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The renormalizable coloron model is the minimal extension of the standard model color sector, in

which the color gauge group is enlarged to SUð3Þ1c � SUð3Þ2c. In this paper we discuss the constraints on
this model derived from the requirements of vacuum stability, tree-level unitarity, and electroweak

precision measurements from LHC measurements of the properties of the observed Higgs-like scalar

boson and from LHC limits on additional Higgs-like bosons decaying to dibosons. The combination of

these theoretical and experimental considerations strongly constrains the allowed parameter space.
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I. INTRODUCTION

The ATLAS [1] and CMS [2] experiments at the LHC
have provided conclusive evidence for a scalar boson
with Higgs-like propeties and a mass of approximately
125 GeV. While this discovery provides the first glimpse
of physics at the TeV energy scale, many important ques-
tions (such as the origin of the Higgs vacuum expectation
value and of the multitude of fermion masses and mixings)
remain unanswered. Theories that address these questions
require dynamics beyond that in the standard model.

One attractive possible feature of theories beyond the
standard model is an extension to the color sector of the
standard model. The simplest possiblity for this extension
is to enlarge the QCD gauge group to SUð3Þ1c � SUð3Þ2c,
with ordinary color identified with the diagonal subgroup
of this larger symmetry. Models in this category include
top color [3], the flavor-universal coloron [4], chiral color
[5], chiral color with unequal gauge couplings [6] and a
newer flavor nonuniversal chiral color model [7]. In addi-
tion to a set of massive color octet vector bosons arising
from the expanded color interactions (states we refer to
here generically as colorons), there will necessarily be
additional scalar states associated with breaking the
extended color sector to ordinary QCD. These new colored
states can have a large effect on the properties of the
standard model Higgs boson [8–16].

The renormalizable coloron model [4,17–19] is the
minimal extension of the standard model incorporating
an enlarged color gauge group that provides a framework
for examining the interplay between the breaking of the
electroweak and extended color gauge symmetries. In this
paper we discuss the constraints on this model derived
from the requirements of vacuum stability, tree-level

unitarity, electroweak precision measurements, and from
LHC measurements of the properties of the observed
Higgs-like scalar boson.
Our analysis demonstrates the interplay between these

various constraints. Tree-level unitarity arguments constrain
the masses of the scalar particles associated with breaking
the extended color sector in relation to that sector’s symme-
try breaking scale. The bounds derived from precision elec-
troweak measurements strongly limit the amount by which
the observed 125 GeV scalar mass eigenstate can mix with a
gauge-singlet state from the color symmetry breaking sector.
The observed production and decay properties of the
125 GeV scalar also constrain this mixing in a complemen-
tary regime, though in a manner that depends on the details
of the model. These constraints on mixing, in turn, have
consequences for the spectrum of scalar states. A summary
of the range of parameters allowed in the renormalizable
coloron model is displayed in Fig. 11.
Our work builds on many recent theoretical investiga-

tions. Closely related constraints can be obtained in models
that contain a scalar singlet in addition to the standard
model Higgs boson, see [20] and references therein.
Consideration of the mixing between the standard model
Higgs boson and scalars from other sectors is an example
of the ‘‘Higgs Portal’’ introduced in [21–23]. Our discus-
sion here is complementary to direct searches for the
vectors [24–29] or scalars [30] present in the model, or
to the theoretical investigations of this class of models
based on their flavor couplings [8,31–36].
In the next section we review the renormalizable coloron

model [4,17–19] and set our notation. The following sec-
tion demonstrates the theoretical bounds from requiring
vacuum stability and tree-level unitarity. The fourth section
establishes the constraints on the scalar sector of the
renormalizable coloron model from experimental results
on precisely measured electroweak quantities, the ob-
served properties of the 125 GeV scalar boson, and LHC
limits on the additional Higgs-like bosons decaying to
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dibosons. The last section combines the individual
analyses and includes a summary of our results.

II. THE RENORMALIZABLE COLORON MODEL

The renormalizable coloron model [4,17–19] consists of
a minimal renormalizable extension of the standard model
(SM) color sector, in which the color gauge group is
enlarged to SUð3Þ1c � SUð3Þ2c. In this model, the sponta-
neous symmetry breaking of the SM electroweak sector is
accompanied by a spontaneous breaking of the enlarged
color gauge group to the diagonal subgroup SUð3Þc, which
is identified with ordinary QCD.

Hence, the model contains, in addition to the usual mass-
less gluon color-octet, a set of massive color-octet vector
bosons, generically called colorons. To facilitate the sponta-
neous breaking of the symmetry in the enhanced color sector,
the theory includes a scalar ð3; �3Þ under the SUð3Þ1c �
SUð3Þ2c interactions. Under SUð3Þc this boson includes a
gauge-singlet scalar, a gauge-singlet pseudoscalar, a set
of electroweak-singlet color-octet scalars, and a set of
electroweak-singlet color-octet pseudoscalars that are
‘‘eaten’’ by the massive colorons. The symmetry breaking
in the extended color sector is induced when the gauge-
singlet scalar (which is even under charge conjugation
combined with parity (CP)) develops a nonzero vacuum
expectation value (VEV). In principle, this degree of freedom
is capable of mixing with the SM electroweak Higgs boson,
giving rise to potentially interesting phenomenology [11].
Moreover, as described below, the renormalizable coloron
model includes heavy spectator quarks [5,37–39] which
serve to cancel potential anomalies introduced by the chiral
couplings of the quarks to the extended color gauge group.

A. The bosonic sector

The model is described by the Lagrangian

L ¼ Lelectroweak þLcolor þLscalar þLfermion; (1)

where

Lcolor ¼ � 1

2
Tr½G1��G

��
1 � � 1

2
Tr½G2��G

��
2 �

þLgauge-fixing þLghost; (2)

Lscalar¼D��yD��þTr½D��yD����Vð�;�Þ: (3)

In (2), G1�� and G2�� represent the field-strength tensors of

the original SUð3Þ1c and SUð3Þ2c gauge bosons, respectively,
with the corresponding couplings gs1 and gs2 . The SM elec-

troweak gauge sector is unaltered, and thefield�, in (3), is the
SM Higgs doublet, responsible for electroweak symmetry
breaking, which may be written in component form as

� ¼ 1ffiffiffi
2

p i
ffiffiffi
2

p
�þ

vh þ h0 þ i�0

 !
: (4)

In this expression, h0 is the SM Higgs boson with the asso-
ciated VEV vh ¼ 246 GeV, and �0;� are the usual electro-
weak Nambu-Goldstone bosons. The electroweak covariant
derivative is defined in the standard way,

D�� ¼ @��� igWb
��

b�þ i

2
g0B�� ð�b � �b=2Þ;

(5)

with �b the Pauli matrices.
The � field in (3), on the other hand, is responsible for

the spontaneous symmetry breaking in the enhanced color
sector, and has the component form [19]

� ¼ 1ffiffiffi
6

p ðvs þ s0 þ iAÞI3�3 þ ðGa
H þ iGa

GÞta

ðta � �a=2Þ;
(6)

where �a are the Gell-Mann matrices. The field s0 (A)
represents the CP-even (-odd) gauge-singlet scalar compo-
nent, andGa

H is a set of scalar color-octets. Asmentioned, the
CP-even scalar degree of freedom, s0, develops a VEV, vs,
triggering spontaneous symmetry breaking in the extended
color sector. The states Ga

G denote the colored Nambu-

Goldstone bosons, ‘‘eaten’’ by the colorons as a result of
the symmetry breaking. The entire � field transforms as the
bifundamental of the SUð3Þ1c � SUð3Þ2c gauge group,

� ! u1�uy2 ðui ¼ exp ½i�a
i t

a�Þ; (7)

with �a
i the parameters of the original SUð3Þic transforma-

tions. Thus, the color covariant derivative takes the form

D�� ¼ @��� igs1G
a
1�t

a�þ igs2�Ga
2�t

a: (8)

The most general renormalizable scalar potential
[4,17–19], also formally accommodating a mixing
between the � and � fields, can be written as1

Vð�;�Þ¼�s

6
ðTr½�y��Þ2þ	s

2
Tr½ð�y�Þ2�

��sþ	sffiffiffi
6

p r�vsðdet�þH:c:Þ

��sþ	s

6
v2
sð1�r�ÞTr½�y��þ�h

6

�
�y��v2

h

2

�
2

þ�m

�
�y��v2

h

2

��
Tr½�y���v2

s

2

�
; (9)

where, �h, �m, �s, 	s, and r� are all dimensionless
couplings. Defining

�0
s � �s þ 	s; (10)

the potential (9) is bounded from below for large field
values once the following conditions are satisfied:

1We follow the analysis given in [19], with some modifica-
tions. See Appendix A for details.
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�h>0; �0
s>0; 	s>0; �2

m<
1

9
�h�

0
s: (11)

Moreover, as explained in Appendix A, the potential in (9)
has a global minimum for the VEVs,

h�i ¼ vhffiffiffi
2

p 0

1

 !
; h�i ¼ vsffiffiffi

6
p I3�3; (12)

where we take vh;s > 0 by convention, provided that

0 � r� � 3

2
: (13)

In the broken symmetry phase in both the electroweak
and the extended color sectors, the kinetic terms of the
quadratic Lagrangian are diagonal. However, there is now
a mass-mixing among the Ga

1� and Ga
2� vector fields and

among the h0 and s0 scalars. These may be diagonalized
by means of orthogonal rotations, which define their
corresponding mass eigenstates,

Ga
1�

Ga
2�

 !
¼ R
c

Ga
�

Ca
�

 !
;

h0

s0

 !
¼ R�

h

s

 !
; (14)

with the mixing angles 
c and �, respectively, and

R
c �
cos
c � sin
c

sin 
c cos 
c

 !
; sin 
c �

gs1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2s1 þ g2s2

q ;

(15)

R� � cos� sin�

� sin� cos�

 !
;

cot 2� � 1

6�m

�
�0
s

�
1� r�

2

�
vs

vh

� �h

vh

vs

�
:

(16)

The gluon field, Ga
� [c.f. (14)], remains massless, with the

corresponding QCD coupling, gs, defined by

1

g2s
¼ 1

g2s1
þ 1

g2s2
; (17)

whereas the coloron, Ca
�, acquires the mass [19]

MC ¼
ffiffiffi
2

3

s
gsvs

sin 2
c
: (18)

The masses of the diagonalized scalar states, h and s in
(14), are determined to be

m2
h;s ¼

1

6

�
�hv

2
h þ �0

sv
2
s

�
1� r�

2

�

�
�
�hv

2
h � �0

sv
2
s

�
1� r�

2

��
sec 2�

�
: (19)

In this paper, we shall identify the lighter of these two
massive scalar degrees of freedom, h, with the recently
discovered 125 GeV Higgs-like state at the LHC [1,2].

Furthermore, from the quadratic Lagrangian, one can
deduce the following (already diagonal) masses for the
other physical (pseudo-)scalars in the spectrum,

m2
A ¼ v2

s

2
r��

0
s; (20)

m2
GH

¼ 1

3
½v2

s	s þ 2m2
A�; (21)

which, invoking (11), implies the condition

m2
GH

� 2

3
m2

A: (22)

B. The fermionic sector

Generally speaking, the charges of the ordinary quarks
under the extended SUð3Þ1c � SUð3Þ2c color gauge group
can be either vectorial or chiral. Regardless of how we
choose those charges, in the vector-boson mass basis (14),
the quarks will display their usual vectorial coupling to the
gluon; their coupling to the massive coloron, however, may
be chiral [39,40]. If the ordinary fermions have chiral
charges under the extended color group, this will render
the SUð3Þ1c � SUð3Þ2c theory anomalous [5,37–39]. As
described in [38], the simplest way to cancel these anoma-
lies is to include additional spectator fermions,Qk

L;R, which

simultaneously (a) have the same electric charges as the
ordinary quarks, (b) have the opposite chirality charges as
the ordinary quarks under SUð3Þ1c � SUð3Þ2c, and (c) are
vectorial under the SUð2ÞW �Uð1ÞY electroweak interac-
tions (e.g., are all weak doublets or all weak singlets).2

Here Qk
L;R denote up- and down-type quarks, and k is a

flavor index. Since the spectators are vectorial under the
electroweak interactions, they can get a mass from a
Yukawa coupling with the � boson. The fermion
Lagrangian then contains

Lfermion � �yQ½ �Qk
R�Qk

L þ �Qk
L�

yQk
R�; (23)

where, for simplicity, the spectator fermion masses are
assumed to be flavor universal,

MQ ¼ yQffiffiffi
6

p vs: (24)

Due to the strong constraints on flavor-changing couplings
of the colorons, we neglect the potential mixing between
the ordinary quarks and the spectator fermions [35].
The number of spectator fermions required depends on

the details of the model [38]. If the ordinary quarks’
charges are vectorial under the extended color interactions,
no spectators are necessary. If the quarks’ extended color

2In general, if the spectators were, instead, chosen to be chiral
under the electroweak interactions, additional leptonlike (color
neutral) spectators would be required to cancel SUð2ÞW global
anomalies.
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interactions are chiral but flavor universal, then three gen-
erations of spectators (three uplike and three downlike
spectators) are required. Alternatively, if one takes the
chiral couplings of the third quark generation under the
extended color group to be opposite to those of the first
two, then only one spectator generation (one uplike and
one downlike spectator) is needed to cancel anomalies. In
what follows, therefore, we will present phenomenological
results (see Sec. IVB) in the case of zero, one, or three
generations of spectator quarks.

The relevant Feynman rules of the renormalizable
coloron model are listed in Appendix B. The following
sections of the current study explore the viability of this
theory by investigating the theoretical and phenomenologi-
cal consequences of its predicted interactions.

III. THEORETICAL BOUNDS ON THE MODEL

In this section, we examine the current general con-
straints on the renormalizable coloron model, arising
from various theoretical considerations; experimental
bounds will be considered in the next section. Compared
to the ordinary SM, the renormalizable coloron model
introduces seven additional free parameters:

(i) Five free parameters from the enhanced scalar sector
[Eq. (9)], namely, the CP-even singlet VEV, vs, and
the dimensionless couplings 	s, r�, �m, and �s

[or equivalently �0
s by using (10)]

(ii) One free parameter from the extended color gauge
group [Eq. (17)], which can be taken as the gauge
group’s mixing angle, 
c

(iii) One free parameter from the extended fermion
sector [Eq. (23)], namely, the spectators’ (univer-
sal) Yukawa coupling, yQ.

With the aid of (16), (18)–(21), and (24), it is possible to
trade all of the scalar dimensionless couplings, the color
gauge group’s mixing angle, and the spectators’ Yukawa
coupling for the physically more convenient mass spec-
trum of the particles present in the theory and the scalar
mixing angle, according to the definitions

�h ¼ 3

2

m2
h þm2

s þ ðm2
h �m2

sÞ cos 2�
v2
h

;

�m ¼ � 1

2

m2
h �m2

s

vhvs

sin 2�;

�0
s ¼ 1

2

2m2
A þ 3ðm2

h þm2
sÞ � 3ðm2

h �m2
sÞ cos 2�

v2
s

;

	s ¼
3m2

GH
� 2m2

A

v2
s

;

r� ¼ 4m2
A

2m2
A þ 3ðm2

h þm2
sÞ � 3ðm2

h �m2
sÞ cos 2�

;

sin 2
c ¼
ffiffiffi
2

3

s
gsvs

MC

; yQ ¼ ffiffiffi
6

p MQ

vs

: (25)

Note that the sign of sin� is correlated with the sign of �m,
and that either sign is possible [see Eq. (11)]. Fixing the
electroweak VEV at vh ¼ 246 GeV and the mass of the h
scalar at mh ¼ 125 GeV, the seven new free parameters of
the renormalizable coloron model can be conveniently
written as

fvs;ms; sin�;mA; mGH
;MC;MQg: (26)

In the following subsections, we constrain the model’s
parameter space (26) on several theoretical grounds. For
the sake of physical clarity, we shall display the resulting
bounds in two-dimensional exclusion plots of ms vs sin�
for various benchmark values of the remaining relevant
parameters entering each analysis. In presenting these
plots, we take into account existing collider limits on the
masses of the coloron and the color-octet scalar. Older
Tevatron and current LHC searches require the coloron
mass, MC, to be at least in the TeV region [24–29], while
the Tevatron excludes the mass range from 50 to 125 GeV
for the scalar color octet, mGH

[30].

A. Stability

As mentioned in Sec. I, the scalar potential (9) is guar-
anteed to be bounded from below for large values of the
fields, once the conditions (11) are fulfilled. Trading the
relevant couplings for the model’s free parameters (26) by
means of (25), one can, however, easily demonstrate that
all of these conditions are automatically satisfied in the full
ms � sin� parameter space.3

The only nontrivial constraint arises from the condition
on r� in Eq. (13), which was necessary to ensure that the
global minimum of the scalar potential would coincide
with the electroweak and the extended color sector sym-
metry- breaking VEVs (12). Inspecting (25) reveals that
the condition (13) on r� translates into bounds in the
ms � sin� plane for variousmA values and is independent
of the other free parameters of the theory. In particular, an
explicit dependence on the singlet VEV, vs, cancels.
Figure 1 depicts the exclusion bounds on the ms � sin�
plane, arising from the condition (13), for several bench-
mark values of mA. While a light mA leaves the plane
unconstrained, it is evident that a heavy A pseudoscalar
disfavors a relatively light s scalar for all values of the
scalar mixing angle. In particular, examining the expres-
sion for r� in (25), we see that in the limit4 sin� ! 0

ms � mA

3
: (27)

3It is curious to note that, given (25), the coupling 	s bears no
relation to ms and sin�, and, hence, its stability condition (11) is
trivially satisfied.

4As we demonstrate in Sec. IVA below, the precision electro-
weak data imply that sin� is less than about 0.2.
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B. Unitarity

It is well established, within the SM, that the high-
energy cross section for the tree-level Wþ

L W
�
L ! Wþ

L W
�
L

scattering is unitarized by the exchange of the SM Higgs
boson in the s and t channels. To be specific, the Higgs
boson exchange contributions cancel the term of the cross
section that is quadratic in the center-of-mass (CM) energy,
introduced by the electroweak gauge boson exchange
channels as well as the W four-point contact interaction
(Fig. 2). The tree-level cross section, consequently, de-
pends only logarithmically on the CM energy and respects
unitarity to very high energies by satisfying the condition

ja0j< 1

2
: (28)

In this expression, a0 is the s-wave coefficient of the
partial-wave expanded amplitude, given by

a0 ¼ 1

32�

Z 1

�1
T d cos 
; (29)

where iT is the total amplitude of the scattering process,
and 
 is the polar angle in spherical coordinates.

In the renormalizable coloron model, the unitarizing role
of the SM Higgs, h0, is divided between the two scalars h
and s, according to the mixing (14). The corresponding
couplings are suppressed with respect to the original SM
Higgs coupling by factors of cos� and sin�, respectively.
The resulting total scalar contribution to the quadratic CM
energy term in the cross section is, thus, proportional to
cos 2�þ sin 2� ¼ 1, and the same cancellation against the
gauge boson diagrams follows as in the SM. The high-
energy cross section for tree-levelWþ

L W
�
L ! Wþ

L W
�
L scat-

tering is, consequently, only logarithmically dependent on
the CM energy, as in the ordinary SM.

Let us now turn to a general study of the unitarity of
longitudinal electroweak vector-boson scattering in this
model. The unitarity analysis concerns, in particular, the

high-energy behavior of these cross sections, with the CM
energy exceeding any other mass scale present in the
theory. In this energy regime, the external longitudinal
vector bosons may be well approximated by their corre-
sponding eaten Nambu-Goldstone bosons, according to the
equivalence theorem [41–47]. A full coupled-channel
analysis of the scalar scattering processes involving all
the neutral initial- and final-state two-body scalar scatter-
ings [45] is appropriate. Furthermore, one may perform the
unitarity study in the gaugeless limit, where all the gauge
couplings are set equal to zero and the contribution of the
gauge boson exchange channels may be neglected.
The overall strategy can be summarized as follows: the

coupled-channel amplitude of all the neutral initial- and
final-state two-body scalar scatterings in the theory can be
written as

iT coupled ¼ b 	 iT 	 bT; (30)

where b is the normalized basis of the initial two-body
asymptotic states, and iT is the scattering matrix

m 500 GeV

0.0 0.2 0.4 0.6 0.8 1.0

500

1000

1500

2000

2500

3000

sin

m
s

G
eV

m 1000 GeV

0.0 0.2 0.4 0.6 0.8 1.0

500

1000

1500

2000

2500

3000

sin

m
s

G
eV

m 2000 GeV

Excluded by the global minimum condition
of the scalar potential

0.0 0.2 0.4 0.6 0.8 1.0

500

1000

1500

2000

2500

3000

sin

m
s

G
eV

FIG. 1 (color online). Constraints on the ms � sin� plane arising from the scalar potential’s global minimum condition (13), for
ms � 150 GeV. The panels correspond to three representative values of the A pseudoscalar mass [c.f. (6)]. A heavy mA generally
disfavors a light ms for any scalar mixing angle value.

W+
L W+

L

W−
L W−

L

FIG. 2. Diagrams contributing to the WW scattering. The top
row illustrates the s and t channels of the electroweak gauge
boson exchange, as well as the four-point contact interaction.
The bottom row diagrams are due to scalar exchange.
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connecting the initial and final asymptotic states. Once the
coupled-channel amplitude (30) is determined, it may be
expanded in partial waves by means of (29). In order to
deduce the most stringent constraints on the parameter
space (26) that are dictated by the unitarity condition

(28), one needs to diagonalize the resulting expression
and find its largest eigenvalue(s) [45].
Employing the field eigenstates,5 the properly normal-

ized and (color- and electric-) neutral scattering basis, b,
takes the form

b ¼ b1 b2 b3
� 	

; (31)

b1 � �þ�� 1ffiffi
2

p h0h0
1ffiffi
2

p �0�0 1ffiffi
2

p s0s0
1ffiffi
2

p AA 1
4G

a
GG

a
G

1
4G

a
HG

a
H


 �
; (32)

b2 � 1ffiffi
8

p Ga
GG

a
H s0A


 �
; (33)

b3 ¼ h0s0 �0s0 h0A �0A h0�
0

� 	
; (34)

where implicit summation over the color factors is
assumed. As we shall demonstrate, the scattering matrix,
iT, in (30) is of a block-diagonal form, with each block
corresponding to a sub-basis bi, given in (32)–(34).

In the high-CM-energy limit, the scalar exchange chan-
nels are suppressed compared to the scalar contact inter-
actions, due to the intermediate propagator which falls off
with the energy. Because we are working in the gaugeless
limit, there are no vector-boson exchange diagrams.
Consequently, for the purpose of analyzing the unitarity
constraints in this energy regime, it is sufficient to take into
account only the scalar contact diagrams.

Using the normalized neutral scattering basis (31) and
the Feynman rules listed in Appendix B, one can determine
the scattering matrix, iT, from the scalar quartic couplings.
We find it takes block-diagonal form, when written using
the sub-bases (32)–(34), and is given by

T ¼ �
d1 0 0

0 d2 0

0 0 d3

0
BB@

1
CCA; (35)

with the blocks defined by

d1 ¼

2�h

3
�h

3
ffiffi
2

p �h

3
ffiffi
2

p �mffiffi
2

p �mffiffi
2

p 2�m 2�m

�h

3
ffiffi
2

p �h

2
�h

6
�m

2
�m

2

ffiffiffi
2

p
�m

ffiffiffi
2

p
�m

�h

3
ffiffi
2

p �h

6
�h

2
�m

2
�m

2

ffiffiffi
2

p
�m

ffiffiffi
2

p
�m

�mffiffi
2

p �m

2
�m

2
�0
s

2
�0
s

6

ffiffi
2

p
�0
s

3

ffiffiffi
2

p
�0
sþ2	s

3

�mffiffi
2

p �m

2
�m

2
�0
s

6
�0
s

2

ffiffiffi
2

p
�0
sþ2	s

3

ffiffi
2

p
�0
s

3

2�m

ffiffiffi
2

p
�m

ffiffiffi
2

p
�m

ffiffi
2

p
�0
s

3

ffiffiffi
2

p
�0
sþ2	s

3 5 2�0
sþ	s

6
8�0

sþ9	s

6

2�m

ffiffiffi
2

p
�m

ffiffiffi
2

p
�m

ffiffiffi
2

p
�0
sþ2	s

3

ffiffi
2

p
�0
s

3
8�0

sþ9	s

6 5 2�0
sþ	s

6

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

;

d2 ¼
�0
s�2	s

3

ffiffi
8

p
	s

3ffiffi
8

p
	s

3
�0
s

3

0
@

1
A; d3 ¼

�mI4�4 0

0 �h

3

 !
:

(36)

Inserting (35) into (30), and performing the trivial integration in (29), we obtain for the partial-wave expanded scattering
amplitude in the field basis

a0coupled ¼ � 1

16�
T: (37)

Subsequent diagonalization of T (35) yields for (37) the eigenvalues

a0coupled ¼ � 1

16�
diag �h

3
�h

3
�0
s�	s

3
�0
sþ2	s

3
�0
s�4	s

3 �� �þ �0
sþ2	s

3
�0
s�4	s

3 �m �m �m �m
�h

3


 �
; (38)

5In principle, the amplitude (30) needs to be evaluated in the mass eigenstate basis. However, the amplitudes constructed in the mass
and in the field eigenstate bases share the same eigenvalues. Since we are ultimately interested in the eigenvalues of the partial-wave
expanded coupled-channel amplitude, we choose to work in the (computationally more convenient) field eigenstate.
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where

�� � 1

6

�
3�h þ 10�0

s þ 8	s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
648�2

m þ ð3�h � 10�0
s � 8	sÞ2

q �
: (39)

The largest eigenvalue is �þ, and the corresponding eigenvector is essentially the color-neutral channel composed of the
colored scalars Ga

GG
a
G and Ga

HG
a
H; scattering in this channel is enhanced by the large number of states.
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FIG. 3 (color online). The most stringent unitarity constraints on the ms � sin� plot for ms � 150 GeV. The top row panels
represent the bounds for a singlet VEV vs ¼ 500 GeV and for several values of the scalar color-octet mass, mGH

. The panels in the

middle (bottom) row correspond to vs ¼ 1000 ð2000Þ GeV, which yield additional allowed parameter space and also a larger mGH
. In

each panel, the three curves correspond (from bottom to top, mA 2 f0; 12mGH
;mGH

g, and the resulting plots are superimposed,

demonstrating a moderate dependence of the unitarity constraints on this parameter. A larger mA slightly weakens the exclusion
bounds.
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The eigenvalues (38) are, by virtue of (25), functions
of the singlet VEV, the scalar mixing angle, and the three
scalar masses. Demanding the unitarity condition (28) to
be satisfied for each eigenvalue, we find that the most
stringent constraint in the ms � sin� plane is set by the
eigenvalue �þ (39) for various (reasonable) choices of
the remaining relevant input parameters. It is worth
noting that, for each selected singlet VEV, vs, the bounds
are only moderately sensitive to the pseudoscalar
mass, mA; in contrast, their dependence on the mass
of the heavier [Eq. (22)] scalar color-octet, mGH

, is

significant.
Our results are summarized in Fig. 3. The top row

illustrates the exclusion plots for vs ¼ 500 GeV, where
the panels correspond to three representative values of
mGH

, from light to heavy. The middle (bottom) row

corresponds to vs ¼ 1000 ð2000Þ GeV, again for three
selected mGH

values. In each panel, we superimpose the

constraints corresponding to three values of mA:
f0; 12mGH

;mGH
g, where the smallest mA gives the stron-

gest constraint. It is evident that a larger singlet VEV,
accommodating heavier scalar color-octets, Ga

H, also
provides additional allowed parameter space, whereas
the sensitivity to the mass of the A pseudo-scalar is
limited.

Finally, we note that the bounds obtained from the
unitarity of scalar-boson scattering in the renormalizable
coloron model automatically ensure that the theory
remains perturbative at the energy scales of interest. In

particular we have checked that, if the unitarity bounds
derived in this subsection are respected, all of the quartic
couplings in the potential in Eq. (9) are (substantially)
smaller than ð4�Þ2. Quantum loop corrections therefore
remain small.

IV. EXPERIMENTAL BOUNDS ON THE MODEL

Having explored the theoretical constraints on the
renormalizable coloron model in the previous section,
let us now consider the restrictions arising from the
experimental data.

A. Electroweak precision tests

In this subsection, we discuss how data obtained from
electroweak precision tests [48] may be used to constrain
the free parameters of the model.
As explained in Sec. II, the renormalizable coloron

model possesses two physical scalar degrees of freedom,
h and s, that are capable of interacting with the electroweak
gauge bosons. Their couplings are, however, suppressed by
factors of cos� and sin�, respectively, compared with
those of the SM Higgs boson, h0 [c.f. (14)]. The potential
effects of such a modification with respect to the ordinary
SM may be explored via the oblique parameters S and T
[49–52].6 We employ the oblique parameter expressions
derived for the SM extensions containing an arbitrary
number of electroweak doublet and singlet scalars7 [53];
for our model, these take the form

S ¼ sin 2�

24�
flogRsh þ Ĝðm2

s ; m
2
ZÞ � Ĝðm2

h; m
2
ZÞg;

T ¼ 3sin 2�

16�m2
Wsin

2
W

�
m2

Z

�
logRZs

1� RZs

� logRZh

1� RZh

�
�m2

W

�
logRWs

1� RWs

� logRWh

1� RWh

��
;

(40)

where, 
W is the weak mixing angle, and we have defined

RIJ � m2
I

m2
J

;

Ĝðm2
I ; m

2
JÞ � � 79

3
þ 9RIJ � 2R2

IJ þ ð12� 4RIJ þ R2
IJÞf̂ðRIJÞ þ

�
�10þ 18RIJ � 6R2

IJ þ R3
IJ � 9

RIJ þ 1

RIJ � 1

�
logRIJ;

f̂ðRIJÞ ¼

8>>>><
>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RIJðRIJ � 4Þp

log
�����RIJ�2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RIJðRIJ�4Þ

p
2

����� ðRIJ > 4Þ
0 ðRIJ ¼ 4Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RIJð4� RIJÞ

p
arctan

ffiffiffiffiffiffiffiffiffiffi
4�RIJ

RIJ

q
ðRIJ < 4Þ

: (41)

7The extra spectator fermions which may be present are, as described in Sec. II B, vectorial under the electroweak interactions. Their
contribution to the oblique parameters is therefore negligible.

6The contributions from the other oblique parameters are subdominant as compared with S and T, and may be neglected.
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Following the analysis of [48], if one sets mh ¼
126 GeV, mt ¼ 173 GeV, and MW;Z to their observed

values, then the oblique parameters (40) only depend on
the scalar mixing angle and the mass of the s scalar. The S
and T values that result can be compared to the post-Higgs
discovery bounds [48]

S ¼ 0:03� 0:10; T ¼ 0:05� 0:12; (42)

with an S-T correlation coefficient of 0.89. As an
illustration, two examples of the dependence of S and T
on ms and sin� are shown in Fig. 4, along with the
95% C.L. data contour.

Let us analyze these expressions in more detail.
For a heavy s scalar, with a mass much larger than the

electroweak scale, the function Ĝ in (41) reduces to

ms ! 1: Ĝðm2
s ; m

2
ZÞ ¼ � 5

3
þ log

1

RZs

þOðRZsÞ; (43)

which is a monotonically increasing function of m2
s .

Examining (40) for a fixed mixing angle, on the one
hand, reveals that in this limit, the oblique parameters
retain a (mild) logarithmic dependence on ms, albeit with
the opposite signs: S receives a positive contribution,
whereas T is pushed in the negative direction. On the
other hand, keeping ms fixed, one notes the direct pro-
portionality of the oblique parameters (40) to the scalar
mixing angle, once more with opposite signs. In the case
of no mixing ( sin� ¼ 0), both parameters receive no
contribution from new physics, whereas in case of the
maximal mixing ( sin� ¼ 1), the oblique parameters cor-
respond to their peak values. These observations are
reflected in Fig. 5, which depicts the overall S-T bounds

at 95% C.L. on the ms � sin� plane. One notes that the
electroweak precision data severely restrict the large mix-
ing region.

B. LHC scalar boson results

Finally, let us investigate the impact of the LHC results
on the renormalizable coloron model. We begin by
considering limits on the light scalar h, and then consider
limits on the heavy scalar s.
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FIG. 4 (color online). Illustrative model predictions for the electroweak corrections S and T, and comparison with allowed region
[48]. Note that either a larger ms or a larger sin� pushes S towards more positive values and T towards more negative values.
Left: Variation with scalar mixing angle for two examples of fixed ms in the S-T plane with 0 � sin� � 1. The 95% C.L. contour has
also been depicted, defining the allowed region. The black dots denote representative values of the mixing angle for the corresponding
masses of the s state, including the maximum allowed value. Right: Variation with ms for two examples of fixed sin� with
150 � ms � 3000 GeV. The black dots denote representative values of the s scalar mass for the corresponding mixing angles,
including the maximum allowed value.
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FIG. 5 (color online). Constraints from the electroweak preci-
sion tests in the ms � sin� plane at 95% C.L. for ms �
150 GeV, based on the electroweak fits of [48]. The data
excludes large mixing, due to the high sensitivity of the oblique
parameters to the scalar mixing angle, whereas the dependence
on ms is only logarithmic for large values.
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1. Limits on the light scalar h

We identify the recently discovered 125 GeV
Higgs-like boson with the h state, resulting from a
mixing among the SM Higgs boson, h0, and the
gauge-singlet scalar, s0, as in (14). Since the light
boson is an admixture of the s0 and h0 states, its
couplings to standard model particles will be modified
with respect to the expectations for a standard model
Higgs boson. Furthermore, the presence of the colored
scalars and vectors and of the possible spectator fer-
mions in the renormalizable coloron model can dra-
matically affect the gluon fusion cross section for this
particle [11]. Lastly, if the pseudo-scalar A boson is
light enough, the h ! AA decay is open and changes
the branching ratios of this particle with respect to
those of the standard model Higgs. We can parame-
terize the relevant h couplings using an effective
Lagrangian8 as9

Leff ¼ cV
2m2

W

vh

hWþ
�W

�� þ cV
m2

Z

vh

hZ�Z
� � cb

mb

vh

h �bb

� c�
m�

vh

h ���� cc
mc

vh

h �ccþ cg
�s

12�vh

hGa
��G

a��

þ c�
�

�vh

hA��A
�� � cAhAA: (44)

In the renormalizable coloron model, applying
Eq. (14) yields the value of the coefficients in the first
line of (44)

cV ¼ cb ¼ cc ¼ c� ¼ cos�; (45)

whereas, the coupling for the decay of h into a pair of the
pseudo-scalars, A, may be determined from the scalar
potential (9) in the mass eigenstate basis to have the
coupling strength

cA ¼ � 1

2

m2
h þm2

A

vs

sin�: (46)

The AA decay mode becomes kinematically accessible
only if 2mA � mh ¼ 125 GeV. ATLAS has set an upper
limit [56] on the invisible branching fraction of a
125 GeV Higgs boson produced in association with a Z
boson at the SM rate; the 95% CL upper bound estab-
lished is BRðh ! AAÞ< 65%. We find this sets no addi-
tional limits on the renormalizable coloron model if
vs > 500 GeV.

The leading order interaction of h and a pair of gluons
or photons emerges at one loop. In addition to the usual
SM particles (including the top quark) with a suppressed

coupling proportional to cos� [c.f. (45)], there are various
new degrees of freedom participating in the loop-generated
interaction, whose couplings are proportional to sin�.
Hence, we may parametrize the cg and c� coefficients

according to

cg ¼ cos�ĉSMg � sin�
cg;

c� ¼ cos�ĉSM� � sin�
c�;
(47)

where the contributions from the t, b, c, and � fermions are
all included in ĉSMg and ĉSM� (details in Eq. (51)). The new-

physics contributions to the decay of the h scalar into pairs
of gluons and photons are, respectively, parametrized by

cg and 
c� in (47). Note that the contribution of 
cgð
c�Þ
to cgðc�Þ is sensitive to the sign10 of sin�.

The non-SM diagrams contributing to the h ! gg and
h ! �� decay processes are shown in Figs. 6 and 7,
respectively. They represent the effects of the extra physi-
cal degrees of freedom: the vector colorons, the Ga

H scalar
color octets and the spectator fermions all run in the loop
for the h ! gg decay process, while only the spectator
fermions contribute to h ! ��. The number of spectator
fermions depends on the SUð3Þc1 � SUð3Þ2c gauge charges
chosen for the ordinary fermions. As explained in Sec. II B,
three illustrative examples of the fermion charge assign-
ments require zero, one, or three spectator quark genera-
tions, where each spectator quark generation consists of an
up- and a down-type quark. The spectator quarks have the
same color and electric charges as their corresponding
quark counterparts and, for simplicity, they are assumed
to have a common mass. Therefore, all spectator flavors
contribute equally to the h ! gg decay, while their con-
tributions to the h ! �� decay channel are proportional to
their corresponding electric charges.
Using the Feynman rules in Appendix B, we find the

couplings


cg ¼ �3
vh

vs

�
AVð�CÞ þ

�
1þm2

h � 2
3m

2
A

2m2
GH

�
ASð�GH

Þ

� 2NQ

3
AFð�QÞ

�
; (48)


c� ¼ 5NQ

18

vh

vs

AFð�QÞ; (49)

whereNQ is the number of spectator generations, �i � m2
h

4m2
i

,

and the subscript C (Q) represents the coloron (spectator).
In addition, we have defined the vector, fermion, and scalar
form factors, respectively, as

8An example of such an effective Lagrangian has previously
been studied for various models in [54,55].

9As mentioned in the beginning of Sec. III, the mass range
mGH

2 ½50; 125� is already ruled out by Tevatron searches. We
therefore do not include the decay channel h ! Ga

HG
a
H in our

analysis.

10This is the only place where such a sensitivity arises. It is
evident from (25) that a change of sign of sin� corresponds to a
change of sign in �m, which has no further effect on the tree-
level analyses [c.f. (11)].
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AVð�Þ � 1

8�2
½3�þ 2�2 � 3ð1� 2�Þfð�Þ�;

AFð�Þ � 3

2�2
½�� ð1� �Þfð�Þ�;

ASð�Þ � 1

8�2
½�� fð�Þ�;

fð�Þ �
8<
:
arcsin 2

ffiffiffi
�

p
� � 1

� 1
4

h
log 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1���1

p
1�

ffiffiffiffiffiffiffiffiffiffiffi
1���1

p � i�
i
2

� > 1
:

(50)

For completeness, we also note the SM contributions

ĉSMg � AFð�tÞ þ AFð�bÞ þ AFð�cÞ;
ĉSM� � �AVð�WÞ þ 1

18
AFð�bÞ þ 2

9
½AFð�tÞ þ AFð�cÞ�

þ 1

6
AFð��Þ; (51)

which include the contributions from the t, b, c, and �
fermions. The vector, fermion, and scalar form factors
(50) quickly converge to their asymptotic values, once
their corresponding massive particles are heavier than
mh ¼ 125 GeV,

MC;MQ;mGH
* mh ) AV ! 7

8
; AF ! 1;

AS ! � 1

24
;

(52)

rendering (48) insensitive to the precise values of these
parameters in the heavy mass limit.
Having determined all of the coupling coefficients in

the Lagrangian (44), we may now incorporate the avail-
able LHC experimental data in a global-fitting analysis.
The Lagrangian coefficients are functions of all of the
model’s free parameters (29), except ms. As mentioned,
the sensitivity to the parameters MC, MQ, and mGH

is

negligible for the region of interest, due to the asymptotic
behavior (52). Hence, to construct an ms � sin� exclu-
sion plot, we need to find the best-fit value of the
scalar mixing angle, sin�, using the remaining relevant
parameters as input.
The data we have used in our fit to the properties of the h

is displayed in Table I, and is derived from [57–59]. In
order to make our fit more informative, we have read the
strengths of the separate gluon fusion (�ggFþttH) and

vector-boson fusion (�VBFþVH) production mechanisms,
and their corresponding correlation coefficient (�) from the
plots presented in [57,58]. As a cross check, we have
verified that the total signal strength that results from our
values (�comb) agrees well with the numerical result quoted
(�exp

comb).

Figure 8 displays the best fit values for two choices of
the pseudoscalar mass mA. In the first row, we display the
values for mA ¼ 0, which is representative of our results
when the invisible decay h ! AA is open. In this case,
the presence of the invisible decay mode uniformly de-
creases all of the visible signal strengths relative to stan-
dard model expectations. This suppression disfavors the
additional suppression of these decays that would occur
through substantial mixing (i.e., small cos�), resulting in
the best fit region’s favoring small sin�.
In the lower row, however, no invisible decay mode is

present. Depending on the sign of sin�, the additional
contributions from the spectator fermions can interfere
constructively or destructively with the standard model
contributions, both in the gluon fusion production
mechanism and in the diphoton decay amplitudes. In
this case, there is a much larger model-dependence on

FIG. 6. One-loop diagrams, containing physical degrees of freedom, contributing to the new-physics contributions to h ! gg. The
columns represent, from left to right, the contributions of the heavy vector color-octets (Ca

�), scalar color-octets (G
a
H), and the spectator

fermions (Q) in the loop.

FIG. 7. New-physics one-loop diagrams contributing h ! ��.
Only the heavy spectator fermions in the loop contribute to this
process.
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the bounds depending on the spectator content of the
theory.

Finally, given the current uncertainties in the observa-

tions, the �2 minimum is relatively shallow and the ‘‘best-

fit’’ values in Fig. 8 change significantly across the six

diagrams. Taken together, however, these diagrams are a

fair representation of the region in sin� and vs which is
allowed by current LHC data.

2. LHC limits on the heavy scalar s

Since the heavy s is an admixture of the gauge-
eigenstate s0 with the h0 fields, it would appear in searches

TABLE I. LHC and Tevatron data on the properties of the newly observed scalar boson, expressed as measured cross section times
branching ratio relative to the standard model Higgs boson. The values for the strengths of the separate gluon fusion (�ggFþttH) and

vector-boson fusion (�VBFþVH) production mechanisms, and their correlations (�) are read from the plots presented in the references
given. We have checked that the total signal strength that results from our values (�comb) agrees well with the numerical result quoted
(�

exp
comb). For both ATLAS bb and Tevatron bb, �

exp
comb denotes VH production.

DATA �ggFþttH �VBFþVH � �comb �
exp
comb Ref

CMS �� 0:468� 0:396 1:69� 0:868 �0:485 0:79� 0:27 0:77� 0:27

CMS ZZ 0:958� 0:432 1:29� 2:13 �0:671 1:0� 0:28 0:92� 0:28
CMS WW 0:763� 0:233 0:331� 0:692 �0:246 0:70� 0:20 0:68� 0:20 [57]

CMS �� 0:684� 0:793 1:61� 0:825 �0:469 1:13� 0:42 1:10� 0:41

CMS bb 0:477� 2:62 1:25� 0:651 0.0051 1:21� 0:63 1:15� 0:62

ATLAS �� 1:62� 0:411 1:92� 0:819 �0:275 1:69� 0:32 1:6� 0:3

ATLAS ZZ 1:49� 0:517 1:84� 1:91 �0:491 1:54� 0:39 1:5� 0:4
ATLAS WW 0:793� 0:344 1:69� 0:758 �0:186 0:98� 0:29 1:0� 0:3 [58]

ATLAS �� 2:28� 1:48 �0:189� 1:04 �0:435 0:75� 0:65 0:8� 0:7

ATLAS bb None �0:4� 1:0

Tevatron bb None 1:56� 0:72 [59]
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FIG. 8. The constraints on the vs � sin� plane derived from the properties of the 125 GeV scalar observed by the LHC; the grey
region is excluded at 95% CL. We choose mA ¼ 0, which allows for the invisible decay h ! AA, in the first row and mA ¼
100 GeV (which forbids that invisible decay) in the second row. The three columns are for zero, one, and three generations of spectator
quarks, reading from left to right. Note that the sign of sin� matters.
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for a heavy ‘‘Higgs’’ boson in theWþW� and ZZ channels
at the LHC [60,61]. Therefore, as we will see, the LHC is
potentially sensitive to an s boson as heavy as 1 TeV. On
the other hand, collider searches require the coloron mass,
MC, to be at least in the TeV region [24–29] and, hence, we
can neglect the decays of s to pairs of colorons. In addition,
in what follows, we will also assume that any spectator
quarks Q are too heavy to be produced in s-boson decay.
The couplings of theQ to s arise from the terms in (23) and
are therefore proportional to MQ; consequently, the con-

tribution of the spectator fermions to s production from
gluon fusion does not ‘‘decouple’’ as MQ becomes large.

By assuming that MQ is large, we maximize the WW and

ZZ branching ratios of s without significantly suppressing
the production cross section, and hence the limits we
discuss below reflect the maximum LHC sensitivity for
this particle.

In this regime, by analogy with (44), we can write an
effective Lagrangian for s phenomenology at the LHC,

Ls;eff ¼ csV
2m2

W

vh

sWþ
�W

�� þ csV
m2

Z

vh

sZ�Z
� � cst

mt

vh

s�tt

� csb
mb

vh

s �bb� cs�
m�

vh

s ���� csc
mc

vh

s �cc

þ csg
�s

12�vh

sGa
��G

a�� þ cs�
�

�vh

sA��A
��

þ cshshhþ csAsAAþ csGH
sGa

HG
a
H; (53)

where we include the additional possibilities that the heavy
scalar may decay to pairs of the light scalar h, top quarks,
and the additional colored scalars. The tree level couplings
of SM particles to s are suppressed by the mixing angle,
and hence

csV ¼ cst ¼ csb ¼ cs� ¼ csc ¼ sin�: (54)

Using the Feynman rules in Appendix B, we find that the
effective coupling of the s to gluons is

csg ¼ sin�ĉs;SMg þ cos�
csg;

ĉs;SMg � AFð�st Þ þ AFð�sbÞ þ AFð�scÞ


csg � �3
vh

vs

�
AVð�sCÞ þ

�
1þm2

s � 2
3m

2
A

2m2
GH

�
ASð�sGH

Þ

� 2NQ

3
AFð�sQÞ

�
; (55)

where �si � m2
s=4m

2
i and NQ is the number of spectator

quark generations. Note that here, unlike in the case of
the h considered above, the contributions of the extra
colored scalar, vector, and fermionic states are potentially
quite important since cos� can be sizable. Note also that
there is a possible cancellation between the fermion and
coloron contributions (the scalar term can be of either
sign)—a feature that will be important in our discussion
below. On the other hand, the contribution of the standard

model particles to gluon fusion production of s is quite
small.
We may derive expressions for the other relevant scalar

couplings from the potential

csh ¼ � sin� cos�

2vhvs

�
vh

�
m2

A

3
þ 2m2

h þm2
s

�
sin�

þ vsð2m2
h þm2

sÞ cos�
�

csA ¼ �m2
A þm2

s

2vs

cos�

csGH
¼ �m2

s þ 2m2
GH

� 2
3m

2
A

2vs

cos�:

(56)

The associated decay width for i ¼ h, A, Ga
H is

�ðs ! iiÞ ¼ ðcsi Þ2
8�ms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

i

m2
s

s
; (57)

with csi ¼ csh, c
s
A, csGH

, respectively. As we will see, when

kinematically allowed, the decay of the s to A, GH is
dominant in the small mixing region.
Results from the LHC [60,61] place constraints on the

existence of the s by limiting the signal strength in the
WþW� and ZZ channels from a ‘‘heavy Higgs’’ boson. In
the narrow width approximation, these measurements
place upper bounds on the ratio of production cross section
times branching ratio of the s boson relative to a standard
model Higgs of the same mass

�modeðii! s! kkÞ ¼ �ðpp! ii! sÞ
�ðpp! ii!HSMÞ

BRðs! kkÞ
BRðHSM ! kkÞ ;

(58)

where mode is either gluon fusion (ggF) or vector-boson
fusion (VBF), ii denotes the particles fusing to produce the
scalar (gg in the ggF mode or VV in the VBF mode) and kk
denotes the decay products. The ratio of production cross
sections for ggF and VBF are

�ðpp ! gg ! sÞ
�ðpp ! gg ! HSMÞ ¼

�������� csg

ĉs;SMg

��������2� 	s
gg;

�ðpp ! VV ! sÞ
�ðpp ! VV ! HSMÞ ¼ sin 2�:

(59)

As described above, small mixing angle sin� is preferred
in order to identify the 125 GeV signal as our h particle.
Therefore, since the heavy particles contribute signifi-
cantly to csg, gluon fusion production of s dominates

over vector- boson production. We therefore focus our
attention on
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�ggFðgg!s!VVÞ¼
�������� csg

ĉs;SMg

��������2 BRðs!VVÞ
BRðH!VVÞSM

¼
�������� csg

ĉs;SMg

��������2

sin2�

�
�TOT
s ðmsÞ
�HðmsÞ

��1
; (60)

where, including the gluon, vector boson, light fermion,
and scalar decays of the s, the ratio of total widths is

�TOT
s ðmsÞ
�HðmsÞ
¼
��������� csg

ĉs;SMg

��������2

BRSM
gg þ sin 2�ðBRSM

VV þ BRSM
�ff
Þ

þ �ðs ! hhÞ þ �ðs ! AAÞ þ 8�ðs ! GHGHÞ
�HðmsÞ

�
;

(61)

and where VV ¼ WW, ZZ and �ff ¼ �tt, �bb, �cc, ���, and
where �HðmsÞ is the SM Higgs width with mH ¼ ms.

In Fig. 9 we plot the production cross section and
diboson branching ratio of the s boson, relative to those
for a standard model Higgs boson of the same mass, for an
illustrative choice of parameters,

mA ¼ 200 GeV; mGH
¼ 400 GeV; MC ¼ 2 TeV;

MQ ¼ 1 TeV; vs ¼ 500 GeV; (62)

for sin� ¼ 0:1 and 0.3, and for NQ ¼ 0, 1 and 3.

Considering production (shown on the left-hand side of
Fig. 9), we see that the gluon fusion production cross
section of the s boson is sizable both for NQ ¼ 0,
dominated by the contribution from colored scalar- and
vector-boson loops, and for NQ ¼ 3, dominated by the

contribution from spectator quarks. In the case NQ ¼ 1,
however, there is substantial cancellation between these
contributions—and the cross section is substantially
smaller. There are also inflection points of these cross
sections at the thresholds 2mt and 2mGH

, where the

corresponding gluon fusion amplitude acquires an imagi-
nary part, and this accounts for the increase in the NQ ¼ 1

cross section for masses above 800 GeV. The dependence
of the production cross section on sin�, on the other hand,
is relatively mild, except in the case where NQ ¼ 1, in
which the amount of cancellation is sensitive to the top-
quark contribution (which is sin� dependent).
The ratio of branching ratios, as shown on the right hand

side of Fig. 9, behaves quite differently. Here the depen-
dence on NQ is almost entirely absent, since we are in a

regime where the s boson cannot decay into pairs of
spectator quarks. As we saw, the partial width of the s
boson to decay toWW or ZZ is proportional to sin 2� and,
therefore, when other decay channels open the branching
ratio of the s to dibosons is much smaller for sin� ¼ 0:1
than it is for sin� ¼ 0:3. The diboson branching ratio of
the s drops as the massms crosses the thresholds for hh, t�t,
AA, and GHGH. Since the coupling of the s boson to the
top quark is also proportional to sin�, the diboson branch-
ing ratio of the s is independent of sin� below 2mA, but
then drops precipitously—especially for smaller values of
sin�.
Finally, we overlay the production ratios � (i.e., cross

section times branching fraction for the s, compared with
that of a standard model Higgs of mass ms) with experi-
mental results in Fig. 10. The region above the black
dashed lines is excluded at 95% C.L. by H ! ZZ (up to
1 TeV) andH ! WW (up to 600 GeV) search at CMS [60]
and ATLAS [61], respectively. Using the benchmark
parameters in Eq. (62), the pink (light gray) and blue
(dark gray) lines are for sin� ¼ 0:1, 0.3, and the panels
from left to right are for NQ ¼ 0, 1, 3 respectively. Here,

we can see the interplay of production cross section and
branching ratio. For NQ ¼ 0, current LHC searches ex-

clude (for the assumed parameters) ms & 400 GeV. For
NQ ¼ 3, the production cross section is large enough that

ms & 800 GeV is excluded for sin� ¼ 0:3whereas, due to
the lower diboson branching ratio, only ms & 550 GeV is
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FIG. 9 (color online). For the parameter set Eq. (62). Left: 	s
gg, the ratio of the gluon-fusion production cross section of s relative to

that for a standard model Higgs of mass ms, as a function of ms for a given set of sin�, NQ. The pink (light gray) and blue (dark gray)

lines are for sin� ¼ 0:1, 0.3, and thick, dashed and dotted lines for NQ ¼ 0, 1, 3, respectively. Right: BRðs ! VVÞ=BRðH ! VVÞ as a
function of ms for different sin�, where the red and blue lines are for sin� ¼ 0:1, 0.3, respectively.
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excluded for sin� ¼ 0:1. Finally, for NQ ¼ 1, the small

cross section (due to the near cancellation of the coloron
and fermion contributions to ggF production of s) leaves us
with no bound on ms from current LHC data.

As this brief discussion illustrates, therefore, the LHC is
potentially sensitive to the heavy singlet scalar s boson in
the diboson searches for a heavy ‘‘Higgs’’ boson. The
signal rate for the s boson, however, is highly dependent
on the parameters of the model—on the mixing angle
sin�, on the spectrum of additional scalar particles, and
especially on the number of spectator quark generations
present. A more complete investigation of this signal is
underway [62].

V. SUMMARY

In this paper, we have studied the constraints on the
scalar sector of the renormalizable coloron model
[4,17–19], as introduced in Sec. II, by incorporating the
theoretical considerations of stability and unitarity, as well
as the available experimental data on electroweak preci-
sion tests and the latest LHC results on the properties of the
125 GeV Higgs-like scalar boson. These formal and
experimental analyses allowed us to significantly narrow
the viable region of the parameter space, spanned by the
seven input parameters of the theory (26). We have dis-
played the results of each investigation, and the depen-
dence of the bounds derived on sin�, ms, mA, and vs, in
the corresponding sections.

It is instructive to combine the resulting constraints, and
exhibit the overall dependence of the allowed region on the
input parameters. This summary analysis is displayed in
Fig. 11, where, as before, benchmark values of the singlet
VEV, vs ¼ 500, 1000 and 2000 GeV, are used in the top,
middle, and bottom rows. Several values of the scalar
color-octet mass, mGH

, are plotted, with an illustrative

pseudoscalar mass mA ¼ 1
2mGH

in each plot. Because

(as emphasized in Sec. IVB) the constraints derived from
LHC measurements of the properties of the light Higgs-
like depend strongly on the fermion spectator content of
the theory and on the sign of sin�, the LHC bound we
display in Fig. 11 is the most conservative11 bound on
j sin�j of those shown in Fig. 8 for a given vs. The
sensitivity to mA is relatively mild in the entire study;
the dependence on the coloron and the spectator fermion
masses (MC and MQ) is negligible.

Taking the results in Fig. 11 as a whole, we conclude
that there are several interesting relationships between
the constraints on the five model parameters
ðvs;ms; sin�;mA; mGH

Þ:
(i) Constraints from precision electroweak tests gener-

ally restrict j sin�j to be less than 0.2, with this
restriction becoming (logarithmically) stronger as
ms increases.

(ii) Stability of the potential implies that ms > mA=3
and m2

GH
> 2m2

A=3.

(iii) Maintaining the unitarity of scalar boson scattering
cross sections at high energies bounds the scalar
masses of the theory for a given value of vs with
ms=vs � 1:5.

Larger values of j sin�j (potentially as large as 0.5) are also
allowed, though only for relatively small values of ms and
for particular, model-dependent choices for the spectator
fermion content of the theory (see Fig. 8). Finally, in the
region j sin�j ! 0 the light scalar becomes indistinguish-
able from the standard model Higgs boson. Therefore, to
the extent that all experimental data remain consistent
with the standard model, the upper bound on j sin�j will
become stronger over time.
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FIG. 10 (color online). The black dashed line denotes the strongest exclusion at 95% C.L. from H ! ZZ and H ! WW channels at
CMS [60] and ATLAS [61], respectively. Using the model parameter values of Eq. (62), the pink (light gray) and blue (dark gray) lines
in each panel are for sin� ¼ 0:1, 0.3; and the panels from left to right are for NQ ¼ 0, 1, 3, respectively.

11That is, for a given value of vs, we show as excluded only the
values of j sin�j that are excluded for all of the possible numbers
of spectator fermions treated in Fig. 8.
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We have also considered direct LHC constraints on
the s particle, arising from searches for a heavy Higgs
boson [60,61]. The diboson signal rate that the s would
yield depends sensitively on the scalar spectrum of the
theory and (especially) on the number of spectator quark
generations. For NQ ¼ 0 or 3, we have shown that ms is

likely to be sufficiently constrained to close a substantial

portion of the parameter space shown in Fig. 8. However,
for NQ ¼ 1 a cancellation between the coloron and

fermionic contributions to the gluon fusion s-boson pro-
duction cross section renders the current limits too weak
to be definitive.
Our analysis has also shown that the properties of the

scalar sector do not constrain the masses of the colorons or
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FIG. 11 (color online). Constraints on the ms � j sin�j plane for ms � 150 GeV. All colored regions are excluded. Theoretical
bounds arise from stability (solid curves) and unitarity (dot-dashed) analyses, whereas the experimental constraints, at 95% C.L., are
due to electroweak precision tests (dotted), and LHC direct searches (dashed, vertical). The top row shows bounds for a singlet VEV
vs ¼ 500 GeV, where several values of the scalar color-octet mass, mGH

, are plotted; the middle (bottom) row corresponds to vs ¼
1000ð2000Þ GeV. In each panel, the illustrative value for the pseudoscalar mass, mA ¼ 1

2mGH
is shown, since dependence on mA is

modest. Sensitivity to the coloron and spectator fermion masses, MC and MQ is negligible. The allowed parameter space for vs ¼
500 GeV is tightly constrained, while a larger singlet VEV leaves more scope.
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the spectator fermions. The strongest limits on these
masses remain those mentioned at the start of the paper:
Tevatron and LHC data require the coloron mass,MC, to be
at least in the TeV region [24–29], while the Tevatron
excludes the mass range from 50 to 125 GeV for the scalar
color-octet, mGH

[30].

It is fascinating to see that models with extended strong
interaction sectors remain viable in light of the extensive
new data from the LHC. We look forward to seeing what
discoveries might emerge in the coming years.
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APPENDIX A: ANALYZING THE
SCALAR POTENTIAL

In this appendix, we describe how one arrives at the form
of the potential as given in Eq. (9). In what follows, we
modify the analysis given in [19] so as to clarify that the
potential—subject to the conditions in Eqs. (11) and (13)—
has a global minimum given by Eq. (12).

The analysis of the most general gauge-invariant
quartic potential for the fields � and � hinges on the
dependence of the potential on the singlet field, s0, de-
fined in Eq. (6). In particular, the dependence of the
potential on s0 alone, Pðs0Þ, must be such that it is
bounded from below and has two local minima which
we parameterize as

hs0i ¼ vs;�vs þ �: (A1)

In addition, we will assume12 that vs > 0 and jvsj>
jvs ��j, which imply

0 � � � 2vs: (A2)

The most general potential satisfying these conditions is
such that the derivative of its quartic potential has the form

dPðs0Þ
ds0

¼ �s0ðs0 � vsÞðs0 þ vs ��Þ: (A3)

The expression (A3) is easily integrated to yield

Pðs0Þ ¼ �

4
s40 �

��

3
s30 �

�vsðvs � �Þ
2

s20: (A4)

Factoring out �v4
s , it is evident that the properties of the

potential (A4), in fact, only depend on the parameter

r� � �=vs; (A5)

once we choose the variable to be ~s0 ¼ s0=vs. Hence, the
analysis may be reduced to considering the behavior of the
polynomial

~Pð~s0Þ ¼ 1

4
~s40 �

r�
3
~s30 �

1� r�
2

~s20; (A6)

as we vary r� in the range [0, 2]. This polynomial has the
following properties:
(i) For r� ¼ 0, the minima at ~s0 ¼ �1 are degenerate,

which implies a massless A pseudoscalar field
[Eq. (20)]

(ii) For 0< r� < 3
2 , the critical point at ~s0 ¼ 1 is a

stable, global minimum
(iii) For r� ¼ 3

2 , the minima at ~s0 ¼ 0, 1 are degenerate

(iv) For 3
2 < r� � 2, the global minimum is at ~s0 ¼ 0,

corresponding to no symmetry breaking, a physi-
cally uninteresting case.

The potential (9) is designed in such a way that the terms
involving s0 are precisely of the form described by the
polynomial (A4), with the condition (13) satisfied. For this
range of parameters, therefore, the global minimum of the
potential Vð�;�Þ is given by Eq. (12).

APPENDIX B: FEYNMAN RULES

This appendix lists the most relevant Feynman rules of
the theory. Here, the coloron is represented by a zigzag
line, the gluon by the usual curly line, and the scalars by
dashed lines. The spectator is depicted as a continuous
double line.
Figs. 12 and 13 display the relevant trilinear couplings,

while the quartic interactions are shown in Figs. 14 and 15.
In particular, we exhibit only the nontrivial quartic cou-
plings among the colored scalars in Fig. 15; those involv-
ing the colorless scalar states can be easily deduced from
the potential (9).

12Note that neither of these conditions constrain our system in
any way: the first can be enforced by the transformation s0 !�s0, and the second reflects the arbitrary choice of calling the
‘‘larger’’ critical point vs.
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FIG. 14. Quartic couplings of a pair of gluons with a pair of vector color-octets (Ca
�), and a pair of scalar color-octets (Ga

H).

FIG. 13. Trilinear couplings of a gluon with a pair of vector color-octets (Ca
�), and a pair of scalar color-octets (Ga

H). In each
diagram, all momenta flow towards the vertex.

FIG. 15. Scalar quartic vertices, involving the colored bosons.

FIG. 12. Trilinear couplings of the h boson with the coloron, the spectator fermion, and the other physical (pseudo-)scalars present in
the theory.
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