and weakly interacting states in our model is not an
ad hoc measure, but rather a natural consequence of the
requirement of an anomaly-free discrete R symmetry.8

The simplest way to cancel the MSSM anomalies in
Eq. (9) without spoiling the unification of the gauge cou-
pling constants is to introduce k pairs of vector quarks and
antiquarks,Qi and �Qi, where i ¼ 1; . . . ; k, that respectively
transform in the 5 and 5� of SUð5Þ.9 As they transform in
complete SUð5Þmultiplets, the extra quarks and antiquarks

yield equal non-MSSM contributions �AðCÞ
R and �AðLÞ

R

to the color and weak anomaly coefficients of the ZR
N

asymmetry. According to Eq. (9), we must require that

�AðCÞ
R ¼ �AðLÞ

R ¼ kðrQ þ r �Q � 2Þ ¼ðNÞ
6;

rQ �Q ¼ rQ þ r �Q ¼ðNÞ
2þ 1

k
ð6þ ‘QNÞ; ‘Q 2 Z;

(10)

where rQ and r �Q denote the generation-independent R

charges of the extra quarks and antiquarks, respectively,
and rQ �Q is the common R charge of the bilinear quark

operators ðQ �QÞi ¼ Qi
�Qi. Just like all other R charges, the

R charge rQ �Q is only defined up to the addition of integer

multiples of N. Hence, all inequivalent solutions to the
condition in Eq. (10) lie in the interval ½0; NÞ. In addition,
we observe that, varying ‘Q in integer steps, the R charge

rQ �Q changes in steps of N
k . Consequently, for each pair of

values for N and k, there are k inequivalent choices for rQ �Q,

rQ �Q ¼ðNÞ
2þ 1

k
ð6þ ‘QNÞ; ‘Q ¼ 0; . . . ; k� 1: (11)

A crucial implication of this result is that, in most cases,
the extra quarks and antiquarks are massless as long as the
ZR
N is unbroken. Only for rQ �Q ¼ 2, a supersymmetric and

R-invariant mass term is allowed for the extra quark fields
in the superpotential. An R charge rQ �Q of 2 can, however,

only be obtained in the case of a ZR
3 or a ZR

6 symmetry,

rQ �Q ¼ 2: ðN; ‘QÞ ¼ ð3;�2Þ;
ðN; ‘QÞ ¼ ð6;�1Þ; k ¼ 1; 2; 3; . . . ;

(12)

which are just the two ZR
N symmetries that do not require

an extension of the MSSM particle content in the
first place. As soon as the introduction of a new matter
sector is mandatory in order to render the ZR

N symmetry
anomaly free, the new quark fields are therefore guaranteed
to be massless. This observation also reflects the self-
consistency of our result in Eq. (11). If we had started
with the requirement of nonzero contributions from the
new quarks to the ZR

N anomalies and we had found that the
new quarks could possibly be massive, our derivation of
rQ �Q would be faulty, since massive quarks would not

contribute to the ZR
N anomalies to begin with.

Of course, the requirement of massless quarks at high
energies does not say anything about the masses of the new
quarks at low energies, where the ZR

N is spontaneously
broken. The spontaneous breaking of the ZR

N symmetry
might, in fact, even generate masses for the extra quarks
of the order of the gravitino mass [41], cf. also Sec. II D 1.
A necessary condition for this to happen is that rQ �Q ¼ 0,

which can be fulfilled for each value of N as long as k

and ‘Q are chosen such that �2k¼ðNÞ
6. This means in

particular that, for k ¼ 1 and N ¼ 4, 8, the R charge rQ �Q

is always zero. ForN ¼ 3, 4, 6, 8 and only one pair of extra
quark fields, k ¼ 1, the generation of a sufficiently large
mass for the new quark flavor is therefore not an issue. The
new quark either exhibits a supersymmetric mass from the

8Again, this statement can be defined down by allowing for
anomaly cancellation via the Green-Schwarz mechanism, in the
case of which not only ZR

3 and ZR
6 can be rendered anomaly free

solely within the MSSM, but also ZR
4 , Z

R
8 , Z

R
12 and ZR

24 [7,40].
Moreover, it is worth noting that, in the context of a two-singlet
extension of the MSSM, the anomaly-free ZR

24 symmetry can be
used to successfully protect the PQ symmetry [7].

9Transforming in the 5 and 5� of SUð5Þ, the new multiplets Qi

and �Qi, of course, also contain lepton doublets. From a
phenomenological point of view and with regard to the PQ
solution of the CP problem, these are however less interesting
as compared to the corresponding quark triplets. Because of that,
we will refer to Qi and �Qi as the new quark and antiquark
superfields in the following.
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outset or it acquires a mass in the course of R symmetry
breaking [41]. For completeness, we also mention that,
provided rQ �Q ¼ 0, the new quarks could equally acquire

masses of the order of the gravitino mass in the course of
spontaneous SUSY breaking via the Giudice-Masiero
mechanism [19]. A further necessary prerequisite in this
case would then be that there exists a coupling of the extra
quark fields to the SUSY breaking sector in the Kähler
potential.

In our following analysis, we will disregard the two
exceptional choices for N and ‘Q in Eq. (12) as well as

all combinations of N, k and ‘Q yielding rQ �Q ¼ 0. Instead,

we shall focus on R charges rQ �Q that imply vanishing

masses for the new quarks and antiquarks before and after
R symmetry breaking as long as no further fields are
introduced. The absence of a supersymmetric mass term
is then equivalent to the statement that the renormalizable
superpotential of the extra quark sector vanishes com-
pletely. This is because all SM singlets solely composed
out of the fields Q and �Q must be combinations of the
operator productsQ �Q,Q5 and �Q5, such thatQ �Q is the only
conceivable operator which could potentially show up in
the renormalizable superpotential. At the renormalizable
level, the global flavor symmetry of the extra matter sector
by itself, i.e. neglecting its interactions with the other
sectors of our model for a moment, is therefore maximally
large,

UðkÞQ �UðkÞ �Q ffi SUðkÞVQ � SUðkÞAQ �Uð1ÞVQ �Uð1ÞAQ;
(13)

with UðkÞQ and UðkÞ �Q accounting for the flavor rotations

of the left-chiral superfields Qi and �Qi, respectively. As
we will see in Sec. II C 3, the axial Abelian flavor sym-
metry Uð1ÞAQ will play an important role in the identi-

fication of the PQ symmetry. Finally, we remark that
higher-dimensional operators as well as couplings of the
new quarks and antiquarks to other fields explicitly break
the flavor symmetry. In order not to spoil the PQ solution to
the strongCP problem, these explicit breaking effects must
be sufficiently suppressed by means of a protective gauge
symmetry. We will return to this point in Sec. III.

C. Extra singlet sector required to render
the extra matter massive

In the previous section, we have seen how the require-
ment of an anomaly-free ZR

N symmetry forces us to extend
the MSSM particle content by new quark fields,Qi and �Qi.
Except for some special cases, these quark fields are,
however, massless as long as the ZR

N symmetry is unbro-
ken. Extra massless colored and weakly interacting parti-
cles are, of course, in conflict with observations, which is
why we have to extend our model once more, so as to
provide masses to the new quarks and antiquarks.

1. Coupling of the extra matter fields
to a new singlet sector

In order to generate sufficiently large mass terms for the
quark pairs ðQ �QÞi in the superpotential, we are in need of a
SM singlet that acquires a vacuum expectation value
(VEV) at least above the electroweak scale. No such
singlet exists in the MSSM or its seesaw extension, so
we are required to introduce another new field. Let us refer
to this field as P and demand that it couples to the quark
pairs ðQ �QÞi in the following way10:

WQ ¼ 1

Mn�1
Pl

Xk
i¼1

�iP
nðQ �QÞi: (14)

Here,MPl ¼ ð8�GÞ�1=2 ¼ 2:44� 1018 GeV is the reduced
Planck mass and the �i denote dimensionless coupling
constants, which we assume to be of Oð1Þ. The power
n can, a priori, be any integer number, n ¼ 1; 2; . . . .
Moreover, the coupling in Eq. (14) fixes the R charge rP
of the singlet field P. In order to ensure that it is indeed
allowed in the superpotential, we require that

nrP þ rQ �Q ¼ 2þ ‘PN;

rP ¼ðNÞ 1
n
ð2� rQ �Q þ ‘PNÞ;

‘P 2 Z:

(15)

Making use of our result for the R charge rQ �Q for the quark

pairs, cf. Eq. (11), we then find

rP ¼ðNÞ � 6

nk
þ ðk‘P � ‘QÞ Nnk : (16)

Similarly as in the case of the extra quark fields, the R
charge rP is not uniquely determined. For each com-
bination of values for N, n and k, there are instead nk
inequivalent solutions to the condition in Eq. (15).
These are all of the form given in Eq. (16), with
ðk‘P � ‘QÞ ¼ 0; 1; . . . ; nk� 1.

2. Superpotential of the extra singlet sector

So far, the field P does not possess any interactions that
would endow it with a nonvanishing VEV. We thus intro-
duce another singlet field X and couple it to the field P, in
order to generate a nontrivial F-term potential for the
scalar component of P,

WP ¼ �X

�
�2

2
� fðP; . . .Þ

�
; (17)

where � is a coupling constant,� denotes some mass scale
and f stands for a function of P and probably other fields.
We assume the scale � to carry zero R charge, which
directly entails that the singlet field X and the function f

10Note that the field P might be part of the hidden sector
responsible for the spontaneous breaking of SUSY [42].
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must have R charges 2 and 0, respectively. Besides that, we
also assume a value for rP such that none of the operators
P, P2, P3, XP, XP2 and X2P is allowed in the super-
potentialWP, i.e. we require rP to fulfill all of the following
relations at once:

rP�
ðNÞ
2; 2rP�

ðNÞ
2; 3rP�

ðNÞ
2;

2rP�
ðNÞ
0; rP�

ðNÞ � 2:
(18)

As we will see shortly, these conditions ensure that WP

ends up featuring a flat direction which can be identified
with the axion and its superpartners.

Now, if the function f were merely composed out of
powers Pm of the field P, wherem ¼ 3; 4; . . . , the R charge
of f would only vanish for particular values of rP and m in
the case of particular ZR

N symmetries. We, however, wish to
be able to give masses to the new quarks and antiquarks,
irrespectively of the concrete value of N. For that reason,
we have to introduce a singlet field �P carrying the opposite
R charge of the field P,

r �P ¼ðNÞ �rP ¼ðNÞ 6
nk

� ðk‘P � ‘QÞ Nnk ; (19)

such that we are able to render the function f an R singlet
by taking it to be a function of the singlet pair P �P.
The superpotential in Eq. (17) can then be fixed to be of
the following form:

WP ¼ �X

�
�2

2
� fðP �PÞ

�
¼ �X

�
�2

2
� P �P

�
þ 	 	 	 ; (20)

with the dots after the plus sign indicating higher-
dimensional nonrenormalizable terms and where, similarly
as above, we have assumed that r �P ¼ �rP is such that none
of the operators �P, �P2, �P3, X �P, X �P2 and X2 �P is allowed in
the superpotential WP. In addition to the five conditions in
Eq. (18), we therefore also have to require that

2rP�
ðNÞ � 2; 3rP�

ðNÞ � 2: (21)

In total, we hence impose seven conditions on the R
charge rP, which, depending on N, allow us to forbid as
many as 14 different values for rP.

11 We now also see that
each of the combinations ofN, ‘Q and k that either result in
rQ �Q ¼ 0 or rQ �Q ¼ 2 violates exactly one of these condi-

tions. If rQ �Q ¼ 0, we know that nrP¼ðNÞ
2, such that either P

or P2 is allowed. Similarly, rQ �Q ¼ 2 implies nrP¼ðNÞ
0, such

that XP and/or XP2 is allowed. This means that, in those
cases in which we do not depend on an extra singlet sector
to generate masses for the extra quarks, Qi and �Qi, we

would not even succeed in doing so, if we attempted it
nonetheless. Finally, we emphasize that, by construction,
X�2 and XP �P end up being the only renormalizable
operators inWP that are compatible with the ZR

N symmetry
for any value of N. In the following, we shall now show
that the new singlet sector consisting of the fields X, P and
�P has the potential to accommodate the invisible axion and
its superpartners and hence provide a solution of the strong
CP problem via the PQ mechanism.

3. Identification of the PQ symmetry

Evidently, the superpotential in Eq. (20) exhibits a
global Uð1Þ symmetry, viz. it is invariant under a global
phase rotation of the fields P and �P. Let us refer to this
symmetry as Uð1ÞP and stipulate that the two singlets P

and �P respectively carry charge qðPÞP ¼ 1 and qðPÞ�P ¼ �1

under it. The Uð1ÞP symmetry is explicitly broken by the
coupling of the singlet operator Pn to the quark pairs ðQ �QÞi
in the superpotential in Eq. (14). At the same time, this
coupling also breaks the Uð1ÞAQ symmetry in the extra

quark sector. Altogether, the coupling between the new
quark sector and the new singlet sector reduces the number
of global Abelian symmetries from three to two,

Uð1ÞP �Uð1ÞVQ �Uð1ÞAQ ! Uð1ÞPQ �Uð1ÞVQ: (22)

The operators ðQ �QÞi are invariant under Uð1ÞVQ transfor-

mations, which is why the global vectorial symmetry in the
quark sector survives the introduction of the superpotential
in Eq. (14). The other global symmetry leaving the cou-
pling in Eq. (14) invariant corresponds to some linear
combination of Uð1ÞP, Uð1ÞVQ and Uð1ÞAQ. It is this symme-

try that we shall identify with the PQ symmetry. In the
remainder of this paper, we will now investigate under
which circumstances it may be successfully protected
against the effects of higher-dimensional operators.
Before continuing, let us, however, reiterate once more

for clarity: Uð1ÞP, Uð1ÞVQ and Uð1ÞAQ are accidental global

symmetries of the new singlet and quark sectors at the
renormalizable level that arise due to our particular choice
of R charges. Neither of them manages to survive as an
exact symmetry in the full low-energy effective theory. To
begin with, the coupling between the two new sectors in
Eq. (14) breaks Uð1ÞP �Uð1ÞVQ �Uð1ÞAQ to its subgroup

Uð1ÞPQ �Uð1ÞVQ. This residual symmetry is, in turn, ex-

plicitly broken by other higher-dimensional operators. The
dimension-6 operators Q5 and �Q5, for instance, explicitly
break the vectorial Abelian symmetry in the new quark
sector. The crucial question which we will have to address
in the following therefore is how severe the explicit break-
ing of the PQ symmetry turns out to be and whether it
remains sufficiently small enough, so that our model can
still explain a QCD vacuum angle �� of less thanOð10�10Þ.
Up to now, we are unable to specify the PQ charges of

the new quark and antiquark fields separately, as the

11To see this, note that all of our conditions can be written
as rP � a=qþ ‘=qN, where q 2 f1; 2; 3g, a 2 f�2; 0; 2g and
‘ 2 Z. The number of different rP values forbidden by some
condition therefore corresponds to its value for q.
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superpotential in Eq. (14) only contains the quark product
operators ðQ �QÞi. Demanding that the PQ charges of the
singlet fields P and �P coincide with theirUð1ÞP charges, all
we can say is that the operators ðQ �QÞi must carry a total PQ
charge of �n. For the time being, we may thus work with
the following PQ charges:

qP ¼ 1; q �P ¼ �1; qQ 2 R;

q �Q ¼ �n� qQ; qQ �Q ¼ �n:
(23)

The PQ charges of the MSSM fields qi, where i now
runs over i ¼ q, uc, dc, ‘, ec, nc, Hu, Hd, are subject to
constraints deriving from the Yukawa couplings in the
superpotential WMSSM in Eq. (1). The first two terms in
WMSSM yield the following three conditions:

quc þ qq þ qHu
¼ 0;

qdc þ qq þ qHd
¼ 0;

qec þ q‘ þ qHd
¼ 0;

(24)

the first two of which combine to give quc þ qdc þ 2qq þ
qHu

þ qHd
¼ 0. As we will see in Sec. II D, the PQ

charges of the two MSSM Higgs doublets must sum to
zero, qHu

þ qHd
¼ 0, implying that

quc þ qdc þ 2qq ¼ 0: (25)

The total PQ charge of all MSSM quark fields hence
vanishes, such that the color anomaly of the PQ symmetry
ends up receiving contributions only from the extra matter
sector and none from the MSSM sector, cf. also Eq. (29)
further below.

Having derived this important result, we would still like
to know which values the MSSM PQ charges can actually
take. Forgetting for a moment about the neutrino singlets
required for the seesaw mechanism, the answer is clearly
all values compatible with the three conditions in Eq. (24).
The PQ charges qi can then, for instance, be parametrized
in terms of qq, q‘, qHu

2 R. Moreover, we note that in the

course of electroweak symmetry breaking the Yukawa
couplings in WMSSM turn into mass terms for the MSSM
matter fields, breaking the PQ symmetry unless qHu

¼
�qHd

¼ 0. In this particular case, the PQ symmetry can

be identified as a linear combination of Uð1ÞB and Uð1ÞL,
the global Abelian symmetries associated with baryon
number B and lepton number L. This result is a useful
crosscheck, since Uð1ÞB and Uð1ÞL are the unique acciden-
tal global symmetries of the standard model. In the seesaw
extension of the MSSM, the conditions in Eq. (24) are
supplemented by two further conditions deriving from the
last two terms in WMSSM,

qnc þ q‘ þ qHu
¼ 0; 2qnc ¼ 0; (26)

eliminating the PQ charge q‘ as a free parameter. Upon
extending the MSSM by three neutrino singlet fields, the
PQ charges qi can therefore be parametrized by only two

charges, qq, qHu
2 R. Setting qHu

to zero now renders the

PQ symmetry proportional to Uð1ÞB, which is, of course,
expected, since the Uð1ÞL is explicitly broken by the
Majorana mass term in WMSSM. The only relation among
the PQ charges qi relevant for our further analysis is
Eq. (25). Without loss of generality, we are thus free to
take qq, q‘ and qHu

to be zero, so that qi ¼ 0 for all fields i.

The field content of our model as well as our assignment of
the PQ charges are hence similar as in the KSVZ axion
model proposed by Kim [43] as well as by Shifman,
Vainshtein and Zakharov [44].

4. Spontaneous breaking and color anomaly
of the PQ symmetry

In the true vacuum of the scalar potential corresponding
to the superpotential WP in Eq. (20), the singlet field X
vanishes and the PQ symmetry is spontaneously broken,12

hXi ¼ 0; hPi ¼ �ffiffiffi
2

p exp

�
A

�

�
;

h �Pi ¼ �ffiffiffi
2

p exp

�
� A

�

�
; � � A; � ¼ 1ffiffiffi

2
p ðbþ iaÞ;

(27)

where the chiral superfield A represents the axion
multiplet, which consists of the pseudoscalar axion a, the
scalar saxino b and the fermionic axino ~a. The various

factors of
ffiffiffi
2

p
in Eq. (27) serve two purposes. First, they

render the kinetic term of the axion canonically normal-
ized; second, they ensure that the scalar mass eigenstate
that actually breaks the PQ symmetry, pþ ¼ 1ffiffi

2
p ðpþ �p�Þ,

where p and �p are the complex scalars contained in P and
�P, acquires a VEV hpþi ¼ �.
Before continuing, we remark that, in the special case of

a ZR
4 symmetry, also a cubic term in the singlet field X is

allowed in the superpotential WP,

N ¼ 4: W ¼ �X

�
�2

2
� P �P

�
� �XX

3 þ 	 	 	 ; (28)

where �X is some dimensionless coupling constant of
Oð1Þ. In this case, the field configuration in Eq. (27) no
longer represents the unique vacuum of the scalar potential

corresponding to WP. At hPi ¼ h �Pi ¼ 0 and hXi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð6�XÞ

p
�, the scalar potential exhibits another local

minimum. Because of the linear term in X in the scalar
potential, V � ��m3=2�

2X, this vacuum then has a nega-

tive energy density, the absolute value of which is much
larger than the energy density of the PQ-breaking vacuum

12Spontaneous R symmetry breaking results in a tadpole term
for X in the scalar potential, V � ��m3=2�

2X. Besides that, X
also couples to other fields of our model, cf. Sec. II D 3, such that
its VEV eventually turns out to be of the order of the gravitino
mass rather than zero, hXi 
m3=2.
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in Eq. (27). On top of that, the PQ-preserving vacuum and
the PQ-breaking vacuum are separated from each other
by a potential barrier which mainly arises due to the
SUSY-invariant F-term contributions to the scalar poten-
tial from the fields P and �P. Consequently, there exists no
flat direction connecting the alternative vacuum with our
PQ-breaking vacuum, which is why we do not have to
worry about the stability of the latter one. We merely
have to assume that, in the course of the cosmological
evolution, our universe has settled in the vacuum in
Eq. (27) rather than in the alternative vacuum. In fact,
this is a very plausible assumption, if we believe that the
field X is stabilized at hXi ¼ 0 during inflation due to a
large positive Hubble-induced mass. In such a situation,
the scalar field configuration might then be automatically
driven towards the PQ-breaking vacuum during inflation.

In order to solve the strong CP problem, it is necessary
that the PQ symmetry has a color anomaly. Thanks to our
derivation of the PQ charges of all colored matter fields in
the previous subsection, we are now able to calculate the
anomalous divergence of the axial PQ current J�PQ and

show that it is nonzero,

@�J
�
PQ ¼ APQ

�s

8�
Tr½G��

~G���;
APQ ¼ kqQ �Q þ quc þ qdc þ 2qq ¼ �nk;

(29)

where we have introducedAPQ as the anomaly coefficient

of the Uð1ÞPQ½SUð3ÞC�2 anomaly. This color anomaly of

the PQ symmetry induces an extra term in the effective
Lagrangian [1,45],

Leff
QCD�

�
��� a

fa

�
�s

8�
Tr½G��

~G���; fa¼
ffiffiffi
2

p
�

jAPQj ; (30)

with fa denoting the axion decay constant. In consequence
of this coupling of the axion a to the gluon field strength
G��, an effective nonperturbative potential for the axion is

generated,

Veff
a ¼ �4

QCD

�
1� cos

�
��� a

fa

��
; (31)

the minimum of which is located at hai ¼ fa ��. Shifting a
by its VEV hai then cancels the �� term in Eq. (30), thereby
rendering the QCD Lagrangian CP invariant. Our singlet
sector consisting of the fields X, P and �P hence entails a
manifestation of the PQ solution to the strong CP problem.

An important detail to note is that it is the scale fa, rather
than �, which determines the strength of all low-energy
interactions of the axion [46]. This is also the reason why
experimental constraints on the axion coupling are always
formulated as bounds on fa and not on �. Requiring, for
instance, that astrophysical objects such as supernovae or
white dwarfs do not lose energy too fast due to axion
emission allows one to put a lower bound of Oð109Þ GeV
[10] on fa. Meanwhile, cosmology restricts the possible

range of fa values from above. In order to prevent cold
axions from overclosing the universe, fa must be at most of
Oð1012Þ GeV [47,48], hence leaving open the following
phenomenologically viable window for the axion decay
constant,

109 GeV & fa & 1012 GeV: (32)

Furthermore, as evident from the effective axion poten-
tial in Eq. (31), the nonperturbative QCD instanton effects
break the PQ symmetry to a global and discrete ZNDW

symmetry, where NDW ¼ jAPQj ¼ nk, commonly re-

ferred to as the domain wall number, counts the number
of degenerate axion vacua. If the breaking of the PQ
symmetry occurs after inflation, this vacuum structure of
the axion potential implies the formation of axion domain
walls during the QCD phase transition, thereby leading to a
cosmological disaster [48,49]. One obvious solution to this
domain wall problem is to impose that inflation takes place
after the spontaneous breaking of the PQ symmetry, such
that the axion field is homogenized across the entire ob-
servable universe.13 Alternatively, one may attempt to
construct an axion model with NDW ¼ 1, in which case
the axion domain walls collapse under their boundary
tension soon after their formation [51]. In Appendix B,
we present a slight modification of our model that just
yields NDW ¼ 1 and which hence allows for a solution of
the axion domain wall problem even if the spontaneous
breaking of the PQ symmetry takes place after inflation.
To be clear about that, as for our actual model with
NDW ¼ nk, we will however assume in the following that
the PQ symmetry is broken sufficiently early before the end
of inflation. A necessary condition for this to happen is that
the PQ-breaking scale� exceeds the reheating temperature
TRH after inflation, TRH & �. Such a hierarchy between the
two scales � and TRH then also ensures that the PQ sym-
metry is not restored after inflation due to finite-temperature
effects, which would otherwise bring us back to the axion
domain wall problem. Finally, the fact that TRH is bounded
from above by � also explains why we are allowed to
neglect all finite-temperature corrections to the scalar
potential of the PQ-breaking sector. In general, such cor-
rections could change the vacuum structure of our model;
but given that the temperature T remains below � at all
times, we can rest assured that this is not the case.

5. Mass scale of the extra matter sector

As anticipated, the spontaneous breaking of the PQ
symmetry furnishes the extra quarks and antiquarks with

13In this case, perturbations in the axion field amplified during
inflation may result in too large isocurvature contributions to the
temperature fluctuations seen in the cosmic microwave back-
ground. A variety of solutions to this isocurvature perturbation
problem have however been proposed in the literature, cf. for
instance Ref. [50] and references therein, which is why we will
not consider it any further.
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Dirac masses mQi
, which can be read off from the super-

potentialWQ in Eq. (14) after expanding the singlet field P
around its VEV,

mQi
¼ �i

Mn�1
Pl

�
�ffiffiffi
2

p
�
n ’

�
�i

1

��
k

4

�
n
�

fa
1010 GeV

�
n

�

8>>>><
>>>>:

2:0� 1010 GeV; n ¼ 1

6:6� 102 GeV; n ¼ 2

3:6� 10�5 GeV; n ¼ 3

	 	 	 ; n ¼ 4

: (33)

For n � 3, our model thus predicts k new quark multiplets
with masses below the electroweak scale, which is, of
course, inconsistent with experiments. Hence, the only
viable values for n are n ¼ 1 and n ¼ 2. From a phenome-
nological point of view, the n ¼ 2 case is certainly more
interesting as it features new colored states with masses
possibly within the range of collider experiments. On the
other hand, if no heavy quarks should be found at or above
the TeV scale, our model would not automatically be ruled
out. Falling back to the n ¼ 1 case, the extra vector quarks
can always be decoupled from the physics at the TeV scale,
thereby leaving still some room for the realization of our
extension of the MSSM.

For bothviablevalues ofn, we cannowask howmanynew
quark flavors we are allowed to introduce, i.e. which values k
can possibly take. Recall that in Sec. II C 2 we required theR
charge rP to fulfill all of the seven conditions in Eqs. (18) and
(21). Given the explicit expression for rP in terms of n and k
in Eq. (16), this requirement then directly translates into a
set of k values that, depending on the values of n and N, we
are not allowed to employ, cf. Table I. In Sec. IIIA, we will
derive further restrictions on the set of allowed k values
based on the requirement that the unification of the SM
gauge couplings ought to occur at the perturbative level.

D. Generation of the MSSM � term

In absence of any new physics beyond the MSSM, one
might expect the supersymmetric mass of the MSSM
Higgs doublets to be of the order of the Planck scale,
�
MPl. Such a large � value would then require a
miraculous cancellation between the supersymmetric and
the soft SUSY-breaking contributions to the MSSM Higgs

scalar potential, given that one ought to end up with Higgs
VEVs hHu;di ¼ vu;d close the electroweak scale. This

puzzle, i.e. the question why� should be of the same order
as the soft Higgs masses, represents the infamous � prob-
lem. As we have seen in the previous section, an anomaly-
free discrete R symmetry ZR

N forbids the � term in the
MSSM superpotential, thus solving the� problem halfway
through. What remains to be done is to demonstrate how
the� term emerges with the right order of magnitude once
the ZR

N has been spontaneously broken.

1. � term from spontaneous R symmetry breaking

In the special case of a ZR
4 symmetry, the R charges ofHu

andHd sum to zero, rHu
þ rHd

¼ð4Þ4¼ð4Þ0, cf. Eq. (4), such that
a� term of the correct magnitude can be easily generated in
the course of spontaneous R symmetry breaking [41]. This
mechanism is based on two ingredients: (i) the observation
that, for rHu

þ rHd
¼ 0, the operator HuHd can be accom-

modated with some Oð1Þ coefficient g0H in the Kähler
potential, K � g0HHuHd, as well as (ii) the fact that, during
spontaneous R symmetry breaking, the superpotential ac-
quires a nonzero VEV hWi ¼ W0,

14 where W0=M
2
Pl can be

identified with the gravitino mass, m3=2 ¼ W0=M
2
Pl. At low

energies, the Higgs operator in the Kähler poten-
tial then induces an effective superpotential W� ¼
g0Hm3=2HuHd, which is nothing but the desired � term

with � ¼ g0Hm3=2. Besides that, an additional contribution

to the� termmay be generated in the course of spontaneous
SUSY breaking, if the Kähler potential should contain a
coupling between the operator HuHd and the hidden SUSY
breaking sector [19]. In the remainder of this section, we
will now mostly focus on ZR

N symmetries with N � 4.

TABLE I. Values of k leading to unwanted operators in WP, the superpotential of the new
singlet sector, cf. Eq. (20). This table does not indicate for which ZR

N symmetries only one extra

quark pair is problematic. For n ¼ 1, these are the symmetries with N ¼ 3, 4, 5, 6, 7, 8, 10, 12,
14, 16, 20; for n ¼ 2, it is the symmetries with N ¼ 5, 7, 10, 11, 14, 22. In addition,
independently of n, we disregard the possibility of only one extra quark pair for N ¼ 3, 4, 6,
8 in any case, cf. Sec. II B 3.

ZR
3 ZR

4 ZR
5 ZR

6 ZR
8 ZR

9 ZR
10 ZR

12 ZR
18

n ¼ 1 2, 3, 6, 9 2, 3 2, 3, 6, 9 2, 3 3, 9

n ¼ 2 2, 6 2 2, 6 3 2 3

14Since W carries R charge rW ¼ 2, the VEV hWi breaks the
ZR
N completely; R parity, which potentially remains as an un-

broken subgroup of the ZR
N , is not an actual discrete R symmetry,

cf. Sec. II B. A possible mechanism to generate a constant term
in the superpotential is the condensation of hidden gauginos,
such that W0 ¼ hW �W �i [52]. Alternatively, the VEV of the
superpotential might originate from the condensation of hidden-
sector quarks ~Q, such that W0 ¼ hð ~Q ~QÞni. In Appendix A of
Ref. [53], we present an exemplary model illustrating how such a
quark condensate could potentially be generated by means of
strong gauge dynamics in some hidden sector.
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2. Contributions to the � term from
spontaneous PQ breaking

Next, we note that sometimes already the spontaneous
breaking of the PQ symmetry entails the generation of a
supersymmetric mass term for the MSSM Higgs doublets
Hu and Hd, which, however, turns out to be too small in all
viable cases. The origin for this contribution to the MSSM
� term is the following higher-dimensional operators in
the tree-level superpotential,

W� ¼
�
CðpÞ
�

Pp

Mp�1
Pl

þ Cð �pÞ
�

�P �p

M �p�1
Pl

�
HuHd; (34)

with CðpÞ
� and Cð �pÞ

� denoting dimensionless coupling
constants of Oð1Þ. Of course, these couplings are only
allowed if they are compatible with the ZR

N symmetry,
which is the case given that

prP ¼ðNÞ �2 and=or �pr �P ¼ðNÞ �2: (35)

We shall now assume for a moment that at least one of
these two conditions can be satisfied. In case only the first
or the second condition can be fulfilled, let q denote the
corresponding value of p or �p. If both conditions can be
satisfied simultaneously, q shall denote the smaller of the
two possible powers, q ¼ min fp; �pg. The spontaneous
breaking of the PQ symmetry then induces a supersym-
metric mass � for Hu and Hd, which looks very similar to
the Dirac masses mQi

for the extra quarks and antiquarks

in Eq. (33),

� ¼ CðqÞ
�

Mq�1
Pl

�
�ffiffiffi
2

p
�
q ’

�
CðqÞ
�

1

��
k

4

�
q
�

fa
1010 GeV

�
q

�

8>>>><
>>>>:

2:0� 1010 GeV; q ¼ 1

6:6� 102 GeV; q ¼ 2

3:6� 10�5 GeV; q ¼ 3

	 	 	 ; q ¼ 4:

(36)

For q ¼ 1, the generated � term is, hence, dangerously
large; for q ¼ 2 it is of the desired order of magnitude; and
for q � 3 it is drastically too small. On the other hand,
given our restrictions on the R charge rP in Eqs. (18) and
(21), we know that q has to be at least q ¼ 4. This means
that, for q ¼ 1, 2, 3, all possible R charges rP fulfilling at
least one of the two conditions in Eq. (35) lead to an
unwanted operator in WP, the superpotential of the extra
scalar sector, cf. Eq. (20). We thus conclude that the
spontaneous breaking of the PQ symmetry does not suffice
to generate a � term of the right order of magnitude. For
the last time, we are therefore led to extend our model.

3. Singlet extension of the MSSM Higgs sector

Extensions of the MSSM aiming at generating the
� term dynamically usually couple the MSSM Higgs

doublets to another chiral singlet S, which acquires a
VEV of the order of the soft Higgs masses in the course
of electroweak symmetry breaking. We will now adopt this
approach and introduce a chiral singlet field S with R
charge rS ¼ �2, in order to allow for the operator
SHuHd in the superpotential. As we will see in the follow-
ing, this operator usually indeed yields a � term of the
right order of magnitude, i.e. a value for the� parameter of
the order of the soft SUSY-breaking scale.
Given the fact that the superpotential carries R charge

rW ¼ 2, the relation between the gravitino mass and the
VEV of the superpotential, m3=2 ¼ W0=M

2
Pl, implies

that m3=2 should be regarded as a spurious field also

carryingR charge r3=2 ¼ 2. After spontaneousR symmetry

breaking, the superpotential of the field S hence contains
the following terms:

N � 4: WS � gHHuHdSþm2
3=2SþmSS

2ðþ�SS
3Þ; (37)

where mS denotes a supersymmetric mass for the singlet
field S and where the term in parentheses is only allowed in
the case of a discrete ZR

8 symmetry. In this section, we

explicitly exclude the possibility of a ZR
4 symmetry, be-

cause in this case the � term is already generated in the
course of R symmetry breaking, cf. Sec. II D 1. Besides
that, for a ZR

4 symmetry, the R charge of the field S would
be equivalent to rS ¼ 2, such that a tadpole term of the
order of the Planck scale would be allowed in the super-
potential. Such a large tadpole would then severely desta-
bilize the electroweak scale. By contrast, all other ZR

N

symmetries successfully prevent the appearance of a dan-
gerously large tadpole term. In fact, the only tadpole that
we are able to generate for N � 4 arises from the sponta-
neous breaking of R symmetry and is of the size of the
gravitino mass, cf. Eq. (37).
Assuming a discrete ZR

3 or ZR
6 symmetry, the R charge of

S2 is equivalent to rs ¼ 2 and mS is expected to be very
large, mS ¼ gSMPl, where gS is a dimensionless constant
ofOð1Þ in general. For all other ZR

N symmetries, the Smass
term is only allowed if, similarly as for the gravitino mass,
mS is interpreted as a spurious field, now with R charge 6
instead of 2. On the supposition that only a single dynami-
cal process is responsible for the generation of m3=2 and

mS, the S mass then turns out to be heavily suppressed,

N ¼ 3; 6: mS ¼ gSMPl; gS 
 1;

N � 3; 6: mS 

m3

3=2

M2
Pl

:
(38)

For N ¼ 3, 6, the large supersymmetric mass mS hence
leads to a very small VEV of the field S, thereby causing
our attempt to dynamically generate the MSSM � term to
fail. Only in the case that, for one reason or another, the
parameter gS is severely suppressed, gS � 1, such that
mS � MPl, a Z

R
3 or a ZR

6 symmetry may still be considered

viable. Otherwise, ZR
N symmetries withN ¼ 3, 6 should be
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regarded disfavored within the context of our model.15 By
contrast, in the case of all other symmetries, i.e. ZR

N sym-
metries with N ¼ 5 or N � 7, the mass of the field S is
completely negligible, which is why we will omit from
now on. Thus, as far as the generation of the � term in our
model is concerned, we will assume the following terms in
the superpotential:

WS �

8>>>>>><
>>>>>>:

gHHuHdSþm2
3=2SþmSS

2; N¼ 3;6

g0Hm3=2HuHd; N¼ 4

gHHuHdSþm2
3=2Sþ�SS

3; N¼ 8

gHHuHdSþm2
3=2S; N� 3;4;6;8:

(39)

Together with the scalar masses and couplings in the
soft SUSY-breaking Lagrangian, the interactions in
Eq. (39) result in a scalar potential that is minimized for
hHu;di ¼ vu;d and hSi ¼ �=gH, whereby our solution to

the � problem is completed. The actual value of the �
parameter depends in a complicated way on the couplings
in the superpotential WS as well as on the soft parameters
for the fields Hu;d and S. For our purposes, it will however
suffice to treat � as an effectively free parameter that is
allowed to vary within some range.

Some of the expressions for WS in Eq. (39) are reminis-
cent of the superpotential of other extensions of the MSSM
that successfully generate the � term by means of a singlet
field S. For instance, assuming a discrete ZR

8 symmetry and

neglecting the tadpole term, the superpotential in Eq. (37)
corresponds to the Higgs superpotential of the next-to-
minimal supersymmetric standard model (NMSSM).16

Conversely, assuming a ZR
N symmetry with N � 3, 4, 6, 8

and taking the tadpole term into account, the superpotential
WS coincides with the effective Higgs superpotential of the
new MSSM (nMSSM) [55] as well as with the effective
Higgs superpotential of the PQ-invariant extension of the
NMSSM (PQ-NMSSM) [56]. While in the nMSSM, the
shape of the S superpotential is fixed by means of a discrete
R symmetry, similarly as in our model, the PQ-NMSSM
invokes a PQ symmetry by hand in order to ensure the
absence of further couplings of the singlet field S. On the
other hand, the PQ-NMSSM features a PQ singlet field,
similar to our singlet fields P and �P, which couples to the
field S. By contrast, such a PQ-breaking field is absent in
the nMSSM. But as the mixing between the singlet S and
the PQ-breaking sector is always suppressed by powers of
the PQ scale �, this has basically no effect on the

low-energy phenomenology of the Higgs and neutralino
sectors.
As for the expected low-energy signatures of these two

sectors, our model thus makes the same predictions as the
PQ-NMSSM and the nMSSM. This means, in particular,
that our model predicts a fifth neutralino mostly consisting
of the singlino, which only receives a small mass from
mixing with the neutral Higgsinos. Among all superpar-
ticles that either directly belong to the MSSM or that at
least share some renormalizable interaction with it, the
singlino-like neutralino is hence expected to be the lightest.
Furthermore, at small values of tan	, the decay of the
standard model-like Higgs boson into two singlino-like
neutralinos might represent an important Higgs decay
mode [57]. Such a scenario is already constrained by the
search for invisible Higgs decays by the ATLAS experi-
ment at the LHC [58] and will be further tested as data
taking at the LHC is resumed.17 Another interesting feature
of our model is that, independently of tan	, the Higgs
boson mass receives positive corrections of the order of a
few GeV from singlino loops, provided that the Higgsinos
are lighter than all other superparticles of the MSSM.
Finally, we mention that our model features a series of
interesting implications for cosmology [56,60].
The operators on the right-hand side of Eq. (37) are the

only terms in the superpotential of the singlet field S
playing a role in the generation of the � term. Besides
that, the field S participates, of course, also in a series of
other interactions. As the field X carries the same R charge
as the gravitino mass, rX ¼ r3=2 ¼ 2, the tadpole term in

Eq. (37) has, in particular, to be supplemented by the
operators m3=2XS and X2S. The full superpotential of the

field S thus reads

N � 4:

WS ¼ gHHuHdSþm2
3=2Sþ gXm3=2XS

þ gX2X2SðþmSS
2Þðþ�SS

3Þ þ 	 	 	 : (40)

Here, gX and gX2 are again dimensionless coupling constants
of Oð1Þ and the dots after the plus sign indicate higher-
dimensional nonrenormalizable terms. Given the fact that
thefieldX does not carry anyPQcharge, the couplingbetween
X and S immediately implies that the field S also does not
transform under PQ rotations, qS ¼ 0. This proves in turn our
statement in Sec. IIC3 that the PQ charges of Hu and Hd

must sum to zero, qHu
þ qHd

¼ 0.

Another important consequence of the operatorsm3=2XS
and X2S in Eq. (40) is that, at the supersymmetric level, the
scalar field VEVs in Eq. (27) no longer represent the

15Interestingly, these are just the two anomaly-free ZR
N symme-

tries of the MSSM. Now we see that they are most likely not
compatible with the generation of the � term by means of an
additional singlet field S. This justifies once more our approach
to extend the particle content of the MSSM by a new quark
sector in such a way that the gauge anomalies of the ZR

N
symmetry are always canceled, independently of the value of N.
16For reviews of the NMSSM, cf. for instance Ref. [54].

17We can easily evade the LHC constraints on the invisible
Higgs decay mode if we equip the singlino with a Dirac mass
term. To this end, we need to supplement the field S by a gauge
singlet �S with R charge r �S ¼ �rS ¼ 2, such that W � MSS �S
with MS 
m3=2 as is the case in the Dirac NMSSM [59].
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unique vacuum configuration. The PQ-breaking vacuum,
in which hP �Pi ¼ �2=2, is now continuously connected
to a family of degenerate vacua, all of which are charac-
terized by the fact that they fulfill the condition hP �Pi �
gX=�m3=2hSi ¼ �2=2. However, this vacuum degeneracy

is fortunately lifted by the soft SUSY breaking masses for
the scalar fields P, �P and S, such that, also in the presence
of the operators m3=2XS and X2S, the vacuum configura-

tion of interest, i.e. hP �Pi ¼ �2=2 together with hSi 
m3=2

and hXi 
m3=2, corresponds to a local minimum. Besides

that, the new interactions between S and X also lead to a

second local minimum at hXi 
m1=3
3=2�

2=3, hXSi 
�2 and

hP �Pi ¼ 0. The energy of this vacuum is, however, much
higher than the one of the PQ-breaking vacuum and hence,
we expect the fields P, �P, S and X to settle in the
PQ-breaking vacuum at low energies,

hPi ¼ �ffiffiffi
2

p eA=�; h �Pi ¼ �ffiffiffi
2

p e�A=�;

hSi 
m3=2; hXi 
m3=2:
(41)

Just as in the case of a ZR
4 symmetry, this vacuum might

also be automatically reached if during inflation X is
stabilized close to its origin thanks to a large positive
Hubble-induced mass term. Moreover, we do not expect
thermal effects to play a significant role in the selection of
the low-energy vacuum as long as the reheating tempera-
ture TRH is smaller than the PQ-breaking scale �, cf. our
discussion at the end of Sec. II C 4.

4. Decay of the extra matter fields into MSSM particles

The extension of the MSSM Higgs sector by the singlet
field S completes the field content of our model. We are
therefore almost ready to turn to the phenomenological
constraints on our model and discuss which values of N, n
and k allow for a sufficient protection of the PQ symmetry.
But before we are able to do so, we have to take care of one
last detail: the new quarks and antiquarks are thermally
produced in the early universe, which potentially results in
serious cosmological problems. If the extra quarks are
stable, they might be produced so abundantly that they
overclose the universe. On the other hand, if they are
unstable, their late-time decays might alter the primordial
abundances of the light elements produced during big bang
nucleosynthesis (BBN), so that these are no longer in
accordance with the observational data. To avoid these
problems, we require a coupling between the extra quark
sector and the MSSM fields, such that the extra quarks
quickly decay after their production. So far, we only had to
fix the R charge rQ �Q of the quark pair operator Q �Q,

cf. Eq. (11). The R charges rQ and r �Q ¼ rQ �Q � rQ of the

individual quarks and antiquarks have by contrast re-
mained unspecified up to now. By choosing a particular
value for the R charge rQ, we are therefore now able to

pinpoint the operator by means of which the extra quarks
shall couple to the MSSM.
Under the SM gauge group, the antiquark fields �Qi

transform in the same representation as the MSSM 5�i
multiplets. An obvious possibility to couple the new quarks
to the MSSM thus is to allow for the operator �Qi10jHd in

the superpotential, in which case the antiquarks ought to
carry the same R charge as the 5�i multiplets, r �Q ¼ r�5. The
only way in which the extra antiquark fields then distin-
guish themselves from the MSSM 5�i multiplets is their
coupling to the extra quark fields Qi. More precisely,
starting out with a superpotential containing the operators
PnQið �Q0

i þ 5�0i Þ and ð �Q0
i þ 5�0i Þ10jHd, we can always per-

form a field transformation ð �Q0
i; 5

�0
i Þ ! ð �Qi; 5

�
i Þ, such that,

by definition, the MSSM 5�i multiplets do not couple to the
extra quark fields Qi and only the operators PnQi

�Qi and
ð �Qi þ 5�i Þ10jHd remain in the superpotential. The operator
�Qi10jHd then mixes the quarks and leptons respectively

contained in the �Qi and 5�i multiplets, which potentially
gives rise to dangerous flavor-changing neutral-current
(FCNC) interactions. In the case of very heavy extra
quarks, i.e. for n ¼ 1, we however do not have to worry
about FCNC processes as these are always automatically
suppressed by the large quark masses. Only for n ¼ 2, we
have to pay attention that the mixing between the MSSM
fermions and the new matter fields does not become too
large. For extra quarks with masses around 1 TeV, we have
for instance to require that the Yukawa coupling constants
belonging to the operator �Qi10jHd are at most of Oð10�2Þ
[61]. This is a rather mild constraint, which may be easily
satisfied in a large class of flavor models.
Coupling the new quark sector to the MSSM via the

operator �Qi10jHd is therefore certainly a viable option.

The R and PQ charges of the extra quarks and antiquarks
are then given by

rQ ¼ðNÞ
rQ �Q � r �Q; r �Q ¼ðNÞ

r5� ;

qQ ¼ qQ �Q � q �Q; q �Q ¼ q5� :
(42)

Making use of our results for r5� and rQ �Q in Eqs. (8) and

(11), we find for rQ and r �Q,

rQ ¼ðNÞ 13
5
þ 6

k
þ

�
‘Q
k

� ‘

2

�
N; r �Q ¼ðNÞ � 3

5
þ ‘

N

2
: (43)

Likewise, employing our results for qQ �Q in Eq. (23) and

setting q5� to 0, we obtain for qQ and q �Q,

qQ ¼ �n; q �Q ¼ 0: (44)

Finally, we also note that the operator �Qi10jHd explicitly

breaks the vectorial global symmetry in the extra quark
sector, such that the PQ symmetry remains as the only
global Abelian symmetry,

Uð1ÞPQ �Uð1ÞVQ ! Uð1ÞPQ: (45)
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Given our choice for the MSSM PQ charges in Sec. II C 3,
we are now eventually able to determine the relation
between the generators of the three global Abelian sym-
metries Uð1ÞP, Uð1ÞVQ and Uð1ÞAQ on the one hand and the

PQ generator on the other hand. Denoting these generators
by P, V, A and PQ, respectively, we find

PQ ¼ P� n

2
ðV þ AÞ: (46)

In order to avoid the above constraint on the Yukawa
couplings associated with �Qi10jHd in the case n ¼ 2, one

may alternatively consider couplings of the new quark
fields to the MSSM via higher-dimensional operators.
Naively, there are three different choices for such an
operator, namely S �Qi10jHd, P �Qi10jHd and �P �Qi10jHd.

Replacing the singlet fields S, P and �P in these operators
by their respective VEVs, all of them turn again into
�Qi10jHd, now, however, with coupling constants that are

naturally suppressed compared to unity. Allowing for any
of these operators rather than �Qi10jHd, we therefore do not

have to fear dangerous FCNC processes due to the mixing
between the �Qi and 5�i multiplets. Meanwhile, S �Qi10jHd

and P �Qi10jHd do not represent viable operators by means

of which the new quarks could couple to the MSSM after
all. In the case of S �Qi10jHd, the extra quarks do not decay

sufficiently fast in the early universe. The operator
S �Qi10jHd furnishes the new quarks with two-body and

three-body decay channels, the partial decay rates of which
can roughly be estimated as

�ð �Qi ! qjHd; e
c
jHdÞ 
 1

8�

�
�=gH
MPl

�
2
mQi



8<
:
102 s�1; mQi

¼ 1010 GeV

10�5 s�1; mQi
¼ 1 TeV;

�ð �Qi ! SqjHd; Se
c
jHdÞ 
 1

128�3

m3
Qi

M2
Pl



8<
:
1014 s�1; mQi

¼ 1010 GeV

10�7 s�1; mQi
¼ 1 TeV:

(47)

Here, we have set the VEV of the scalar field S to
hSi ¼ �=gH ¼ 1 TeV. For n ¼ 2, the extra quarks thus
decay only after BBN, which begins at a cosmic time of
around 1 s and lasts for roughly 103 s. Moreover, if we
choose the R charge rQ, such that P �Qi10jHd is contained

in the superpotential, also Pn�1Qi5
�
j is allowed. Unlike in

our first case, in which we considered �Qi10jHd, this op-

erator cannot be simply eliminated by a field redefinition.
Together with PnðQ �QÞi, it instead leads to an unacceptably
strong mixing between the �Qi and 5�i multiplets.

The only remaining option therefore is to allow for
�P �Qi10jHd. In this case, the superpotential also features

Pnþ1Qi5
�
j , which cannot be transformed away as well, but

which fortunately results in the mixing between the �Qi and
5�j multiplets being suppressed by a factor of Oð�=MPlÞ.
Furthermore, �P �Qi10jHd gives rise to two-body decays of

the extra quarks at a fast rate. After replacing the scalar

field �P by �=
ffiffiffi
2

p
, we obtain

�ð �Qi ! qjHd; e
c
jHdÞ 
 1

16�

�
�

MPl

�
2
mQi



8<
:
1016 s�1; mQi

¼ 1010 GeV

1010 s�1; mQi
¼ 1 TeV;

(48)

where we have chosen the PQ-breaking scale� such that it
respectively results in mQi

¼ 1010 GeV or mQi
¼ 1 TeV,

if n is set to 1 or 2, cf. Eq. (33). Similarly to S �Qi10jHd, the

operator �P �Qi10jHd also entails three-body decays, which,

however, always proceed at a slower rate than the corre-
sponding two-body decays, cf. Eq. (47). A coupling of the
extra quarks to the MSSM via �P �Qi10jHd is hence a viable

alternative to the coupling via �Qi10jHd. A particular ad-

vantage of this coupling is that we do not have to require
suppressed Yukawa couplings, if n ¼ 2. On the other hand,
the charges of the extra antiquarks now do not coincide any
more with the charges of the MSSM 5�i multiplets. The R
and PQ charges of the new quark and antiquark fields are
instead given by

rQ ¼ðNÞ
rQ �Q � r �Q; r �Q ¼ðNÞ

r5� � r �P;

qQ ¼ qQ �Q � q �Q; q �Q ¼ �q �P:
(49)

Our results for r5� , rQ �Q and r �P in Eqs. (8), (11), and (19)

therefore provide us with

rQ ¼ðNÞ 13
5
þ ðnþ 1Þ6

nk
�

�
‘

2
þ ‘P

n
� ðnþ 1Þ‘Q

nk

�
N;

r �Q ¼ðNÞ � 3

5
� 6

nk
þ

�
‘

2
þ ‘P

n
� ‘Q

nk

�
N: (50)

Similarly, making use of the fact that q �P ¼ �1 and qQ �Q ¼
�n, cf. Eq. (23), we find for qQ and q �Q,

qQ ¼ �n� 1; q �Q ¼ 1: (51)

Combining this result with our choice for the MSSM PQ
charges in Sec. II C 3, the relation between the four Abelian
generators P, V, A and PQ now turns out to be

PQ ¼ P� V � n

2
ðV þ AÞ: (52)

These findings complete the construction of our model.
To sum up, in this section, we have introduced (i) the field
content of the MSSM along with three generations of right-
handed neutrinos, (ii) k pairs of extra quarks and antiquarks
in order to render the discrete R symmetry anomaly free,
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(iii) an additional singlet sector in order to provide masses
to the new quarks and antiquarks, and (iv) a singlet field S
in order to dynamically generate the MSSM � term. The
charges of all these fields are summarized in Table II.

III. PHENOMENOLOGICAL CONSTRAINTS

The MSSM extension presented in the previous section
is subject to a variety of phenomenological constraints. As
we have already seen in Sec. II C 5, the positive integer n
can, for instance, only be 1 or 2, since otherwise the extra
quarks would always have masses below the electroweak
scale. Besides that, i.e. besides the lower bound on the
masses of the new quarks, we also have to ensure (i) that,
despite our extension of the MSSM particle content, the
unification of the SM gauge coupling constants still occurs
at the perturbative level, (ii) that operators explicitly break-
ing the PQ symmetry do not induce shifts in the QCD
vacuum angle larger than 10�10 as well as (iii) that the
axion decay constant takes a value within the experimen-
tally allowed window, cf. Eq. (32). In the next two sub-
sections, we will now discuss these constraints in turn and
show how they allow us to single out the phenomenolog-
ically viable combinations of N, n and k along with
corresponding upper and lower bounds on fa.

A. Gauge coupling unification

The new quark and antiquark fields contribute to the beta
functions of the SM gauge coupling constants and thus
cause a change in the value gGUT at which these coupling
constants unify at high energies. The more extra quark pairs
we add to the MSSM particle content, the higher gGUT turns

out to be, which provides us with a means to constrain the
allowed number of extra quark pairs k from above. For given
massesmQi

of the new quarks, we define the maximal viable

number of extra quark pairs kmax such that

gGUTðmQi
; k ¼ kmaxÞ �

ffiffiffiffiffiffiffi
4�

p
;

gGUTðmQi
; k ¼ kmax þ 1Þ> ffiffiffiffiffiffiffi

4�
p

;

kmax ¼ kmax ðmQi
Þ:

(53)

In order to determine kmax in dependence of the heavy
quark mass spectrum, we make the simplifying approxi-
mation that all new quark flavors have the same mass,

MQ ¼ mQi
, where MQ ¼ ð�=

ffiffiffi
2

p
=MPlÞnMPl, cf. Eq. (33).

At the same time, we assume that all superparticles share a
common soft SUSY breaking massMSUSY of 1 TeV. When
solving the renormalization group equations of the SM
gauge couplings for energy scales � ranging from the Z
boson mass MZ ¼ 91:2 GeV to the GUT scale MGUT ¼
2� 1016 GeV, we then have to distinguish between two
different scenarios:
(i) If MQ >MSUSY, we use the SM one-loop beta

functions for MZ � �<MSUSY, the MSSM
one-loop beta functions for MSUSY � �<MQ and

the two-loop beta functions of the MSSM plus the
extra quark multiplets in the Novikov-Shifman-
Vainshtein-Zakharov (NSVZ) scheme [62] for
MQ � � � MGUT.

(ii) If MQ � MSUSY, we use the SM one-loop beta

functions for MZ � �<MQ, the one-loop beta

functions of the standard model plus the extra
fermionic quarks for MQ � �<MSUSY and the

two-loop beta functions of the MSSM plus the extra

TABLE II. Summary of the possible charge assignments in our model assuming that the extra
quarks couple to the MSSM via the operator �P �Qi10jHd. If the extra quarks should instead couple

to the MSSM via �Qi10jHd, the values given in Eqs. (43) and (44) must be used for the R and PQ

charges of the fields Qi and �Qi. The 2L in the column indicating the SUð5Þ representations
denote SUð2ÞL doublets. All R charges are only defined up to the addition of integer multiples
of N. The MSSM R charges can additionally be changed by acting on them with Z5

transformations. N � 3; n ¼ 1, 2; k � 1; ‘; ‘P and ‘Q are all integers.

SUð5Þ PM ZR
N Uð1ÞPQ

ðq; uc; ecÞ 10 � 1
5 þ ‘ N

2 0

ðdc; ‘Þ 5� � � 3
5 þ ‘ N

2 0

ðncÞ 1 � 1þ ‘ N
2 0

Hu 2L þ 2� 2
5 0

Hd 2L þ 2þ 2
5 0

Q 5 � 13
5 þ ðnþ1Þ6

nk � ½‘2 þ ‘P
n � ðnþ1Þ‘Q

nk �N �n� 1

�Q 5� � � 3
5 � 6

nk þ ½‘2 þ ‘P
n � ‘Q

nk�N 1

P 1 þ � 6
nk þ ðk‘P � ‘QÞ N

nk 1

�P 1 þ 6
nk � ðk‘P � ‘QÞ N

nk �1

X 1 þ 2 0

S 1 þ �2 0
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quark multiplets, i.e. plus the extra fermionic and
scalar quarks, in the NSVZ scheme for MSUSY �
� � MGUT.

Given the solutions of the renormalization group equa-
tions, we are able to determine kmax as a function of MQ

according to Eq. (53). The relation between the PQ scale�
and the axion decay constant fa in Eq. (30) then provides
us with kmax as a function of fa. The result of our calcu-
lation is presented in Fig. 1, which displays kmax as a
function of fa for n ¼ 1 and n ¼ 2, respectively.

Moreover, we note that collider searches for heavy
down-type quarks are capable of placing a lower bound
Mmin

Q on the quark mass scale MQ. As MQ decreases with

fa and k, cf. Eq. (33), this lower bound on MQ readily

translates into a lower bound kmin on k,

MQðfa; n; k ¼ kminÞ � Mmin
Q ;

MQðfa; n; k ¼ kmin � 1Þ<Mmin
Q

kmin ¼ kmin ðfa; nÞ:
(54)

Assuming that the new quarks primarily couple to the SM
quarks of the third generation via the operator �Qi10jHd,

such as in the model discussed in Ref. [63], the ATLAS
experiment at the LHC has recently reported a lower bound
of 590 GeV on the heavy quark mass scale [64]. In the
following, we will adopt this value for Mmin

Q , although we

remark that smaller values of MQ might still be viable, if

the new quarks should predominantly couple to the first or
second generation of the SM quarks rather than to the third
generation. Conversely, an even larger mass range could in
principle be excluded using the present data, if the new
quarks should couple to the MSSM via the operator
�P �Qi10jHd rather than via the operator �Qi10jHd. In this

case, the new quarks would be long-lived, thereby leaving
very distinct signatures in collider experiments. In this

section, we, however, assume a coupling via the operator
�Qi10jHd and set Mmin

Q to 590 GeV. Solving Eq. (54) for

kmin, we then find kmin as a function of fa, cf. Fig. 1. For
n ¼ 1 and all values of fa of interest, kmin is always 1. On
the other hand, for n ¼ 2 and fa & 3� 1010 GeV, the
minimal possible number of quark pairs rapidly grows as
we go to smaller and smaller values of fa.
In summary, we conclude that, for each value of fa, the

requirements of perturbative gauge coupling unification as
well as the lower bound on the mass of heavy down-type
quarks provide us with a range of possible k values,
cf. Eqs. (53) and (54),

kmin ðfa; nÞ � k � kmax ðfa; nÞ: (55)

Turning this statement around, we can say that, for given
values of n and k, our two phenomenological constraints
imply a lower bound on fa,

fa � max ffmin ;p
a ; fmin ;m

a g; (56)

where f
min ;p
a and fmin ;m

a are defined such that

gGUTðfmin ;p
a ; n; kÞ ¼ ffiffiffiffiffiffiffi

4�
p

;

MQðfmin ;m
a ; n; kÞ ¼ Mmin

Q ;

fmin ;i
a ¼ fmin ;i

a ðk; nÞ; i ¼ p;m:

(57)

In addition to that, we know from astrophysical and cos-
mological observations that the axion decay constant must
not be smaller than Oð109Þ GeV and not be larger than
Oð1012Þ GeV, cf. Eq. (32), so that we are eventually led to
imposing the following lower and upper bounds on fa:

fmin
a � fa � 1012 GeV;

fmin
a ¼ max f109 GeV; f

min ;p
a ; fmin ;m

a g:
(58)

B. Shifts in the QCD vacuum angle

Given the particle content and charge assignments of our
model, it is easy to construct operators that explicitly break
the PQ symmetry. Instead of an exact symmetry, the PQ
symmetry therefore merely ends up being an approximate
symmetry, which poses a threat to the PQ solution of the
strong CP problem. Most PQ-breaking operators induce a
shift in the VEVof the axion field, such that the �� term in
the QCD Lagrangian is no longer completely canceled.
The magnitudes of these shifts in hai differ from operator
to operator and depend in addition on the axion decay
constant fa, the gravitino mass m3=2 as well as on the

scalar VEVs hSi and hXi in some cases. In this section,
we will now investigate for which ZR

N symmetries, which
choices of n and k as well as which values of fa the total
shift in the axion VEV remains small enough, such that the
shifted �� angle does not exceed the upper experimental
bound, �� & 10�10.
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FIG. 1 (color online). Constraints on the number of extra quark
pairs k for n ¼ 1 and n ¼ 2, respectively. The lower bounds are
due to the experimental lower bound on the mass of new heavy
down-type quarks; the upper bounds derive from the requirement
of perturbative gauge coupling unification.

HARIGAYA et al. PHYSICAL REVIEW D 88, 075022 (2013)

075022-16



1. PQ-breaking operators in the superpotential

All PQ-breaking operators in the superpotential induc-
ing a shift in hai are of the following form:18

W � CPp �P �p

p! �p!h!s!x!Mc
Pl

ðHuHdÞhmm
3=2S

sXx;

c ¼ pþ �pþ hþmþ sþ x� 3; p � �p;

(59)

where C is a Oð1Þ constant and where the powers of the
various fields have to be chosen such that

rPðp� �pÞ þ 4hþ 2m� 2sþ 2x¼ðNÞ
2: (60)

Our intention behind explicitly dividing the operators in
Eq. (59) by the factorials of the powers p, �p, h, s and x is to
eventually obtain maximally conservative bounds on the
axion decay constant. Fortunately, we do not have to con-
sider all possible combinations of p, �p, h, m, s and x in the
following. For instance, if some operator involving powers
ðp; �pÞ with max fp; �pg>min fp; �pg> 0 is allowed in the
superpotential, the same operator with ðp; �pÞ being either
replaced by (p� �p, 0) or (0, �p� p) is also allowed. The
shift in hai induced by this second operator is then
enhanced compared to the shift induced by the
original operator by a factor of OðMq

Pl=�
qÞ, where q ¼

2min fp; �pg. Consequently, we are allowed to solely focus
on PQ-breaking operators in the following that either in-
volve some power of P or some power of �P. For a similar
reason, we do not have to care about operators involving
some power of HuHd. Given an operator with powers
h � 1 and m � 0, we can always write down a similar
operator in which ðh;mÞ is replaced by (0,mþ 2h). This is
possible because ðHuHdÞh andm2h

3=2 have the same R charge

up to an integer multiple of N. Now assuming that m2
3=2 is

larger than hHuHdi ¼ vuvd, the operator with powers
(0, mþ 2h) always yields a larger shift in hai than the
operator with powers ðh;mÞ. Furthermore, the same game
as with the fields P and �P can also be played with m3=2 and

the fields S andX. Operators with powers ðm; s; xÞ satisfying
the relation s > mþ x � 0 can always be traded for opera-
tors with powers (0, s�m� x, 0). The shift in hai due to
these alternative operators is then enhanced compared to the

shift due to the original operators by a factor ofOðM2ðmþxÞ
Pl =

ðmm
3=2hSimþxhXixÞÞ. In the end, we therefore only have to

consider the following set of PQ-breaking operators:

W � CPp

p!Mc
Pl

�
1

s!
Ss;

1

x!
mm

3=2X
x

�
jðP; pÞ $ ð �P; �pÞ: (61)

Each of the operators in Eq. (61) results in PQ-breaking
terms in the scalar potential. Among these PQ-breaking

contributions to the scalar potential, one class of terms
derives from the F terms of the fields S and X,

FS ¼ C

Mc
Pl

�
s

p!s!
PpSs�1;

s

�p!s!
�P �pSs�1

�
þ F0

S;

FX ¼ C

Mc
Pl

�
x

p!x!
Ppmm

3=2X
x�1;

x

�p!x!
�P �pmm

3=2X
x�1

�
þ F0

X;

(62)

where we have introduced F0
S and F0

X to denote the

contributions to FX and FS deriving from PQ-invariant
operators in the superpotential. Given the superpotential
in Eq. (40) and taking into account the various supergravity
effects induced by the constant term in the superpotential,
W0 ¼ m3=2MPl, we are able to estimate of what order of

magnitude we expect F0
S and F0

X to be,

F0
S ¼ Oðm2

3=2; vuvd;m3=2hXi; hX2i; . . .Þ;
F0
X ¼ Oðm2

3=2; m3=2hSi; hXSi; . . .Þ; (63)

with the dots denoting further contributions to F0
S and F0

X

that only arise in the case of certain ZR
N symmetries. The

VEVs of the fields S and X are both of the order of the
gravitino mass, such that the leading contributions to F0

S

and F0
X can eventually be estimated as

F0
S ¼ Oðm2

3=2Þ; F0
X ¼ Oðm2

3=2Þ: (64)

The mixing between F0
S and F0

X and the PQ-breaking

contributions to FS and FX in Eq. (63) then gives rise to
the following PQ-breaking terms in the scalar potential:

V � m2
3=2

CPp

p!Mc
Pl

�
s

s!
Ss�1;

x

x!
mm

3=2X
x�1

�

þ H:c:jðP;pÞ $ ð �P; �pÞ: (65)

A second important class of PQ-breaking terms in the
scalar potential are the A terms which derive from the
mixing between the operators in Eq. (61) and the VEV of
the superpotential W0,

V � W0

M2
Pl

CPp

p!Mc
Pl

�ðpþ s� 3Þ
s!

Ss;
ðpþ x� 3Þ

x!
mm

3=2X
x

�

þ H:c:jðP;pÞ $ ð �P; �pÞ: (66)

For a given operator in the superpotential with powers
ðp; sÞ or ð �p; sÞ, the largest PQ-breaking term in the scalar
potential hence corresponds to

V � m3=2

CPp

p!s!Mc
Pl

max fsm3=2; jpþ s� 3jSgSs�1

þ H:c:jðP;pÞ $ ð �P; �pÞ: (67)

18PQ-breaking operators that do not involve any power of P or
�P (for instance,Q5 or �Q5) do not induce a shift in the axion VEV
and are therefore irrelevant for our purposes.
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Similarly, the largest term induced by an operator with
powers ðm;p; xÞ or ðm; �p; xÞ is given by19

V � m3=2

CPp

p!x!Mc
Pl

max fxm3=2; jpþ x� 3jXgmm
3=2X

x�1

þ H:c:jðP; pÞ $ ð �P; �pÞ: (68)

Next, we replace all scalar fields in these two operators by
their VEVs,

P ! �ffiffiffi
2

p exp

�
i

affiffiffi
2

p
�

�
; �P ! �ffiffiffi

2
p exp

�
�i

affiffiffi
2

p
�

�
;

S ! hSi; X ! hXi: (69)

This provides us with contributions to the axion potential
all of which are of the following form:

�Va ¼ 1

2
M4

�
exp

�
i
paffiffiffi
2

p
�

�
þ H:c:

�
¼ M4 cos

�
p

affiffiffi
2

p
�

�
;

(70)

where, for the terms in the scalar potential in Eqs. (67) and
(68), the mass scale M is respectively to be identified as20

PpSs: M4 ! 2Cm3=2

p!s!Mc
Pl

�
�ffiffiffi
2

p
�
p
MShSis�1;

MS ¼ max fsm3=2; jpþ s� 3jhSig;
Ppmm

3=2X
x: M4 ! 2Cm3=2

p!x!Mc
Pl

�
�ffiffiffi
2

p
�
p
MXm

m
3=2hXis�1;

MX ¼ max fxm3=2; jpþ x� 3jhXig:

(71)

2. PQ-breaking operators in the Kähler potential
and the effective potential

Next to the PQ-breaking operators in the superpotential,
we also have to take into account the PQ-breaking contri-
butions to the Kähler potential K. It is, however, easy to
show that the PQ-breaking terms in the scalar potential
induced by the Kähler potential can at most be as large
as the terms induced by the superpotential. Given some
PQ-breaking term KPQ � K, its largest contribution to the

scalar potential is given by

V � C0

M2
Pl

jW0j2KPQ ¼ C0m2
3=2KPQ; C0 
Oð1Þ: (72)

The operator KPQ is either holomorphic from the outset or

it is accompanied by a holomorphic term in the Kähler
potential K0

PQ that follows from KPQ by performing the

following replacements:

Py ! �P; �Py ! P; Sy ! X; Xy ! S;

ðHuHdÞy ! S2: (73)

Furthermore, we know that, in order to be consistent with
the ZR

N symmetry, the R charge ofKPQ must be zero. As the

gravitino mass carries R charge 2, the holomorphicity of

Kð0Þ
PQ in combination with its vanishing R charge thus

directly implies that m3=2K
ð0Þ
PQ is one of the allowed opera-

tors in the superpotential. The A term deriving from

m3=2K
ð0Þ
PQ is then exactly of the same order of magnitude

as the term in the scalar potential induced by KPQ,

cf Eq. (66). We therefore do not have to take care of the
PQ-breaking terms in the Kähler potential explicitly. By
studying the effects on the axion VEV related to the
PQ-breaking operators in the superpotential, we automati-
cally cover all relevant effects on the axion VEV related to
the Kähler potential.
So far, we have only discussed PQ-breaking terms in

the tree-level scalar potential. Below the heavy quark
mass threshold, interactions at the loop level give rise to
further PQ-breaking terms in the effective scalar potential.
These higher-dimensional terms are then no longer solely
suppressed by the Planck scale, but partly also by the heavy
quark mass scale MQ,

Veff � 1

Mc
PlM

d
Q

CPp

p!s!x!
mm

3=2S
sXx;

cþ d ¼ pþmþ sþ x� 4;

d > 0jðP; pÞ $ ð �P; �pÞ;
(74)

where the coupling constant C is in general now also field
dependent. We might therefore worry that some of these
effective operators could yield larger shifts in the axion
VEV than the actual tree-level operators that we have
considered up to now. By imposing the requirement that
the radiatively induced terms in the scalar potential must
vanish in the limit MQ ! 0,

MQ ! 0: Veff � 1

Mc
PlM

d
Q

CPp

p!s!x!
mm

3=2S
sXx ! 0;

jðP; pÞ $ ð �P; �pÞ;
(75)

one can however show that the factor M�d
Q in Eq. (74) is

always canceled by factors contained in the coupling con-
stant C, such that all of the effective terms can eventually
be rewritten as

Veff � 1

Mc0
Pl

C0Pp0

p0!s0!x0!
mm0

3=2S
s0Xx0 ;

c0 ¼ p0 þm0 þ s0 þ x0 � 4; C0 2 R;

jðP; p0Þ $ ð �P; �p0Þ:

(76)

The radiative corrections in the effective potential are
hence not enhanced with respect to the terms in the

19Note that, in Eqs. (67) and (68), we have implicitly absorbed
the sign of ðpþ s� 3Þ and ðpþ x� 3Þ in C.
20The expressions for M4 corresponding to the operators �P �pSs

and �P �pmm
3=2X

x look exactly the same.
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tree-level scalar potential. We conclude that, for our pur-
poses, it will suffice to only consider the PQ-breaking
terms in the scalar potential induced by the superpotential.
A separate treatment of Kähler-induced effects or radiative
corrections is not necessary.

3. Upper bounds on the axion decay constant

The �Va terms in the scalar potential, cf. Eq. (70), dis-
turb the effective QCD instanton-induced potential Veff

a ,
cf. Eq. (31), such that the axion potential is no longer
minimized by fa ��,

dðVa þ�VaÞ
da

��������a¼hai
¼ 0; hai ¼ fað ��þ� ��Þ: (77)

This shift in the axion VEV directly translates into a
nonzero value � �� of the QCD vacuum angle. Making
use of our results for Veff

a and �Va in Eqs. (31) and (70),
we obtain for � ��

� �� ¼ � ��0 sin

�
p

jAPQj
��

�
þOðð� ��0Þ2Þ;

� ��0 ¼ p

jAPQj
M4

�4
QCD

:

(78)

According to the experimental upper bound on the QCD
vacuum angle, � ��0 must not be larger than 10�10,

� ��0 � � ��max
0 ¼ 10�10; M4 � jAPQj

p
� ��max

0 �4
QCD;

(79)

which results in an upper bound on the mass scale M.
Combining this constraint with our expressions for M in
Eq. (71), we are able to derive an upper bound on the axion
decay constant fa for each of the PQ-breaking operators in
the superpotential,

PpSs: fmax ;S
a

¼
�
2p�1p!s!

� ��max
0

C

jAPQj1�p

p

�4
QCDM

c
Pl

MShSis�1m3=2

�
1=p

;

Ppmm
3=2X

x: fmax ;X
a

¼
�
2p�1p!x!

� ��max
0

C

jAPQj1�p

p

�4
QCDM

c
Pl

MXhXix�1mmþ1
3=2

�
1=p

;

(80)

with the bounds corresponding to �P �pSs and �P �pmm
3=2X

x

being of exactly the same form.
For given values ofN, n, k and rP, a multitude of different

PQ-breaking operators might be allowed in the superpoten-
tial, all of which imply an upper limit on fa. Let us denote

the most restrictive among these upper limits by fmax ; ��
a ,

fmax ; ��
a ¼ min fallfmax ;S

a ; allfmax ;X
a g: (81)

Together with the constraints on fa in Eq. (58), we thus find
the following total lower and upper limits on the axion decay
constant fa,

fmin
a � fa � fmax

a ;

fmin
a ¼ max f109 GeV; f

min ;p
a ; fmin ;m

a g;
fmax
a ¼ min f1012 GeV; fmax ; ��

a g:
(82)

By virtue of this result, we are now able to identify
the phenomenologically viable combinations of N, n, k
and rP. The corresponding criterion is nothing but the
requirement that there has to be an allowed window of
possible values for fa,

fmin
a < fmax

a ) ðN; n; k; rpÞviable: (83)

To determine the allowed combinations of N, n, k and rP,
we compute fmin

a and fmax
a for

N ¼ 3; 4; . . . ; 12; n ¼ 1; 2;

k ¼ 1; 2; . . . ; kmax ð1012 GeV; nÞ;
rP ¼ rPðN; n; k; ‘Q; ‘PÞ;

(84)

where kmax ð1012 GeV; 1Þ ¼ 17 and kmax ð1012 GeV; 2Þ ¼ 6
and where rP as a function of N, n, k, ‘Q and ‘P is given in

Eq. (16),21 and check whether or not the criterion in Eq. (83)
is fulfilled. In doing so, we set all dimensionless coupling
constants to 1 and use a common value of 1 TeV for the
gravitino mass and the scalar VEVs,

m3=2¼1TeV; hSi¼1TeV; hXi¼1TeV: (85)

Larger values of m3=2, hSi and hXi would lead to more

stringent bounds on fa, which means that the bounds that
we obtain should be regarded as conservative. For the non-

perturbative scale of QCD, we employ the MS value above
the bottom-quark mass threshold, �QCD ’ 213 MeV [65].

4. Phenomenologically viable scenarios

Restricting ourselves to the parameter values specified
in Eqs. (84) and (85), we find in total 1068 viable combi-
nations of N, n, k and rP, where 936 of these solutions
belong to the case n ¼ 1 and 132 solutions to the case
n ¼ 2. In Tables III and IV, we indicate how many solu-
tions we respectively obtain for the individual values of k
and N under study. In Table V, we list all viable combina-
tions of N, n, k and rP for all k values up to k ¼ 6. In
summary, we conclude that our minimal extension of the
MSSM apparently gives rise to a large landscape of viable
scenarios. It is in particular surprising and intriguing that
the order N of the ZR

N symmetry can take any value, as
long as the number of extra quark pairs k is chosen

21In total, we thus scan 1950 different combinations of N, n, k
and rP. Out of these combinations, 1530 belong to the case
n ¼ 1, whereas 430 belong to the case n ¼ 2.
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appropriately. A comprehensive phenomenological study
of this landscape of possible solutions is beyond the scope
of this paper. In the following, we shall thus restrict our-
selves to a few interesting observations, illustrating what

kind of questions one might be able to answer based on the
full numerical data describing the landscape.
We observe for instance that, for all possible combina-

tions of N, n and k, there exists either no viable rP value at
all or at least two different values. It is therefore interesting
to ask which of the various possible rP values for given N,
n and k yields the least stringent upper bound on fa,

fmax ;0
a ðN; n; kÞ ¼ max

rP
ffmax ; ��

a ðN; n; k; rPÞg: (86)

This maximal upper bound can then be regarded as the
most conservative constraint on fa for the respective com-
binations of N, n and k. The two panels of Fig. 2 present

fmax ;0
a as a function of N and k for n ¼ 1 and n ¼ 2,

respectively. Apart from four exceptions, fmax ;0
a interest-

ingly always exceeds fmin
a as long as it is larger than

109 GeV,

ðN; n; kÞ � ð4; 2; 4Þ; ð8; 2; 4Þ; ð9; 2; 5Þ; ð12; 1; 15Þ: fmax ;0
a

� 109 GeV ) fmax ;0
a > fmin

a : (87)

Only for ðN; n; kÞ ¼ ð4; 2; 4Þ, (8, 2, 4), (9, 2, 5), (12, 1, 15),
fmax ;0
a is smaller than fmin

a , which renders these four cases
phenomenologically unviable. This is indicated in Fig. 2 by
the diagonal black lines crossing out the respective squares.
A further question that one might be interested in is

which of the viable scenarios are compatible with the
assumption of axion dark matter. In case inflation takes
place after the spontaneous breaking of the PQ symmetry,
the only contribution to the relic axion density stems from
the vacuum realignment of the zero-momentum mode
of the axion field during the QCD phase transition [47].
The present value of the axion density parameter�0

ah
2 can

then be estimated as [48]

�0
ah

2 
 0:50

� ��2i
�2=3

��
fa

1012 GeV

�
7=6

; (88)

where ��i 2 ð��;�� denotes the initial misalignment
angle of the axion field before the onset of the QCD phase
transition, ��i ¼ aðtiÞ=fa. In the derivation of Eq. (88), it is
assumed that ��i is constant across the entire observable
universe as well as that the axion relic density is not diluted
after its generation by some form of late-time entropy
production. If all possible values of ��i are equally likely,
we expect that h ��2i i ¼ �2=3. By comparing the expression
for �0

ah
2 in Eq. (88) with the density parameter of cold

dark matter (CDM), which has recently been determined
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FIG. 2 (color online). Upper bounds fmax ;0
a on the axion

decay constant fa according to the requirement that the shift
in the QCD vacuum angle �� induced by PQ-breaking operators
not be larger than 10�10, cf. Eqs. (81) and (86). Both plots are
based on m3=2 ¼ 1 TeV, hSi ¼ �=gH ¼ 1 TeV and hXi ¼
1 TeV. At the same time, all dimensionless coupling constants
have been set to 1. The black diagonal lines indicate that
109 GeV � fmax ;0

a � fmin
a , cf. Eq. (58).

TABLE III. Numbers of viable scenarios for individual values of k, including as well all
scenarios with a ZR

3 or a ZR
6 symmetry. For k � 6, the respective numbers of solutions for the two

cases n ¼ 1 and n ¼ 2 are indicated in the format ð#jn¼1; #jn¼2Þ.
k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# (0, 4) (0, 38) (16, 54) (4, 36) 49 54 36 62 101 36 120 110 56 132 160
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very precisely by the PLANCK satellite, �0
CDMh

2 ’
0:1199 [66], we see that, for an axion decay constant fa
of Oð1012Þ GeV, cold axions may completely account for
the relic density of dark matter. For fa * 1012 GeV, the
axion density exceeds the measured abundance of dark
matter, which is nothing but the cosmological upper bound
on fa which we introduced in Sec. II C 3.

Setting fa to 1012 GeV, we can now ask how large a
QCD vacuum angle �� we expect to be induced by the PQ-
breaking operators in the respective viable scenarios. In the

case of those scenarios for which we found that fmin
a <

fmax ; ��
a < 1012 GeV, the induced QCD vacuum angle, of

course, turns out to be larger than 10�10, i.e. only scenarios

in which fmin
a < 1012 GeV< fmax ; ��

a are compatible with

the requirement of axion dark matter. In total, we find 861
of such scenarios. Among these, 763 belong to the case
n ¼ 1 and 98 to the case n ¼ 2. Analogously to the upper
bounds on the axion decay constant, for which we intro-

duced fmax ;0
a , cf. Eq. (86), we would also like to know

which R charge rP for given N, n and k yields the smallest
QCD vacuum angle,

fa ¼ 1012 GeV: ��0ðN; n; kÞ ¼ min
rP

f ��ðN; n; k; rPÞg;
��ðN; n; k; rPÞ ¼ max fall� ��0g;

(89)

where the shifts in the QCD vacuum angle � ��0 are to be
calculated according to Eq. (78). The angles ��0 then rep-
resent the most conservative lower bounds on �� for the

TABLE V. Viable values of rP in units of 1=ðnkÞ and in dependence of N, n and k for all k values up to k ¼ 6. We also include the rP
values for ðN; n; kÞ ¼ ð4; 2; 4Þ, (8, 2, 4), (9, 2, 5), which are actually phenomenologically unviable if we believe in the perturbative
unification of the gauge coupling constants. For these combinations of N, n and k, we namely find 109 GeV � fmax ;0

a � fmin
a ,

cf. Eq. (87) and Fig. 2.

ðn; kÞ ZR
3 ZR

4 ZR
5 ZR

6

(2, 4) f3; 9; 15; 21g f2; 6; 10; 14; 18; 22; 26; 30g f9; 19; 29; 39g f6; 18; 30; 42g
(2, 5) f3; 9; 21; 27g f2; 6; 14; 18; 22; 26; 34; 38g f9; 19; 29; 39; 49g f6; 18; 42; 54g
(2, 6) f2; 10; 14; 22; 26; 34; 38; 46g f19; 29; 49; 59g
ðn; kÞ ZR

7 ZR
8 ZR

9 ZR
10

(1, 5) f1; 8; 22; 29g f3; 12; 21; 39g
(1, 6) f1; 29g
(2, 3) f1; 29g
(2, 4) f1; 15; 29; 43g f2; 10; 18; 26; 34; 42; 50; 58g f3; 21; 39; 57g f14; 34; 54; 74g
(2, 5) f1; 29; 43; 57g f2; 18; 26; 34; 42; 58; 66; 74g f3; 12; 21; 39; 48; 57; 66; 84g f14; 34; 54; 74; 94g
(2, 6) f1; 29; 43; 71g f2; 10; 26; 34; 50; 58; 74; 82g f3; 57g f14; 34; 74; 94g
ðn; kÞ ZR

11 ZR
12

(1, 5) f16; 27; 38; 49g f6; 18; 42; 54g
(1, 6) f5; 49g
(2, 3) f5; 49g
(2, 4)) f5; 27; 38; 49; 71; 82g f6; 18; 30; 42; 54; 66; 78; 90g
(2, 5) f16; 27; 38; 49; 71; 82; 93; 104g f6; 18; 42; 54; 66; 78; 102; 114g
(2, 6) f5; 38; 49; 71; 82; 115g

TABLE IV. Numbers of viable scenarios for individual values of N in the format
ð#jn¼1; #jn¼2Þ.
N 3 4 5 6 7 8 9 10

# (76, 8) (104, 16) (91, 13) (76, 8) (103, 14) (104, 16) (90, 6) (91, 13)

N 11 12

# (109,22) (92,16)

TABLE VI. All combinations of N, n and k which, in the case of axion dark matter, i.e. for
fa ¼ 1012 GeV, result in a lower bound ��0 on the theta angle between 10�15 and 10�10,
cf. Eq. (89).

ðn; N; kÞ (1, 4, 12) (1, 5, 9) (1, 7, 7) (1, 8, 12) (1, 9, 7)

1010 ��0 1� 10�4 3� 10�1 2� 10�4 1� 10�4 2� 10�4

ðn; N; kÞ (1, 10, 9) (1, 11, 7) (1, 12, 7) (2, 4, 6) (2, 8, 6)

1010 ��0 3� 10�1 2� 10�4 2� 10�4 1� 10�4 1� 10�4
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respective combinations of N, n and k. For 96 combina-
tions of N, n and k, splitting into 79 combinations corre-
sponding to n ¼ 1 and 17 combinations corresponding to
n ¼ 2, the angle ��0 does not exceed 10�10. But only for a
few of these solutions, ��0 falls into a range that might be
experimentally accessible in the not so far future. For
instance, only for ten solutions we find values of ��0 be-
tween 10�15 and 10�10, cf. Table VI. Provided that dark
matter is really composed out of axions, these ten scenarios
can then be tested in experiments aiming at measuring a
nonzero value of the QCD vacuum angle.

IV. CONCLUSIONS AND DISCUSSION

The PQ solution of the strong CP problem requires an
anomalous global Abelian symmetry, Uð1ÞPQ. On the other
hand, any global symmetry is expected to be explicitly
broken by quantum gravity effects. In this paper, we have
pointed out that imposing a gauged and discrete R sym-
metry, ZR

N, one is able to retain a PQ symmetry of high
enough quality as an approximate and accidental symmetry
in the low-energy effective theory. The reasoning behind
the construction of our model was the following: In order
to render the ZR

N symmetry anomaly free, it is, in general,
necessary to extend the particle content of the MSSM by
new matter multiplets. Except for some special cases, these
new particles are a priori massless, which calls for a
further extension of the spectrum by an extra singlet sector
that is capable of generating masses for the new particles.
As wewere able to show, the newmatter and singlet sectors
then exhibit several global Abelian symmetries, a linear
combination of which can be identified as the PQ symme-
try. In addition to that, for all ZR

N symmetries apart from
ZR
4 , we supplemented the MSSM Higgs sector by an addi-

tional chiral singlet S, so as to allow for a dynamical
generation of the MSSM � term.

The presence of the extra matter multiplets and the singlet
S in our model entail a potentially rich phenomenology in
collider experiments. Depending on the nature of the cou-
pling between the extra matter and singlet sectors, the new
particles might either have masses in the TeV or multi-TeV
range or they might be very heavy, with their masses being
close to the scale of PQ symmetry breaking. In the former
case, our model is being directly probed by searches for
heavy vectorlike quarks at the LHC. At the same time, the
phenomenology of the Higgs sector of our model is similar to
the one in the PQ-NMSSM or in the nMSSM. Next to the
four ordinary neutralinos, we expect a fifth, very light neu-

tralino, the singlino ~S, which receives its mass only from
mixing with the neutral Higgsinos. The singlino may play an
important role in the decay of the standard model-like Higgs
boson and contribute to the relic density of dark matter.

In order to single out the phenomenologically viable
variants of our model, we imposed four phenomenological
constraints. We required (i) the masses of the new quarks to
exceed the lower experimental bound on the mass of heavy

down-type quarks, Mmin
Q ¼ 590 GeV, (ii) the unification

of the standard model gauge couplings to still occur at the

perturbative level, gGUT � ffiffiffiffiffiffiffi
4�

p
, (iii) the shift in the QCD

vacuum angle induced by higher-dimensional PQ-breaking
operators to remain below the upper experimental bound,
�� < 10�10, as well as (iv) the axion decay constant to take a
value within the experimentally allowed window,
109 GeV & fa & 1012 GeV. To our surprise, we found a
large landscape of possible scenarios, all compatible with
these four constraints. In particular, we showed that, for an
appropriately chosen number of extra matter multiplets, the
order N of the ZR

N symmetry can take any integer value

larger than 2. Besides that, for each viable scenario, we
derived an upper bound on the axion decay constant based
on the requirement that QCD vacuum angle must not
exceed 10�10. In many cases, these upper bounds turned
out to be larger than 1012 GeV, thereby rendering the
corresponding scenarios compatible with the assumption
of axion dark matter. For these scenarios, we then estimated
the expected value of the QCD vacuum angle, in case dark
matter should really be composed out of axions. A mea-
surement of a nonzero theta angle in combination with a
confirmation of axion dark matter would therefore allow for
a highly nontrivial experimental test of our model.
We also emphasized the virtues of the special case of a

ZR
4 symmetry. In the case of a ZR

4 symmetry, the MSSM �
term can be easily generated in the course of spontaneous
R symmetry breaking, such that there is no need to intro-
duce an additional chiral singlet. As a consequence of that,
the scalar potential does not exhibit a flat direction in the
supersymmetric limit, so that we do not have to rely on the
soft SUSY breaking masses to stabilize the PQ-breaking
vacuum, as is the case for all other ZR

N symmetries.

Moreover, a ZR
4 is the only discrete R symmetry that allows

for MSSM R charges consistent with the assumption of
SOð10Þ unification, cf. Appendix A.
Finally, we mention that our study needs be extended into

several directions. First of all, it is necessary to embed our
extension of the MSSM into a grander model that explains
the origin of the ZR

N symmetry and provides some guidance

as to the number of extra matter multiplets and the exact
nature of their couplings. Likewise, it is important to further
explore the cosmological implications of our model. One
open question, for instance, is the generation and composi-
tion of dark matter in terms of axions, saxions, neutralinos
and/or gravitinos in dependence of our model parameters.
Besides that, it would be interesting to make contact be-
tween our model and R-invariant scenarios of inflation [67].
Altogether, our model promises to give rise to a rich phe-
nomenology that can be probed at colliders and in astro-
physical and cosmological observations. Future experiments
will thus be able to test the intriguing possibility that the PQ
symmetry, required for the PQ solution of the strong CP
problem, is indeed an accidental consequence of a gauged
and discrete R symmetry.
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APPENDIX A: POSSIBLE R CHARGES
OF THE MSSM FIELDS

In Sec. II B, we derive five constraints on r10, r5� , r1, rHu

and rHd
, the R charges of the MSSM matter and Higgs

multiplets, cf. Eqs. (4), (6), and (7). As these conditions
only hold up to the addition of integer multiples of N, they
do not suffice to fix the values of the MSSM R charges
uniquely. In this Appendix, we now show that, for each
value of N, there exist exactly ten different R charge
assignments for the MSSM fields that comply with all
constraints. Moreover, we also discuss under which
circumstances these solutions are equivalent to each other.

1. R charge assignments consistent with all constraints

To begin with, let us rewrite the five conditions in
Eqs. (4), (6), and (7) as follows:

rHu
þ rHd

¼ 4þ ‘1N;

2r10 þ rHu
¼ 2þ ‘2N;

r5� þ r10 þ rHd
¼ 2þ ‘3N;

r5� þ r1 þ rHu
¼ 2þ ‘4N;

2r1 ¼ 2þ ‘5N;

(A1)

where we have made use of the relation in Eq. (5) and with
‘i 2 Z for all i ¼ 1; . . . ; 5. Solving this system of linear
equations for the R charges r ¼ ðr10; r5� ; r1; rHu

; rHd
ÞT

yields

r10

r5�

r1

rHu

rHd

0
BBBBBBBB@

1
CCCCCCCCA
¼ðNÞ

1
5

� 3
5

1

2� 2
5

2þ 2
5

0
BBBBBBBBB@

1
CCCCCCCCCA
þ ~‘

N

10

1

�3

5

�2

2

0
BBBBBBBB@

1
CCCCCCCCA

þ

0 0 0 0 0

�1 1 1 0 0

1 �2 �1 1 0

0 1 0 0 0

1 �1 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

‘1

‘2

‘3

‘4

‘5

0
BBBBBBBB@

1
CCCCCCCCA
N; (A2)

with ~‘ ¼ �2‘1 þ 4‘2 þ 2‘3 � 2‘4 þ ‘5 2 Z. As indi-

cated by the ¼ðNÞ
symbol in Eq. (A2), all R charges are

only defined modulo N. Thus, after picking explicit values
for the ‘i, we always have to take all R charges modulo N,
such that 0 � ri < N for all fields i. At the same time, the
last summand on the right-hand side of Eq. (A2) does
nothing but shifting the charges r5� , r1, rHu

and rHd
by

integer multiples of N. Its effect is hence always nullified
by the modulo N operation, allowing us to omit it in the
following. Furthermore, we observe that the entries of the
second column vector on the right-hand side of Eq. (A2)
correspond to the X charges of the MSSMmultiplets.22 We
shall therefore denote this vector by X, such that

r¼ðNÞ
r0 þ ~‘

N

10
X; r0 ¼

�
1

5
;� 3

5
; 1; 2� 2

5
; 2þ 2

5

�
T
;

X ¼ ð1;�3; 5;�2; 2ÞT: (A3)

This result illustrates that, for any given N, there are
indeed ten different possible R charge assignments r.
Independently of the concrete value of N, the assignment
r0 always represents a solution to the conditions in Eqs. (4),
(6), and (7). All other solutions can be constructed from r0
by adding multiples of N

10X to it. Here, the fact that the R

charges ri are only defined modulo N implies that all R

charge assignments corresponding to values of ~‘ that differ
from each other by integer multiples of 10 are equivalent
to each other. The ten possible solutions for the MSSM R

charges then follow from Eq. (A3) by setting ~‘ to ~‘ ¼
0; 1; 2; . . . ; 9.
Among all viable R charge assignments that can be

obtained from Eq. (A3), there are several which are par-
ticularly interesting. For instance, for N ¼ 4, it is possible
to assign R charges to the MSSM fields in such a way that
they are consistent with the assumption of SOð10Þ unifica-
tion. In this case, the GUT gauge group contains SOð10Þ as
a subgroup, GGUT � SOð10Þ � SUð5Þ, and the MSSM
matter and Higgs fields are unified in SOð10Þ multiplets,
such that r10 ¼ r5� ¼ r1 and rHu

¼ rHd
. For N ¼ 4 and

~‘ ¼ 2, 7, these two relations can indeed be realized,

N ¼ 4: ~‘ ¼ 2: r ¼ ð1; 1; 1; 0; 0Þ;
~‘ ¼ 7: r ¼ ð3; 3; 3; 0; 0Þ:

(A4)

In the case of N ¼ 4, the R charge of the superpotential is
equivalent to�2. Hence, given any viable R charge assign-
ment, reversing the signs of all R charges and applying the
modulo N operation, so that all R charges lie again in the
interval ½0; NÞ, provides one with another viable R charge
assignment. The two solutions for r in Eq. (A4) are related

22X denotes the charge corresponding to the Abelian symmetry
Uð1ÞX, which is the subgroup of Uð1ÞB�L �Uð1ÞY that com-
mutes with SUð5Þ. In terms of B� L and the weak hypercharge
Y, it is given as X ¼ 5ðB� LÞ � 4Y.
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to each other in just this way, implying that they are in fact
equivalent. In Refs. [7,40], the discrete ZR

4 symmetry with
R charges r ¼ ð1; 1; 1; 0; 0Þ has been discussed in more
detail. Allowing for anomaly cancellation via the Green-
Schwarz mechanism, this symmetry has in particular been
identified as the unique discrete R symmetry of the MSSM
that may be rendered anomaly free without introducing any
new particles and which, at the same time, commutes with
SOð10Þ and forbids the � term in the superpotential.
Finally, we point out that the two R charge assignments
in Eq. (A4) only feature integer-valued R charges. We
mention in passing that, in fact, for each value of N that
is not an integer multiple of 5 there is at least one viable R
charge assignment that only involves integer-valued R
charges. This is a direct consequence of our result for r
in Eq. (A3) and the fact that all R charges in r0 are integer
multiples of 1

5 .

2. Relationship between the different
R charge assignments

The form of our result for r in Eq. (A3) reflects the
symmetries of the MSSM superpotential that commute
with SUð5Þ. Among these symmetries, there is in particular
a Z10 subgroup ofUð1ÞX. To see this, notice that the MSSM
superpotential without the Majorana mass term for the
neutrino singlets 1i is invariant under Uð1ÞX transforma-
tions. The Majorana mass term, however, carries X charge
10 and thus breaks the Uð1ÞX symmetry to its Z10 sub-
group. Our solutions for the MSSM R charges are therefore
related to each other by Z10 transformations, which also
explains why we have found exactly ten different solutions
for each value of N. This result is independent of the
question of whether or not we assume theUð1ÞX symmetry
to be part of the gauge group above some high energy
scale. We will address this question shortly, but before we
do that, we remark that the Z10 subgroup ofUð1ÞX is not the
only symmetry of the MSSM superpotential that commutes
with SUð5Þ. By definition, the center of SUð5Þ, a discrete
Z5 symmetry, also commutes with all SUð5Þ elements.
Under this Z5 symmetry, the MSSM multiplets 10i, 5

�
i ,

Hu andHd carry charges 1, 2, 3 and 2, while all SM singlets
have zero charge. At the same time, all SM singlets of our
model transform trivially under the Z5 subgroup of the Z10

contained in Uð1ÞX. The Z5 center of SUð5Þ is hence
equivalent to this Uð1ÞX subgroup,

SUð5Þ � Z5 ffi Z5 � Z10 � Uð1ÞX: (A5)

Therefore, independently of whether Uð1ÞX is gauged or
not, the Z5 subgroup of Z10 always has to be treated as a
gauge symmetry, as it is also contained in SUð5Þ. Under the
action of this gauged Z5 symmetry, the R charge assign-
ments in Eq. (A3) split into two equivalence classes of
respectively five solutions. The R charge assignments cor-

responding to ~‘ ¼ 2, 4, 6, 8 can all be generated by acting
with Z5 transformations on the R charge assignment cor-

responding to ~‘ ¼ 0. Similarly, the R charge assignments

corresponding to ~‘ ¼ 1, 3, 7, 9 can all be generated by
acting with Z5 transformations on the R charge assignment

corresponding to ~‘ ¼ 5. All viable R charge assignments
are hence physically equivalent to one of the following two
solutions, cf. Eq. (8):

r10 ¼ðNÞ 1
5
þ ‘

N

2
; r5� ¼ðNÞ � 3

5
þ ‘

N

2
; r1 ¼ðNÞ

1þ ‘
N

2
;

rHu
¼ðNÞ

2� 2

5
; rHd

¼ðNÞ
2þ 2

5
; (A6)

where ‘ ¼ 0, 1. These two remainingR charge assignments
are related to each other by transformations under the quo-
tient group Z10=Z5, which is nothing but a simple Z2 parity.
Whether the two solutions in Eq. (A6) are also equiva-

lent to each other depends on the nature of this Z2 parity. If
Uð1ÞX is part of the gauge group at high energies, its Z10

subgroup is a gauge symmetry at low energies. Dividing
the center of SUð5Þ out of this Z10, we are then left with a
gauged Z2 parity, which can be identified as matter parity,
PM ¼ Z10=Z5. The transformations relating the two solu-
tions in Eq. (A6) to each other are then gauge transforma-
tions and both solutions end up being equivalent. On the
other hand, if Uð1ÞX is not gauged and matter parity is
contained in the ZR

N symmetry, PM � ZR
N , the Z10 subgroup

of Uð1ÞX is also only a global symmetry. The Z2 parity
transformations relating the two solutions in Eq. (A6) to
each other are then global transformations, rendering these
two R charge assignments physically inequivalent. In
conclusion, we hence arrive at the following picture:

PM ¼ Z10=Z5 � Uð1ÞX: all ten solutions equivalent;

PM � ZR
N: two equivalence classes containing respectively five solutions:

(A7)

3. R charges in a Uð1ÞX-invariant extension
of the MSSM

If matter parity is a subgroup of the Uð1ÞX, our model as
presented in Sec. II is not yet complete, as it still lacks an
explanation for the spontaneous breaking ofUð1ÞX at some

high energy scale. In the last subsection of this Appendix,

we shall thus illustrate by means of a minimal example

how our model could be embedded into a Uð1ÞX-invariant
extension of the MSSM.
The seesaw extension of the MSSM is not invariant

under Uð1ÞX transformations because of the lepton
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number-violating Majorana mass term in the superpoten-
tial WMSSM, cf. Eq. (1). Imagine, however, that this
Majorana mass term derives from the Yukawa interaction
of the neutrino singlets 1i with some chiral singlet �
carrying B� L charge �2 that acquires a nonvanishing

VEV �B�L=
ffiffiffi
2

p
at the GUT scale,

WMSSM � 1

2
Mi1i1i ! 1ffiffiffi

2
p hni�1i1i þ �T

�
�2

B�L

2
�� ��

�
:

(A8)

Here, T and �� are two further SM singlets with B� L
charges 0 and 2, respectively. The field T carries R charge

rT ¼ 2, while � and �� have opposite R charges, r� ¼
�r ��. The diagonal matrix hn denotes a fourth Yukawa
matrix and � is a dimensionless coupling constant. This
replacement of the Majorana mass term evidently renders
the superpotential Uð1ÞX invariant, which allows us to
enlarge the gauge group of our model by a Uð1ÞX factor.
Above the GUT scale, the gauge group hence contains the
following subgroup:

GGUT � ½SUð5Þ �Uð1ÞX � ZR
N�=Z5; (A9)

where the Z5 symmetry dividing SUð5Þ �Uð1ÞX corre-
sponds to the center of SUð5Þ and, at the same time, to a
subgroup ofUð1ÞX, cf. Eq. (A5). To prevent it from appear-
ing twice in the gauge group, it has to be divided out once.

At energies around �B�L, the Higgs fields � and ��
acquire nonvanishing VEVs, whereby they spontaneously
break Uð1ÞX=Z5 to matter parity PM,

h�i; h ��i !�B�L

2
; Uð1ÞX ! Z10; PM ¼ Z10=Z5:

(A10)

Having introduced the fields �, �� and T and modified
the superpotential as in Eq. (A8), we have successfully
embedded our model into a Uð1ÞX-invariant extension of
the MSSM. Let us now discuss the set of possible R charge
assignments in this extended model. Next to the five R
charges of the MSSM fields, r�, the R charge of the Higgs
field �, now represents a further, sixth independent R
charge. All six R charges are again subject to five con-
straints, which are almost identical to those in Eq. (A1).
The only difference now is that the condition deriving from
the neutrino Majorana mass term has to be modified, so as
to account for the presence of the field �,

2r1 ¼ 2þ ‘5N ! 2r1 þ r� ¼ 2þ ‘5N: (A11)

This replacement entails a shift of all viable R charge
assignments, cf. Eq. (A3), proportional to r�, which itself
remains undetermined, in the direction of the vector X,

r¼ðNÞ
r0 þ ~‘

N

10
X ! r ¼ðNÞ

r0 þ 1

10
ð�r� þ ~‘NÞX: (A12)

For r� ¼ 0, we hence recover exactly the same solutions as
in Eq. (A3). On the other hand, for r� � 0, all solutions are
shifted by � r�

10X. The universal solution r0, which always

satisfies the conditions in Eq. (A1), irrespectively of the
value of N, turns in particular into r0 � r�

10X. Given the fact

that the field � carries X charge �10, these shifts are
readily identified as Uð1ÞX gauge transformations acting
on the MSSM R charges as well as on the R charge r�. The
form of our result in Eq. (A12) is hence a direct conse-
quence of the Uð1ÞX invariance of our extended model. As
expected, any R charge assignment is only uniquely defined
up to arbitraryUð1ÞX gauge transformations. Before closing
this section, we remark that we are able to use this obser-
vation to render all R charges of the universal solution
integer valued. Performing a Uð1ÞX transformation such
that r� ¼ �8, we obtain for the MSSM R charges

r� ¼ �8: r0 � r�
10

X ¼ ð1;�3; 5; 0; 4ÞT: (A13)

APPENDIX B: SOLUTION TO THE AXON
DOMAIN WALL PROBLEM

If the PQ-breaking sector only exhibits a single vacuum,
i.e. if NDW ¼ 1, the axion domain wall problem [49] does
not exist from the outset, whatever the thermal history of
the universe is [51]. In this Appendix, we now illustrate
how our model may be easily modified in such a way that it
ends up having a unique PQ-breaking vacuum.
The simplest way to have a unique vacuum is to couple

only one pair of additional quarks to the singlet field P, as is
done in the original KSVZ axion model. For n ¼ 1, we may
for instance impose the following superpotential, cf. Eq. (14):

WQ ¼ �1PðQ �QÞ1; �1 
Oð1Þ: (B1)

The other k� 1 quark pairs are then supposed to obtain
masses in consequence of the spontaneous breaking
of R symmetry [41]. Given the coupling in Eq. (B1) and
requiring vanishingR charges for all quark pairs that do not
couple to the singlet field P, the R and PQ charges of P, �P
as well as of the new quarks and antiquarks can be fixed as
listed in Table VII.
Let us now discuss whether the PQ symmetry can be a

good accidental symmetry. First of all, in the continuous R

TABLE VII. R and PQ charge assignments in a model with a
single PQ-breaking vacuum. All R charges are only defined up to
the addition of integer multiples of N. As far as the PQ mecha-
nism is concerned, the R charges of the extra quark fields Qi can
be chosen arbitrarily. They may, however, be further constrained
by requiring appropriate couplings between the new quarks and
antiquarks and the fields of the MSSM, cf. Sec. II D 4.

Q1
�Q1 Qi (i > 1) �Qi (i > 1) P �P

ZR
N rQ1

6þ 2k� rQ1
rQi

�rQi
�4� 2k 4þ 2k

Uð1ÞPQ qQ �1� qQ 0 0 1 �1
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symmetry limit, the global Uð1ÞP, Uð1ÞVQ and Uð1ÞAQ
symmetries are almost exact accidental symmetries of the
extra singlet and extra quark sectors, respectively.
TheUð1ÞP symmetry is, however, always explicitly broken
by the operator Pmkþ1

3=2 in the superpotential. Likewise,

given the charge assignments in Table VII, we see that
the operator �PSkþ1 is always allowed in the superpotential,
even in the continuous R symmetry limit. Therefore, the
number of extra quark pairs k should be large enough in
order to ensure that the PQ symmetry is not broken too
severely. After performing an analysis similar to the one in
Sec. III, we find that

k * 3:3þ 0:12 ln

� hSi
1 TeV

�

þ 0:028 ln

�
m3=2

1 TeV

�

1012 GeV

�
(B2)

is required in order to keep the QCD vacuum angle below
10�10. Consequently, at least k ¼ 4 extra quark pairs are
needed. With this setup, the PQ symmetry becomes a
good accidental symmetry for sufficiently large N, as is
the case in the model discussed in the main body of this
paper.
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