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We discuss novel effects in the phenomenology of a light Higgs boson within the context of composite

models. We show that large modifications may arise in the decay of a composite Nambu-Goldstone boson

Higgs to a photon and a Z boson, h ! Z�. These can be generated by the exchange of massive composite

states of a strong sector that breaks a left-right symmetry, which we show to be the sole symmetry

structure responsible for governing the size of these new effects in the absence of Goldstone-breaking

interactions. In this paper we consider corrections to the decay h ! Z� obtained either by integrating out

vectors at tree level, or by integrating out vectorlike fermions at loop level. In each case, the pertinent

operators that are generated are parametrically enhanced relative to other interactions that arise at

loop level in the Standard Model such as h ! gg and h ! ��. Thus we emphasize that the effects of

interest here provide a unique possibility to probe the dynamics underlying electroweak symmetry

breaking, and do not depend on any contrivance stemming from carefully chosen spectra. The effects

we discuss naturally lead to concerns of compatibility with precision electroweak measurements, and we

show with relevant computations that these corrections can be kept well under control in our general

parameter space.
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I. INTRODUCTION

The LHC phase of data taking at 8 TeV is over and a
large collection of experimental results on the Higgs boson
has been derived. Although data still have to be fully
analyzed, a clear picture seems to be emerging: the prop-
erties of the newly discovered particle closely resemble
those of the Standard Model (SM) Higgs boson. Overall,
the quantitative agreement between its measured couplings
and the SM predictions is at the 20%–30% level [1,2]. This
strongly suggests that the new particle is indeed part of an
SUð2ÞL doublet H, and that the scale of new physics (NP)
must be somewhat higher than the electroweak scale.
From this perspective it is important to ask which observ-
ables or processes are most sensitive to NP effects and
where we may be likely to see deviations from the SM
pattern in the future.

It is well known that Higgs processes occurring at loop
level in the SM, such as the decays h ! �� and h ! Z�,
and the gluon-fusion production gg ! h, are particularly
sensitive probes of weakly coupled extensions of the SM.
This is typically not true, however, in theories with a light
Higgs boson where the electroweak symmetry breaking
(EWSB) dynamics is strong. If the Higgs boson is a
composite Nambu-Goldstone (NG) boson of a new
strongly interacting sector, parametrically large shifts are
expected in the tree-level couplings, while hgg and h��
contact interactions violate the Higgs shift symmetry and

are thus suppressed. On the other hand, a similar symmetry
suppression does not hold for a hZ� contact interaction.
To make this point more quantitative, contributions to

the gg, ��, and �Z decay rates induced by the exchange of
new particles with mass much larger than the electroweak
scale can be conveniently parametrized by local operators.
For a Higgs doublet, the leading NP effects are parame-
trized by dimension-6 operators. A complete characteriza-
tion of the Higgs effective Lagrangian at the dimension-6
level has been performed in previous studies [3–5]; see
Ref. [6] for a recent review. In the basis of the strongly
interacting light Higgs (SILH) boson of Ref. [7], the
CP-conserving operators relevant for the gg, ��, and Z�
rates are1

Og ¼ g2S
m2

W

HyHGa
��G

a��;

OHW ¼ ig

m2
W

ðD�HÞy�iðD�HÞWi
��

O� ¼ g02

m2
W

HyHB��B
��;

OHB ¼ ig0

m2
W

ðD�HÞyðD�HÞB��:

(1.1)

The operators Og and O� contribute, respectively, to the
gg and �� rates, while Z� gets a contribution from
both O� and the linear combination OHW �OHB. The
additional operators
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1We normalize the Wilson coefficients according to the con-
vention of Ref. [6].
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OW ¼ ig

2m2
W

D�Wi
��ðHy�iD�$ HÞ;

OB ¼ ig0

2m2
W

@�B��ðHyD�$ HÞ
(1.2)

do not mediate h ! Z� for on-shell photons, but their sum
contributes to the S parameter [8]. By working in unitary
gauge and focusing on terms with one Higgs boson, the
operators of Eq. (1.1) are rewritten as

L ¼ cgg
2

Ga
��G

a�� h

v
þ c��

2
����

�� h

v
þ cZ�Z���

�� h

v
;

(1.3)

where (by �ci we denote the coefficient of the operatorOi of
the SILH Lagrangian) [6]

cgg ¼ 8ð�s=�2Þ �cg; c�� ¼ 8sin 2�W �c�;

cZ� ¼ � tan�W½ð �cHW � �cHBÞ þ 8sin 2�W �c��;
(1.4)

and �2 ¼
ffiffiffi
2

p
GFm

2
W=�. The expression of the partial

decay width to Z�, including the SM contribution and
the correction from Eq. (1.3), is given in Appendix A.

Let us perform a naive estimate of the size of the effects
mediated by the operators of Eq. (1.1). By simple dimen-
sional analysis, the Wilson coefficients �ci scale as 1=M2,
where M is the characteristic NP scale. Their contribution
to the Higgs decay rates is thus suppressed by a factor
�ðm2

W=M
2Þ, where mW � mh is the energy scale of the

process. If the operators Oi are generated by the tree-level
exchange of new particles with unsuppressed nonminimal
couplings to photons and gluons, one naively expects a
correction

��tree

�SM

� m2
W

M2

16�2

g2
: (1.5)

Unsuppressed nonminimal couplings can arise if the new
heavy states are bound states of some new strong dynam-
ics; see for example the recent discussion of Ref. [9]. On
the other hand, in weakly coupled UV completions of the
SM as well as in some strongly coupled constructions such
as holographic Higgs models, the massive states have
suppressed higher-derivative couplings. In this case the
operators Oi are generated only at the cost of a loop factor
(g2�=16�2) [7], where g� denotes the coupling strength of
the Higgs boson to the new states:

��loop

�SM

� m2
W

M2

g2�
g2

� v2

f2
: (1.6)

In the last identity we have defined 1=f � g�=M. Large
corrections are thus possible in strongly coupled theories,
where the Higgs boson is a composite of the new dynamics
and 1 � g� < 4�. However, a composite Higgs is natu-
rally light only if it is a NG boson of a spontaneously
broken symmetryG ! H of the strong sector. In this case
the scale f must be identified with the associated decay

constant, and shifts of order ðv=fÞ2 are expected in the
tree-level Higgs couplings to SM vector bosons and
fermions from the Higgs nonlinear �-model Lagrangian.
At the same time, exact invariance under G=H trans-
formations, which include a Higgs shift symmetry Hi !
Hi þ �i, forbids the operators Og and O�. For the latter to

be generated the shift symmetry must be broken by some
weak coupling g

G
, so that the naive estimate of �cg, �c�,

and hence their contribution to the decay rates to gg and
��, is further suppressed by an extra factor ðg2

G
=g2�Þ.

Conversely, the operators OHW and OHB are invariant
under the Higgs shift symmetry, and the naive estimate
(1.6) holds for the h ! Z� rate. It follows that for a
composite NG Higgs boson the largest NP effects are
expected to arise from shifts to the tree-level Higgs
couplings and from the contact hZ� interaction [7].
From this perspective, a precise measurement of the Z�
rate is of crucial importance.
It is the purpose of this paper to quantitatively study the

h ! Z� decay rate in the context of composite Higgs
models. As implied by the discussion above, the leading
effects are captured by neglecting the explicit breaking of
the Goldstone symmetry due to weak couplings of the
elementary fields to the composite sector. We thus work
in this limit in the following as it simplifies the calcula-
tions, and concentrate on the contributions of pure com-
posite states within minimal SOð5Þ=SOð4Þ theories. The
next section contains a brief discussion on the effective
operator basis for SOð5Þ=SOð4Þ theories and the role
played by the PLR parity for the h ! Z� decay. In
Sec. III we compute the effective hZ� vertex generated
by the tree-level exchange of spin-1 resonances and by the
1-loop exchange of composite fermions. As a byproduct of
our hZ� calculation we derive in Sec. IV the correction to
the S parameter from loops of pure composite fermions.
We report our numerical results and discuss them in Sec. V.
Useful formulas are collected in Appendices A, B, C, and
D, while Appendix E contains a discussion of different
formalisms commonly adopted to describe fermionic reso-
nances. Finally, in Appendix F we describe how the cal-
culation of the 1-loop contribution to h ! Z� from heavy
fermions can be performed in full generality in the basis of
mass eigenstates, without resorting to the approximation
made in the main text.

II. EFFECTIVE LAGRANGIAN FOR SOð5Þ=SOð4Þ
COMPOSITE HIGGS MODELS AND

THE ROLE OF PLR

The effective Lagrangian for SOð5Þ=SOð4Þ composite
Higgs theories was discussed in Ref. [10], where a com-
plete list of four-derivative operators was given in the
formalism of Callan, Coleman, Wess, and Zumino
(CCWZ) [11]. Here we closely follow the notation of
Ref. [10], although we adopt a different operator basis
which is more transparently matched onto the SILH basis
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of Ref. [7]. At Oðp4Þ in the derivative expansion there are
seven independent CP-conserving operators2

L ¼ f2

4
Tr½d�d�� þ

X
i

ciOi; (2.2)

O1 ¼ Tr½d�d��2; O2 ¼ Tr½d�d��Tr½d�d��;
O�

3 ¼ Tr½ðEL
��Þ2 � ðER

��Þ2�;
O�

4 ¼ Tr½ðEL
�� � ER

��Þi½d�; d���;

O5 ¼
X3
aL¼1

TrðTaL½d�; d��Þ2 �
X3
aR¼1

TrðTaR½d�; d��Þ2;

(2.3)

where d�ð�Þ ¼ dâ�ð�ÞTâ, EL
�ð�Þ ¼ EaL

� ð�ÞTaL ,

ER
�ð�Þ ¼ EaR

� ð�ÞTaR are the CCWZ covariant

functions—transforming, respectively, as an adjoint and
gauge fields of SOð4Þ—of the NG field �ðxÞ ¼ �âðxÞTâ.
Explicitly,

�iUyð�ÞD�Uð�Þ ¼ d� þ EL
� þ ER

�; (2.4)

where Uð�Þ ¼ exp ði ffiffiffi
2

p
�ðxÞ=fÞ. The field strength EL;R

�� is

constructed from a commutator of covariant derivatives
r� ¼ @� þ iðEL

� þ ER
�Þ; see Ref. [10] for further details.

Here TaL , TaR are the generators of the unbroken SOð4Þ �
SUð2ÞR 	 SUð2ÞR, while those of SOð5Þ=SOð4Þ are de-
noted as Tâ. The SM electroweak vector bosons weakly
gauge an SUð2ÞL 	Uð1ÞY subgroup of SOð5Þ 	Uð1ÞX,
where the Uð1ÞX does not participate in the dynamical
breaking, but is needed to correctly reproduce the hyper-
charges of the SM fermions. It is convenient to define
the tree-level vacuum such that the electroweak group
is fully contained in the unbroken SOð4Þ 	Uð1ÞX, with
Y ¼ T3R þ TX. The true vacuum will in general be
misaligned with this direction by an angle � due to the
radiatively induced potential of the NG bosons.

The operators in Eq. (2.3) have been conveniently
defined to be even or odd under a parity PLR which
exchanges the SUð2ÞL and SUð2ÞR comprising the unbro-
ken SOð4Þ. Under PLR the NG bosons transform as
�âðxÞ ! �	â�âðxÞ, with 	â ¼ f1; 1; 1;�1g, which im-
plies dâ� ! �	âdâ�, EL

� $ ER
� [10]. Ordinary parity is

thus the product P ¼ P0 
 PLR, where P0: ðt; ~xÞ ! ðt;� ~xÞ
is the usual spatial inversion. Under PLR, the operatorsO1;2

andOþ
3;4 are even, whereasO

�
3;4 andO5 are odd. Expanding

in the number of NG fields it is easy to match the operators
of Eq. (2.3) with the dimension-6 operators of the SILH
Lagrangian by noticing that

d� �D�H þ 
 
 

E�� � A�� þ 1

f2
½D�ðHyiD$�HÞ � ð� $ �Þ� þ 
 
 
 (2.5)

where the gauge fields entering into the field strength
A�� and the covariant derivativeD� are those of SUð2ÞL 	
Uð1ÞY . From Eq. (2.5) one can see that O�

3 and O�
4 corre-

spond, respectively, to OW �OB and OHW �OHB. The
leading terms in the expansion of O1, O2, and O5 are
instead of dimension 8, meaning that these operators do
not have a counterpart in the SILH Lagrangian of Ref. [7].
The exact relations and the connection between our basis
and that of Ref. [10] are reported in Appendix B. Notice
that there is no operator in Eq. (2.3) corresponding to O�

and Og, since the latter explicitly breaks the SOð5Þ global
symmetry. It then follows that the only (CP-conserving)
operator which gives an hZ� contact coupling is O�

4 :

cZ� ¼ g2sin 2�c�4 : (2.6)

Notice also that only Oþ
3 contributes to the S parameter:

S ¼ �32�sin 2�cþ3 : (2.7)

It is not an accident that the hZ� coupling follows from a
PLR-odd operator. Since the Abelian Uð1ÞX subgroup fac-
torizes with respect to the nonlinearly realized SOð5Þ, the
photon and Z fields enter into the operators of Eq. (2.3)
only through the weak gauging of the Uð1ÞL 	Uð1ÞR
subgroup. By formally assigning the transformation rules
W3

� $ B�, g $ g0, the PLR symmetry is exact even after

turning on the neutral gauge fields. By the above rules, the
Z field is odd while the photon and the Higgs boson are
even under PLR, so that the decay h ! Z� can be mediated
only by an odd operator. By the same argument, S is an
even quantity under LR exchange (it is proportional to the
coefficients of the unitary-gauge operator W3

��B
��), and it

is consistently induced by the PLR-even operator Oþ
3 .

It is interesting to notice that in the limit of unbroken
SOð5Þ symmetry the renormalization group (RG) running
of c�4 , as well as that of the coefficient of any Oðp4Þ
odd operator, vanishes due to the PLR parity. While the
effective operators are generated at some high-energy
scale M by the exchange of massive states, the Wilson
coefficients appearing in the expressions of low-energy
observables, like in Eq. (2.6) for the Z� decay rate, must
be evaluated at the typical scale of the process, � � M.
The running of the Wilson coefficients from M down to �
originates from 1-loop logarithmically divergent diagrams
constructed with Oðp2Þ vertices,

2There are additionally four CP-odd operators that can be
written as

~O�
3 ¼ Tr½ð ~EL

��E
L�� � ~ER

��E
R��Þ2�;

~O�
4 ¼ Tr½ð ~EL

�� � ~ER
��Þi½d�; d���;

(2.1)

where ~E�� ¼ 
����E
��. In particular ~O�

4 contributes to h !
Z�. Although these operators can be included straightforwardly,
in this paper we will focus on the CP-conserving ones for
simplicity.
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cið�Þ ¼ ciðMÞ þ bi
16�2

log
M

�
; (2.8)

where bi are Oð1Þ numbers. Since, however, PLR is an
accidental symmetry of the Oðp2Þ Lagrangian [10], it
follows that there cannot be any running from loops of
NG bosons in the case of PLR-odd operators, i.e. bi ¼ 0.3

An RG evolution is in general induced by loops of
transverse vector bosons,4 since the weak gauging explic-
itly breaks PLR at the Oðp2Þ level. This is, however, a
subleading electroweak effect which we neglect for sim-
plicity in this paper. One naively expects ciðMÞ � 1=16�2

for operators generated at the scale M with an extra
loop suppression, as in the case of O�

4 for a minimally
coupled UV theory. Hence, if the RG running was non-
vanishing, the leading contribution to the Wilson coeffi-
cient could come from long-distance (log-enhanced)
effects rather than from high-energy threshold correc-
tions. For PLR-even operators generated at tree level,
like Oþ

3 for example, one instead estimates ciðMÞ �
1=g2�, so that the threshold contribution dominates over

the RG evolution as long as g� & 4�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ðM=�Þp

.
If PLR is an exact invariance of the strong dynamics, then

c�4 ðMÞ vanishes for unbroken SOð5Þ. In this case the only
source of PLR breaking stems from the couplings of the
elementary gauge and fermion fields to the strong sector,
and the hZ� contact interaction will be suppressed by a
factor ðg

G
=g�Þ2, as in the case of h�� and hgg. We will

thus focus on the case in which the strong dynamics explic-
itly breaks the PLR symmetry, so thatO�

4 is generated at the
scaleM even in the limit of unbroken SOð5Þ. ALR-violating
strong dynamics generically leads to dangerously large cor-
rections to the Zb �b vertex [14], but there are special cases
where theLR breaking is communicated to theZb �b coupling
in a suppressed way. For example, it has been pointed out by
the authors of Ref. [15] that if the fermionic resonances form
(only) fundamental representations of SOð5Þ, as in the mini-
mal composite Higgs model MCHM5 [16], then PLR is an
accidental invariance of the lowest derivative fermionic op-
erators relevant for Zb �b (small PLR-breaking effects sup-
pressed by mb=mt are present but can be neglected). In this
case the spin-1 sector of resonances can be maximally LR
violating, and thus generate an unsuppressed hZ� interac-
tion, without leading to excessively large shifts in the Zb �b
coupling. Another possibility is that the sector of fermionic
resonances maximally breaks PLR but the shift of Zb �b is
suppressed by a small coupling. A minimal realization of
this case can be obtained for example if the spectrum of

fermionic resonances contains both fundamental and anti-
symmetric representations of SOð5Þ. In the following section
we will provide two explicit models realizing these possibil-
ities and compute the contribution of the resonances to the
h ! Z� decay rate.

III. h ! Z� FROM PURE COMPOSITE STATES

We calculate the contribution of pure composite states to
h ! Z� by focusing on the lightest modes and describing
their dynamics by means of a low-energy effective theory.
For our description to be valid we assume that these states
are lighter than the cutoff scale � where other resonances
occur, and that the derivative expansion of the effective
theory is controlled by @=�. Notice, however, that when-
ever it arises at the 1-loop level, the contribution of the
lightest modes to h ! Z� is parametrically of the same
order as that of the cutoff states. These latter are heavier but
are also expected to be more strongly coupled than the
lighter modes, so that both effects are naively of order
ðv=fÞ2, as shown by Eq. (1.6). In this case our calculation
should be considered as a more quantitative estimate of the
contribution of the strong dynamics rather than a precise
prediction of a model. For a more detailed discussion
about the validity of this effective description we refer
the reader to Ref. [10], whose approach we follow in this
paper (see also Ref. [17]).
In the fermionic sector we assume the existence of linear

elementary-composite couplings, which leads to partial
compositeness [17,18]. We are, however, interested in the
effects of pure composite states, hence in the following we
work at lowest order in the elementary couplings and set
them to zero. Before EWSB the composite states fill mul-
tiplets of the linearly realized subgroup SOð4Þ 	Uð1ÞX �
SUð2ÞL 	 SUð2ÞR 	Uð1ÞX. We will consider spin-1
resonances in the ð3; 1Þ0 and ð1; 3Þ0 representations
(denoted, respectively, �L and �R) and fermionic
resonances transforming as ð1; 1Þ, ð2; 2Þ, ð1; 3Þ, and ð3; 1Þ
representations with arbitrary Uð1ÞX assignments.
In the following parts of this section we first derive the

hZ� contact coupling by integrating out the composite
states and matching to the low-energy theory. We will
then illustrate two minimal models where maximal PLR

breaking can occur without generating a large modification
of the Zb �b coupling.

A. Tree-level exchange of spin-1 resonances

We begin by considering the contribution from the
tree-level exchange of spin-1 composites.5 We follow the
vector formalism where the � transforms nonhomogene-
ously under SOð5Þ transformations. Neglecting CP-odd
operators for simplicity, the effective Lagrangian for

3From the viewpoint of the SILH Lagrangian of Ref. [7],
this argument shows that there cannot be any contribution to
the RG evolution of OHW �OHB and OW �OB from OH . In
fact, the authors of Ref. [12] showed that even the combination
OHW þOHB is not renormalized by OH .

4For the calculation of the RG running relevant to h ! �� and
h ! Z� see Refs. [12,13].

5See also Ref. [19] for a calculation of the 1-loop contribution
to h ! Z� from vector resonances.
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�L
� ¼ �aL

� TaL and �R
� ¼ �aR

� TaR can be written as follows

(see Ref. [10] for more details):6

L ¼ � 1

4g2�L

Trð�L
���

L��Þ þ m2
�L

2g2�L

Trð�L
� � EL

�Þ2

þ �1LQ1L þ �2LQ2L

� 1

4g2�R

Trð�R
���

R��Þ þ m2
�R

2g2�R

Trð�R
� � ER

�Þ2

þ �1RQ1R þ �2RQ2R; (3.2)

where we have neglected subleading terms in the derivative
expansion and have defined

Q1r ¼ Trð�r
��i½d�; d��Þ;

Q2r ¼ Trð�r��Er
��Þ; r ¼ L; R:

(3.3)

It is straightforward to integrate out the spin-1 resonances
at tree level by using the equations of motion: �� ¼ E� þ
Oðp3Þ. One obtains the low-energy Lagrangian (2.3) with

c�3 ¼ 1

2

��
�2L � 1

4g2�L

�
�

�
�2R � 1

4g2�R

��
;

c�4 ¼ 1

2
ð�1L � �1RÞ:

(3.4)

The S parameter receives a correction both from the �
mass terms and from Q2L, Q2R [10].7 The vertex hZ�, on
the other hand, follows from the operators Q1L, Q1R due to
the �-photon mixing induced by the � mass term:

cZ� ¼ g2

2
sin 2�ð�1L � �1RÞ: (3.6)

After rotating to the basis of mass eigenstates, ��� gives a

photon field strength ���, while d�d� gives Z�@�h.
8 In

this sense the operators Q1r, unlike Q2r, give nonminimal
couplings of the photon to neutral particles.
The size of the correction to the h ! Z� decay rate

depends on the value of the parameters �1r. By assuming
partial UV completion [10], so that the strength of the
interactions mediated by Q1r becomes of order g� ��=f
at the cutoff scale �, one estimates �1r & 1=ðg�g�Þ<
1=g2�. In a minimally coupled theory, on the other hand,

the operators Q1r carry a further loop suppression from
which the more conservative estimate �1r � 1=ð16�2Þ,
and in turn Eq. (1.6), follow.

B. Loops of fermionic resonances

Composite fermions can generate the vertex hZ� at
1-loop level. Let us consider for example the case of
fermions transforming as ð1; 1Þ, ð2; 2Þ, ð1; 3Þ, and ð3; 1Þ
under SOð4Þ � SUð2ÞL 	 SUð2ÞR and with arbitrary com-
mon Uð1ÞX charge. At leading order in the derivative
expansion, the Lagrangian reads

L ¼ X
r

��rðir�mrÞ�r � ½�11 ��ð2;2Þ6d�ð1;1Þ

þ �13 ��ð2;2Þ6d�ð1;3Þ þ �31 ��ð2;2Þ6d�ð3;1Þ þ H:c:�; (3.7)

where r runs over all SOð4Þ representations, �11, �13, �31 are
Oð1Þ complex coefficients, and r� ¼ @� þ iðEL

� þ ER
�Þ

is the covariant derivative on SOð5Þ=SOð4Þ. By integrating
out the fermions and matching with the low-energy
Lagrangian (2.3), the contribution to c�4 comes from the
1-loop diagram of Fig. 1 plus its crossing, where one has to
sum over all possible representations r, r0.
For a given diagram with fermions in the representa-

tions r and r0 of SOð4Þ, the Feynman amplitude can be
expressed as

Maâ b̂
��� ¼ N�!

aâ b̂
½r;r0�j�½r;r0�j2I���ðp1; p2;mr;mr0 Þ; (3.8)

where p1 and p2 are the momenta of dâ� and db̂�, respec-

tively (defined to be flowing into the corresponding

6At the level of leading terms in the derivative expansion there
are four additional CP-odd operators:

~Q 1r ¼ 
���
Trð�r
��i½d�; d
�Þ;

~Q2r ¼ 
���
Trð�r
��E

r
�
Þ; r ¼ L;R:

(3.1)

For simplicity we will concentrate on CP-even operators in the
following, although the inclusion of the CP-odd ones is straight-
forward. Notice also that we use a slightly different basis of
operators Qi compared to Ref. [10], so as to match more easily
with the low-energy Lagrangian (2.3).

7The authors of Ref. [20] pointed out thatQ2L,Q2R modify the
high-energy dependence of the current-current vacuum polar-
izations at tree level and can be made consistent with the UV
behavior of the OPE only if an additional contribution to the
operators O�

3 exist, �c�3 ¼ �ð�2
2Lg

2
�L

� �2
2Rg

2
�R
Þ. The expres-

sion of the S parameter thus reads [20]

S ¼ 4�sin 2�

��
1

g�L

� 2g�L
�2L

�
2 þ

�
1

g�R

� 2g�R
�2R

�
2
�
:

(3.5)

No similar issue arises with Q1L, Q1R.

8It is possible to diagonalize the mixing of the � with the
elementary gauge fields by making the field redefinition ��� ¼
�� � E�, where �� transforms as a simple adjoint of SOð4Þ.
In this mass eigenstate basis the tree-level exchange of �� does
not generate an hZ� vertex, due to the simple fact that no
appropriate Feynman diagrams can be constructed. Instead, the
hZ� interaction arises directly from the contribution to O�

4 that
follows from Q1r after replacing ��� ¼ r½� ���� þ E�� þ
i½ ���; ����. This is analogous to what happens for the S parameter
and in fact for any observable at leading order in the derivative
expansion. Indeed, it is easy to check that integrating out the ��
by means of the equations of motion generates only Oðp6Þ
operators, i.e. operators with more than four derivatives. This
shows that the Lagrangian written in terms of ��must be properly
supplemented with additional four-derivative terms, among
which is O�

4 , in order to match the original one [21].
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vertices), the index a runs over the adjoint of SUð2ÞL 	
SUð2ÞR, and N� is the fermion multiplicity. For example,

for three families of colored fermions (heavy quarks)
one has N� ¼ NcNF ¼ 9 (with Nc ¼ 3, NF ¼ 3), while

N� ¼ 12 if there are three additional families of colorless

fermions (i.e. heavy leptons). Here �½r;r0� ¼ ��½r0;r� denotes
the coupling strength of d� with fermions in the repre-

sentations r and r0: �½ð2;2Þ;ð1;1Þ� ¼ �11, �½ð2;2Þ;ð1;3Þ� ¼ �13, and
�½ð2;2Þ;ð3;1Þ� ¼ �31, as in Eq. (3.7). By SOð4Þ covariance, the
second factor of Eq. (3.8) is proportional to the SOð4Þ
generator ta

â b̂
,

!aLâ b̂
½r;r0� ¼ lL½r;r0�t

aL
â b̂
; !aRâ b̂

½r;r0� ¼ lR½r;r0�t
aR
â b̂
; (3.9)

where the coefficients lL;R½r;r0� are reported in Table I for the

fermion representations under study. The contribution to
c�4 can be extracted by expanding the loop function I���

at first order in the external momenta. It is easy to show
that I��� is antisymmetric under the exchange f�;p1g $
f�; p2g, so there are three possible Lorentz structures at
linear order in the external momenta:

I��� ¼ Aðmr;mr0 Þ	��ðp1 � p2Þ�
þ Bðmr;mr0 Þðp1�	�� � p2�	��Þ
þ Cðmr;mr0 Þ½	��ðp1 þ p2Þ�
� 	��ðp1 þ p2Þ�� þOðp3Þ: (3.10)

The functions A, B, C are logarithmically divergent and
their expression is given in Appendix C. The terms
proportional to A and B renormalize, respectively, the

operators Od1 ¼ Tr½ðr�d�Þ2� and Od2 ¼ Tr½ðr�d
�Þ2�,

which contain terms with zero, one, and two E�’s from

the covariant derivative. In fact, the same function I���

accounts for the 1-loop contribution to the three-point

Green function hJa�dâ�db̂�i, where Ja� is the SOð4Þ con-

served current [see Eq. (D3)]. It is thus subject to the
Ward identity

iðp1 þ p2Þ�I��� ¼ G��ðp2
1Þ �G��ðp2

2Þ; (3.11)

where G��ðp2Þ is the d� self-energy:

hdâ�db̂�ijamp � �â b̂G��ðp2Þ
¼ �â b̂	���0ðp2Þ þ �â b̂p�p��1ðp2Þ: (3.12)

From Eq. (3.11) it follows that

Aðmr;mr0 Þ ¼ �0
0ð0Þ; Bðmr;mr0 Þ ¼ �1ð0Þ: (3.13)

We have checked these identities by explicitly computing
the self-energy G��. The coefficients of the operators

Od1, Od2 are given by

cd1 ¼
N�

4

X
r;r0

Aðmr;mr0 ÞðlL½r;r0� þ lR½r;r0�Þj�½r;r0�j2;

cd2 ¼
N�

4

X
r;r0

Bðmr;mr0 ÞðlL½r;r0� þ lR½r;r0�Þj�½r;r0�j2;
(3.14)

where the sums are over all possible fermion representa-
tions r, r0 contributing to the 1-loop diagram of Fig. 1.9

Neither of the operators Od1, Od2 contributes to h ! Z�:
Od2 can be redefined away in terms of higher-derivative
operators by using the equations of motion r�d

� ¼ 0,

while Od1 can be rewritten as

Tr½ðr�d�Þ2� � Od1

¼ 1

2
Tr½F2

��� � 1

2
Oþ

3 þ 1

4
ðO2 �O1Þ; (3.15)

and thus contributes to the S parameter. We will discuss
this further in the next section, where we perform a
detailed calculation of S.
Finally, the term proportional to C in Eq. (3.10) renorm-

alizes the operator Tr½E��d
�d�� and thus contributes to

c�4 . We find:

c�4 ¼ N�

4

X
r;r0

Cðmr;mr0 ÞðlL½r;r0� � lR½r;r0�Þj�½r;r0�j2: (3.16)

Using the coefficients of Table I and Eqs. (C3) and (2.6),
one can derive the fermionic contribution to the hZ�

FIG. 1. 1-loop contribution to the Green function hEa
�d

â
�d

b̂
�i

from composite fermions in the representations r and r0 of
SOð4Þ.

TABLE I. Value of the coefficients lL;R½r;r0� defined in Eq. (3.9)
for diagrams with fermions in the ð1; 1Þ, ð2; 2Þ, ð1; 3Þ and ð3; 1Þ of
SOð4Þ � SUð2ÞL 	 SUð2ÞR. The coefficients not shown in the
Table are vanishing.

½r; r0�
½ð2; 2Þ;
ð1; 1Þ�

½ð2; 2Þ;
ð1; 3Þ�

½ð1; 3Þ;
ð2; 2Þ�

½ð2; 2Þ;
ð3; 1Þ�

½ð3; 1Þ;
ð2; 2Þ�

lL½r;r0� 1 þ3=4 0 �1=4 1

lR½r;r0� 1 �1=4 1 þ3=4 0

9Notice that the expressions of cd1 and cd2 are LR symmetric,
as required since the operatorsOd1, Od2 are even under PLR. The
corresponding LR-odd combinations vanish because the func-
tions Aðmr;mr0 Þ, Bðmr;mr0 Þ are symmetric under the exchange
r $ r0 and due to the sum rule (3.17).
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vertex. In particular, in a theory with composite fermions
only in the ð1; 1Þ and ð2; 2Þ representations, the contribution
to c�4 (hence to cZ�) vanishes identically, since l

L
½ð2;2Þ;ð1;1Þ� ¼

lR½ð2;2Þ;ð1;1Þ� and lL;R½ð1;1Þ;ð2;2Þ� ¼ 0. This is expected, since the

fermionic sector in this case possesses an accidental PLR

invariance. When fermions in the ð1; 3Þ and ð3; 1Þ are
present, however, the contribution to c�4 is nonvanishing
provided PLR is broken either by the couplings (�13 � �31)
or in the spectrum (mð1;3Þ � mð3;1Þ).

It is interesting to notice that although the function C is
logarithmically divergent, the contribution to c�4 from

Eq. (3.16) is finite, since the coefficients lL;R½r;r0� satisfy the

sum rule

ðlL½r;r0� � lR½r;r0�Þ þ ðlL½r0;r� � lR½r0;r�Þ ¼ 0 for any r; r0: (3.17)

This identity can be directly checked on the coefficients
of Table I, and a simple argument shows that it holds in
general for any pair ðr; r0Þ. The proof goes as follows.
When computing the 1-loop diagram of Fig. 1, it is useful
to treat E� and d� as external backgrounds coupled to the

fermions. Let us then turn on E� along the diagonal

Uð1ÞLþR subgroup of SOð4Þ � SUð2ÞL 	 SUð2ÞR, under
which d1� � id2� has charge �1 and d3� and d4� have

charge 0. By charge conservation there are only two
possible diagrams (plus their crossings) as in Fig. 1: one
with d1� and d2� at the two lower vertices, the other with

d3� and d4�. Since d1;2;3� are odd while d4� is even under

PLR, the second diagram contributes to O�
4 , while the first

renormalizes Oþ
4 .

10 We thus concentrate on the diagram
with d3�d

4
� and notice that the fermions circulating in the

loop must all have the same Uð1ÞLþR charge. Let �3
ij and

�4
ij be the coupling strengths of two same-charge fermi-

ons i and j, respectively, to d3� and d4� (in the fermions’

mass eigenbasis). For a given diagram with fermions i
and j in the loop, the log-divergent part is thus propor-
tional to ð�3

ij�
4
jiÞ. Due to the antisymmetry of the loop

function, I���ðp1; p2; mi; mjÞ ¼ �I���ðp2; p1; mi; mjÞ,
the log-divergent part of the crossed diagram is instead
proportional to �ð�4

ij�
3
jiÞ. The sum then vanishes after

summing over all fermions i, j with the same charge. This
proves that there is no log-divergent contribution to c�4
from 1-loop fermion diagrams, hence the sum rule (3.17)
must hold for any pair of SOð4Þ representations ðr; r0Þ.
In general, a logarithmic divergence log ð�=mÞ is associ-
ated with the running of a Wilson coefficient from the

cutoff scale � down to the fermion mass scale m. The
above argument thus shows that there is no RG running
of c�4 induced by 1-loop diagrams of fermions above
their mass scale, while such running is present in general
for cþ4 .
So far we have considered 1-loop diagrams with only

composite fermions. There are also diagrams where both
fermions and spin-1 resonances can circulate. At the 1-loop
level, however, �L;R can only appear external to the loop
due to the mixing with E� from its mass term and a

coupling to the fermions of the form

��rð�� � E�Þ���r: (3.18)

The corresponding diagram is shown in Fig. 2. It is easy
to see that its contribution to c�4 vanishes at leading order:
integrating out the � through the equations of motion
generates only four-fermion operators, which in turn do
not contribute at the 1-loop level. In general, the tree-level
exchange of the � in the diagram of Fig. 2 leads to a
form-factor correction to the vertex of E� with the fer-

mionic current. For q2 ¼ ðp1 þ p2Þ2 � m2
�, such a form

factor correction is of order q2=m2
� and is thus suppressed

compared to the direct interaction from the fermions’
kinetic terms.

C. Two models

We have already alluded to the fact that a generic
PLR-violating strong dynamics can lead to unacceptably
large corrections to the Z �bb vertex [14]. Here we sketch
two simple models where the breaking of PLR is commu-
nicated to the Z �bb vertex in a suppressed way, such that
a sizable correction to h ! Z� is phenomenologically
allowed.

1. Model 1

In the first model, which is a low-energy simplified
version of the MCHM5 [16], the composite fermions fill

FIG. 2. Mixed rho-fermion contribution to the Green function

hEa
�d

â
�d

b̂
�i which arises at the 1-loop level.

10A more direct way to see this is the following: the SOð4Þ
generators satisfy t3L34 ¼ �t3R34 , t

3L
12 ¼ t3R12 , which implies O�

4 ¼
�iðtaL

â b̂
EaL
�� � taR

â b̂
EaR
��Þdâ�db̂� � v��d

3
�d

4
�, Oþ

4 ¼ �iðtaL
â b̂
EaL
�� þ

taR
â b̂
EaR
��Þdâ�db̂� � v��d

1
�d

2
� in the background v� ¼ E3L

� ¼ E3R
� .

In terms of physical fields, O�
4 contains a term ���ð@�hÞZ�,

while Oþ
4 contains ���Wþ

�W
�
� .
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two fundamental representations of SOð5Þ, with Uð1ÞX
charge þ2=3 and �1=3, respectively:

�5 ¼ ð1; 1Þ2=3 þ ð2; 2Þ2=3
�0
5 ¼ ð1; 1Þ�1=3 þ ð2; 2Þ�1=3:

(3.19)

The spectrum of composite states also includes a �L and
�R, while we omit for simplicity spin-1 states transforming
as bifundamentals of SUð2ÞL 	 SUð2ÞR. The Lagrangian
can be written as L ¼ Lelem þLcomp þLmix, where

Lelem describes the elementary fields in isolation and
the expression of the composite Lagrangian Lcomp is as

in Eqs. (3.2) and (3.7). The term Lmix accounts for the
mixing of the elementary to composite fermions:

Lmix¼�q �qLPqUð�Þ�5þ�0
q �qLPqUð�Þ�0

5

þ�t �tRPtUð�Þ�5þ�b
�bRPbUð�Þ�0

5þH:c:; (3.20)

where Pq;t;b project out the components of the composite

fields with the electroweak quantum numbers of the corre-
sponding elementary fields. The PLR invariance is taken to
be maximally violated in the spin-1 sector, but is acciden-
tally preserved in the fermion sector. If �0

q � �q, then the

Z �bb coupling is protected from large corrections since for
�0
q ¼ 0 there is no operator at leading order in the deriva-

tive expansion which can modify it [15]. A small �0
q=�q

can in fact naturally arise from the RG running of the
full theory and explain the hierarchy between the top and
bottom masses if �t ’ �b [16]. We note in passing that at
tree level the correction to Z �bb from a �L;R is always
vanishing at leading order in the derivative expansion,
as can be easily checked by using the equations of
motion �� ¼ E� þOðp3Þ in Eq. (3.18). This is because

the shift induced by the exchange of the � is exactly

compensated by the additional interaction ����E�� ¼
����ðHyiD$�Hþ 
 
 
Þ� required by SOð5Þ invariance

and included in the term of Eq. (3.18). A nonvanishing
Z �bbwill, however, arise in general at the 1-loop level in the
absence of a symmetry protection. In the model under
consideration such a protection comes from the accidental
PLR symmetry of the fermionic sector, which also implies
that the vertex hZ� in this case is generated only by the �
exchange; the value of cZ� is thus given by Eq. (3.6).

2. Model 2

In the second model the composite fermions fill one
fundamental plus one antisymmetric representation of
SOð5Þ, with Uð1ÞX charge þ2=3 and �1=3, respectively:

�5 ¼ ð1; 1Þ2=3 þ ð2; 2Þ2=3
�10 ¼ ð2; 2Þ�1=3 þ ð1; 3Þ�1=3 þ ð3; 1Þ�1=3:

(3.21)

As before, the Lagrangian can be divided into an elemen-
tary and a composite part plus a mixing term

Lmix ¼ �10
q �qLPqUð�Þ�10 þ �5

q �qLPqUð�Þ�5

þ �10
t �tRPtUð�Þ�10 þ �5

t �tRPtUð�Þ�5

þ �b
�bRPbUð�Þ�10 þ H:c: (3.22)

In this case the fermionic sector is not in general PLR

invariant, so both loops of composite fermions and the
tree-level exchange of the � can contribute to generate
the hZ� vertex. Using Eqs. (3.6), (3.16), and (2.6) we find

cZ� ¼ g2

2
sin 2�ð�1L � �1RÞ

þ g2

4
N�sin

2�½j�13j2ðCðmð2;2Þ; mð1;3ÞÞ
� Cðmð1;3Þ; mð2;2ÞÞÞ � j�31j2ðCðmð2;2Þ; mð3;1ÞÞ
� Cðmð3;1Þ; mð2;2ÞÞÞ�: (3.23)

The shift to Z �bb is suppressed for �10
q small, since no effect

can arise from the PLR-preserving coupling �5
q [14]. As

before, a small �10
q =�5

q can arise naturally from the RG

flow of the full theory, and can explain the hierarchy
between the top and bottom masses if �10

t � �5
t ’ �b.

IV. S PARAMETER FROM LOOPS
OF FERMIONIC RESONANCES

In the previous section we have seen that loops of
composite fermions generate the operator Od1 through
the triangle diagram of Fig. 1; the value of the correspond-
ing coefficient cd1 is given by Eq. (3.14). Since Od1 can be
rewritten in terms of Oþ

3 as in Eq. (3.15), it contributes to

the S parameter. As implied by the Ward identity (3.11),
the same contribution to cd1, hence to S, can be derived by
considering the hd�d�i self-energy diagram shown on the

left of Fig. 3, where two different SOð4Þ representations of
fermions circulate in the loop. There is, however, an addi-
tional direct contribution to O�

3 which comes from the

hE�E�i self-energy diagram shown on the right of Fig. 3,

where a single fermion representation r appears in the
loop. Summing over r, we find

c�3 ¼ N�

8

X
r

ðCL½r� � CR½r�ÞAðmr;mrÞ; (4.1)

where for the fundamental representation CL½ð2; 2Þ� ¼
CR½ð2; 2Þ� ¼ 1, for the adjoint CR½ð1; 3Þ� ¼ CL½ð3; 1Þ� ¼ 2

FIG. 3. 1-loop diagrams contributing to the hd�d�i (left) and
hE�E�i (right) self-energies.
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and CL½ð1; 3Þ� ¼ CR½ð3; 1Þ� ¼ 0, while CL;R½ð1; 1Þ� ¼ 0.
The total contribution to the S parameter from loops of
composite fermions is thus

�S ¼ �4�N�sin
2�

�X
r

ðCL½r� þ CR½r�ÞAðmr;mrÞ

�X
r;r0

j�½r;r0�j2C½r; r0�Aðmr;mr0 Þ
�
; (4.2)

where we have conveniently defined C½r; r0� ¼ ð1=2Þ	
ðlL½r;r0� þ lR½r;r0� þ lL½r0;r� þ lR½r0;r�Þ and used the fact that the

function Aðmr;mr0 Þ is symmetric in its arguments. For
example, in the first model discussed in Sec. III C with
fermions in the ð1; 1Þ and ð2; 2Þ of SOð4Þ one has
�S¼�8�N�sin

2�ðAðmð2;2Þ;mð2;2ÞÞ�j�11j2Aðmð2;2Þ;mð1;1ÞÞÞ

¼2

3

N�

�

v2

f2
ð1�j�11j2Þlog

�
�2

�m2

�
þ finite terms; (4.3)

where in the second expression �m denotes an average mass
and the finite terms include the proper ratios of fermion
masses. In the second model with fermions in the ð2; 2Þ,
ð1; 3Þ, and ð3; 1Þ we find

�S ¼ �8�N�sin
2�

�
Aðmð2;2Þ; mð2;2ÞÞ þ Aðmð3;1Þ; mð3;1ÞÞ

þ Aðmð1;3Þ; mð1;3ÞÞ � 3

2
j�13j2Aðmð2;2Þ; mð1;3ÞÞ

� 3

2
j�31j2Aðmð2;2Þ; mð3;1ÞÞ

�

¼ 1

2

N�

�

v2

f2
ð2� j�13j2 � j�31j2Þ log

�
�2

�m2

�
þ finite terms: (4.4)

From Eqs. (4.2), (4.3), and (4.4) one can see that the S
parameter is in general logarithmically divergent, as ex-
pected on dimensional grounds. The coefficient of the log
can be either positive or negative depending on the value of
the parameters � . Analogous results were first obtained
in the context of technicolor theories in Ref. [22] and
later rederived for SOð4Þ=SOð3Þ Higgsless models by
Ref. [23]. More recently, the case of SOð5Þ=SOð4Þ com-
posite Higgs theories has been discussed in Ref. [24].11 A
simple way to understand why the log divergence vanishes

if the parameters � are equal to 1 is by noticing that in this
limit the Lagrangian (3.7) can be rewritten, through a field
redefinition, as the Lagrangian of a two-site model where
the Higgs couplings to the composite fermions are non-
derivative.12 This implies, by simple inspection of the
relevant 1-loop diagrams, that the S parameter is finite in
this case. For completeness we report in Appendix E a
short discussion on the connection between the CCWZ
Lagrangian (3.7) and that of the two-site model.
The fact that the overall sign of S is controlled by

the coefficients � and can be negative is more clearly
understood by considering the dispersion relation
obeyed by S [20]:

S ¼ 4�sin 2�
Z ds

s
½�LLðsÞ þ �RRðsÞ � 2�BBðsÞ�; (4.5)

where �LL, �RR and �BB are the spectral functions,
respectively, of two unbroken [SUð2ÞL and SUð2ÞR]
and broken [SOð5Þ=SOð4Þ] conserved currents of the
strong sector. The definition of the spectral function
�ðsÞ and the expression of the currents is reported in
Appendix D for completeness. From Eq. (4.5) and from
the positivity of each individual spectral function, it is
clear that a negative S can occur if �BB is sufficiently
large. The leading contribution of the fermions to the
spectral functions can be easily computed from the
diagrams shown in Fig. 4. We find

�LL;RRðq2Þ ¼ 1

12�2

X
r

CL;R½r��ðq2; mr; mrÞ;

�BBðq2Þ ¼ 1

24�2

X
r;r0

j�½r;r0�j2C½r; r0��ðq2; mr; mr0 Þ;
(4.6)

FIG. 4. Two-particle contribution to the spectral function of
unbroken (upper row) and broken (lower row) currents from the
composite fermions. The dashed line denotes the propagator of a
NG boson.

11The same results hold in five-dimensional holographic Higgs
models. This can be most easily shown by solving the bulk
dynamics and deriving the holographic action on the boundary
where the elementary fields live; see for example Ref. [25]. In
the absence of boundary terms, the 4D holographic action for the
fermions has the CCWZ form with � ¼ 1. This is indeed the
reason why previous 1-loop calculations in the context of 5D
models found a finite S parameter; see for example Ref. [26].
Values � � 1 can be obtained by introducing the boundary term
Fâ
�5

�cTâ��c , since by using the equations of motion in the bulk
it follows Fâ

�5 / dâ�ð�Þ. 12The same observation was recently made by Ref. [24].
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where we have defined

�ðq2; mr;mr0 Þ ¼
�
1� ðmr �mr0 Þ2

q2

��
1þ ðmr þmr0 Þ2

2q2

�

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þm2

r �m2
r0

q2

�
2 � 4

m2
r

q2

s
: (4.7)

By inserting these expressions into the dispersion
relation (4.5), one reobtains the result of Eq. (4.2).
Since �BB is proportional to j�½r;r0�j2, it is clear that

for sufficiently large j�½r;r0�j the S parameter will

become negative.

V. NUMERICAL RESULTS AND DISCUSSION

In this paper we have focused on the virtual effects due
to purely composite states. The Higgs decay rate to Z� and
the S parameter are two low-energy observables extremely
sensitive to such effects.13 It is well know that the tree-level
contribution to S from spin-1 resonances is large and poses
tight constraints on the scale of compositeness. We have
seen that the exchange of �L and �R generates the effective
interaction hZ� also at tree level, provided their masses
and couplings are not PLR symmetric. This leads to a
correction to the h ! Z� decay rate that is potentially
larger than that due to the Oðv2=f2Þ shifts in the tree-level
Higgs couplings from the nonlinear �-model Lagrangian.
This is the case unless the coefficients of the operatorsQ1L

and Q1R are loop suppressed, as happens for example in
Holographic Higgs theories. The contribution from fermi-
onic resonances arises at the 1-loop level, and can be

numerically large. The main reason for this is that loops
of pure composites are sensitive to the multiplicity of states
arising from the strong dynamics. In particular all the
composite fermion species, including the partners of SM
light quarks and leptons, will circulate in the loop regard-
less of how strongly mixed with the elementary fermions
they are. The multiplicity factor N� can then partly com-

pensate for the 1-loop suppression, giving large shifts to
both the S parameter and the h ! Z� rate.14

To illustrate the size of the effects we have been discus-
sing, the left plot of Fig. 5 shows the shift to the h ! Z�
decay amplitude in units of the SM top contribution,

�A=Atop
SM, due to one family of colored fermions (composite

quarks) transforming as a 10þ 5 of SOð5Þ (second model
of Sec. III C with N� ¼ 3). As discussed in Sec. III B,

the correction comes entirely from the 10, hence the rele-
vant parameters are the following: the scale of composite-
ness f, the coefficients �13, �31, and two ratios of masses
which we conveniently define to be �m=m � ðmð3;1Þ �
mð1;3ÞÞ=ðmð3;1Þ þmð1;3ÞÞ and r � mð2;2Þ=ðmð3;1Þ þmð1;3ÞÞ.
For simplicity we fix �13 ¼ �31 ¼ 1, so that the amount
of PLR breaking is fully controlled by �m=m. The plot

shows the relative shift �A=Atop
SM as a function of �m=m

for two representative values f ¼ 500 GeV and f ¼
800 GeV. The red and blue bands are obtained by varying
r in the interval 0:1< r < 2:5. By rescaling �13 and �31 by

f 500 GeV
0.1 r 2.5

f 800 GeV
0.1 r 2.5
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m m
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p
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0.1 r 2.5
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0.6 0.4 0.2 0.0 0.2 0.4 0.6
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FIG. 5 (color online). Left: shift of the h ! Z� decay amplitude in units of the SM top contribution, �A=A
top
SM, in the second model of

Sec. III C as a function of the LR mass splitting. Right: total decay rate of h ! Z� normalized to its SM value, �=�SM, in the same
model. The left plot assumes one family of colored fermions (N� ¼ 3), while the right plot assumes three degenerate families of

composites (N� ¼ 9). The horizontal lines indicate the value obtained by including only the effect of the modified tree-level Higgs

couplings.

13We are particularly grateful to John Terning for drawing our
attention to the possibility of correlation between these two
effects.

14One might worry that a large multiplicity factor N� could
invalidate the perturbative expansion. However, the light Higgs
mass already indicates that composite fermions must be some-
what more weakly coupled than other resonances; see for ex-
ample Refs. [27,28]. With �1 TeV fermion masses and
f ¼ 500–800 GeV, for example, the coupling strength g� ¼
M=f is sufficiently small to allow a perturbative expansion
controlled by the loop parameter N�ðg2�=16�2Þ.
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a common factor � , �A goes like �2, though even without
such an enhancement we see that shifts of several times
the SM top amplitude are possible for large mass splittings.
The right plot of Fig. 5 shows the total decay rate normal-
ized to its SM value, this time for three degenerate families
of colored fermions (second model of Sec. III C with
N� ¼ 9). The horizontal lines indicate the value obtained

by including only the effect of the modified tree-level
Higgs couplings discussed above. Since in the SM the W
loop contribution largely dominates that of the top quark,
the effect from the modified tree-level couplings is a
suppression of the decay rate by a factor ðgWWh=g

SM
WWhÞ2 ¼

ð1� v2=f2Þ. The correction from the 1-loop exchange of
composite fermions is included in addition to this effect,
and can further suppress or enhance the decay rate depend-
ing on the sign of the mass splitting �m=m.

It is interesting to derive the contribution to the S pa-
rameter in this model and analyze the impact of a sizable
correction to the h ! Z� decay rate on the EWPT. This is
illustrated by Fig. 6 in the ðS; TÞ plane.15 The plot shows
the region spanned by varying f and � � �13 ¼ �31 ¼ �11
due to the IR correction to S and T from modified Higgs
couplings and to the 1-loop correction to S from three
degenerate families of composite fermions [Eqs. (4.3) and
(4.4) with N� ¼ 9]. We have fixed the cutoff scale to

� ¼ 5 TeV and have chosen the following spectrum of
composite masses: mð1;1Þ ¼ 1:5 TeV, mð2;2Þ ¼ 2:0 TeV,

mð3;1Þ ¼ 3:4 TeV, mð1;3Þ ¼ 1:0 TeV, so that r ¼ 0:45 and

�m=m ¼ 0:55. Even in the absence of additional contri-
butions to T, the correction to S from loops of composite
fermions can compensate the shift due to the modified
couplings of the Higgs to the SM vector bosons and bring
the theory point back into the 95% probability contour.
For example, for f ¼ 800 GeV [i.e. ðv=fÞ2 ’ 0:09)] one
has �S ’ 0:83ð1� �2Þ from composite fermions, so that
� � 1:1 gives �S��0:2 as required to offset the IR shift.
Correspondingly, the correction to the h ! Z� rate is
sizable and of order 70% of the SM value. In general, the
1-loop contribution to S is large and only values � ’ 1 are
viable. The fact that EWPT select a narrow range of � is
directly relevant for the experimental searches of the
fermionic resonances, since � controls their single produc-
tion [28].16 The exact allowed range depends, however,
on possible additional contributions to S and T. For ex-
ample, for g�L

¼ 3 and f ¼ 800 GeV the contribution to S

from a �L is �S ’ 0:13 [see Eq. (3.5)], which increases
the preferred value of � by only 5%–10%, which in
turn corresponds to an increase of the h ! Z� rate by
10%–20%.

The tuning required to comply with the EW precision
tests can be alleviated if an additional positive contribution
to T is present. This can arise from loops of fermionic
resonances, as recently discussed in Ref. [24]; see also
Ref. [31]. Unlike the S parameter, however, T is generated
only if the custodial invariance of the strong dynamics is
broken, and therefore no correction can come from purely
composite states. In theories with partial compositeness
and flavor anarchy of the strong sector, the leading con-
tribution arises from loops of elementary top quarks. For
example, if tR mixes with a composite singlet of SUð2ÞL 	
SUð2ÞR, as in model 1 of Sec. III C, the only breaking of
custodial symmetry in the fermionic sector comes from �q.

As a spurion analysis shows [7], one needs four powers of
�q to generate T, which implies a finite result (i.e. inde-

pendent of the cutoff scale �). A subleading contribution
comes from loops of spin-1 resonances and elementary
hypercharge vector bosons. In this case the breaking of
custodial symmetry comes from the hypercharge coupling,
and two powers of g0 are sufficient to generate T. Table II
summarizes the naive estimates of the corrections to

Ŝ � ð�em=4sin
2�WÞS and T̂ � �emT. As before,

g� �M=f� g� denotes the coupling strength of the com-

posite states and M their mass scale. The first two lines
show the corrections discussed above that arise from the
exchange of composite fermions and spin-1 resonances.
These are short-distance effects at the scaleM, which in the
language of the Higgs effective Lagrangian correspond to
threshold corrections to the Wilson coefficients �cW þ �cB

Ζ�0

Ζ�1Ζ�1.1
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m�3,1� � 3.4 �TeV� � � 5 TeV
m�1,3� � 1.0 N Χ � 9

m�1,1� � 1.5
m�2,2� � 2.0

f�1200

f�800

f�600

0.1

0.3

∆A�ASM � 0.5

�0.3 �0.2 �0.1 0.0 0.1 0.2 0.3 0.4

�0.1

0.0

0.1

0.2

0.3

S

T

∆A�h�ZΓ��ASM and Precision Electroweak Tests �U � 0�

FIG. 6 (color online). Region spanned in the plane ðS; TÞ when
varying f and � ¼ �13 ¼ �31 ¼ �11 in the second model of
Sec. III C, as due to �S from loops of composite fermions and
to the IR correction to S and T from modified Higgs couplings.
The green (inner) and yellow (outer) areas indicate the regions
with 68% and 95% probability [29]. Dashed (solid black) lines
indicate the trajectories of fixed f (�). The thicker solid red lines
indicate the isocurves of constant h ! Z� decay amplitude.

15The probability contours have been derived by using the fit on
ðS; TÞ performed by the GFitter Collaboration [29]. Similar
results are obtained by using the more recent analysis of
Ref. [30].
16We thank Minho Son for drawing our attention to this point.
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and �cT ; see Ref. [6]. There are, however, additional con-
tributions which are generated by the exchange of light
SM fields below M and are thus associated with the RG
evolution of the Wilson coefficients down to IR scales
� � mZ. The largest corrections arise from loops of NG
bosons (i.e. longitudinally polarized W and Z and the
Higgs boson) and of top quarks, and correspond to the
RG evolution of �cW þ �cB and �cT due to �cH and �cHc ,

respectively [6]. Their naive estimates are reported in
the last two lines of Table II. Loops of transverse gauge
bosons also lead to IR corrections which are subleading.
For example, as recently pointed out by the authors of
Ref. [32], 1-loop diagrams featuring one insertion of the
effective hZ� vertex (induced by the operatorOHW�OHB)

give a correction to the Ŝ parameter of order

�Ŝ�
�

g2

16�2

�
2
�
v2

f2

�
log

�
M

�

�
2
: (5.1)

Although directly linked to h ! Z�, this is a 2-loop EW
effect which is parametrically subleading compared to
other IR effects and numerically smaller than the UV
corrections from pure composite fermions (see Table II).

We briefly summarize our findings with the following
conclusions.

(i) The decay mode h ! Z�, unlike other loop-
mediated processes of a Nambu-Goldstone compos-
ite Higgs boson, is subject to NP corrections that are
not suppressed by the Goldstone symmetry itself.
While new contributions to the hgg and h�� contact
interactions of the effective Lagrangian are typically
(and observably) small, a highly nonstandard hZ�
interaction is possible and consistent with the
symmetry that is assumed to be responsible for
stabilizing the weak scale.

(ii) Generating a large hZ� interaction in the absence of
significant breaking of the Goldstone symmetry
relies on the intervention of states arising from a
strong sector that breaks a left-right symmetry, PLR.
Provided this breaking is mediated in a suppressed
way to the Zb �b coupling, as in the case of the
models presented above, enhancements of h ! Z�
remain phenomenologically viable.

(iii) There are two operators contributing to the S
parameter that are closely related to those govern-
ing h ! Z�, and a naive prediction would be for a
tight correlation between these two observables.
However, the composite Higgs boson can couple
to fermions through interactions that contribute
only to the two-point function of two broken
currents, allowing an offsetting (negative) contri-
bution to S such that again the viability of large
corrections in h ! Z� is retained.

In this paper we have highlighted the anatomy of the
h ! Z� channel, one in which a composite Higgs boson
might naturally interact in a novel way that could help shed
light on its origins in the absence of other, more obvious,
clues. As such, this channel deserves our full attention in
the continuation of Higgs study at the LHC.
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APPENDIX A: FORMULAS FOR THE
h ! Z� DECAY RATE

We collect here the formulas useful for the calculation of
the decay rate h ! Z�. The partial width is given by

�ðh ! Z�Þ ¼ 1

32�

m3
h

v2

�
1�m2

Z

m2
h

�
3jAj2; (A1)

where A is the total decay amplitude. The SM contribution
arises from loops of W vector bosons and fermions:

ASM ¼ AF þ AW;

AF ¼ ��em

�

X
f

NcfQf

ðT3L
f � 2Qfsin

2�WÞ
sin �W cos�W

	 ½I1ð�f; �fÞ � I2ð�f; �fÞ�;
AW ¼ ��em

2�
cot �W

�
4ð3� tan 2�WÞI2ð�W; �WÞ

þ
��

1þ 2

�W

�
tan 2�W �

�
5þ 2

�W

��
I1ð�W; �WÞ

�
;

(A2)

where Ncf and Qf are, respectively, the number of color

and the electromagnetic charge of the fermion f, and we
have defined

TABLE II. Naive estimates of the UV corrections (from com-
posite fermions � and spin-1 resonances �) and IR corrections
(from NG bosons and the top quark) to Ŝ � ð�em=4sin

2�WÞS
and T̂ � �emT.

�Ŝ �T̂

UV
� N�

g2

16�2

�
v2

f2

	
log

�
�
M

	
Nc

�2
q

16�2

�
v2

f2

	
�2
q

g2�

�
�
v2

f2

	�
g2

g2�

	
g02
16�2

�
v2

f2

	
log

�
�
M

	

IR
NGB g2

16�2

�
v2

f2

	
log

�
M
�

	
g02
16�2

�
v2

f2

	
log

�
M
�

	
top Nc

g2

16�2

�
v2

f2

	
�2
q

g2�
log

�
M
�

	
Nc

y2t
16�2

�
v2

f2

	
�2
q

g2�
log

�
M
�
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�f �
4m2

f

m2
h

; �f ¼ 4m2
f

m2
Z

;

�W ¼ 4m2
W

m2
h

; �W ¼ 4m2
W

m2
Z

:

(A3)

The loop functions are equal to

I1ða; bÞ ¼ ab

2ða� bÞ þ
a2b2

2ða� bÞ2 ðfðaÞ � fðbÞÞ

þ a2b

ða� bÞ2 ðgðaÞ � gðbÞÞ;

I2ða; bÞ ¼ � ab

2ða� bÞ ðfðaÞ � fðbÞÞ;

gð�Þ ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

p
arcsin ð1= ffiffiffi

�
p Þ; � � 1;

1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p ½log ð	þ=	�Þ � i��; � < 1;

fð�Þ ¼
8<
: ½arcsin ð1= ffiffiffi

�
p Þ�2; � � 1;

� 1
4 ½log ð	þ=	�Þ � i��2; � < 1;

(A4)

where 	� � ð1� ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p Þ. In the limit in which the new
physics effect can be parametrized by the effective
Lagrangian of Eq. (1.3), the contribution to the decay
amplitude is given by

ANP ¼ �2cZ�: (A5)

Numerically evaluating the SM contribution one finally
obtains [6]

�ðh ! Z�Þ
�ðh ! Z�ÞSM ’









1þ 0:01
4�

�em cos�w
cZ�









2

’ 1þ 0:02
4�

�em cos�w
cZ�: (A6)

APPENDIX B: RELATION BETWEEN
DIFFERENT BASES OF OPERATORS

In this appendix we discuss the relations between our
basis of operators (2.3) and those adopted in Ref. [10] (the
CMPR basis for short) and Ref. [7] (the SILH Lagrangian).

The CMPR list of CP-even operators is given by

O3 ¼ Tr½ðEL
��Þ2 � ðER

��Þ2�;
O�

4 ¼ Tr½ðfL�� � fR��Þi½d�; d���;
Oþ

5 ¼ Trððf���Þ2Þ; O�
5 ¼ Tr½ðfL��Þ2 � ðfR��Þ2�;

(B1)

plus other two operators, O1 ¼ O1 and O2 ¼ O2, whose
expansion in terms of NG bosons starts at dimension 8.
Here fL;R;�� and f��� are the dressed field strengths along

the SUð2ÞL 	 SUð2ÞR and SOð5Þ=SOð4Þ directions [10].
We can relate the CMPR set to our basis by using the
identity

fL�� þ fR�� ¼ EL
�� þ ER

�� þ i½d�; d��; (B2)

which holds for SOð5Þ=SOð4Þ. We find

O3¼O�
3 ;

Oþ
4 ¼Oþ

4 �1

2
O2þ1

2
O1; O�

4 ¼O�
4 �O5;

Oþ
5 ¼Oþ

3 þ2Oþ
4 þ1

2
O1�1

2
O2; O�

5 ¼O�
3 þ2O�

4 �O5:

(B3)

The advantage of our basis over the CMPR one is that the
connection to the SILH Lagrangian is more straightfor-
ward, since only four operators start at dimension 6 when
expanded in powers of the NG bosons. Also, only one
operator gives an hZ� contact interaction.
At the dimension-6 level, the connection between our

operators and those of the SILH Lagrangian is given by

� 4f2

m2
W

O�
4 ¼ OHW �OHB þ 
 
 


� f2

m2
W

O�
3 ¼ OW �OB þ 
 
 
 ;

(B4)

where the dots stand for dimension-8 terms. The SILH
operators are defined in Eqs. (1.1) and (1.2).

APPENDIX C: LOOP FUNCTIONS

We collect here the expression of the loop functions
Aðmr;mr0 Þ, Bðmr;mr0 Þ, Cðmr;mr0 Þ defined in Eq. (3.10):

Aðmr;mr0 Þ ¼ 1

24�2

2
4� log

�
�4

m2
rm

2
r0

�
�mrmr0 ð�4mrmr0 þ 3m2

r0 þ 3m2
rÞ

ðm2
r �m2

r0 Þ2

þ ð6m3
rm

3
r0 � 3m2

rm
2
r0 ðm2

r0 þm2
rÞ þm6

r0 þm6
rÞ log ðm2

r=m
2
r0 Þ

ðm2
r �m2

r0 Þ3
3
5; (C1)
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Bðmr;mr0 Þ ¼ 1

24�2

1

ðm2
r �m2

r0 Þ3
�
2m4

r0 ðm2
r0 � 3m2

rÞ log
�
m2

r0

�2

�
� 2m4

rðm2
r � 3m2

r0 Þ log
�
m2

r

�2

�
� 7m4

rm
2
r0 þ 7m2

rm
4
r0 �m6

r0 þm6
r

�
;

(C2)

Cðmr;mr0 Þ ¼ 1

24�2

1

ðm2
r �m2

r0 Þ3
�
2ð3m2

rmr0 þ 3mrm
2
r0 � 2m3

r0 � 3m3
rÞm3

r0 log

�
m2

r0

�2

�
þ 2mrð�6m3

rm
2
r0 þ 3m2

rm
3
r0

þ 3mrm
4
r0 � 3m5

r0 þ 2m5
rÞ log

�
m2

r

�2

�
þ ðm2

r �m2
r0 Þð�6m3

rmr0 � 3m2
rm

2
r0 þ 6mrm

3
r0 þm4

r0 þ 4m4
rÞ
�
: (C3)

Unlike Cðmr;mr0 Þ, the functions Aðmr;mr0 Þ and Bðmr;mr0 Þ
are symmetric in their arguments, as can be easily verified
by inspection. The effective vertex hZ� is proportional to
the antisymmetric combination [see for example Eq. (3.23)]

Cðmr;mr0 Þ � Cðmr0 ; mrÞ
¼ 1

8�2

1

ðm2
r �m2

r0 Þ2
�
ðm2

r �m2
r0 Þð�4mrmr0 þm2

r0 þm2
rÞ

þ 2mrmr0 ð�mrmr0 þm2
r0 þm2

rÞ log
�
m2

r

m2
r0

��
; (C4)

which is finite (i.e. cutoff independent) as expected by the
argument of Sec. III B.

APPENDIX D: SPECTRAL FUNCTIONS
AND SOð5Þ CURRENTS

For completeness we report here the definition of the
spectral function of two currents. One has

���ðqÞ �
X
n

�ð4Þðq� pnÞh0jJ�ð0ÞjnihnjJ�ð0Þj0i; (D1)

where the sum is over a complete set of states. By Lorentz
covariance,

���ðqÞ ¼ 1

ð2�Þ3 �ðq
0Þðq�q� � 	��q

2Þ�ðq2Þ; (D2)

where �ðq2Þ is the spectral function.
At leading order in the number of fields and derivatives,

the expression of the SOð5Þ conserved currents is (we show
for simplicity only terms involving the NG bosons and the
fermions)

Ja� ¼ X
r

��r�
�Ta�r þ 
 
 
 ; a ¼ aL; aR;

Jâ� ¼ fffiffiffi
2

p @��
â �X

r;r0
ð�½r;r0� ��r�

�Tâ�r0 þ H:c:Þ þ 
 
 
 :

(D3)

APPENDIX E: TWO-SITE VS CCWZ
FERMIONIC LAGRANGIAN

In this appendix we briefly discuss the relation between
the description of the fermion interactions in the CCWZ

approach and the so-called ‘‘two-site’’ model Lagrangian
(see for example Ref. [17]) where fermions couple to the
Higgs boson only through (nonderivative) Yukawa terms.
In the general case, the CCWZ Lagrangian of composite

fermions is written at leading order in the derivative
expansion as

L ¼ X
r

��rðir�mrÞ�r �
X
r;r0

�½r;r0� ��r 6d�0
r; (E1)

where the sums run over all possible representations r, r0 of
the unbroken subgroup H . If the composite fermions can
be arranged into complete multiplets of the global group G
(which occurs if G is linearly realized at high energy) and
all the parameters �½r;r0� are equal to 1, it is easy to show

that the Lagrangian (E1) can be rewritten in terms of a
‘‘two-site’’ Lagrangian by means of a field redefinition
(see also Ref. [24]). In this limit, Eq. (E1) becomes

L ¼ �c��ðiD� þUð�ÞyiD�Uð�ÞÞc
�X

r

mrðPr 
 c ÞðPr 
 c Þ; (E2)

where c � ð�1; �2 . . .Þ denotes the (possibly reducible)
representation of G, and Pr is a projector on the represen-
tation r of H , that is, Pr 
 c � �r. Also, we have used
the fact that d� þ E� ¼ �iUð�ÞyD�Uð�Þ. We then

perform the field redefinition � � Uc , so that � trans-
forms linearly under G: � ! g�. The Lagrangian can be
reexpressed as

L ¼ ����iD���X
r

mrðPr 
Uð�Þy�ÞðPr 
Uð�Þy�Þ;

(E3)

so that the Higgs interactions with fermions now come
entirely from the second term and are of nonderivative
type.
As an illustrative example, it is instructive to consider

the SOð5Þ=SOð4Þ case in which the composite fermions fill
a 10 of SOð5Þ, where 10 ¼ ð1; 3Þ þ ð3; 1Þ þ ð2; 2Þ under
SUð2ÞL 	 SUð2ÞR. The field redefinition in this case reads
�10 ¼ Uð�Þc 10Uð�Þy, where c 10 ¼ ð�ð2;2Þ; �ð1;3Þ; �ð3;1ÞÞ
and both �10 and c 10 are conveniently described in 5	 5
matrix notation. After the field redefinition, the Lagrangian
reads
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L¼Tr½ ��10i6@�10��mþTr½ ��10�10�
�ðmð2;2Þ�mþÞTr½ðPð2;2Þ 
Uy�10UÞðPð2;2Þ 
Uy�10UÞ�
�m�Tr½ðPð3;1Þ 
Uy�10UÞðPð3;1Þ 
Uy�10UÞ
�ðPð1;3Þ 
Uy�10UÞðPð1;3Þ 
Uy�10UÞ�; (E4)

where we have defined m� ¼ ðmð3;1Þ �mð1;3ÞÞ=2. The

action of the projectors Pð2;2Þ, Pð1;3Þ, and Pð3;1Þ on an

element of the algebra M is defined as

Pð2;2Þ 
M � X
â

Tâ Tr½TâM�;

Pð3;1Þ 
M � X
aL

TaL Tr½TaLM�;

Pð1;3Þ 
M � X
aR

TaR Tr½TaRM�:

(E5)

The term in the second line of Eq. (E4) can be more con-
veniently rewritten in terms of the field � ¼ Uð�Þ�0,
where �0 ¼ ð0; 0; 0; 0; 1ÞT , by using identities between
SOð5Þ generators. One has

Tr½ðPð2;2Þ 
 Uy�10UÞðPð2;2Þ 
Uy�10UÞ�
¼ X

â

Tr½TâUy ��10U�Tr½TâUy�10U�

¼ 2ðUy ��10�10UÞ55 ¼ 2�y ��10�10�; (E6)

where in the first equality we have made use of Eq. (E5).
The term proportional to mð3;1Þ �mð1;3Þ can be rearranged

by using the identities

X
aL

ðTaLÞijðTaLÞkl �
X
aR

ðTaRÞijðTaRÞkl ¼ � 1

2

ijkl5


ijkl5Ui0iUj0jUk0kUl0l ¼ 
i
0j0k0l0n0Un05 det ðUÞ

¼ 
i
0j0k0l0n0Un05: (E7)

One can show that

Tr½ðPð3;1Þ 
Uy�10UÞðPð3;1Þ 
 Uy�10UÞ
� ðPð1;3Þ 
 Uy�10UÞðPð1;3Þ 
Uy�10UÞ�

¼ � 1

2

mnrpk ��mn

10 �
rp
10�

k: (E8)

Note that this PLR-violating term is invariant under SOð5Þ
but not under Oð5Þ, which is expected since PLR is an
element of Oð5Þ but not of SOð5Þ.17 The Lagrangian can
thus be written as

L¼Tr½ ��10i6@�10��mþTr½ ��10�10�
�2ðmð2;2Þ�mþÞ�y ��10�10�þm�

2

mnrpk ��mn

10 �
rp
10�

k:

(E9)

APPENDIX F: CALCULATION OF THE
FERMIONIC CONTRIBUTION TO THE
DECAY RATE h ! Z� IN THE MASS

EIGENSTATE BASIS

In the main text we have described the calculation of the
contribution of composite fermions to the h ! Z� decay
rate by using the effective field theory approach. We have
thus expanded the loop integrals keeping only the leading
terms suppressed by two powers of the NP scale and
neglecting more suppressed contributions. Also, we per-
formed our calculation by neglecting the elementary-
composite mixing terms in the fermionic sector, which
explicitly violate the Goldstone symmetry. It is, however,
possible, and somehow straightforward, to perform a com-
plete calculation of the 1-loop contribution of heavy fer-
mions to the decay amplitude of h ! Z� without making
approximations. In this appendix we describe such a
calculation and show that it reduces to the results presented
in the text in the proper limit.
In the SM the fermionic contribution to the decay rate

comes from 1-loop diagrams with only one particle species
circulating in the loop. In a generic NP model on the other
hand, such as the composite Higgs theories under exami-
nation in this paper, there will be several fermions with the
same electromagnetic charge and off-diagonal couplings to
the Z and the Higgs boson. It is thus possible to have two
different species of fermions circulating in the same loop
for h ! Z�, as shown in Fig. 7. In the basis of mass
eigenstates and focusing on fermions with the same elec-
tric charge, the terms of interest in the Lagrangian can be
written in full generality as follows:

L ¼ �c iði6@�miÞc i þ 1

2
�c ihð�h

ij þ i�5 ��h
ijÞc j

þ 1

2
�c iZ��

�ð�Z
ij þ �5

��Z
ijÞc j; (F1)

where a sum over all mass eigenstates i, j is left understood
and the matrices �h;Z, ��h;Z are all Hermitian. Possible
derivative interactions of the Higgs boson with the

FIG. 7. 1-loop contribution to h ! Z� from fermion species
i and j.

17We define PLR ¼ diagð�1;�1;�1;þ1;þ1Þ so that it is
unbroken in the SOð4Þ vacuum.
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fermions can always be rewritten as in Eq. (F1) by inte-
gration by parts and use of the equations of motion. Wewill
show this in detail in the following. By calculating the
diagram of Fig. 7 and summing over i, j one obtains the
following decay amplitude:

ANP ¼ � eQc

4�2
v
X
i;j

½�h
ij�

Z
jiFðmi;mj; mh;mZÞ

þ i ��h
ij
��Z
jiFðmi;�mj;mh;mZÞ�: (F2)

The final result is thus obtained by further summing the
contributions from fermions with different electric charge.
The loop function is equal to [33]

Fðm1;m2;mh;mZÞ

¼ 1

2ðm2
h�m2

ZÞ
�
m2

Zðm1þm2Þ
ðm2

h�m2
ZÞ

½B0ðm2
Z;m1;m2Þ

�B0ðm2
h;m1;m2Þ�þ

�
�m1

2
ð2m1ðm1þm2Þ

�m2
hþm2

ZÞC0ðm1;m1;m2Þþðm1$m2Þ
�
�ðm1þm2Þ

�
;

(F3)

where B0ðp2; m1; m2Þ, C0ðp2
1; p

2
2; ðp1 þ p2Þ2; m1; m2; m3Þ

are two- and three-points Passarino-Veltman functions
(for a review see Ref. [34]), and we define for convenience
C0ðm1; m2; m3Þ � C0ð0; m2

Z; m
2
h; m1; m2; m3Þ. In the equal

mass limit m1 ¼ m2 the loop function reduces to the SM
one [see Eqs. (A2) and (A4)]:

Fðm;m;mh;mZÞ ¼ 1

2m
ðI1ð�f; �fÞ � I2ð�f; �fÞÞ: (F4)

In the limit of heavy fermions, m2
1; m

2
2 
 m2

h; m
2
Z, the loop

function reduces to

Fðm1;m2;0;0Þ
¼� 1

8ðm1�m2Þ3ðm1þm2Þ2
�
ðm2

1�m2
2Þðm2

1�4m2m1þm2
2Þ

þ4m1m2ðm2
1�m2m1þm2

2Þlog
�
m1

m2

��
: (F5)

If the Higgs boson is a NG boson, its interactions to the
fermions can be only of derivative type, as shown for
example in Eq. (E1). In the mass-eigenstate basis the
Lagrangian can thus be written as

L ¼ �c iði6@�miÞc i þ 1

2
�c ið@�hÞ��ðTh

ij þ �5 �Th
ijÞc j

þ 1

2
�c iZ��

�ð�Z
ij þ �5

��Z
ijÞc j; (F6)

where Th, �Th are Hermitian. By integrating by parts
and using the fermions’ equations of motion, the above
Lagrangian can be rewritten as

L ¼ �c iði6@�miÞc i þ 1

2
�c ih½iðmj �miÞTh

ij

þ i�5ðmi þmjÞ �Th
ij�c j þ 1

2
�c iZ��

�ð�Z
ij þ �5

��Z
ijÞc j

þO½ðh2c 2Þ; ðhZc 2Þ�: (F7)

This is of the form (F1) upon identifying

�h
ij ¼ iðmj �miÞTh

ij;
��h
ij ¼ ðmi þmjÞ �Th

ij: (F8)

At the 1-loop level the Oðh2c 2Þ terms are irrelevant
for h ! Z� and can be safely ignored. The OðhZc 2Þ
terms also do not contribute to h ! Z�: they lead to
(two-pointlike) diagrams whose loop function has a trans-
verse Lorentz structure, (q�q� � g��q

2), where q is the

photon momentum, hence the corresponding Feynman
amplitude vanishes identically for an on-shell photon.
The final expression of the amplitude is thus given by
Eq. (F2), with �h and ��h given by Eq. (F8).
In Sec. III B we have computed the contribution to

h ! Z� from pure composite fermions using an effective
Lagrangian approach. For vanishing elementary-
composite mixings, the composite multiplets of SOð4Þ
are mass eigenstates, and Eq. (E1) is of the form (F6)

with Th / �T4̂ and �Th ¼ 0. The vanishing of �Th follows
from our tacit assumption to have the same coupling to the
Higgs boson for both left- and right-handed chiralities of
composite fermions in Eq. (E1). By using the above results,
in particular Eqs. (F2) and (F8), and taking the limit of
heavy fermion masses, the decay amplitude reads

ANP ¼ � eQc

4�2

X
i;j

iðmj �miÞTh
ij�

Z
jiFðmi;mj; 0; 0Þ: (F9)

By summing the contributions from mass eigenstates with
different electric charge and using the identity

ðmj �miÞ
�2

Fðmi;mj; 0; 0Þ ¼ Cðmi;mjÞ � Cðmj;miÞ;
(F10)

one finally reobtains the result of Eq. (3.16).
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