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In most (weakly interacting) extensions of the Standard Model the relation mapping the parameter

values onto experimentally measurable quantities can be computed (with some uncertainties), but the

inverse relation is usually not known. In this paper we demonstrate the ability of artificial neural networks

to find this unknown relation, by determining the unknown parameters of the constrained minimal

supersymmetric extension of the Standard Model from quantities that can be measured at the LHC. We

expect that the method works also for many other new physics models. We compare its performance with

the results of a straightforward �2 minimization. We simulate LHC signals at a center of mass energy of

14 TeV at the hadron level. In this proof-of-concept study we do not explicitly simulate Standard Model

backgrounds, but apply cuts that have been shown to enhance the signal-to-background ratio. We analyze

four different benchmark points that lie just beyond current lower limits on superparticle masses, each of

which leads to around 1000 events after cuts for an integrated luminosity of 10 fb�1. We use up to 84

observables, most of which are counting observables; we do not attempt to directly reconstruct

(differences of) masses from kinematic edges or kinks of distributions. We nevertheless find that m0

and m1=2 can be determined reliably, with errors as small as 1% in some cases. With 500 fb�1 of data

tan� as well as A0 can also be determined quite accurately. For comparable computational effort the �2

minimization yielded much worse results.
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I. INTRODUCTION

TheLargeHadronCollider (LHC) is running successfully.
After the next long shutdown the center of mass energy will
be raised from 8 to 13 or 14 TeV. This higher center of mass
energy will increase the reach for finding new physics. Here
we are concerned with supersymmetric extensions of the
StandardModel (SM)of particle physics.Within the simplest
potentially realistic supersymmetric model, the minimal
supersymmetric extension of the SM (MSSM) [1], the
14 TeV LHCwill increase the mass reach for first generation
squarks and gluinos from the current lower bounds, which
reach nearly 1.5TeV for equal squark and gluinomasses1 [4],
to values between 2 and3TeV [5]. This leaves plenty of room
for new discoveries. In particular, the ‘‘natural’’ range of
parameters of supersymmetric theories will then be probed
decisively.

Discovering a signal for physics beyond the SM, impor-
tant as it would be, would certainly not be the end of the
LHC physics program. One would then not only have to
ascertain what kind of new physics has been discovered,

but also determine the values of the free parameters as
accurately as possible. In the context of the MSSM, this
should help to unravel the mechanism responsible for the
breaking of supersymmetry.
There is a great deal of literature on ways to determine

the parameters of supersymmetric theories. Most methods
start from kinematic features, in particular end points or
‘‘edges’’ of invariant mass distributions [6] or kinks in
slightly more complicated kinematic distributions [7].
These kinematic features directly allow us to determine
(differences of) superparticle masses; at least at the tree
level, in most cases there is a direct relation between the
mass of a superpartner and a weak-scale parameter of the
underlying theory. In many cases the experimental resolu-
tion that can be achieved is such that at least one-loop
corrections should be included; e.g. the difference between
pole (on-shell) masses, which determine the kinematics,
and DR masses, which are ‘‘fundamental’’ free parameters
in the supersymmetric Les Houches accord [8], can easily
reach several percent for strongly interacting superparticles
[9]. The derived DR masses will then depend on many
(pole) masses. Moreover, in the chargino and neutralino
sector, as well as for third generation sfermions, the rela-
tion between pole masses and fundamental parameters is
complicated by mixing [1]. Nevertheless the basic kine-
matic quantities that are used for parameter determination
can be determined from a single (simulated) experiment.
While the step from there to the determination of the
basic parameters and their errors may entail many calls of
spectrum calculators, there is no need to simulate event

1Mass limits are usually cited for the constrained MSSM
(CMSSM) or for certain simplified scenarios; even in these
scenarios the gluino mass bound reduces to about 900 GeV if
squarks are much heavier than gluinos. In the more general
MSSM the bounds may be somewhat weaker [2]; however,
they can be reduced significantly only if strongly interacting
sparticles are quite close in mass to the lightest superparticle [3],
which is not particularly natural from the model building point of
view.
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generation for different sets of parameters, which is usually
far more time consuming than the calculation of the
spectrum of superparticles.2

On the other hand, even in constrained scenarios purely
kinematical determinations of the underlying parameters
work well only if sufficiently many events contain two
(or more) charged leptons (meaning electrons or muons).
Kinematic reconstructions based on jets suffer not only
from the much poorer energy resolution of jets, but also
from larger combinatorial backgrounds (since the produc-
tion and decay of strongly interacting superparticles
typically leads to events with many jets).

In any case, it is clear that the number of signal events in
certain categories contains a lot of information about the
underlying physics. Even if kinematic reconstruction
works well, it would be wasteful to ignore this information.
To mention a well-known example, the cross section for
the pair production of a new color triplet complex scalar
boson (like the top squark) is much smaller than that for
spin-1=2 quarks of the same mass [1]. Moreover, in con-
strained supersymmetric scenarios strongly interacting
superparticles tend to be heavier than those without strong
interactions. The production of strongly interacting super-
particles therefore frequently leads to long ‘‘cascade’’
decays [11], which can populate many ‘‘topologically
different’’ final states, i.e. final states characterized by
different numbers (and charges) of leptons as well
as different numbers (and flavors) of jets. It has been
recognized quite early that the relative abundance of these
final states contains a great deal of information about the
sparticle spectrum [12].

However, these early studies mostly focused on distin-
guishing qualitatively different spectra of superparticles.
Information on the total signal rate has only quite recently
been included in fits attempting to determine the under-
lying parameters from (simulated) events [13]. We are not
aware of any study that attempts to determine the values of
the underlying parameters using (mostly) counting observ-
ables, although a recent analysis showed that these observ-
ables can be very useful for discriminating between
discrete sets of model parameters [14]. One major diffi-
culty with this approach is that it requires us to generate
event samples for many different assumed sets of input

parameters. For example, even in the CMSSM, which has
only four free parameters, a simple grid scan over all
parameters with a step size comparable to or smaller than
the anticipated statistical accuracy of the method is
prohibitively CPU expensive in most circumstances.
The purpose of this paper is to demonstrate the useful-

ness of artificial neural networks for the parameter deter-
mination of such a new physics theory. Largely due to the
limitation of our computational resources, we do this in the
framework of the CMSSM; the method should also be
useful for other theories, supersymmetric or otherwise.
Again for computational simplicity we ignore detector
effects, but we work at full hadron level, including initial
and final state radiation, hadronization, and the underlying
event. Similarly, we ignore Standard Model backgrounds,
but we include cuts that should keep them at a manageable
level. We consider four benchmark scenarios, all of which
lie (slightly) beyond current lower bounds on superparticle
masses, but have qualitatively different spectra. We find
that 10 fb�1 of data at

ffiffiffi
s

p ¼ 14 TeV are sufficient to
determine the common scalar mass parameter m0 and the
common gaugino mass parameter m1=2 to few percent

accuracywithout any direct kinematic mass reconstruction.
With 500 fb�1 of data the neural networks can also deter-
mine the trilinear soft breaking parameter A0 and the ratio
of vacuum expectation values tan� quite accurately for
these benchmark scenarios. In contrast, in many cases a
simple �2 minimization failed to converge; i.e. it could
not reliably determine the parameters and their errors. The
likely reason is that the minimization of �2 is very sensitive
to fluctuations in the predictions due to finite Monte Carlo
statistics.
In this paper we are only interested in the production and

decay of superparticles at the LHC, as an example for an
extension of the SM containing many new parameters that
can hopefully be determined from future LHC data. In our
numerical analysis we will therefore respect the experi-
mental bounds on the masses of superparticles, but we will
not try to reproduce the recently discovered (increasingly)
Higgs-like boson [15] in our CMSSM spectra, nor will we
try to describe dark matter through thermally produced
superparticles. Instead we are using the CMSSM as a toy
model whose parameter space is manageable even without
requiring the correct Higgs mass and dark matter relic
density. Obviously imposing these constraints, or other
constraints not directly related to LHC data, would sim-
plify the task of fixing the free parameters. Here we wish to
show that data on the production and decay of superpar-
ticles at the LHC by themselves can be used for this task,
even if mostly counting observables are used.
The remainder of this article is organized as follows.

In Sec. II we first introduce the general setting of the
simulation. One important issue is the choice of observ-
ables. An automated reconstruction of the underlying
parameters can only succeed if one has sufficiently many

2This statement may no longer be strictly true in the presence
of additional hard radiation, which changes the shapes of kine-
matic distributions near the features (edges or kinks) used to
determine masses [10]. Beyond the collinear approximation, the
amount of radiation emitted may depend on (combinations of)
superparticle masses in a complicated manner. However, in
practice the shapes of the relevant kinematic distributions are
fitted to (simulated) data rather than directly taken from theory.
While we are not aware of an analysis of kinematical fitting
based on a fully NLO corrected event simulation, we expect that
by fitting the shapes of the relevant distributions one can still
determine the locations of the relevant kinematic features with-
out prior knowledge of superparticle masses.
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observables to be sensitive to all parameters everywhere
in parameter space. On the other hand, including too
many observables can dilute the statistical power. We
present a set of observables which we showed to be useful
for discriminating between different parameter sets for a
more general supersymmetric model with 15 parameters
[14]. In the second part of Sec. II we introduce four differ-
ent benchmark points in the CMSSM framework. In
Sec. III we discuss both our attempts at parameter recon-
struction, first using artificial neural networks and second a
�2 minimization. We explain the general setup as well as
each step of the creation of the neural networks for this
specific application. We also estimate the errors on the
CMSSM parameters, including their correlations, using
different methods that yield consistent results. In the sec-
ond part of Sec. III the attempted �2 minimization is
discussed; as already mentioned, it does not perform very
well. The results obtained by the artificial neural networks
for all four benchmark points are discussed in Sec. IV. We
also compare them to the results from the �2 minimization.
Finally, the last section contains a summary and some
conclusions.

II. SIMULATION

We simulate future LHC data at a center of mass energy
of 14 TeV. As mentioned in the Introduction, we work in
the framework of the CMSSM, where the entire spectrum
of superparticles and Higgs bosons is defined by four
continuous parameters and a sign. The continuous parame-
ters are the common scalar mass parameter m0, the
common gaugino mass m1=2, the common trilinear soft

breaking parameter A0 and the ratio tan� of vacuum
expectation values of the two Higgs doublets. As usual,
m0, m1=2 and A0 are specified at the scale of Grand

Unification, MX ’ 2� 1016 GeV, whereas tan� is given
at the electroweak scale. We fix the sign of the super-
symmetric Higgsino mass parameter � to be positive.

We use SOFTSUSY [16] to compute the CMSSM super-
particle and Higgs boson spectra from the values of the
four input parameters. The weak-scale spectrum is then
passed on to SUSY-HIT [17], which calculates the branch-
ing ratios of all kinematically allowed decays. Knowledge
of the superparticle masses and branching ratios is needed
for the simulation of the production and decay of pairs of
superparticles at the LHC, which is handled by the event
generator Herwigþþ [18]. In a first step 10,000 events
are simulated in order to determine the total cross section
for the production of all superparticles for the given set of
input parameters. Next, the appropriate number of events is
simulated which corresponds to the assumed integrated
luminosity; we will show results for 10 and 500 fb�1.

Each simulated event is assigned to one of twelve
mutually exclusive event classes, based on the number,
charges and flavors of charged leptons. In addition, for
each event a small number of mostly counting observables

is kept, from which we construct our 84 observables.
This is described in more detail in the following subsec-
tion. We do this, first of all, for four benchmark scenarios,
which lie in qualitatively different regions of CMSSM
parameter space, as described in the second subsection.
Of course, in the attempt to determine the values of the
CMSSM parameters from the four simulated measure-
ments, the procedure from spectrum calculation to event
generation has to be performed for many additional
parameter sets, as described in Sec. III.

A. Observables and their covariances

In this subsection we summarize our observables, which
we introduced in detail in Sec. 3 of [14]. In particular, the
precise definitions of the objects (isolated charged leptons,
hadronically decaying � leptons, hadronic jets with or
without b tag) we use to characterize the events, and the
applied cuts, can be found in the appendixes of [14].
As already noted, we group all accepted events into

twelve mutually exclusive classes, which differ by the
number, charges and flavors of charged leptons. Here
only isolated electrons or muons with transverse momen-
tum pT > 10 GeV and pseudorapidity j�j< 2:5 are
counted. These classes are
(1) 0l: Events with no charged leptons
(2) 1l�: Events with exactly one charged lepton, with

negative charge (in units of the proton charge)
(3) 1lþ: Events with exactly one charged lepton, with

positive charge
(4) 2l�: Events with exactly two charged leptons,

with total charge �2
(5) 2lþ: Events with exactly two charged leptons,

with total charge þ2
(6) lþi l�i : Events with exactly two charged leptons, with

opposite charge but the same flavor; i.e. e�eþ or
�þ��

(7) lþi l�j;j�i: Events with exactly two charged leptons,

with opposite charge and different flavor; i.e. e��þ
or eþ��

(8) l�i l�j lþj : Events with exactly three charged leptons

with total charge �1. There is an opposite-charged
lepton pair with same flavor. For example e����þ
or e�e�eþ

(9) lþi lþj l�j : Events with exactly three charged leptons

with total charge þ1. There is an opposite-charged
lepton pair with same flavor. For example eþ���þ
or eþe�eþ

(10) l�i l�j l�k;k�j;i forþ: Events with exactly three charged

leptons with total negative charge, i.e. there are at
least two negatively charged leptons. There is no
opposite-charged lepton pair with same flavor. For
example e�e��þ or e�e�e�

(11) lþi lþj l�k;k�j;i for �: Events with exactly three

charged leptons with total positive charge,
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i.e. there are at least two positively charged lep-
tons. There is no opposite-charged lepton pair with
same flavor. For example eþeþ�� or eþeþeþ

(12) 4l: Events with four or more charged leptons
We distinguish between different charges of leptons since
the initial state at the LHC carries charge þ2. In general
the number of events with positively charged leptons can
therefore differ from those with negatively charged lep-
tons. Moreover, we distinguish between lepton pairs with
opposite charge but the same flavor, which can originate
from leptonic neutralino decays, ~�0

a ! lþi l�i ~�0
b, and all

other lepton pairs, which have to come from the decays
of two different particles. This explains why we have two
different classes of events with exactly one charged lepton,
and four different classes each for events with exactly two
and exactly three charged leptons, respectively. In principle
we could also define several different classes of four lepton
events. However, the number of such events is in any case
rather small; further separating these few events into
several classes is therefore not very useful.3

Our first observable is the total number of events after
cuts, N. Note that the cuts differ for the different event
classes, as described in Ref. [14]. In addition, for each of
these twelve classes c 2 f1; 2; . . . ; 12g, the values of seven
observables Oi;c; i 2 f1; 2; . . . ; 7g are computed:

(i) O1;c ¼ nc=N: The number of events nc contained in

the given class c divided by the total number of
events N, i.e. the fraction of all events contained in
a given class

(ii) O2;c ¼ h��ic: Average number of tagged hadroni-

cally decaying �� of all events within a given class c
(iii) O3;c ¼ h�þic: Average number of tagged hadroni-

cally decaying �þ of all events within a given
class c

(iv) O4;c ¼ hbic: Average number of tagged b jets of all

events within a given class c
(v) O5;c ¼ hjic: Average number of non-b jets of all

events within a given class c
(vi) O6;c ¼ hj2ic: Average of the square of the number

of non-b jets4 of all events within a given class c
(vii) O7;c ¼ hHTic: Average value of HT of all events

within a given class c, where HT is the scalar sum
of the transverse momenta of all hard objects,
including the missing pT

Both � and b jets have to have transverse momentum pT >
20 GeV and pseudorapidity j�j< 2:5. In addition, a � jet
needs to be isolated, and a b jet has to contain a b-flavored

hadron. Jets satisfying these criteria are tagged with an
assumed tagging efficiency of 50%. Finally, HT is the
scalar sum of the transverse momenta of all hard objects
(jets and charged leptons) and the absolute value of the
missing pT . We again refer to Ref. [14] for further details.
Three of those observables are different than the ones

used in Ref. [14]. The number of events in a given class c
that contain at least one tagged hadronically decaying ��
divided by the total number of events in this class, nc;��=nc,
has been replaced by the average number of tagged hadroni-
cally decaying �� of all events within a given class c, h��ic,
and similarly for positively charged � jets. In the parameter
sets considered in [14] the number of events containing a
tagged � was rather small and the number of events con-
taining two of those even smaller. Therefore it was sufficient
to just count the number of events containing at least one
tagged �. Now in the case of the CMSSM there can be more
events with a higher number of � leptons. Therefore here we
switched the observable to preserve more information about
the measurement. The same applies to the observable hbic,
which is used instead of nc;b=nc.
Out of the 85 observables listed above, one should be

discarded. Obviously the fractions of events nc=N which
belong to a certain class c add up to 1, because

P
12
c¼1nc¼N.

We therefore do not include the fraction of events without
charged leptons, n0l=N, among our observables; note that
this does not lead to any loss of information. We thus end up
with 84 observables.
For the calculation of �2, and also in order to improve

the performance of our artificial neural networks, we need
the covariance matrix of all 84 observables. The variance
of the total number of events after cuts, N, is

�2ðNÞ ¼ N: (2.1)

The next twelve observables are the fractions of events
nc=N that belong to each class c. As mentioned before they
are not independent. The covariance between the fraction
of events in two different classes c and c0 is then

cov

�
nc
N

;
nc0

N

�
¼ �cc0

nc
N2

� ncnc0

N3

ðc; c0 2 f1; 2; . . . ; 12gÞ:
(2.2)

The covariance for identical classes (c ¼ c0) equals the
variance. Note that this matrix would be singular if we
included all twelve O1;c among our observables. In con-

trast, nc=N and the total number of events N are not
correlated, i.e.

cov

�
nc
N

;N

�
¼ 0 ðc 2 f1; 2; . . . ; 12gÞ: (2.3)

The remaining observables can be written as averages over
all events in a given class,Oi;c ¼ hoiic with o2 ¼ ��, o3 ¼
�þ, o4 ¼ b, o5 ¼ j, o6 ¼ j2 or o7 ¼ HT . Their variances
can be calculated directly from the simulated data using
the formula

3In fact, separating the events into too many distinct classes is
harmful. The reason is that we wish to use Gaussian statistics;
our observables become approximately Gaussian only in the
limit of large event numbers. We therefore only use event classes
containing some minimal number of events, as described in
Sec. III.

4If event i in the given class contains NðiÞ
j non-b jets, then

hj2ic ¼ 1=nc
Pnc

i¼1ðNðiÞ
j Þ2.
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�2ðOi;cÞ ¼ 1

nc � 1
� ðho2i ic � hoii2cÞ ði 2 f2; 3; . . . ; 7gÞ:

(2.4)

Of these observables, only hjic and hj2ic are correlated
within a given class:

covðhjic; hj2icÞ ¼ 1

nc � 1
� ðhj3ic � hjichj2icÞ: (2.5)

Here hj3ic is also determined directly from the (simulated)
events. Observables from different classes are not statisti-
cally correlated. We also ignore the possible correlation
between h��ic and h�þic. The validity of this approxima-
tion was checked for the closely related observables
nc;��=nc and nc;�þ=nc in [14] and should also be fine here.

B. Benchmark points

We look at four different reference points in the CMSSM
parameter space each yielding Oð1000Þ events after cuts
for 10 fb�1 of data:

(1) m0 ¼ 150 GeV, m1=2 ¼ 700 GeV, tan� ¼ 10 and

A0 ¼ 0 GeV
(2) m0 ¼ 2000 GeV, m1=2 ¼ 450 GeV, tan� ¼ 10

and A0 ¼ 0 GeV
(3) m0 ¼ 1000 GeV, m1=2 ¼ 600 GeV, tan� ¼ 10

and A0 ¼ 1500 GeV
(4) m0 ¼ 400 GeV, m1=2 ¼ 700 GeV, tan� ¼ 30 and

A0 ¼ 0 GeV.
All points have a positive Higgs(ino) mass parameter �.
The resulting spectra of superparticles and Higgs bosons
are given in Table I.5

The first parameter set has a low m0, leading to small
slepton masses. The sleptons can therefore be produced on
shell in decays of the winolike states ~�0

2 and ~��
1 , which in

turn are produced frequently in decays of SUð2Þ doublet
squarks ~uL, ~dL. Since these squarks can be produced either
directly or in decays of gluinos, we expect this benchmark
point to lead to relatively strong leptonic signatures.

In contrast, the second point has m2
0 � m2

1=2, so that

squarks and sleptons have similar masses. The winolike ~�0
2

and ~��
1 are still produced rather copiously in ~g three-body

decays via virtual SUð2Þ doublet squark exchange; note
that ~g does not have any tree-level two-body decay in this
scenario.6 However, ~�0

2 mostly decays into the light

CP-even scalar Higgs boson h plus the lightest superpar-
ticle (LSP) ~�0

1 here, while ~��
1 ! ~�0

1W
� decays have a

branching ratio of 100%. A gluino decay on average pro-
duces 0.99 top (anti)quarks in this scenario, whose

semileptonic decays can yield additional hard leptons; these
final states are favored since renormalization group (RG)

running and L� R mixing reduce the masses of ~b1 and ~t1
relative to those of the other squarks [1]. Nevertheless we
expect the strengths of the signals with three or more leptons
to be much weaker in this scenario. Moreover, the signal in
class 6 (two leptons with opposite charge and equal flavor)
will not be enhanced relative to that in class 7 (two leptons
with opposite charge and different flavor).
The third benchmark point also has a relatively highm0,

so that sleptons are again not produced in the decays of
strongly interacting superparticles. However, it also has a
rather high value of jA0j, which enhances both the RG
running and the ~tL � ~tR mixing. This leads to a relatively
large mass splitting between ~t1 and the remaining squarks.
The gluino mass is chosen such that all gluinos decay into a
top quark and an anti–top squark, or vice versa. Since 60%
of all ~t1 decay into a top quark plus one of the neutralinos, a
gluino decay therefore produces on average 1.6 top (anti)
quarks. This yields high-multiplicity final states, including
several b jets and frequently also hard leptons. However,
the ~t1 mass is still so high that direct ~t1~t

�
1 pair production

does not contribute appreciably to the overall signal for
supersymmetry in this scenario.

TABLE I. CMSSM input parameters and selected superpar-
ticle and Higgs boson masses for our four benchmark points.
All mass parameters are in GeV. Note that first and second
generation sfermions with the same gauge quantum numbers
have identical masses. Moreover, m~dL

’ m~uL in these scenarios,

while m~dR
’ m~uR , and m~� ’ m~eL . Similarly, m~��

1
’ m~�0

2
in all

cases, while m~�0
4
’ m~��

2
are about 10 to 30 GeV above m~�0

3
.

Finally, in all cases mH ’ mA ’ mH� .

Point 1 Point 2 Point 3 Point 4

m0 150 2000 1000 400

m1=2 700 450 600 700

A0 0 0 1500 0

tan� 10 10 10 30

m~g 1570 1133 1407 1578

m~uL 1437 2171 1575 1483

m~uR 1382 2161 1541 1430

m~b1
1322 1816 1402 1323

m~b2
1371 2145 1529 1377

m~t1 1118 1384 1168 1145

m~t2 1357 1824 1414 1366

m~eR 306 2005 1024 480

m~eL 494 2015 1074 616

m~�1 298 1988 1010 414

m~�2 494 2007 1068 606

m~�0
1

291 187 249 293

m~�0
2

551 344 468 555

m~�0
3

848 463 668 830

mh 116 116 114 117

mA 969 2040 1244 889

5Recall that we are not requiring the CMSSM to contain
a Higgs boson with mass near 125 GeV in our analysis.

6Decays of the kind ~g ! ~�0
i g, which proceed via one-loop

diagrams, are also included in SUSY-HIT [17], but their branch-
ing ratios are small.

DETERMINATION OF THE CMSSM PARAMETERS USING . . . PHYSICAL REVIEW D 88, 075016 (2013)

075016-5



Finally, the fourth benchmark point again hasm0 <m1=2,

but rather large tan�. This increases the value of the �
Yukawa coupling, which in turn reduces the mass of the
lighter ~� eigenstate through RG effects as well as ~�L � ~�R
mixing. As a result, ~�1 is significantly lighter than the other
sleptons in this scenario. Although m~eR < m~�0

2
’ m~��

1
,

essentially no ~��
1 and just 0.2% of all ~�0

2 decay into a first

or second generation charged slepton. The reason is that ~��
1

and ~�0
2 are both winolike, whereas ~eR and ~�R are SUð2Þ

singlets. On the other hand, ~�1 has a significant SUð2Þ
doublet component. As a result, about 77% each of all ~��

1

and ~�0
2 decay into a ~�1, which in turn always decays into a �

lepton and a LSP ~�0
1; the remaining ~�0

2 decay mostly into

hþ ~�0
1, whereas the remaining ~��

1 decay into W� þ ~�0
1.

The decay products of strongly interacting superparticles
therefore frequently contain one or more � lepton(s). On the
other hand, the branching ratios for gluino decays into third
generation squarks are again enhanced, so that each gluino
decay produces on average 0.99 top (anti)quarks. In this
scenario supersymmetric events therefore can contain
relatively soft leptons from leptonic � decays and/or hard
leptons from semileptonic top decays, in addition to � and/or
b jets.

Our qualitative expectations are confirmed by Table II,
which lists the fractions of events (in percent) that are
assigned to the twelve event classes. We also note that all
benchmark points predict that more positively than nega-
tively charged leptons are produced. This results because
the proton contains more u quarks than d quarks, so that the

production of ~u squarks is enhanced relative to that of ~d
squarks. The asymmetry between positively and negatively
charged leptons becomes large when squark production
contributes prominently to the total event sample (after
cuts) and (some) first generation squarks have sizable
semileptonic decay branching ratios. Both conditions are
satisfied for point 1 and, to a lesser extent, in point 4,
whereas point 2 has a very small asymmetry owing to the

large squark masses and small leptonic branching ratios
of ~��

1 .
Since we assume exact conservation of R-parity, the

LSP is stable. In the four benchmark scenarios, it is the
lightest neutralino ~�0

1. Each supersymmetric event will

therefore contain at least two ~�0
1’s, which are not detected,

leading to the celebrated missing transverse momentum
signature. Indeed, our cuts always include the requirement
of a sizable missing pT , the exact value of the cut
depending on the number of charged leptons in the event;
we again refer to the appendix of Ref. [14] for further
details.7

We find the following numbers of events for an inte-
grated luminosity of 10 fb�1:
(1) 1940 events before and 1080 after cuts
(2) 4080 events before and 1047 after cuts
(3) 1970 events before and 1135 after cuts
(4) 1618 events before and 991 after cuts

These numbers have been obtained from a simulation
corresponding to an integrated luminosity of 500 fb�1.
Evidently the number of events after cuts differs much

less among the four benchmark points than the raw event
number does. In particular, for the second benchmark point
the large number of events before cuts is due to the small
masses of the electroweak charginos and neutralinos. In
principle these final states—in particular, ~�0

2 ~�
�
1 produc-

tion—can lead to final states with three charged leptons
and little hadronic activity [19], which could contribute to
our event classes 8 or 9. Recall, however, that ~�0

2 has a very

small leptonic branching ratio in this scenario. The ~� pair

TABLE II. Distribution of class events in percent into the twelve mutually exclusive lepton
classes (determined from 500 fb�1 of simulated data), and their statistical errors for an
integrated luminosity of 10 fb�1, for the four benchmark points.

Class Point 1 Point 2 Point 3 Point 4

1. 0l 46:6� 2:1 47:1� 2:1 54:3� 2:2 61:2� 2:5
2. 1l� 12:2� 1:1 16:2� 1:2 15:0� 1:1 12:4� 1:1
3. 1lþ 18:0� 1:3 16:9� 1:3 16:8� 1:2 15:5� 1:3
4. 2l� 1:6� 0:4 2:8� 0:5 1:7� 0:4 1:3� 0:4
5. 2lþ 3:9� 0:6 3:3� 0:6 2:2� 0:4 1:9� 0:4
6. lþi l�i 7:7� 0:8 4:3� 0:6 3:2� 0:5 2:8� 0:5
7. lþi l�j;j�i 3:5� 0:6 5:0� 0:7 3:8� 0:6 2:9� 0:5
8. l�i l�j lþj 1:9� 0:4 1:4� 0:4 0:9� 0:28 0:6� 0:25
9. lþi lþj l�j 3:4� 0:6 1:4� 0:4 1:0� 0:3 0:7� 0:27
10. l�i l�j l�k;k�j;i forþ 0:1� 0:10 0:5� 0:22 0:3� 0:16 0:2� 0:14
11. lþi lþj l�k;k�j;i for� 0:2� 0:14 0:5� 0:22 0:3� 0:16 0:3� 0:17
12. 4l 0:8� 0:27 0:6� 0:24 0:5� 0:21 0:2� 0:14

7Note that we apply a ‘‘Z veto’’ cut on events of class 6, which
is not applied on events in class 7. Without this cut, in a theory
respecting e�� universality, as the CMSSM does, class 6
would have to contain at least as many events as class 7, since
uncorrelated lepton pairs would contribute equally to both
classes, while correlated same flavor lepton pairs only contribute
to class 6.
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events therefore have a very low cut efficiency; i.e. most
of these events do not pass our cuts.

It is amusing to note that the total number of events after
cuts alone would evidently not be sufficient to distinguish
between benchmark points 1 and 3, nor between points
2 and 4. This illustrates the need to include (many) more
observables when trying to discriminate scenarios, let
alone for the quantitative determination of the values of
the free parameters. Indeed, Table II shows that the event
fractions in the twelve classes are quite sufficient to dis-
tinguish among the four benchmark scenarios. However,
we do not merely wish to distinguish among benchmark
points that are well separated in parameter space; we wish
to quantitatively determine the values of the underlying
parameters. This is discussed in the subsequent section.

III. STRATEGIES FOR DETERMINING
THE PARAMETERS

In this section we discuss the strategies we employed to
extract the values of the four CMSSM parameters from our
84 observables for the four benchmark points described in
the previous subsection. We first describe the construction
of an artificial neural network (ANN), and then an attempt
based on the minimization of an overall �2 variable.

A. Neural network

Artificial neural networks have been used in high energy
physics for more than 25 years [20]. Originally they were
designed for comparatively simple tasks, like reconstruct-
ing single tracks from hit patterns in wire chambers. By
now ANNs are used for a wide variety of purposes, from
optimizing experimental searches for superparticles [21] to
parametrizing parton distribution functions [22]. However,
we are not aware of a previous application of ANNs to the
LHC inverse problem.

Here we describe how to construct artificial neural
networks that can find relations mapping the measured
observables onto the CMSSM parameters whose values
we wish to determine. Mathematically speaking, an ANN
is a function mapping input parameters, to be provided by
the user, onto output parameters, whose values the user
wishes to determine. It can learn this function from training
sets via a well-defined algorithm. A training set consists of
input values (the observables of simulated experiments)
and the corresponding output values (the CMSSM parame-
ters). Note that the parameters that are the input into an
event generation program (in our example, the CMSSM
parameters) are the output of the neural network, whereas
the output values of the event simulation (our 84 observ-
ables) are input of the neural network. It is hoped that by
training the neural network on sufficiently many sets of
input and output parameters, it will learn to derive the
correct values of the output parameters also for sets of
input parameters that are not contained in the training set.

Wewill show that, at least for our four benchmark scenarios,
this indeed works quite well.
As noted above, a neural network is a mathematical

function; ‘‘learning’’ means that the numerical coefficients
defining this function are adjusted. By choosing different
values for these coefficients, in principle nearly every pos-
sible function can be reproduced with some accuracy.
During the learning process these coefficients are set such
that the deviations between the calculated network outputs
for the specific training inputs and the known desired
(correct) outputs are reduced as far as possible. If the train-
ing set is a fair representation of the investigated CMSSM
parameter space, at the end the resulting neural network
function should be able to compute the correct CMSSM
parameters for an arbitrary set of input parameters, assuming
that the latter indeed can be reproduced in the CMSSM.

1. Setup

General information about neural networks can e.g. be
found in [23]. Generally speaking, an ANN consists of a
set of ‘‘neurons,’’ collected in ‘‘layers,’’ and ‘‘weights’’
assigned to the connections among these neurons. A neu-
ron can be described by a simple function computing one
output value from one input value. At least two layers of
neurons are needed: one for the input, and one for the
output. In the input layer, there is one neuron for each
observable, plus a ‘‘constant’’ neuron which always out-
puts 1; this is needed in order to be able to describe a
constant function, i.e. a component of the network’s output
that is independent of the input. Similarly, there is one
output neuron for each quantity that we wish to determine.
The inputs of the neurons in the input layer are normalized
versions of our observables, and the output of the neurons in
the output layer gives the network’s prediction for a nor-
malized version of the quantity whose value we wish to
determine; this normalization is described below. In be-
tween the input and output layers, there can be an arbitrary
number of layers of hidden neurons; in physics applications
this number is usually 1 or 2. All neurons in adjacent layers
are connected to one another, and a numerical weight is
assigned to each of these connections. These weights are the
coefficients mentioned above, whose values are to be deter-
mined during the training of the network.8

The ANN we construct here contains a single layer of
hidden neurons, as shown in Fig. 1. For all neurons in the
input and output layers, the output is simply equal to the
input. In our case the input layer consists of 85 neurons,
one for each (normalized) observable with input values
xi; i ¼ 1; . . . ; 84; the output of the ith neuron in this layer
is therefore also given by xi. As noted above, there is an
additional input neuron with a fixed output, x0 ¼ 1.

8The term ‘‘artificial neural network’’ reflects the fact that this
construction yields a very simple model of actual biological
neural networks; however, the (dis)similarity between ANNs and
actual brains is immaterial for our discussion.
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The second layer consists of a yet to be determined
number v of ‘‘hidden’’ neurons with input values
z1; . . . ; zv. These input values are weighted sums of the
output of all neurons in the input layer:

za ¼
X84
i¼1

wð1Þ
ai xi þ wð1Þ

a0 ¼ X84
i¼0

wð1Þ
ai xi: (3.1)

Here and in the following we will use i; j; . . . to label the
input neurons, a; b; . . . to label the hidden neurons, and
r; s; . . . for the output neurons. Each hidden neuron pro-
cesses its input by applying the function tanh ðzaÞ. This
function is commonly chosen for the hidden neurons,
because it exhibits approximately linear behavior for small
jzaj but saturates at �1 for large values of jzaj. This
ensures that the ANN can reproduce a wide variety of
functions.9

The last layer of the ANN consists of the output neurons,
four in number for CMSSM with values y1; . . . ; y4.

10 Their
input values are calculated by weighted sums over the
output of the hidden neurons:

yr ¼
Xv
a¼1

wð2Þ
ra tanh ðzaÞ þ wð2Þ

r0 ¼ Xv
a¼0

wð2Þ
ra tanh ðzaÞ; (3.2)

the output of the zeroth hidden neuron has been fixed to
tanh ðz0Þ ¼ 1. These four output values should reproduce
the (properly normalized) values of the CMSSM parame-
ters; the normalization is explained below.
Two ‘‘weight layers’’ connect the three layers of

neurons. The first weight layer connects each input neuron
with eachhidden neuron (except for the zeroth hiddenneuron

whose output value is fixed to 1). The weights wð1Þ
ai with

a ¼ 1; . . . ; v and i ¼ 0; . . . ; 84 are assigned to these con-
nections. Similarly, the connections between he hidden

and output neurons have weights wð2Þ
ra with r ¼ 1; . . . ; 4

and a ¼ 0; . . . ; v and form the second weight layer.
Evidently the number of hidden neurons determines the
number of free parameters describing the ANN. The goal
of the training process is to find appropriate (ideally, optimal)
values for these weights. Before we describe the algorithm
used to set the weights, we discuss the normalization of the
input and output values, and the initialization of the weights.

2. Normalization

The 84 inputs into our ANN are obtained by normalizing
the 84 measured observables. This simplifies the initializa-
tion of the weights (see below), which in turn results in a
shorter learning process. To that end, both the input and
output values of the ANN should be (dimensionless) Oð1Þ
quantities. Because the hyperbolic tangent function also
naturally leads to hidden layer output values of Oð1Þ, the
weights in both layers could be of a similar order. In most
cases the tanh functions will then not be in the saturation
regime, where it becomes almost independent of the input
value. In general this should speed up the learning process.
We normalize the 84 input quantities Oi independently.

Let On
i be the value of observable Oi for the nth training

set, with n ¼ 1; . . . ; N. The mean value �Otg
i and the vari-

ance ð�tg
i Þ2 over all N training sets are then

�Otg
i ¼ 1

N

XN
n¼1

On
i ; (3.3)

ð�tg
i Þ2 ¼

1

N � 1

XN
n¼1

ðOn
i � �Otg

i Þ2: (3.4)

From these, we compute normalized inputs xi for the ANN:

xi ¼ Oi � �Otg
i

�tg
i

: (3.5)

The mean value of the xi over the training sets is thus zero,
with a standard deviation equal to 1; hence the (absolute
values of) the inputs should be Oð1Þ, as desired.11

FIG. 1. Neural network with one layer of hidden neurons,
i.e. two weight layers. The squares represent the neurons with
constant output and the circles the neurons with variable output,
which depends on the network input. All neurons of adjacent
layers are connected to one another. Each connection can have a
different weight; e.g. the connection between the first input

neuron and the second hidden neuron has the weight wð1Þ
21 .

9Due to the saturation of the tanh function at large absolute
values of its arguments, an ANN constructed in this way may
have difficulty reproducing a function which grows or shrinks
very quickly when its input variables are varied. Recall, however,
that the input of the ANN (during training) is the output of event
simulation. In extensions of the Standard Model, the number of
events of a given type expected at the LHC typically changes
quickly when the model parameters are varied. This implies that
the true values of the model parameters change relatively slowly
when the observables are varied. Our ANN should be well suited
to describe this kind of behavior.
10For reasons that will be explained below, at the end we
actually do not use one common network for all four CMSSM
parameters but instead four separate ANNs with one output
parameter each.

11Equivalently, one could use the original observables Oi as
input, and assign the function (3.5) to the ith input neuron instead
of the identity function.
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Since we want the ANN outputs yr to also be Oð1Þ in
absolute value, they are related to the CMSSM parameters
r 2 fm0; m1=2; tan�; A0g which we wish to determine via

yr ¼ r� �rtg

�tg
r

: (3.6)

The averages �rtg and the variances ð�tg
r Þ2 are calculated

analogously to Eqs. (3.3) and (3.4), respectively.
The normalization of both the input and the output is

thus calculated from the training sets. The same normal-
ization is then used for the control sets, and for every other
ANN input including the (actual or simulated) measure-
ment. The implicit assumption is that the training sets are a
good representation of the investigated CMSSM parameter
space. If this condition is not satisfied, the ANN results for
the CMSSM parameters are in any case likely to be quite
inaccurate.

3. Initialization

The normalization of the overall input and output of the
ANN ensures that these quantities are Oð1Þ in absolute
size, without preference for either positive or negative
values. The weights in the two weight layers should be
initialized such that these conditions are also satisfied for
the inputs of the neurons in the hidden and output layers.
One simple, and by experience quite effective, way to
ensure this is to initialize all weights with Gaussian random
numbers with mean zero and variance �2 equal to the
number of neurons in the layer beneath the given weight
layer. Hence we set the Gaussian variance for the weights
in the first weight layer to 1=85, and for the second layer
to 1=ðvþ 1Þ, where v is as before the number of hidden
neurons.

4. Learning procedure

The initial ANN will in general provide a very poor
approximation of the desired function. In the case at hand,
the initial ANN will most likely give values for the
CMSSM parameters that are very far from the true values.

The ANN therefore needs to be ‘‘trained,’’ so that it can
‘‘learn’’ to closely reproduce the desired function. To that
end it has to be confronted with sufficiently many ‘‘training
sets,’’ where both the input and the desired output are
known. In the case at hand, this means that we had to
simulate many sets of CMSSM parameters, and compute
the corresponding values of our 84 observables, along the
lines described in Sec. II. More details on the choice of
the training sets are given below.

An ANN which is trained with specific training sets
reproduces the desired output for these training sets more
and more exactly with every learning step. If the network
includes sufficiently many hidden neurons it will eventu-
ally simply ‘‘memorize’’ the training sets, i.e. reproduce
their outputs exactly, if the training runs long enough.
This may seem desirable at first sight, but actually it is

not. The task of the ANN is to interpolate between the
training sets; i.e. it should provide (approximately) the
correct output also for inputs that are not part of the train-
ing sets. Experience shows that at some point further
improvement in the reproduction of the training sets
degrades the performance of the ANN when applied to
different inputs.
In order to determine when the training of the ANN

should be terminated one therefore also needs ‘‘control
sets.’’ These are generated exactly like the training sets,
but they are not used in the training of the ANN. Instead,
they are used to define a ‘‘control error.’’ The training of
the ANN is stopped when this control error reaches its
minimum. This strategy ensures good performance of the
neural network as long as both the training and the control
sets are good representations of the investigated CMSSM
parameter space.
We use the following normalized control error:

~F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

M
n¼1ð ~yn � ~knÞ2P
M
n¼1ð�~k� ~knÞ2

s
; (3.7)

where M is the number of control sets, ~yn are the four
output values combined in one vector, calculated by the

ANN from the input values of the nth control set, ~kn are

the correct output values and
�~k is the mean value over the

output values of all control sets:

�~k ¼ 1

M

XM
n¼1

~kn: (3.8)

The only quantities in Eq. (3.7) that change in the course of
the training are the vectors ~yn, which depend on the current
values of the weights defining the ANN. These weights
are modified iteratively, such that an error analogous to that
defined in Eq. (3.7), but computed from the training
sets rather than from the control sets, is minimized.
Mathematically this amounts to minimizing a (compli-

cated) function of the (many) variables wð1Þ
ai , w

ð2Þ
ra . We do

this using the ‘‘conjugate gradient’’ algorithm, as described
in the Appendix.

Recall that ~kn and ~yn are normalized output values. If the
ANN has several outputs, the contribution of each output
variable to the total error therefore depends on the spread
of this variable within the training sets. The algorithm for
adjusting the weights ensures that the total training error
decreases during the training; however, this does not guar-
antee that the performance for each individual output,
i.e. for each component of ~y, improves monotonically.
We therefore found it convenient to define four separate
ANNs for the four CMSSM parameters, as already noted.

For each of our ANNs the vectors ~y and ~k collapse to
simple real numbers. The splitting into four separate
network also offers the possibility of a further specializa-
tion of each network. Furthermore we have smaller
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networks, whose training takes less time than the training
of one big network with a higher number of hidden
neurons. Note, however, that all four ANNs have identical
inputs; i.e. each of them has 84 input neurons.

The training of the ANNs thus proceeds as follows. The
initial values of the weights are used to define initial errors
for the training and control sets. The weights are then
adjusted iteratively, such that the error computed for the
training sets is minimized. After each learning step the
control error is calculated. The learning process is stopped
when this control error reaches its minimum.12 Since the
control error is not used for the determination of the new
weights, it need not decrease monotonically during the
iteration. The learning procedure should therefore not be
stopped until one can be reasonably sure that the absolute
minimum of the control error has been passed. Finally,
the weights have to be reset to the values that gave this
absolute minimum.

This is illustrated in Fig. 2. The triangles (blue) show the
normalized training errors and the dots (red) the control
errors. We see that both errors initially decrease very
quickly. The control error reaches a first minimum after
about 45 learning steps, increases again, and finally
reaches its absolute minimum after 107 steps. In contrast,

the training error keeps decreasing until the iteration is
stopped after 235 steps; the control error at the end of the
iteration is nearly 10% larger than its absolute minimum.
At the end the ANN is therefore reset to its status after 107
learning steps.

5. Training and control sets

The performance of the trained ANNs obviously
depends on the quality of the training and control sets.
Note first of all that these sets are supposed to show the true
relation between the 84 observables and the CMSSM
parameters. The errors on the observables in the training
and control sets, in particular the error due to finite
Monte Carlo statistics, should therefore be (much) smaller
than the statistical accuracy of the (simulated) measure-
ment that the ANNs are finally meant to analyze. We
therefore used 500 fb�1 of simulated data for the training
and control sets; of course, the number of events is then
rescaled to the assumed luminosity of the ‘‘measurement.’’
Moreover, we already emphasized that the training and

control sets should be good representations of the inves-
tigated CMSSM parameter space. Therefore for each
benchmark point we set different ranges for the input
parameters of the simulation; the actual CMSSM parame-
ters for each training and control set are chosen randomly
using a flat distribution.13

In general it should be easier to determine the parame-
ters m0 and m1=2, since they influence the superparticle

spectrum more strongly than the other two continuous
parameters, A0 and tan�, do. One combination of m0

and m1=2 can e.g. be determined with some accuracy

simply from the total rate of signal events after cuts.
Next, one could use some inclusive kinematical observable
(e.g. HT), and/or the jet multiplicity in signal events, to
determine the region of interest in the ðm0; m1=2Þ plane.
In the following we therefore use smaller parameter ranges
for these parameters than for A0 and tan�. We do this just
to save CPU hours. This slight ‘‘cheat’’ allows us to
generate, with our limited computer resources, sufficiently
many training and control sets in the vicinity of our bench-
mark points to allow good interpolation. The above quali-
tative discussion indicates that our ANNs could most likely
also be trained on the ‘‘entire’’ CMSSM parameter space.
However, we would then need to generate (many) more
training and control sets. Moreover, the ANNs would
presumably need more hidden neurons, making their
training even more time consuming.
We use the following parameter ranges for our four

benchmark points:
(1) m0:100–350GeV, m1=2:660–740GeV, tan�: 5–45

and jA0j � 2 �m0

FIG. 2 (color online). Error evolution of a neural network with
20 hidden neurons for the parameter m1=2 of benchmark point 3.

The blue triangles show the normalized training error and the red
dots the corresponding normalized control error. The minimum
of the control error is reached with 0.136 at learning step 107.

12Had we used a single ANN, with a combined control error as
defined in Eq. (3.7), the training would have to be stopped when
the total error was minimal. This does not guarantee that each of
the four individual errors, on the four CMSSM parameters, is
minimal. This is another argument in favor of using four separate
ANNs.

13Furthermore each simulation in Herwigþþ is done with a
different flatly, randomly chosen seed to prevent any possible
correlations.
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(2) m0:1850–2200GeV,m1=2:410–490GeV, tan�:5–45
and jA0j � 2 �m0

(3) m0:850–1200GeV, m1=2:560–640GeV, tan�:5–45
and jA0j � 2 �m0

(4) m0:300–550GeV, m1=2:660–740GeV, tan�:10–50
and jA0j � 2 �m0

The range for A0 depends on the value chosen for m0 in
order to make sure that there is no problem with the
generation of the superparticle spectrum in SOFTSUSY.14

We simulate slightly more than 1000 training sets and
around 300 control sets for each benchmark point. We
checked that adding additional control sets does not improve
the results; recall that these sets are only needed to deter-
mine when the training of the ANNs should be terminated.
The total number of simulated parameter sets was deter-
mined by our available computing resources. Note, however,
that the average distance between neighboring values of
any CMSSM parameter in the training sets is much smaller
than our final estimate of the error with which this parameter
can be determined by our ANNs (see Sec. IV), at least for
the smaller integrated luminosity of 10 fb�1; i.e. the final
(multidimensional) error ellipsoid should already contain
many training sets. Further increasing the number of training
sets is therefore not likely to significantly improve the final
performance of our ANNs.

6. Improving the performance

The ‘‘measured’’ observables resulting from each simu-
lated parameter set have statistical uncertainties, which are
saved in the covariance matrix. Recall, however, that only
the values of the observables themselves, but not the cor-
responding covariance matrix, are used as input into our
ANNs. It would be desirable if the ANN knew with what
precision an input observable is determined in order to be
able to decide how important its value is for the determi-
nation of the CMSSM parameters. Recall in particular that
different observables can have quite different (relative)
errors; see Table II. All else being equal, observables
with larger uncertainties should contribute with smaller
weights. It is therefore quite evident that knowledge of
the covariance matrix should improve the performance of
our ANNs significantly.

Recall that we use 500 fb�1 of simulated data for the
training and control sets. This means that the Monte Carlo
(theory) error is essentially negligible when comparing
with simulated measurements based on an integrated
luminosity of 10 fb�1. We will also show results for
simulated measurements which also assume an integrated
luminosity of 500 fb�1. Here the Monte Carlo theory error
is still significant; our computer resources do not allow us
to reduce it further.

Directly feeding the (nonvanishing) entries of the
covariance matrix as additional inputs into our ANNs

would greatly increase their complexity. Instead, we take
two measures in order to include the effect of (statistical)
uncertainties.
First, we simply omit very noisy observables, i.e. quanti-

ties that have very large errors. To that end, as in the �2

calculation in [14], we require a minimal number of events
of a given class c for taking the observables Oi;c into

account. Obviously observables computed from a small
number of events will have a large error. For the 500 fb�1

training and control sets the observables Oi;c are only

included if the total number of events in a given class after
cuts satisfies nc � 500; the total number of events is only
included if it exceeds 50 (in practice this is always the case).
For the 10 fb�1 measurements the corresponding thresholds
are changed to 10 and 1, respectively. The luminosity
dependence of these thresholds means that for a specific
set of CMSSM parameters the same observables are
included (up to statistical fluctuations).
Recall that an ANN is defined with a fixed number of

input neurons; therefore we still have to assign some value
to each observable. The normalized input value of an
observable which does not fulfill the minimal number of
events is therefore set to zero. This means that this input
neuron does not contribute to the weighted sums which are
calculated within the neural network, independent of the
weight of the connections exiting this neuron.
This procedure ensures that all nonzero inputs into our

ANNs should have some statistical power for determining
the CMSSM parameters we are after. However, this still
does not tell the ANNs the relative accuracies of these
observables. To that end, we use our knowledge of the
covariance matrix of the observables for a particular train-
ing set to determine an 84-dimensional (correlated)
Gaussian distribution. Here both the mean values and the
covariance matrix are taken from the training sets, inde-
pendent of the luminosity of the (simulated) measurement
to which the ANN will eventually be applied. Of course,
the overall width of these multidimensional Gaussian dis-
tributions (one for each original set of CMSSM parameters
chosen for a given training set) should scale like the inverse
square root of the integrated luminosity. However, the
purpose of this trick is to teach the ANN the relative size
of the errors on the various observables that are fed into the
ANN, so that it can assign appropriate weights. This rela-
tive weighting should be independent of the luminosity.
For each combination of CMSSM parameters chosen for

the training sets, we then randomly generate 100 sets of
observables from the corresponding up-to-84-dimensional
Gaussian distribution.15 From the point of view of the
ANNs, these sets have (slightly) different inputs, but ex-
actly the same outputs (CMSSM parameters). Altogether

14jA0j � m0 could e.g. result in tachyonic sfermions.

15Note that these ‘‘satellite sets’’ are produced directly from the
multidimensional Gaussian; no additional event generation is
needed here.
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each ANN is thus trained on slightly more than 100,000
sets of inputs yielding slightly more than 1000 different
outputs.

It is interesting to note that this enlarged set of training
sets can no longer be described as a function in the mathe-
matical sense: due to statistical fluctuations, there might be
training sets with the same (sets of) observable(s) but
different output values.16 In fact, for each observable we
have a certain range of values, depending on the corre-
sponding variance, that can lead to the same CMSSM
parameters. The bigger this range is the less important
the input value should be for the parameter determination.
If the variance is large, during the learning process the
ANNs are confronted with strongly varying input values
for the same output value. This should allow them to
recognize that this observable cannot contribute much to
the determination of the CMSSM parameters, by reducing
the appropriate weight. So the creation of Gaussian dis-
tributed variants of the original training set should lead to
a higher weighting of input values with small errors.

7. Output error

We finally end up with four trained ANNs per bench-
mark point, one for each CMSSM parameter. The 84
observables obtained from any (simulated) experiment
can now be used as input for the ANNs, which will then
produce their estimates of the corresponding CMSSM
parameters. In order to be able to judge the accuracy of
these estimates, it is crucial to also obtain estimates for
the uncertainties; ideally we would like to be able to quote
the parameters with well-defined (Gaussian) statistical
errors. Our ANNs by themselves do not provide such
estimated errors.

We investigated two different ways to determine the
errors on the outputs. The first possibility is to expand
the set of input values of the measurement to multiple
Gaussian distributed input sets. As in the construction of
the ‘‘satellite sets’’ from the original training sets, the
known covariance matrix of the measurement can be
used to create a multitude of Gaussian distributed versions
of the (simulated) measurement. Each version is then
used as an input for the ANNs. If Gaussian statistics is
applicable, the ANNs’ outputs should also form Gaussian
distributions. The square root of the variance of an output
distribution then gives the error of the corresponding
CMSSM parameter.

This is illustrated in Fig. 3, which shows the distribution
of reconstructed m1=2 values for benchmark point 3. This

distribution has been obtained by feeding the appropriate
ANN with 100,000 Gaussian distributed versions of the
simulated 10 fb�1 measurement. We see that the true value
m1=2 ¼ 600 GeV is recovered without significant offset.

Moreover, the distribution can be described very well
through a Gaussian fit. The result of this ANN for bench-
mark point 3 is thus m1=2 ¼ ð607:4� 9:3Þ GeV.
In order to determine the covariance matrix among

the four CMSSM parameters we fit two-dimensional
Gaussians to the distribution of each pair of outputs. To
that end we feed the same sets of input values into both
relevant ANNs; each set of input values then gives one pair
of output values. We repeat that for all Gaussian distributed
input sets. The set of output pairs then forms a two-
dimensional (correlated) distribution and the correspond-
ing variances and the covariance can be determined
through a fit. Within rounding errors, e.g. due to different
binning, the variances should be exactly the same as the
ones determined from one-dimensional Gaussians.
This is illustrated in Fig. 4, which shows the two-

dimensional distribution of reconstructed ðm0; m1=2Þ values
for benchmark point 3. The left frame shows a three-
dimensional view and the right frame a two-dimensional
contour plot. The fit yields m0 ¼ ð1034� 42:3Þ GeV and
m1=2 ¼ ð607:5� 9:3Þ GeV; the result for m1=2 agrees with

that of Fig. 3, as expected. There is a very mild negative
correlation between these two parameters, with correlation
coefficient 	m0m1=2

¼ �0:291. This coefficient is related to

the entries of the covariance matrix through the formula

FIG. 3 (color online). One-dimensional distribution of recon-
structed m1=2 values formed by feeding an ANN with 100,000

Gaussian distributed versions of 10 fb�1 measurements for
benchmark point 3. The fitted Gaussian distribution has the
form gðm1=2Þ ¼ p0 � exp ð�1=2½ðm1=2 � p1Þ=p2	2Þ; i.e. p1 is

the mean value and p2 is the standard deviation. The neural
network contains 20 hidden neurons and underwent 107 learning
steps with a final control error of 0.136. The true value is
m1=2 ¼ 600 GeV.

16Of course, the ANNs still are functions, assigning a unique
output value to each set of input values.
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	m0m1=2
¼ covðm0; m1=2Þ

�m0
�m1=2

: (3.9)

Equivalently, the angle 
 between the major axis of the
error ellipse and the x-axis in the right frame of Fig. 4 is

tan ð2
Þ ¼ 2	m0m1=2
�m0

�m1=2

j�2
m0

� �2
m1=2

j : (3.10)

The ellipse is tilted with 
 ¼ �3:84
 to the right bottom.
The second method of determining errors on the parame-

ter estimates of the ANNs uses Gaussian error propagation.
Since we know the covariance matrix of the input values and
the neural network functions we can directly calculate the
variances and covariances of the output values. The variance
of the output value r 2 fm0; m1=2; tan�; A0g is then

�2
r¼

XNO

i¼1

�
@f�r
@Oi

�ðOiÞ
�
2þ2� XNO�1

i¼1

XNO

j¼iþ1

@f�r
@Oi

@f�r
@Oj

covðOi;OjÞ:

(3.11)

Here �ðOiÞ is the standard deviation of the input observable
Oi and covðOi;OjÞ is the covariance between the observ-

ablesOi andOj; explicit expressions for these quantities are

listed in Sec. II A. The sums run only over those observables
that have not been set to zero when we removed observables
with large statistical uncertainty as described in Sec. IIIA 6;
i.e.NO is in practice significantly smaller thanNO;max ¼ 84.

Finally, f�r is the function mapping the (unnormalized)
observables onto the estimated CMSSM values. Its deriva-
tive has the form17

@f�r
@Oi

¼ @xi
@Oi

@f�r
@fr

@fr
@xi

¼ �tg
r

�tg
i

� @fr
@xi

¼ �tg
r

�tg
i

�
�Xv
a¼1

wð2Þ
a wð1Þ

ai

�
1� tanh 2

�XNO

j¼1

wð1Þ
aj xj þwð1Þ

a0

���
:

(3.12)

Recall that v is the number of hidden neurons. Moreover, as
described in Sec. IIIA 2 the ANNs, described by the func-
tions fr, are trained to produce inversely normalized output
values from normalized inputs; the corresponding deriva-
tives @xi=@Oi and @f�r=@fr can be read off Eqs. (3.5) and

(3.6), respectively. The training set standard deviation �tg
i

for the ith input value is calculated using Eq. (3.4) and

similarly �tg
r for the output value r. The xi are the normal-

ized input values of the (simulated) measurement; again
only the NO inputs that have not been set to zero need to
be taken into account.
Similarly the covariance between two CMSSM values r

and s is

FIG. 4 (color online). Two-dimensional distribution of reconstructed ðm0; m1=2Þ pairs (in GeV) formed by feeding both relevant
ANNs with 1,000,000 Gaussian distributed versions of 10 fb�1 measurements for benchmark point 3. The fitted Gaussian
distribution has the form gðm0; m1=2Þ ¼ p0 � exp ½�0:5=ð1� p2

5Þ � ð½ðm0 � p1Þ=p2	2 þ ½ðm1=2 � p3Þ=p4	2 � 2p5=ðp2p4Þ�
ðm0 � p1Þ � ðm1=2 � p3ÞÞ	; i.e. p1 and p2 are the mean value and standard deviation of m0, and p3 and p4 are the mean value and

standard deviation of m1=2. The correlation factor p5 � 	 is given by Eq. (3.9). The ANN for m0 contains 15 hidden neurons and

underwent 244 learning steps with a final control error of 0.106, and the one for m1=2 contains 20 hidden neurons and underwent 107

learning steps with a final control error of 0.136. The true values are m0 ¼ 1000 GeV and m1=2 ¼ 600 GeV.

17Since each ANN has only one output, we removed the first
index r on the weights wð2Þ

ra in the second layer; cf. Eq. (3.2).
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covðr; sÞ ¼ XNO

i¼1

@f�r
@Oi

@f�s
@Oi

�2ðOiÞ þ
XNO�1

i¼1

XNO

j¼iþ1

covðOi;OjÞ

�
�
@f�r
@Oi

@f�s
@Oj

þ @f�r
@Oj

@f�s
@Oi

�
: (3.13)

It is reassuring to note that the covariances derived in this
way are close to the values obtained by fitting Gaussians to
the distributions of reconstructed CMSSM parameters.
For example, for benchmark point 3 we find �ðm0Þ ¼
47:3 GeV, �ðm1=2Þ ¼ 11:5 GeV and 	m0m1=2

¼ �0:309;

recall that the corresponding values derived from the
Gaussian fits are 42.3 GeV, 9.3 GeV and �0:291, respec-
tively. We will see later that the two methods agree even
more closely if a higher integrated luminosity is used for
the measurement.

8. Number of hidden neurons

In order to determine the appropriate number of hidden
neurons for each ANNwe start with a low number (like 10)
and train the corresponding network as described in
Sec. III A 4. Note that each additional hidden neuron adds
85þ 1 ¼ 86 free parameters to the description of ANNs
with one output neuron. As discussed in the Appendix, the
training of the ANN involves the repeated computation of
a matrix whose dimension grows linearly with v. For a
fixed number of learning steps the time needed to train an
ANN therefore scales like v2. Hence the number of hidden
neurons should not be increased needlessly.

After the training, the distribution of estimated outputs
for the given benchmark point are calculated as described
in the first part of Sec. III A 7. If this distribution is
(approximately) a Gaussian the number of hidden layer
neurons should be sufficient. On the other hand, if the
distribution does not look very Gaussian the number of
hidden layer neurons is increased and the process is iterated,
until a satisfactory result is achieved.18

This completes our discussion of the construction of the
ANNs. Before reporting our results for the four benchmark
points, we describe an alternative strategy to determine the
CMSSM parameters, based on �2 minimization.

B. �2 minimization

The preceding discussion shows that quite a lot of
(computational) effort is required to construct ANNs that
are able to produce reliable estimates of CMSSM parame-
ters from simulated measurements. Moreover, a trained

ANN is a ‘‘black box’’; it is very difficult to get a feeling
for how the input affects the output.
We therefore also attempted to derive estimates for the

CMSSM parameters by minimizing a �2 function. At least
conceptually this is far simpler than training ANNs.
However, it turns out that fluctuations due to the finite
Monte Carlo statistics used in deriving the predictions of
the model make it very difficult to derive estimates for the
parameters with statistically meaningful errors in this way.
In this subsection we describe the method we used for the�2

minimization and show the results for benchmark point 4.
We wish to minimize the �2 between the simulated

measurement and predictions, which is given by

�2
MP ¼ XN0

O

i;j¼1

ðOM
i �OP

i ÞV�1
ij ðOM

j �OP
j Þ: (3.14)

OM
i are the observables of the simulated measurement and

OP
i are the predictions for these observables derived for a

particular set of CMSSM parameters. The double sum runs
over all observables that have been derived from a mini-
mum number of events (see below), and V�1

ij is the inverse

covariance matrix of the relevant observables, with entries

Vij ¼ covðOM
i ;O

M
j Þ þ covðOP

i ; O
P
j Þ: (3.15)

The second term in Eq. (3.15) takes into account the
statistical error on the prediction due to the finite size of
the Monte Carlo sample that has been used for its calcu-
lation. In [14] it has been shown that this function has the
statistical properties of a true �2 distribution, provided we
only include observables that have been computed from
sufficiently many events. In particular, for 10 fb�1 of
simulated integrated luminosity the total number of events
is taken into account if the measurement or the prediction
has at least one event after cuts; for our benchmark points
this is always the case. The event ratio nc=N ¼ O1;c for a

class c is included in the definition of �2 if the class
contains at least 10 events for the measurement or the
prediction. All other observables Oi;c; i � 2 are only

included if nc � 10 for both the measurement and the
prediction.19 For a higher integrated luminosity the thresh-
olds are scaled up accordingly.
Depending on the number of events that are generated,

i.e. the assumed integrated luminosity, computing the pre-
diction for a single set of CMSSM parameters can already
be quite costly in terms of CPU time. We therefore perform
the �2 minimization in two steps. The first step is supposed

18The ANNs were often not trained until the global minimum
of the control error was reached before looking at the distribution
of output values. Instead this distribution was checked already
when the first local minimum of the control error was reached; if
this distribution looked very non-Gaussian, the ANN was dis-
carded and v was increased.

19Some of these minimal event numbers differ from the ones
used in [14]. The benchmark points investigated here yield on
the order of Oð1000Þ events after cuts for 10 fb�1 of data, as
shown in Sec. II B. In contrast the parameter sets analyzed in
[14] yielded on average around 25,000 events after cuts. Using
10 as minimal nc for all classes showed slightly better results
than the old choice of 10 for nc=N and hHTic, 50 for nc;b=nc andhjic, and 500 for nc;�þ=nc and nc;��=nc.
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to roughly identify the correct region of parameter space
in which the minimum lies; the second step should then
pin down the location of the minimum. In both steps we
compute the predictions using 10 fb�1 of simulated data.

In the first step we use an algorithm based on simulated
annealing. We begin by computing the prediction for a
randomly chosen set of parameters, and compute the cor-
responding �2. We then randomly vary one of the CMSSM
parameters, leaving the other three parameters unchanged.
If the resulting �2 is smaller than the previous one, the
corresponding parameter set is taken as the new best guess
for the location of the minimum. If the new �2 value is
bigger than the previous one, there is still a finite proba-
bility that the new parameters are picked as the new best
guess; this probability decreases exponentially with the
difference between the two �2 values. This approach
should prevent the algorithm from getting stuck in a local
minimum. The same parameter would then be changed
again, if a new minimum was not picked; this loop is
terminated if a given number of tries did not improve the
minimization. After that the second parameter is changed
and so on. When all four parameters have been scanned in
this manner, the scanning starts at the first parameter again.
The procedure is continued until a given number of steps
(here 250) is reached.

Recall that our goal in the first step is just to get a rough
estimate of the CMSSM parameters. Therefore, we did not
put much effort into setting the available parameters of the
simulated annealing algorithm. Nevertheless this step is
useful, in particular for narrowing down the range for m0.
The size of m0 approximately determines the maximal
allowed range of A0. This is important for the second
step of the minimization, in which the parameters should
be determined more exactly.

In this second step we use the �2 minimization
algorithms ‘‘Simplex’’ and ‘‘Migrad’’ of TMinuit [24] in
the program ROOT. Using this algorithm we set allowed
parameter ranges in order to avoid parameter selections
where simulation problems occur (e.g. very large jA0j can
lead to problems with the generation of the superparticle and
Higgs spectrum). These algorithms will also work better if
the starting point is closer to the true minimum and its
distance to the minimum is roughly known. Therefore we
use the output of the simulated annealing algorithm as start-
ing point; the p value corresponding to this starting point
gives us a rough idea how close we are to the true minimum.

These algorithms eventually do converge onto a new
best guess for the location of the minimum. Since Minuit
has been designed specifically for �2 minimizations, it
even gives estimates for the statistical errors of the deter-
mined parameters. However, it turns out that these error
estimates are almost always much too small. This can be
traced back to the statistical fluctuations of the predictions.
The final minimum found is nearly always produced by a
rather extreme Monte Carlo fluctuation in the prediction.

Such a fluctuation is likely to occur only in a region of
parameter space around the true CMSSM parameters;
i.e. the location of the minimum is likely not too far from
the true location of the minimum computed from predic-
tions with negligible error. However, in our simulation the
fluctuation frequently reduced �2 by several units, leading
to a very steep, but spurious, minimum. The width of this
spurious minimum, which is what Minuit attempts to
estimate, is then a very poor estimate for the actual error
on the CMSSM parameters.
This problem can be ameliorated by increasing the

integrated luminosity used for the computation of the
predictions, which reduces the fluctuations. Alas, these
fluctuations only decrease inversely to the square root of
the number of generated events, whereas the CPU time
needed to generate them obviously scales linearly with this
number. Note that Minuit needs several hundred search
steps to converge on a minimum; i.e. several hundred sets
of CMSSM parameters have to be simulated for each �2

minimization by Minuit. The available time then limits the
number of events we can generate for each parameter set.
We found that even using an integrated luminosity of
500 fb�1 instead of 10 fb�1 for the predictions did not
solve the problem of the extreme statistical fluctuations
leading to too small errors.
We therefore derive final estimates for the CMSSM

parameters, and their errors, by simulating up to 500
parameter sets (on several CPUs) with an integrated lumi-
nosity of 500 fb�1 around the minimum found by TMinuit,
and calculate the corresponding �2 values.20 These points
are then used to fit �2 as a quadratic function of m0, m1=2,

tan� and A0:

�2 ¼ �2
min þ��2

¼ �2
min þ

m0 �mmin
0

m1=2 �mmin
1=2

tan�� tan�min

A0 � Amin
0

0
BBBBBB@

1
CCCCCCA

T

� V�1 �

m0 �mmin
0

m1=2 �mmin
1=2

tan�� tan�min

A0 � Amin
0

0
BBBBBB@

1
CCCCCCA: (3.16)

Here mmin
0 , mmin

1=2 , tan�
min , Amin

0 are our final estimates of

the CMSSM parameters from the �2 minimization, �2
min is

the corresponding minimal �2 value and V�1 is the
final estimate for the inverse covariance matrix of the
extracted parameters, from which we compute the errors
on the estimated parameters including their correlations.

20Of course, the predicted number of events is divided
by 50 when comparing a 500 fb�1 prediction to a 10 fb�1

measurement.
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Note that Eq. (3.16) contains 15 free parameters (�2
min, the

values of the CMSSM parameters, and the entries of the
covariance matrix, which is a symmetric 4� 4 matrix);
we again use ‘‘Simplex’’ and ‘‘Migrad’’ in TMinuit to
determine them. The large number of parameter sets used
in this fit, as well as the large integrated luminosity used for
each parameter set, should reduce the effect of statistical
fluctuations in the prediction. Specifically, we determine
the free parameters of Eq. (3.16) by minimizing the
summed differences

X500
n¼1

½�2
n � �2ðmðnÞ

0 ; mðnÞ
1=2; tan�

ðnÞ; AðnÞ
0 Þ	2

ð�2
nÞd

: (3.17)

Here �2
n is the �2 value of parameter set n and

�2ðmðnÞ
0 ; mðnÞ

1=2; tan�
ðnÞ; AðnÞ

0 Þ is the calculated �2 which

has been computed as in Eq. (3.16) from the current values
of the fit parameters. Finally, the parameter d determines
the weight of parameter sets that are far away from the �2

minimum; d ¼ 0 means that all 500 parameter sets have

FIG. 5 (color online). Distributions of output values of the �2 minimization for benchmark point 4, for a simulated measurement
with integrated luminosity of 10 fb�1. m0, m1=2 and A0 are given in GeV. 1000 Gaussian distributed versions of the original simulated

measurement are fed into (3.17) with d ¼ 3 to determine 1000 sets of CMSSM parameters. The distributions of these parameters
(histograms in the four frames) are fitted to Gaussians (curves). ‘‘Mean’’ and ‘‘RMS’’ are the usual mean value and standard deviation
of the entries in the histograms. The other parameters are derived from the Gaussian fits, gðxÞ ¼ p0 � exp ð�1=2½ðx� p1Þ=p2	2Þ with x
being the parameter in question. The x axes are centered on the input values of these parameters, m0 ¼ 400 GeV, m1=2 ¼ 700 GeV,

tan� ¼ 30 and A0 ¼ 0.
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equal weight, whereas a positive d suppresses the weight
of parameter sets with high �2 values which should be
farther away from the minimum. Note that �2 can be
expected to be a quadratic function of the CMSSM
parameters only in the vicinity of its minimum; further
away �2 may change quite quickly, e.g. if some new decay
modes open up. Using the functional form (3.16) also for
parameter sets which are far away from the minimum may
therefore distort the fit. This argues in favor of using a
positive d.

Unfortunately we find that the choice of d has a rela-
tively big influence on the outcome of the fit. We therefore
need a criterion to determine the optimal choice of d.
Recall that in the ANN analysis we determined the number
of hidden neurons by requiring that a Gaussian distribution
of input sets also produces a Gaussian distribution of
output values. We want to apply the same criterion here.
Note, however, that for each set of measurements we need
to redo the fit of Eq. (3.16); since 15 parameters need to be
determined in each fit, it takes some amount of CPU
time.21 We therefore ‘‘only’’ create 1000 Gaussian distrib-
uted variants of the measurement (rather than 100,000 in
the ANN analysis) and compare each of these ‘‘data sets’’
with all predictions. This leads to 1000 sets of fitted
CMSSM parameters mmin

0 , mmin
1=2 , tan�min and Amin

0 .

The distributions of those CMSSM parameters should

then also be Gaussians. We therefore use the form of these
distributions to check the reliability of our �2 minimization
method.
An example of this check is shown in Fig. 5, which

depicts the situation for benchmark point 4 and a simulated
measurement with integrated luminosity of 10 fb�1. Here
d ¼ 3 has been used in Eq. (3.17). We see that the distri-
butions of all four CMSSM parameters have significant
non-Gaussian tails. These become even more prominent if
we only use 300, rather than 500, predictions for the final
fit of the CMSSM parameters in Eq. (3.17); this indicates
that the distribution of reconstructed CMSSM parameters
might become somewhat more Gaussian if more than 500
predictions are used. However, the change between the
results based on 300 and 500 predictions is not dramatic,
so it seems unlikely that properly Gaussian distributions of
the extracted CMSSM parameters can be obtained from a
number of predictions that can be generated (by us) within
a reasonable amount of time. We conclude that, while the
central values of the derived CMSSM parameters are
within one estimated standard deviation from their true
values, the error estimates are not reliable.
This is also indicated by Fig. 6, which shows the distri-

bution of reconstructedm0 values for a simulated measure-
ment with fifty times higher integrated luminosity. Under
the usual scaling law, the statistical error should then

decrease by a factor
ffiffiffiffiffiffi
50

p ’ 7. Instead our procedure gives
an error which is less than a factor of 2 smaller than that for
10 fb�1 of data. Note that we have increased the minimal
number of events in a given class we require if the corre-
sponding observables are to be included into the overall �2

also by a factor of fifty; i.e. observableOi;c is included only

if nc � 500. This should ensure that Gaussian statistics
should be applicable everywhere. In Fig. 6 we nevertheless
still see substantial non-Gaussian tails.
Another problem is that the results of this method

depend sensitively on the power d in Eq. (3.17). This can
be seen from Fig. 7, which shows the distribution of
reconstructed m0 values for the same simulated measure-
ments based on 500 fb�1 used in Fig. 6, but using d ¼ 2
and d ¼ 4 instead of d ¼ 3. Evidently these distributions
no longer have much resemblance to Gaussians. Moreover,
the estimated error on m0 differs by a factor of 2 between
these two choices.
As noted above, the fit based on Eqs. (3.16) and (3.17)

which yields the estimates of the CMSSM parameters
also provides estimates of the statistical errors on these
extracted parameters. While the errors estimated in this
way generally are of the same order of magnitude as
the errors obtained in the Gaussian fits shown in Figs. 5
to 7, the numerical values of the errors fluctuate quite
widely within the sample of 1000 versions of the mea-
surement shown in these figures. In fact, the estimates
of the errors fluctuate much more than the central
values do.

FIG. 6 (color online). The same distribution as in Fig. 5, but
based on a simulated measurement with 500 fb�1 of data.

21Strictly speaking we would have to redo the entire �2

minimization for each version of the simulated measurement,
including the first two steps. However, the region of parameter
space populated by the 500 sets of predictions used in Eq. (3.16)
is sufficiently large that it should include the results of the first
two steps as applied to the variants of the original measurement.
Since steps 1 and 2 require additional event generation, and are
thus very time consuming, redoing the entire �2 minimization
for these sets was in any case not a realistic option for us.
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We finally note that the error estimates derived from the
�2 minimization, while quite uncertain, are generally
significantly larger than those found by the ANNs, which
are reliable as illustrated above. The �2 fit typically gives
two to three times bigger errors when using simulated
measurements based on 10 fb�1 of data; for simulated
measurements assuming an integrated luminosity of
500 fb�1 the error estimates from the �2 fits are as
much as a full order of magnitude larger than those of
the ANNs.

We therefore conclude that a �2 fit yielding reliable
results for both the central values and the statistical errors
of the CMSSM parameters would need significantly more
computational effort than the ANNs, in order to reduce the
Monte Carlo errors on the predictions to a level that can be
tolerated by this method. Moreover, while the error esti-
mates we presented above are not yet reliable, they do
suggest that the precision of the parameter estimates
from �2 fitting will be significantly worse than that of
the ANNs. We did therefore not attempt to further optimize
the �2 fits, and instead present the results for the ANNs for
all four benchmark points.

IV. RESULTS

Recall that we constructed a separate ANN, with a single
output neuron, for each CMSSM parameter. Moreover, as
described in Sec. III A 5, we generated different training
and control sets for each benchmark point. Altogether we
thus ended up constructing 4� 4 ¼ 16 different ANNs.

Some details of these 16 ANNs are collected in Table III.
We need between 15 and 25 hidden neurons to construct
ANNs that produce an approximately Gaussian distribu-
tion of output values when fed with a Gaussian distribution

of inputs. Here we already note a first difference among the
ANNs designed for different CMSSM parameters: the ones
form0 andm1=2 usually need slightly fewer hidden neurons

than the ones for A0 and tan�.
Table III also shows that the control error reaches its

minimum after typically hundreds of learning steps. We
continued the training usually for about 100 learning steps
after each minimum, in order to check that the absolute

FIG. 7 (color online). The same distribution as in Fig. 6, but using d ¼ 2 (left) and d ¼ 4 (right) in Eq. (3.17), instead of d ¼ 3.

TABLE III. Overview of the 16 ANNs we constructed: number
of hidden neurons, number of learning steps and final control
errors. These results are based on simulated measurements for an
integrated luminosity of 10 fb�1. The control error is normalized
as in Eq. (3.7).

Number of

hidden

neurons

Number of

learning

steps

Control

error

m0 20 1009 0.101

Reference m1=2 20 407 0.081

point 1 tan� 20 653 0.135

A0 20 561 0.532

m0 20 929 0.123

Reference m1=2 15 452 0.116

point 2 tan� 20 499 0.387

A0 25 155 0.711

m0 15 244 0.106

Reference m1=2 20 107 0.136

point 3 tan� 20 240 0.681

A0 15 763 0.405

m0 22 488 0.156

Reference m1=2 22 637 0.067

point 4 tan� 25 511 0.178

A0 25 391 0.310
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minimum has indeed been found. Moreover, as shown in
the Appendix, each learning step of an ANN with v hidden
neurons entails the calculation of a matrix with 86 � vþ 1
rows and columns; the computation of each element of this
matrix requires a sum over all �100; 000 members of the
training set for this ANN. As a result, the training of a
single ANN can take up to 2000 CPU hours.22

The last column of Table III gives the normalized con-
trol error, as defined in Eq. (3.7). The size of this error
should determine the accuracy with which a given
CMSSM parameter can be determined by its ANN. We
see that this error is significantly smaller for m0 and m1=2

than for A0 and tan�. This is not surprising, since the
former parameters affect the spectrum of superparticles,
in particular the spectrum of strongly interacting super-
particles, more than the latter do. We also see that the
normalized control error is usually somewhat smaller for
the gaugino mass m1=2 than for scalar mass m0; the one

exception is benchmark point 3, where m0 is large enough
to significantly affect the squark masses (in contrast to
benchmark point 1, where m0 essentially only affects the
slepton masses), but not so large that the cross section for
the production of final states involving one or two squarks
is much smaller than that for gluino pair production (in
contrast to benchmark point 2). Note also that the normal-
ized control error for m1=2 is smaller for points 1 and 4,

where charginos and neutralinos have competing two-body
decays into sleptons and into gauge or Higgs bosons, than
for points 2 and 3, where charginos and neutralinos cannot
decay into sleptons. Sizable branching ratios into sleptons
increase the fraction of events containing several charged
electrons or muons, and/or increase the average number of
reconstructed �’s in the final state. These branching ratios
therefore affect several of our observables.

The normalized control error for tan� differs quite
significantly among the four benchmark points. It is small-
est for point 1, where the kinematics and branching frac-

tions for two-body decays of gluinos into ~b squarks, and of
neutralinos and charginos into ~� sleptons, depend on tan�.
In contrast, in point 2 gluinos only have three-body decays,
and the neutralinos and charginos cannot decay into slep-
tons, leading to a greatly reduced sensitivity to tan�. In
point 3, all gluinos decay into ~t1, whose mass and branch-
ing ratios depend only weakly on tan� unless the latter is
very large. Also, neutralinos and charginos again cannot
decay into sleptons here. As a result, this point has the
largest normalized control error on tan�. Finally, point 4
has a rather large input value of tan� ¼ 30. As a result,
terms proportional to mb tan� and m� tan� in the RG
equations as well as sfermion mass matrices are quite

sizable, yielding significant effects in some of our observ-
ables. The normalized control error on tan� is therefore
again relatively small for this point.
The ANNs for A0 typically have the largest normalized

control errors. At the tree level, A0 practically only affects

the ~t sector; L� R mixing in the ~b and ~� sectors is
dominated by a term /� tan�, which is much larger
than the relevant (weak-scale) A parameter for all our
benchmark points. A0 also affects third generation
sfermion and Higgs boson masses via the RG running,
and hence also the value of j�j which is determined from
the requirement that the mass of the Z boson comes out
correctly. From dimensional analysis and the structure of
the RG equations, any weak-scale soft breaking mass can
be written as

m2
i ¼ aim

2
0 þ bim

2
1=2 þ ciA

2
0 þ dim1=2A0; (4.1)

the coefficients depend on the dimensionless couplings in
the theory, and hence also on tan�. Avery similar equation
therefore also holds for the derived weak-scale value of
�2.23 Benchmark points 1, 2 and 4 have A0 ¼ 0, so the
sensitivity to A0 via the quadratic coefficients ci is small.
Moreover, the di are typically significantly smaller in
magnitude than max fjaij; jbijg, further reducing the sensi-
tivity to A0. On the other hand, benchmark point 3 does
have a large A0; moreover, we saw that this point has an
especially large normalized control error for tan�. As a
result, benchmark point 3 actually has a smaller normal-
ized control error for A0 than for tan�. Altogether, the
biggest error for A0 (0.711, for benchmark point 2) is
over ten times larger than the smallest error for m1=2

(0.067, for benchmark point 4).
In fact, the entries of Table III underestimate the differ-

ences between the relative size of the errors on the
CMSSM parameters. The reason is that the control error
is normalized, as shown in Eq. (3.7); it thus scales inversely
with the size of the region covered by the respective train-
ing set. We saw in Sec. III A 5 that these sets only cover a
range of 80 GeV in m1=2 and 250 to 350 GeV in m0, but

much of the theoretically allowed parameter space for
tan� and A0. We thus expect the final errors on the former
two parameters to be much smaller than those on the
latter two.
This is confirmed by Table IV, where we list the values

of the CMSSM parameters reconstructed from our ANNs
fed with the 10 fb�1 and 500 fb�1 simulated measure-
ments at the four benchmark points. The standard devia-
tions and correlation coefficients are calculated with the
propagation of uncertainty method as described at the end
of Sec. III A 7. If we divide the final estimate of the
standard deviation by the product of the normalized control
error of Table III and the size of the parameter region

22In particular for the ANNs with high numbers of completed
learning steps, the last hundreds of learning steps lead only to
relatively small improvements of the control errors and calcu-
lated standard deviations. Therefore, for those ANNs nearly as
good results can be reached with much less computational effort.

23There is also a contribution / M2
Z, which is however much

smaller than the term / m2
1=2 in the CMSSM.
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spanned by the training sets, we obtain values that cluster
around 1:2� 0:4 (0:15� 0:04) for the simulated measure-
ments with 10 fb�1 (500 fb�1) of data. In other words, the
final estimate of the statistical uncertainty is approximately
proportional to this product. The main exceptions to this
rule occur for benchmark point 2, where the estimated
uncertainties for m0 (A0) are nearly two times bigger
than (less than half as big as) the value obtained from
this simple scaling. A strict scaling is not expected, since
the normalized control error measures the average per-
formance of the ANN against 300 CMSSM scenarios in
the control set, whereas we are now considering specific
benchmark points.

Moreover, the control error determines the deviation
from the true value, not the estimated size of the uncer-
tainty of the extracted CMSSM parameters. However,
Table IV also shows that the estimated standard deviations
reflect the differences to the true values quite well. This is
true in particular for the simulated measurement based on
10 fb�1 of data, where 12 of the 16 estimated parameter
values are less than one estimated standard deviation away
from the true value, and the remaining four estimates differ
from the true values by less than two estimated standard
deviations.

Another indication for the reliability of the estimated
standard deviations is that they decrease approximately by

the expected factor
ffiffiffiffiffiffi
50

p ’ 7 when going to the simulated
measurement based on 500 fb�1 of data. Recall that we

only include statistical uncertainties, which should of
course decrease proportional to the inverse square root of
the accumulated luminosity.
However, upon closer examination some systematic

deviation from the expected reduction of the estimated

uncertainties by a factor of
ffiffiffiffiffiffi
50

p
becomes apparent. First,

when averaging over all four benchmark points the esti-
mated errors on m1=2, m0 and tan� actually decrease by

factors of 9.6, 8.5 and 8.3. This indicates that the uncer-
tainties for the 500 fb�1 measurements might be somewhat
underestimated. In fact, Table IV shows that in this case 10
out of 16 reconstructed parameter values are more than one
estimated standard deviation away from their true values;
four of the reconstructed values are more than two standard
deviations off, and one ANN output (m0 for benchmark
point 3) differs from its true value by more than three
estimated standard deviations. The likely explanation for
this is that the predictions in the training and control sets
were also ‘‘only’’ based on 500 fb�1 of simulated data; i.e.
they had the same uncertainty due to finite Monte Carlo
statistics as our simulated measurements. This ‘‘theoretical
uncertainty’’ is not included in our estimates of the uncer-
tainty of the ANN outputs. Statistical fluctuations in the
training and/or control sets might also lead to systematic
offsets of the ANN outputs relative to the true values. This
might explain the relatively poor performance of the ANNs
for benchmark point 3 when fed the simulated 500 fb�1

measurement, where all four output values are more than

TABLE IV. Values of the CMSSM parameters reconstructed by our ANNs for the four benchmark points, their uncertainties, and the
corresponding correlation coefficients. The standard deviations and correlation coefficients are calculated via error propagation; see
Eqs. (3.11) to (3.13). The dimensionful parameters m0, m1=2 and A0 are given in GeV.

Point 1 Point 2 Point 3 Point 4

10=fb
�m0 � �m0

167:25� 33:78 1998:93� 92:20 1055:97� 47:26 482:94� 61:23
�m1=2 � �m1=2

697:51� 7:36 446:55� 11:30 607:47� 11:53 695:48� 7:87
tan�� �tan� 21:35� 5:96 9:67� 18:81 23:41� 37:42 23:37� 11:08
�A0 � �A0

463:43� 326:00 1406:37� 2898:67 1453:49� 1891:58 �73:52� 628:16
	m0m1=2

�0:037 �0:051 �0:309 �0:407
	m0 tan� 0.131 �0:068 0.044 0.057

	m0A0
0.021 �0:251 0.200 �0:671

	m1=2 tan� 0.201 0.174 �0:084 �0:350
	m1=2A0

0.121 �0:119 0.065 0.139

	tan�A0
�0:035 0.249 �0:218 0.238

500=fb
�m0 � �m0

156:23� 4:86 2004:05� 10:61 1015:66� 4:49 391:86� 7:70
�m1=2 � �m1=2

701:05� 0:87 451:15� 1:00 598:75� 1:21 700:71� 0:88
tan�� �tan� 9:39� 0:70 14:66� 2:17 20:79� 5:20 30:50� 1:24
�A0 � �A0

�43:61� 55:37 261:47� 474:68 774:39� 295:63 183:05� 101:48
	m0m1=2

�0:125 �0:519 �0:550 �0:695
	m0 tan� �0:233 �0:131 0.294 0.441

	m0A0
0.038 �0:068 �0:557 �0:232

	m1=2 tan� 0.259 0.076 �0:110 �0:416
	m1=2A0

0.033 0.165 0.509 0.250

	tan�A0
�0:211 �0:158 �0:055 0.464
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one estimated standard deviation off, and three of the four
values are more than two estimated standard deviations off.
In order to check this, we simulated the 500 fb�1 measure-
ment of benchmark point 3 two more times with different
seeds in Herwigþþ . For both additional versions the
estimated value of m0 was less than one standard deviation
away from the true value. Therefore, the more than three
standard deviations in Table IV seems to be a rather
extreme statistical fluctuation. On the other hand, for all
three versions of the measurement, A0 differed between
two and three standard deviations from the true value. The
estimated value was always smaller than the true value

A0 ¼ 1500 GeV. This slight tendency to lower values
might originate from the fact that the true value lies near
the upper bound A0;max ¼ 2m0 enforced in the selection of

the training sets.
In contrast, the error estimates for the four values of A0

only decrease by a factor of �6:2. For the reasons listed
above, the errors for the 500 fb�1 measurements might
still be slightly underestimated. However, in the case at
hand the errors for the 10 fb�1 measurements are also
somewhat suspect. The reason is that in three cases the
estimated ‘‘1�’’ interval for A0 extends beyond the range
covered in the training and control sets, which satisfy

FIG. 8 (color online). The histograms show one-dimensional distributions of ANN outputs for benchmark point 4, obtained
by feeding the neural networks with 100,000 Gaussian distributed versions of the 10 fb�1 measurement. The dimensionful
parameters m0, m1=2 and A0 are given in GeV. The distributions are fitted to Gaussians (solid curves) of the form gðxÞ ¼ p0 �
exp ð�1=2½ðx� p1Þ=p2	2Þ with x being the appropriate CMSSM parameter, p1 the mean value and p2 the standard deviation. The
input values are in the center of the x axis of the respective plot. The neural network settings are given in Table III.
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jA0j � 2m0. This means that the ANNs are forced to at
least partially extrapolate, rather than interpolate, when
estimating these errors. Recall also that values of jA0j
significantly larger than 2m0 often lead to problems with
the calculation of the spectrum.

In spite of these caveats, we consider the overall per-
formance of our ANNs to be quite satisfactory. Already
with 10 fb�1 of simulated data the gaugino mass parameter
m1=2 can be determined with a relative accuracy of 1% to

2.5%. If m0 is large enough to significantly affect the
squark masses (benchmark points 2 and 3), it can be
determined with a relative accuracy of about 4.5%; if
m0 is very small, as in point 1, this relative accuracy
deteriorates.

Meaningful determinations of A0 and tan� will need
more data. For the simulated measurements with 500 fb�1,

the estimated uncertainty on tan� varies between 4% for
point 4, which had a large input value of tan�, and 25% for
point 3, which, as we have seen before, has the largest
normalized control error for this quantity. The estimated
error on A0 is roughly 25% to 35% of the input value ofm0.
Finally, Table IV also lists the correlation coefficients.

We see that most correlations are quite weak. The true
correlation coefficients should be independent of the lumi-
nosity, but our estimates of these coefficients should, and
do, fluctuate when the (simulated) data set is increased.
We nevertheless observe consistently negative correla-

tions between the extracted values of m0 and m1=2 for

benchmarks points 2, 3 and 4. This can be explained from
the observation that increasing either m1=2 or m0 will in-

crease the masses of strongly interacting superparticles,
which will lead to a reduction of the total event rate, and

FIG. 9 (color online). As in Fig. 8, but using 500 fb�1 instead of a 10 fb�1 of simulated data.
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FIG. 10 (color online). Two-dimensional distributions of all pairs of CMSSM parameters as predicted from our ANNs for
benchmark point 4, when fed with 1,000,000 Gaussian distributed versions of the original simulated measurement, assuming an
integrated luminosity of 500 fb�1. The dimensionful quantities m0, m1=2 and A0 are given in GeV. These distributions are fitted to

Gaussians of the form gðx; yÞ ¼ p0 � exp ½�0:5=ð1� p2
5Þ � ð½ðx� p1Þ=p2	2 þ ½ðy� p3Þ=p4	2 � 2 � p5=ðp2p4Þ � ðx� p1Þ � ðy� p3ÞÞ	,

with x and y being the appropriate CMSSM parameters, p1 and p2 the mean value and standard deviation of x, p3 and p4 the mean
value and standard deviation of y, and p5 the correlation coefficient of Eq. (3.9).
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to an increase of the average HT values. To some extent an
increase inm0 can therefore be compensated by a reduction
ofm1=2, and vice versa. This correlation is essentially absent

for benchmark point 1, which has m2
0 
 m2

1=2 so that even

the squark masses are essentially independent of m0.
Similarly, the mild positive correlation between A0 and
m1=2 can be explained from the observation that the coef-

ficients di in Eq. (4.1) are negative, while bi are positive.
The RG effect on the scalar masses of increasing A0 can
therefore be compensated by increasing m1=2.

As already noted, the standard deviations and correla-
tion coefficients listed in Table IV have been computed
using error propagation. We conclude this section by
comparing these with the results obtained by feeding
Gaussian distributed variants of the original measure-
ments into our ANNs, as described in the first part of
Sec. III A 7. We do this for benchmark point 4; results for
the other benchmark points are similar.24

Figure 8 shows the distribution of the output of the four
ANNs for the simulated measurement with 10 fb�1 of data.
We note first of all that the binned distributions of ANN
outputs do indeed look rather Gaussian already for this
smaller data sample—much more so than the correspond-
ing distributions obtained via �2 minimization; see Fig. 5.
Moreover, in the case of m0, m1=2 and tan� both the mean

values of the Gaussians (the p1 values given in the inserts
in the figure), which are the final parameter estimates of the
ANN derived in this manner, and their widths (the p2

values), which are the final estimates for the uncertainty
of these parameters, agree quite well with the results listed
in Table IV. In the case of the mean values, the twomethods
yield estimates that agree to about 0.1 estimated standard
deviations. The two estimates for the standard deviations
differ slightly more. This is not unexpected, since the
standard deviation estimated via error propagation itself
has an error, which is not negligible for this small
(simulated) data set. Recall also that we set all observables
to zero that have been obtained from fewer than 10 events.
Benchmark point 4 has 7 events in class 9 and 13 events in
class 4. Using the method of error propagation, the observ-
ables O9;i are thus ignored, while O4;i are included.

However, quite a few of the Gaussian distributed variants
of this measurement will have � 10 events in class 9
and/or � 9 events in class 4. These variants will thus
feed qualitatively different input in the ANNs than the
original simulated measurement.

Both the statistical error of the estimated standard
deviation, and the systematic difference among the ANN
inputs from different variants of the same simulated
measurement, are expected to decrease with increasing
luminosity. For example, for an integrated luminosity
of 500 fb�1, benchmark point 4 has 350 events in

class 9, which is about eight standard deviations away
from the lower bound of 500 events now required for the
inclusion of observables O9;i; we can therefore be quite

certain that none of the up to 1,000,000 variants of the
simulated measurements has sufficiently many events of
class 9 for the O9;i to be included. We therefore expect the

differences between the two methods for determining the
final ANN output, and its estimated uncertainty, to agree
better for higher luminosity. This is confirmed by Fig. 9.
In particular, the two estimates of the uncertainties now
agree to better than 3% in all cases.
Recall that we used 100 Gaussian distributed variants of

ANN inputs for each CMSSM training parameter set.
Without this trick, the distributions of the ANN outputs
for tan� and A0 would look much less Gaussian, in par-
ticular for the smaller luminosity of 10 fb�1. Moreover, the
estimated uncertainties on the extracted CMSSM parame-
ters would be �20% larger. The ANNs therefore clearly
profit from the information on the relative errors of our
observables. Recall that these additional training sets were
obtained without additional event generation. On the other
hand, the time needed for training the ANNs scales linearly
with the size of the training sets.
Finally, Fig. 10 shows that Gaussian fits to two-

dimensional distributions of ANN outputs yield almost
the same estimates of the standard deviations as the
one-dimensional fits or the method of error propagation.
These two-dimensional fits also allow us to determine the
correlation coefficients (the p5 values given in the inserts
in the figures). Again we observe quite close agreement
with the results derived from Gaussian error propagation.
Above we found some evidence that the errors from the

500 fb�1 measurements are underestimated, since they
do not include the ‘‘theory’’ error from the finite MC
statistics used in the training and control sets. Since
Figs. 9 and 10 have been obtained with fixed ANNs, only
varying the input (i.e., the results of the measurements),
they do not reflect this theory error, either. It is nevertheless
reassuring that two methods which are computationally
independent yield very similar results.

V. SUMMARYAND CONCLUSIONS

In this paper we investigated methods to determine the
values of underlying parameters from (simulated) mea-
surements at the LHC, with heavy emphasis on counting
observables. Mostly for reasons of computational simplic-
ity, we did this for the CMSSM where only four free
parameters need to be determined; the sign of � was fixed
to be positive.
Evidently the choice of observables is crucial. Here we

used the same observables as in Ref. [14], where we have
shown that they perform well when trying to distinguish
different (generalized) MSSM parameter sets using a �2

criterion. We also used the same cuts as in Ref. [14], even
though the sparticle mass scale of the benchmark points we

24Some results for benchmark point 3 have already been shown
in Sec. III A 7.
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used for the present analysis, which lie just outside the
currently excluded region, is significantly higher than in
our previous study. Moreover, in this proof-of-concept
analysis we ignored Standard Model backgrounds as well
as statistical uncertainties.

Our main result is that artificial neural networks (ANNs)
can be used for the determination of model parameters,
including statistically reliable estimates of their errors. In
contrast, an in principle straightforward �2 minimization
did not yield reliable results, probably because we do not
have the computational resources required for the calcu-
lation of theoretical predictions for sufficiently many dif-
ferent sets of model parameters with sufficiently small
Monte Carlo uncertainty. Moreover, the estimated errors
on m0 and m1=2 from the �2 minimization were about two

to three times larger than those obtained from the ANNs.
We thus conclude that ANNs can yield better and more
reliable results with less computational effort than a �2

minimization.
Of course, the training of the ANNs was also affected by

the finite MC statistics used for deriving our theoretical
predictions. However, here the main requirement is that the
error due to finite MC statistics should be (much) smaller
than the statistical error of the (actual or simulated) mea-
surement. In contrast, any ‘‘smart’’ algorithm attempting to
minimize a �2 will need reliable information on systematic
changes of �2 when the CMSSM parameters are changed
by relatively small amounts. The uncertainty on �2 due to
MC statistics therefore needs to be (much) smaller than the
(typically quite small) change of �2 induced by this small
variation of the parameters.

Mathematically, an ANN is a function mapping
(typically a rather large number of) input values into one
or more output value(s). In the case at hand, the inputs are
the 84 observables described in Sec. II A. These observ-
ables have quite different statistical uncertainties. This
should affect the weights given to these inputs. We took
this into account in two ways. First, we simply set all
observables to zero that have been obtained from fewer
than one event per fb�1 of (simulated) data. Since we
assume an integrated luminosity of at least 10 fb�1, this
effectively removes very ‘‘noisy’’ observables.

Second, for each training set of CMSSM parameters, we
generated 100 variants where the observables were drawn
from multidimensional Gaussians, whose central values
and covariances were taken from the original simulation.
For each set of CMSSM parameters that we simulated for
the training sets, the ANNs were therefore confronted with
100 slightly different sets of inputs (observables) yielding
the same outputs (CMSSM parameters). The ANNs could
thus learn the relative accuracy between the various ob-
servables, which, at least for Gaussian statistics, should be
independent of the integrated luminosity. The trained
ANNs can thus be used on (simulated) data sets of any
luminosity, as long as the statistical uncertainty of this

measurement is (much) larger than the Monte Carlo un-
certainty of the predictions in the training and control sets.
Since the training of the ANNs is independent of actual

data, it can be done before the measurement. Once actual
measurements exist, the ANN results for the CMSSM
parameters can then be obtained with negligible computa-
tional effort. In contrast, a �2 minimization has to be
(re)done for each measurement.
As expected the CMSSM parameters m0 (scalar mass

parameter) and m1=2 (gaugino mass parameter) could be

determined relatively well for all four benchmark points
already with an integrated luminosity of 10 fb�1. In the
best cases these could be determined to 4.5% for m0 and
1% for m1=2. With this luminosity, leading to around 1000

events after cuts, tan� and A0 could at best be determined
very roughly.
On the other hand, with a luminosity of 500 fb�1, m1=2

could be determined with statistical uncertainty well below
1%. The statistical error on m0 then amounts to 5 to
10 GeV for our four benchmark points. For three of the
points, tan� could be determined with an error of �2 or
better. Finally, the error on A0 was about 25% to 35%
of the input value of m0. We also computed the full
covariance matrix, and found that most correlations are
quite weak.
These results were obtained with two different methods.

In one method, the central values were obtained by simply
feeding the simulated measurements into the trained
ANNs, and the uncertainties and correlation coefficients
were computed using Gaussian error propagation.
Alternatively we generated numerous Gaussian distributed
variants of the original simulated measurements, and fitted
Gaussian distributions to the outputs of the ANNs. The
results of these two methods agreed quite well.
One disadvantage of using ANNs is that they do not

automatically give a measure for the goodness of the fit
(at most only an indication by the shapes of the Gaussian
output distributions): even if nature is described by a
completely different theory, the ANNs will output some
values of the free parameters of the (wrong) theory on
which they have been trained when confronted with actual
data. Onewill have to simulate the assumed theory with the
values of the free parameters determined by the ANNs in
order to determine the quality of the fit, e.g. by computing
the �2. However, the numerical effort required for this is
trivial compared to the effort required for the determination
of the values of the free parameters.
Our results can be improved in a number of ways. First

of all, we ignored all information on the Higgs sector. In
the context of the MSSM, knowledge of the mass of one of
the CP-even neutral Higgs bosons will greatly reduce the
allowed parameter space. One can also try to tag top quarks
[25] or Higgs bosons [26] in the final state using subjet
techniques, or to devise dedicated sets of cuts that attempt
to isolate specific decay chains. Moreover, kinematic
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features (edges or kinks) could be included. All this would
increase the number of inputs fed into the ANNs, and could
thus increase their ability to determine the underlying
parameters. Conversely it might be possible to remove
some of the observables from the list of input parameters
without significant loss of information. Since our algorithm
should automatically assign low weights to observables
with little discriminating power, this would presumably
not improve the performance of the ANNs very much,
but it could reduce the computational effort. Similarly,
the number of Gaussian distributed variants generated for
each training set of CMSSM parameters could perhaps be
reduced without degrading the performance; the time
needed to train the ANNs is essentially proportional to
this number. Finally, we did not consider ANNs with two
(or more) layers of hidden neurons; this more complicated
architecture might allow us to reduce the total number
of hidden neurons, and perhaps also the total number of
weights that need to be determined, which would speed
up the training process.

However, before trying to further optimize the
performance of the ANNs one should make the setup
more realistic, by including Standard Model back-
grounds as well as systematic uncertainties. The cuts
could then be optimized for each benchmark point sepa-
rately, as e.g. done in [5,27]. This would not increase the
computational effort, since we already use different
ANNs for the different benchmark points (or regions).
Systematic uncertainties could be introduced as in [14].
Moreover, if the method is applied to supersymmetric
scenarios, one should consider benchmark points that
have a Higgs boson of the correct mass and coupling,
in agreement with recent data [15]. In the framework of
the CMSSM this is known to push the squark mass scale
to quite large values [28]; this will presumably greatly
reduce the possibility to extract m0. However, if scalar
masses are not required to unify, first and second gen-
eration scalars could still have masses similar to those
in our benchmark scenarios. Alternatively, one could
introduce additional Higgs superfields to increase the
mass of the lightest CP-even Higgs boson, as e.g. in
the NMSSM [29].

The purpose of this paper was to show that artificial
neural networks do have the potential to determine quanti-
tatively the values of the parameters of the underlying
theory, and the corresponding (statistical) uncertainties.
Further, more realistic studies are thus well worth the
effort.
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APPENDIX: CALCULATION OF WEIGHTS

In this appendix we discuss the calculation of the
weights of a neural network with 84þ 1 input neurons,
vþ 1 hidden neurons and one output neuron; this
describes the ANNs we constructed in Sec. III A. Since
there is only one output neuron, we suppress the index
r ¼ 1 on the corresponding weights in Eq. (3.2).
We begin by combining all weights in one vector ~w. The

first 85 � v entries are weights in the first weight layer, and
the remaining vþ 1 entries are from the second weight
layer:

~w ¼ ðw1; . . . ; wWÞT¼ ðw1; . . . ; wv�85; wv�85þ1; . . . ; wWÞT
¼ ðwð1Þ

10 ; w
ð1Þ
11 ; . . . ; w

ð1Þ
184; w

ð1Þ
20 ; . . . ; w

ð1Þ
v84; w

ð2Þ
0 ; . . . ; wð2Þ

v ÞT:
(A1)

In total the weight vector thus has W ¼ 85 � vþ vþ 1 ¼
86 � vþ 1 entries. The wm;m ¼ 1; . . . ; 85 � v are related

to the wð1Þ
ai ; a ¼ 1; . . . ; v; i ¼ 0; . . . ; 84 via wm ¼ wð1Þ

ai

with a ¼ dm=85e25 and i ¼ ½ðm� 1Þmod 85	. Similarly,

for n ¼ 85 � vþ 1; . . .W we have wn ¼ wð2Þ
b with

b ¼ ðn� 1� v � 85Þ.
During the training of the ANN the weight vector is

adjusted iteratively. We denote the weight vector in learn-
ing step t by ~wt.

1. First step

As mentioned in Sec. III A 3 the first weight vector ~w1 is
chosen randomly from a Gaussian distribution. In the first
improvement, ~w is changed in direction ~s1 ¼ � ~g1 equal to

the negative gradient ~g. The first gradient vector ~g1 ¼
~gð ~w1Þ ¼ ~rFð ~w1Þ is calculated using the function F
describing the error the ANN makes in reproducing the
training set. We wish to minimize this function of the
weights. Since the location of the minimum is independent
of the normalization, we use the simple definition

F ¼ XN
‘¼1

F‘ ¼ XN
‘¼1

1

2
ðy‘ð ~x‘Þ � k‘Þ2: (A2)

As in Sec. III A N is the number of training sets; in our
applications, N ’ 100; 000. Again as in Sec. III A, y‘ð ~x‘Þ is
the output that theANN computes from the normalized input
~x‘ of training set ‘, while the correct (inversely) normalized
CMSSM output of the training set is labeled k‘; the normal-
ization of the input and output has been described in
Sec. IIIA 2. The first 85 � v entries of the gradient vector
can be computed from Eqs. (A2), (3.1), and (3.2):

~rmFð ~wÞ ¼ @F

@wm

¼ @F

@wð1Þ
ai

¼ XN
‘¼1

�ð1Þ‘
a x‘i : (A3)

25dxe means the smallest integer that is larger than or equal to
the real number x; e.g. d1=6e ¼ 1 ¼ d1e.
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The remaining vþ 1 entries are

~rnFð ~wÞ ¼ @F

@wn

¼ @F

@wð2Þ
b

¼ XN
‘¼1

�ð2Þ‘hðz‘bÞ: (A4)

Here, h is the hidden neuron processing function, hðz‘bÞ ¼
tanh ðz‘bÞ, and z‘b ¼

P
84
i¼0 w

ð1Þ
bi x

‘
i as in Eq. (3.1). Moreover,

�ð1Þ‘
a in Eq. (A3), with a ¼ 1; . . . ; v, and�ð2Þ‘ in Eq. (A4) are

abbreviations for

�ð1Þ‘
a ¼ @F‘

@y‘
@y‘

@z‘a
¼ �ð2Þ‘wð2Þ

a � h0ðz‘aÞ; (A5)

where h0 stands for the derivative of h, i.e. h0ðz‘bÞ ¼ð1� tanh 2ðz‘bÞÞ, and

�ð2Þ‘ ¼ @F‘

@y‘
¼ y‘ � k‘: (A6)

2. Repeated steps

The following steps of the calculation are repeated until
one is satisfied that the (global) minimum of the normal-
ized control error (3.7) has been reached. The new weight
vector is calculated in step t � 2 from the expression

~wt ¼ ~wt�1 þ �t ~st�1: (A7)

The calculation of ~s1 ¼ � ~g1 ¼ � ~rFð ~w1Þ has already
been described in Eqs. (A3) to (A6). The coefficient �t

can be computed from the Hessian matrix Ht�1:

�t ¼ � ~sTt�1 ~gt�1

~sTt�1Ht�1 ~st�1

: (A8)

The explicit calculation of the Hessian matrix is shown at
the end of this appendix. With the new weights the nor-
malized control error of Eq. (3.7) can be calculated and
depending on the stopping criterion the learning process
might be terminated.

If the stopping criterion is not fulfilled the new gradient
vector ~gt would be calculated, just as in Eqs. (A3) to (A6).
Next, the new search direction is computed from

~st ¼ � ~gt þ �t ~st�1; (A9)

where the coefficient�t is also calculated from the Hessian
matrix:

�t ¼ ~gTt Ht�1 ~st�1

~sTt�1Ht�1 ~st�1

: (A10)

Now the next step t ! tþ 1 can be taken, starting with the
calculation of the new weights from Eq. (A7).

3. Hessian matrix

The main numerical effort in the training process is the
repeated calculation of the Hessian matrix. This is a sym-
metric W �W matrix; i.e. its dimension is determined by

the number of hidden neurons. It is given by the matrix of
second derivatives of the error function F with respect to
the weights:

Hmn ¼ @2F

@wm@wn

: (A11)

Its numerical valuewill in general be different for each step
during the training process. For our architecture, with one
layer of hidden neurons, we can distinguish three different
cases: both weights are from the first layer; both weights
are from the second layer; or one weight is from the first
and the other from the second weight layer:
(1) Both weights are from the first weight layer, i.e.

m; n ¼ 1; . . . ; 85 � v:

Hmn ¼ XN
‘¼1

@2F‘

@wð1Þ
ai @w

ð1Þ
bj

¼ XN
‘¼1

@

@wð1Þ
ai

ð�ð1Þ‘
b x‘j Þ

¼ XN
‘¼1

@

@wð1Þ
ai

½�ð2Þ‘wð2Þ
b � h0ðz‘bÞ	x‘j

¼ XN
‘¼1

½wð2Þ
a wð2Þ

b h0ðz‘aÞh0ðz‘bÞ

þ �ba�
ð2Þ‘wð2Þ

b h00ðz‘bÞ	x‘i x‘j :
Here we have used Eqs. (A2), (A5), (A6), (3.1), and
(3.2). The index pairs ai and bj are computed from
the indices m and n as described following Eq. (A1)
above. The second derivative of the hidden neuron
processing function is

h00ðzÞ ¼ 2 tanh ðzÞðtanh 2ðzÞ � 1Þ
¼ 2hðzÞðh2ðzÞ � 1Þ: (A12)

(2) Both weights are from the second weight layer, i.e.
m; n ¼ v � 85þ 1; . . . ; W:

Hmn ¼ XN
‘¼1

@2F‘

@wð2Þ
a @wð2Þ

b

¼ XN
‘¼1

@

@wð2Þ
a

ð�ð2Þ‘hðz‘bÞÞ

¼ XN
‘¼1

hðz‘aÞhðz‘bÞ;

where a ¼ m� 85 � v� 1, b ¼ n� 85 � v� 1.
(3) One weight each from the first and the second

weight layers, i.e. m ¼ v � 85þ 1; . . . ; W and
n ¼ 1; . . . ; v � 85 or vice versa:

Hmn ¼
XN
‘¼1

@2F‘

@wð2Þ
a @wð1Þ

bi

¼ XN
‘¼1

@

@wð2Þ
a

½�ð2Þ‘wð2Þ
b � h0ðz‘bÞ	x‘i

¼ XN
‘¼1

ðhðz‘aÞwð2Þ
b þ �ba�

ð2Þ‘Þh0ðz‘bÞx‘i :
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